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Abstract
The inclusion-exclusion principle is a well-known prop-
erty of set cardinality and probability measures, that is
instrumental to solve some problems such as the evalua-
tion of systems reliability or of uncertainty over Boolean
formulas. However, when using sets and probabilities con-
jointly, this principle no longer holds in general. It is there-
fore useful to know in which cases it is still valid. This
paper investigates this question when uncertainty is mod-
elled by belief functions. After exhibiting necessary and
sufficient conditions for the principle to hold, we illustrate
its use on some applications, i.e. reliability analysis and
uncertainty over Boolean formulas. 1

1 Introduction

Probability theory is the most well-known approach to
model uncertainty. However, even when the existence of
a single probability is assumed, it often happens that the
distribution is partially known, in which case one is forced
to use a selection principle (e.g., maximum entropy [13])
to work within probability theory. This is particularly the
case in the presence of severe uncertainty (few samples,
imprecise or unreliable data, . . . ) or when subjective be-
liefs are elicited. Many authors claim that in situations in-
volving imprecision or incompleteness, uncertainty can-
not be modelled faithfully by a single probability, and they
have proposed frameworks to properly model such uncer-
tainty: possibility theory [11], belief functions [16], impre-
cise probabilities [17], info-gap theory [3], . . .

A known practical drawback of belief functions and of
other imprecise probabilistic theories is that their manipu-
lation can be computationally more demanding than prob-
abilities. Indeed, the fact that belief functions are more
general than classical probabilities prevents the use of
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some properties that hold for the latter but not for the
former. This is the case, for instance, of the well known
and useful inclusion-exclusion principle (also known as
the sieve formula or Sylvester-Poincaré equality).

Given a space X , a probability measure P over this space
and a collection AN = {A1, . . . ,AN |Ai ⊆X } of measur-
able subsets of X , the inclusion-exclusion principle states
that

P(∪n
i=1Ai) = ∑

I⊆An

(−1)|I |+1P(∩A∈I A) (1)

where |I | is the cardinality of I . This equality allows
to easily compute the probability of ∪n

i=1Ai. This princi-
ple is used in numerous problems, including the evaluation
of the reliability of complex systems when using minimal
paths.

In this paper, we investigate in Section 2 necessary and
sufficient conditions under which a similar equality holds
for belief functions. Section 3 then studies how the re-
sults apply to the practically interesting case where events
Ai and focal sets are Cartesian products. Section 4 then
shows that such conditions are met for specific events of
monotone functions, and applies this result to the reliabil-
ity analysis of multi-state systems. Finally, Section 5 com-
putes the belief and plausibility of Boolean formulas ex-
pressed in normal forms.

2 General Additivity Conditions for Belief
Functions

After introducing notations, Section 2.2 provides general
conditions for families of subsets for which the inclusion-
exclusion principle holds for belief functions. We then in-
terest ourselves to the specific case where focal sets of be-
lief functions are Cartesian products of subsets.

2.1 Setting

A mass distribution [16] defined on a (finite) space X is a
mapping m : 2X → [0,1] from the power set of X to the



unit interval such that m( /0) = 0 and ∑E⊆X m(E) = 1. A
set E that receives a strictly positive mass is called focal
set, and the set of focal sets of m is denoted by Fm. From
the mapping m are usually defined two set-functions, the
plausibility and the belief functions, respectively defined
for any A⊆X as

Pl(A) = ∑
E∩A6= /0

m(E), (2)

Bel(A) = ∑
E⊆A

m(E) = 1−Pl(Ac). (3)

They are such that Bel(A)≤ Pl(A). The plausibility func-
tion measures how much event A is possible, while the
belief function measures how much event A is certain. In
the theory of evidence [16], belief and plausibility func-
tions are interpreted as confidence degrees not necessarily
related to probabilities. However, the mass distