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Abstract

Dynamic Bayesian networks (DBN) are handy
tools to model complex dynamical systems
learned from collected data and expert knowl-
edge. However, expert knowledge may be in-
complete, and data may be scarce (this is typ-
ically the case in Life Sciences). In such cases,
using precise parameters to describe the network
does not faithfully account for our lack of in-
formation. This is why we propose, in this pa-
per, to extend the notion of DBN to convex sets
of probabilities, introducing the notion of dy-
namic credal networks (DCN). We propose dif-
ferent extensions relying on different indepen-
dence concepts, briefly discussing the difficulty
of extending classical algorithms for each con-
cept. We then apply DCN to perform a robust-
ness analysis of DBN in a real-case study con-
cerning the microbial population growth during
a French cheese ripening process.

1 Introduction

Dynamic Bayesian networks (DBNs) [36] extend
Bayesian networks (BNs) [37, 38] and form a convenient
formalism to describe complex dynamical systems. They
also extend the well-known Hidden Markov Models
(HMMs) [40] by representing the hidden state and the
observation in terms of several random variables. The
probabilistic and graphical natures of DBNs make them
attractive tools to integrate both expert knowledge and
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data in a single representation. The concept of DBNs
makes possible to (i) combine different sources of knowl-
edge; (ii) easily modify the model thanks to its modular
nature and (iii) integrate uncertainties. However, one
limitation of DBNSs lies in the specification of parameters
that requires a substantial knowledge that is seldom
available. This is particularly the case when experimental
data are costly, such as in Life Sciences.

One way to overcome this difficulty is to use credal
sets [35, 44], i.e., convex sets of probabilities to model
the lack of knowledge about the parameters. Applied to
Bayesian networks, this idea corresponds to the concept of
credal networks (CN) [17, 19], in which each node of the
network is associated to a convex set of conditional prob-
abilities (possibly degenerated to a single element). Other
approaches such as possibilistic [3] or evidential networks
[45] follow the same objective but cannot be interpreted as
a proper extension of classical Bayesian Networks.

While the notion of credal network has received much at-
tention in the past years, it is not the case for its dynamic
extension. Indeed, the only works dealing with such ex-
tension consider specific models related to Markov Pro-
cesses [22, 26], in which computations on the full dynamic
network can be done separately for each time-step. Al-
though such cases are of high interest and can benefit from
efficient algorithms, there are many other cases where one
will need to perform inferences on a complete network not
reducible to a Markov model. This is especially the case
in Life and Food Sciences [1, 39], where the modelling
of non-linear, multi-scale dynamic processes (maturation
processes, evolution of interacting physicochemical phe-
nomena, ...) is often based on qualitative expert knowl-
edge and on limited experimental data. The use of Dy-
namic Credal networks (DCNs) extending DBNs seems
a good way to integrate such heterogeneous and scarce
knowledge.

The goal of this paper is two-fold: first to provide in Sec-
tion 3 a first theoretical and practical discussion of the
DBNs extension into DCNs, second to apply in Section 4
the DCNs framework to achieve a robustness analysis of



DBNS in a real-world case study involving the growth of
yeast population during the Camembert-type cheese ripen-
ing. Preliminary notions are briefly recalled in Section 2.

2 Preliminary notions : DBN and CN

2.1 Dynamic Bayesian Networks

DBNs are classical Bayesian networks in which nodes
{X;(#),s = 1...n}, representing (discrete) random vari-
ables, are indexed by discrete time ¢. They provide a com-
pact representation of the joint probability distribution P
for a finite time interval [1,7] (we use [i, ;] to denote the
finite set of time indices {i,...,;}) defined as follows:

PxX)... X)) =] [[Pxi® U@y (D
i=1t=1

where U;(.) denotes the set of parent nodes of a node X;(.)
and P (X; (t) | U; (¢)) denotes the conditional probability
function associated with the random variable X;(¢) given
U;(t). X(t) = {X1(t),..., Xn(t)}, s called a “slice” and rep-
resents the set of all variables indexed by the same time
t. This joint probability P(X(1),...,X(r)) represents the
beliefs about possible trajectories of the dynamic process
X (t). DBNs assume the first-order Markov property which
means that the parents of a variable in time slice + must
occur in either slice t — 1 or ¢ :

Ui (1) € X(t = 1) UX(@\{X;()} @)

Moreover, the conditional probabilities are time-invariant
(first-order homogeneous Markov property):

P(X; (1) | U; (1) = P(X;(2)|U;(2)) WVt € [2,7]. (3)

To specify a DBN, we need to define the intra-slice topol-
ogy (within a time slice), the inter-slice topology (between
two time slices), as well as the parameters, i.e conditional
probabilities in Equation (3) for the first two time slices.

In this paper, we consider that X, (¢) are all discrete vari-
ables. Faced with continuous variables X, these ones will
be discretized. Let Pitj . be the probability that X;(¢) = &,
given that its parents have instantiation j, i.e.

Pl = P(X;(t) = k| U;(1) = j), “
forie {1,...,n},j € {1,...,¢;} where ¢; is the number of
distinct configurations of U;(¢t) and k € {1,...,r;} where r;
is the number of values that node i can take.

2.1.1 Parameter learning and local elicitation

The techniques for learning DBNs are generally exten-
sions of the techniques for learning BNs. Different meth-
ods exist to learn the structure or the parameters from sub-
stantial and/or incomplete data (for overviews, we refer

readers to [5, 34]). In our case, we consider that the topol-
ogy is given (e.g., learned from expert knowledge).

The most commonly used and simplest method which will
be used in this paper is to estimate Pz.tj ;; by the occurrence
rate of the event (X;(¢) = k, U;(t) = j) 1n a training database

¢ ¢ ¢
Fijk = Niji/Zk Niji, (&)

where Nitj .. denotes the number of times where the event
(X;(t) = k,U;(t) = §) occurs in database. As we assume the
first-order homogeneous Markov property (3), Pz?fj . does
not depend on time and we can rewrite

t
2t Nije

= wk 6
Zt ZkNitjk ( )

vt' € [2,7] Pt
T Figk

In the case where Nit. r =0 for all k, the uniform distri-
bution is traditionally used as it maximizes the Shannon
entropy and corresponds to the Laplace indifference prin-
ciple.

A practical methodology able to incrementally build and
update model parameters from heterogeneous information
has been developed in [2] on the basis of Dirichlet model.
From a given network structure, it consists in using a pri-
ori Dirichlet distributions which are then updated through
Bayesian inference by expressing new pieces of informa-
tion into a frequentist form. This method also integrates
the confidence level on the different sources of informa-
tion.

2.1.2 Knowledge propagation - inference

The use of DBNs consists in "query" expressed as con-
ditional probabilities. The most common task we wish to
solve is to estimate the marginal probabilities

P (XoW){Xp® vt e [L}) W ell,rT (D)

where X is a set of query variables, and X j; is a set of evi-
dence variables. Inference consists in computing the prob-
ability of each state of a variable when we know the state
of other variables. In general, DBN inference is performed
using recursive operators and Bayes’ theorem that update
the belief state of the DBN as new observations become
available [36]. Due to the natural time ordering of the mod-
elled process, U, (t) will usually be observed before X (t)
and that may help with the sequential updating of the con-
ditional probabilities as well as with the preservation of
the original conditional independence structure.

2.2 Credal Networks and strong extension

A credal network (CN) [17, 19] is an extension of BNs
where imprecision is introduced in probabilities by means
of credal sets [35]. CNs specify a closed convex set K(X)
of multivariate probability mass functions over the whole



set of variables X. Under the strong extension [17] hypoth-
esis, the joint credal set K(X) over X may be formulated
as:

n
K(X)=CH {P(X) :PX)=[] P, P € K,} )
i=1
where CH denotes the convex hull, P, = P(X; | U;) and
K; = K(X;|U;) is the closed convex set of probabil-
ity mass function for the random variable X; given U;.
In practice, it is sufficient to focus on the extreme points
ext[K (X; | U;)] of K (X;|U;) in Eq. (8). In our experi-
ments, we will limit ourselves to credal sets specified by
means of probability intervals [25], thatis foralli=1...n
andj=1...¢:

KUZCH{ P 1B ke[szk: zgk]c[o 1} vk } (9)
zk z]k*l

This model has the advantage of creating a small num-
ber of extreme points provided additional constraints :
Vk i Pijp — Py, = {0,¢} and ¢ = 1 — 3, Py is a
constant. For such a linear-vacuous nnxture, the number
of vertices of K (X;|U; =j) is precisely the cardinal-
ity of X; — assuming there is no modality & for which
Pyji, = Pyj;, in which case | X; | is an upper bound —
each vertex corresponding to the selection of a modal-
ity k for which P(X; =k|U; =j) = P;;;, and therefor
vk # kP (X; _k’|U =j) = Pt

Inferences on a credal network comes down to assess
lower and upper probabilities, that is search bounds of
P(Xg|X ) within K(X) (under the strong extension hy-
pothesis) for some values of X.

3 Dynamical Credal Networks (DCNs) :
definitions and algorithms

This section introduces the notion of Dynamic Credal Net-
works (DCNs) and discusses their features.

3.1 Definition of Dynamic Credal Networks (DCNs)

A dynamic credal network is a DBN where conditional
probabilities P (X; (t) | U; (t)) (noted P}) are replaced by
credal sets K (X;(t) | U;( (noted Kt) We assume the
same first-order Markov property (2) as in DBNs (par-
ents only originate from same or previous time slice) and
Eq. (3) becomes

K (X;(t) | U;(1) = K (X;(2) | U3(2), V€ [2,7].  (10)
Therefore, specifying a DCN requires the same effort as a
DBN but allows the user to provide conditional credal sets
rather than probabilities if these latter cannot be reliably
estimated (from data and/or experts).

3.2 Independence in DCN

When working with probability sets rather than precise
probabilities, the notion of stochastic independence can
be extended in several ways [15]. Within graphical mod-
els, the most commonly used extension is strong indepen-
dence, that induces the strong extension defined in Eq. 8.
It can be interpreted as a robust model of a precise yet ill-
known BN.

This is in contrast with the notions of epistemic irrele-
vance and independence whose semantic as belief models
is clearer. However, these notions encounters severe com-
putational difficulties [18], limiting their practical interest.
Recent results show that for particular models such as Hid-
den Markov ones, efficient algorithms can be used [22],
however they remain intractable for the kind of models
considered in this paper. This is why we focus on extend-
ing the notion of strong extension to dynamic schemes.

The most straightforward extension is to simply apply
strong independence to the whole network, i.e.,

K(X)gt = CH{ i P(X) = H H P! Pl e Kf} (11)

i=1t=1

where X = (X(1),...,X(7)). We call this extension the dy-

. . o . . /.
namic strong extension and it is worth noting P! # P! is
valid, t,t' € [2,7].

However, when stepping to dynamic models, Condi-
tion (10) allows us to use the notion of repetitive indepen-
dence. This condition states that if two variables X, Y have
the same set of possible outcomes, that is Qx = Qy-, and
governed by the same probability distribution belonging to
K (X), then the joint credal set K (X,Y) is :

K (X,Y) = CH{P(X)P(X) | P(X) e K (X)}.  (12)
Adapting this notion of independence to DCN, so that

probabilities of each time slice are assumed to be identical,
leads to a second extension, i.e.,

P(X): P(X) =
P? e K2 and P! =

i1 [Ti=1 P,
PQVte[[Q 7] } (13)

that we call the dynamic repetitive extension. We have
K(X)rp C K(X)s¢, as K(X)rp is more constrained. In prac-
tice, the strong extension assumes that the dynamic net-
work is ill-defined and that its behaviour can change be-
tween time slices, while the repetitive extension assumes
that we seek a precise classical DBN who is partially
known.

K(X)rp =CH {

Next sections investigate the differences between these
two extensions. In particular, we will see that some algo-
rithms extend more easily to one extension than to another.



3.3 Inference algorithms in DCN

(D)CNs can be queried as (D)BNs were in Section 2.1.2
to get information about the state of a variable given ev-
idence about other variables, with respect to the network
extension. However, the use of credal sets makes the updat-
ing problem much harder, as it becomes an optimization
problem. As such, the computation of the lower bound on
P(Xg | Xg) requires to minimize a quotient containing
polynomials :

n T
s fine
XieX\XQUXE i=1t=1
P(Xg | Xp) = min T PekuX)
> IIIIFf

X;eX\X pi=1t=1

(14)

with P : P(X) € K, (X) belonging to the dynamic strong

extension (w = st) or dynamic repetitive extension (v =

rp) of the network. An upper bound can be obtained

by maximizing (14). It is known that such a minimum

(or maximum) is obtained at a vertex of the dynamic
strong/repetitive extension.

Depending on (1) the structure of network, (2) the num-
ber of modality of variables and (3) the chosen exten-
sion (strong/repetitive), the updating problem will be more
or less complex to solve. Because inferences are already
hard in static credal networks, little work has been done
on DCNs (except for special cases already mentioned).
By unrolling a two-time slice network over T time steps,
the number of possible vertex combinations goes from

Holmt[Km H1|ext[Kf]| (with |ext[K?]| the number of
ijt= it=

vertices of K!) in the case of repetitive independence, to
[T lext[K!]| TI lext[K!]|T—1 in the case of strong inde-
i,t=0

it=1
pendence. Given the potential number of vertices, approx-

imate algorithms seem more appropriate regarding DCNSs.

Many algorithms, exact and approximate, have been pro-
posed to deal with CN. Some are generalizations of well
known (D)BNs algorithms. Among the approximate al-
gorithms, there are those that compute inner bounds, i.e.
bounds that are enclosed by the exact ones, outer bounds,
which enclose the exact ones, and those that perform ran-
domly.

3.3.1 Exact inference algorithms

The 2U algorithm [27] performs an exact rapid inference
in the case of binary tree-shaped (D)CNs with the assump-
tion of strong independence.

The CCM transformation [9] turns a (D)CN into a (D)BN
by adding transparent nodes before performing an Maxi-
mum A Posteriori (MAP) estimation over the latter to find
the best combination of vertices. It has the same complex-

ity as credal network inference, that is NPPF Complete,
and performs poorly with separately specified credal net-
works such as the one we used during our trials (because
of the sheer number of vertices).

Optimization techniques such as branch and bound over
local vertices of credal sets [21, 7] are also well suited to
medium-sized networks and can be stopped at any time to
give an approximate answer.

Other algorithms are based on a variable elimination
scheme from (D)BNs, such as Separable Variable Eval-
uation [20, 42] which keeps the separately specified credal
sets as separated as possible during propagation, and can
be mapped to an integer or a multi-linear program [24, 23].

3.3.2 Approximate inference algorithms

Regarding binary and DAG-shaped (DAG : Directed
Acyclic Graph) credal networks, algorithm L2U (Loopy
2U) [32] (similar to LBP (Loopy Belief Propagation) [46])
produces either inner or outer approximations, and its ef-
ficiency is mainly due to the bounded cardinality of vari-
ables and in lesser extent to ignoring loops.

Another way to handle credal sets complexity is to repre-
sent them by simpler means. Variational methods [31, 30]
choose a family of functions to approximate the ex-
act combination of credal sets to decrease computational
costs. Those functions are optimized according to some
criteria until convergence and the inference is then real-
ized in the network with the original credal sets replaced
by the new found functions.

The A\R(+)(+) algorithm [21] uses interval probability
arithmetic to approximate credal sets in a propagation
scheme in tree-shaped networks (with the use of some ad-
ditional constraints limiting the information loss in its en-
hanced version). The intervals produced are outer bounds
of the real ones. Although those algorithms are fast in
medium-sized network, they either produce too many ap-
proximations or are too complex to work with DCNs.

Another popular family of approximate algorithms pro-
ducing inner bounds is based on Monte-Carlo sampling
[29]. Several methods have been proposed to better guide
the search (simulated annealing [6], genetic algorithms
[8]) among the vertices of the (conditional) local credal
sets, but they require some tuning for more accurate re-
sults, otherwise they can lead to poor approximations.

Although there exist several inference algorithms, none al-
lows to do inference, in a realistic and practical way, on
networks capable of representing global complex system
of Life Sciences especially in Food Sciences. Indeed, net-
works is composed of a large number of interacting vari-
ables capable of describing the behaviour of microscopic
scales (as micro organism) involving macroscopic view (as
the evolution of sensory properties). In further inferences,



we used a simple Monte-Carlo sampling algorithm [29]
which has the advantage as point of reference, as it applies
with the same easiness to dynamic repetitive and strong ex-
tensions (with a faster convergence for dynamic repetitive
extension).

4 DCN for Robustness in DBN

In this section, we apply the concept of DCN to perform a
robustness analysis of a learned precise DBN (both repeti-
tive and strong independence concepts well correspond to
this idea). We first recall some elements about robustness
in classical BN before proceeding to our study.

4.1 Robustness in BN

Roughly speaking, a robustness analysis is the study of the
behaviour of a model given small perturbations in its pa-
rameters. Robustness in Bayesian network is commonly
addressed using sensitivity analysis where the main con-
cern is to analyse the relationships between local network
parameters and global conclusions drawn based on the
BN. Sensitivity analysis has been largely studied by many
researchers [10, 4, 14, 11]. We propose here a small survey
of the main approaches.

The most common case of sensitivity analysis in BN is the
study of single-parameter influence [14, 33]. In a BN, a
parameter is a number in the CPT : p(z;|u) where z; is a
possible value for a random variable X and u is a possible
instantiation of the parents of X in the BN. In this frame-
work, a perturbation e consists in modifying p(X|u) into

€ where i = j
p(zjlu)le] = plzjlu)-(1—¢) (15)

otherwise.
1—p(z;|u)

Under covariation conditions, inferred posterior distribu-
tion of any variable in the BN then takes the form of a
quotient of two linear functions: f;::i Efficient algo-
rithms have been proposed to assess the values of the c;
[43]. This kind of study can further be generalized to n-
way sensitivity analyses where n is the number of param-
eters. It has been applied for DBNs in [13]. However, the

results are often difficult to interpret [33].

Testing the sensitivity of the results of an inference can be
more globally performed in a different manner. Soft evi-
dence (i.e. uncertain evidence) is a way to disturb global
behaviour of the BN using (local) belief revision [41, 12].
However, even if the specification of the perturbations is
different, this methods still faces the same difficulty to
interpret the results when multiple local changes are per-
formed [11].

Sensitivity analysis in BN proposes tools to analytically
follow the change in posterior distributions as a function

of the parameters (or the beliefs) in local CPTs. As attrac-
tive as it might be, this is not exactly what it is asked in
robustness analysis. Indeed, the effects of numerous small
perturbations is not easy to be estimated with such analysis
(using derivative of sensitivity expressions for instance).
One would like to obtain a set of possible distributions for
the posterior as a result. [16] describes such an approach
but with a framework (epistemic independence) difficult
to use in the context of large and complex systems such as
DBNSs. The next section extends and implements this ap-
proach by using DCN as a dedicated tool for specification
of sets of complex distributions.

4.2 DCN as a robustness analysis tool

In this paper, we propose a robustness analysis that con-
sists in perturbing the precise DBN by means of condi-
tional credal sets Kfjk:Ke(Xi(tnU(t) = j,¢€) such that for
alli=1...n,j=1...c;and e €[0,1]:
t :{ Pfjke [(1—6)Pitjk,(l—e)Pitjk+e}, } (16)
Al Sy pl =

The parameter ¢ may be understood as a perturbation coef-
ficient: the higher it is, the more imprecise Kfj|e becomes.

4.2.1 Choosing ¢

The perturbation should depend on the quantity of data
used to learn the DBNs as well as on the strength of the
intended perturbation. While the strength of the perturba-
tion should be the same over all the network, the number
of data used may differ significantly in different places.
We propose, to pick the e used for a given (conditional)
probability, to use a function ¢(n,3) : N x [0,1] — [0,1]
where n corresponds to the quantity of data for learning
each Pitj (that is n = Nz‘fj in our case) and g the strength
of the perturbation, and to take e = w(ij, B) to perturb the
conditional probabilities Pitj of the network. The mapping
1 should satisfy the following constraints:

® (n,0) =0and (n,1) =1
e ¢ is decreasing in n
e ¢ is increasing in 8

The first conditions ensure that no perturbation will keep
Pfj unchanged, while a full perturbation will make the net-
work completely imprecise (this condition may be relaxed
into requiring only that v(0,1) = 1). The two other con-
ditions ensure that a higher perturbation will induce more
imprecision (for a given data set), while more data will re-
sult in less imprecision (for a given perturbation). We may
also require that v(0,3) = 1 for any g > 0, that is no data
means full imprecision (unless no perturbation is applied),
and that limp, o0 ¥(n, 8) = 0 for any 3, that is the pertur-
bation tends to the null perturbation as data accumulates.



The following function satisfies the conditions:
w(n, 8) = 57" (17)

where f(n) is an increasing function of n. The natural log-
arithmic operator In satisfies these properties and we use
f(n) =In(n+1).

4.2.2 Keeping the constraint

Note that if P!, = 0 because it corresponds to an hard
constraint in the network, it should be kept to O even when
perturbing the whole network by making it imprecise (only
non constraint probabilities should be made imprecise).
We will see in the next section that preserving such (physi-
cal) constraints indeed play a very important role to ensure
the good behaviour of the prediction dynamics.

4.3 Experiments on real-life case study

To illustrate our approach on a real case, we have focused
on a typical French product, namely the process of the
Camembert-type soft mould cheese ripening that is still ill
known and complicated to control [28]. During the ripen-
ing process, cheese represents an ecosystem and a biore-
actor where relationships exist between microbiological,
physicochemical and organoleptic changes which depend
on environmental conditions. Despite the number of ar-
eas involved in cheese research, available knowledge of
the cheese ripening process remains fragmented and per-
vaded with uncertainty. None of the approaches or inves-
tigations carried out up to now makes it possible to pro-
vide an explicit overview of the causal structure of associ-
ations between the underlying variables and an objective
interpretation of the cheese ripening process. From opera-
tional and scientific knowledge, the structure of a dynamic
Bayesian network providing a qualitative representation of
the coupled dynamics of micro-organism behaviour with
their substrate consumptions influenced by temperature
and involving the sensory changes of cheese during ripen-
ing has been defined [1]. Figure 1 displays a sub-section of
the DBN structure providing a representation of the cou-
pled dynamics of a yeast behaviour (Kluyveromyces marx-
ianus concentration (K'm)) with their substrate consump-
tions (lactose concentration (lo) influenced by temperature
(T). We attempt to estimate the lower and upper mean time
evolution

XQ|B,(t) = minpe g (x) Ep(XQ)I X (1), V1) (18)
XQIE,(t) = maxpe e (x) Ep(XQ (D) XE(t), V)

(where Ep(Xq(t)|Xg(t)) denotes the mean time evolution
of X given X ) under some perturbation. The initial pre-
cise model has been learned by integrating (1) experimen-
tal trials; (2) simulated database stemming from existing
partial mechanistic models; (3) expert rules based to the
conservation laws of microbial activities.

Time slice ¢ + 1

Time slice ¢

Figure 1: Dynamic Bayesian network representing the coupled
dynamics K'm growth versus lo consumptions influenced by
temperature during the cheese ripening process.

In our experiment, a simple Monte-Carlo sampling algo-
rithm over vertices is used to draw inference. The reasons
for using such an algorithm are that (1) producing exact
inference is too costly, even for small DCN with few time
steps (here, 3 variables over 14 time steps), (2) it provides
satisfactory bounds that are guaranteed to be inside exact
ones and (3) it is sufficient in the present case, as our pri-
mary objective is not algorithmic efficiency.

4.3.1 Forward propagation

Forward propagation consists in trying to estimate

Km(t)[{Km(1),lo(1),T(1),...,T(7)} (19)
lo(t){Km(1),l0(1),T(1),...,T(7)}

for all ¢ € [1,7], using Eq. (18) to test the robustness of

predictions. All temperatures are constant (7(1) = ... =

T(7) = 12°C) and 7 corresponds to the day before the wrap-

ping of cheeses, namely r = 14 .

The Monte-Carlo sampling is stopped when lower and up-
per expectation bounds were not improved in the last 4000
samplings. In all our results about forward propagation,
we have not observed differences between the dynamic
strong and repetitive extension and we currently investi-
gate whether it is always true in the case of forward prop-
agation.

Figure 2 displays the upper and lower mean time evolu-
tions of K'm and o for different perturbation levels where
parameter learning have only been carried out from six ex-
perimental trials. We may observe that (1) the precise in-
ferences of K'm seem rather biased towards a rapid growth
(line corresponding to 8 = 0 close to upper expectations);
(2) Km may decrease (a physically impossible phenom-
ena) even for relatively small perturbations (8 = 0.6 and
mean perturbation level e = 0.124) due to the absence of
constraints based on conservation laws.

Figure 3 displays the upper and lower mean time evolu-
tions of km and lo when constraints, based on conserva-
tion laws, are added. The effect of adding or preserving
the constraints is obvious in the perturbed results. How-
ever, we may remark that the precise network is almost
unchanged when constraints are added. This means that
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Figure 2: Upper and Lower mean evolutions of K'm and lo ac-

cording to different 3 values for forward propagation, without
constraints. e =mean contamination level

constraints play a secondary role when network parame-
ters are well-estimated, however the comparison of Fig-
ures 2 and 3 shows that preserving them in case of bad
estimation ensures more robustness in the inferences.
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Figure 3: Upper and Lower mean evolutions of K'm and lo ac-
cording to different 3 values for forward propagation, with con-
straints. e =mean contamination level

4.3.2 Forward-backward propagation

Forward-backward propagation consists in trying to esti-
mate

Km(t)[{Km(1),lo(1), Km(T),lo(T), T(1),...,T(7)}
and (20)
lo(t){Km(1),lo(1), Km(T),lo(7), T(1),...,T(7)}

for all ¢ € [1,7], using Eq. (18) in order to test the robust-
ness of predictions. Monte-Carlo sampling was done as in
the previous experiment.

Figure 4 displays the upper and lower mean time evo-
lutions of km and lo for different perturbations with the
dynamic repetitive extension, while Figure 5 displays the
same results for the dynamic strong extension without the
preservation of constraints.
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Figure 4: Upper and Lower mean evolutions of K'm and lo ac-
cording to different 3 values and dynamic repetitive extension.
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Figure 5: Upper and Lower mean evolutions of K'm and lo ac-
cording to different 3 values and dynamic strong extension.

In the case of forward-backward propagation, the results
from the two extensions do not coincide in general. How-
ever, the bounds obtained with the dynamic strong exten-
sion are sometimes inside those obtained for the repeti-
tive extension, meaning that the sampling algorithm has
not reached optimal bounds (indeed, K(X)rp C K(X)st
by definition). We may also observe that the decreasing
of K'm is less severe than in forward propagation even for
high g value because Km(r) and lo(7) are now evidences.
Figure 6 displays the results of forward-backward infer-
ence with the dynamic strong extension when constraints
are preserved. Again, we can see that preserving such con-
straints has a serious effect on the results precision.
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Figure 6: Upper and Lower mean evolutions of K'm and lo ac-

cording to different 3 values and dynamic strong extension, with
constraints.

5 Conclusion

There are complex dynamical processes for which no de-
terministic model describing the complete process exists.
In such cases, dynamic Bayesian networks are convenient
models that allow to include expert knowledge, data and
variable interaction in a single framework. However, they
do not allow for a faithful representation of incomplete
knowledge or of scarce data, features that are inherent to
the complexity of bio-physicochemical phenomena occur-
ring in Food and Life Sciences.

In this paper, we have discussed how DBNs can be ex-
tended to include credal sets and cope with such incom-
pleteness and imprecision. We have introduced the concept
of dynamic credal networks and have proposed the con-
cepts of dynamic repetitive and strong extensions. While
the latter can be seen as a straightforward extension of
classical credal networks, the former considers repetitive
independence to allow the model to preserve a temporal
regularity. Inference algorithms of credal networks may
extend better to one case than to the other, depending on
their characteristics.

We have proposed to apply such DCN to the problem of
robustness analysis, introducing an easy method to per-
turb a given precise network and performing some exper-
iments on a real-case study concerning microbial popula-
tion growth. These experiments have shown that includ-
ing constraints (often provided by expert knowledge) in
the network is essential in case of bad estimation of pa-
rameters, as they ensure more robustness, while such con-
straints seem unnecessary in case of good estimation.

We have also observed that in the case of forward propaga-
tion (evidences only on nodes without parents), inferences
for the strong and repetitive extensions coincided. We are

currently investigating under which conditions inferences
of strong and repetitive extensions coincide.

In further works, DCNs should enable us to determine the
contribution of imprecision and/or incompleteness on the
outcomes of a model in order to know if an ambiguous an-
swer is due to a lack of information or due to a random
phenomenon. That is, we plan to develop refined sensi-
tivity analysis techniques based on their use. They should
thus determine key variables and/or key phenomena for
which it will be necessary to acquire more information.
Finally, we also plan to investigate their usefulness in de-
termining optimal control commands.
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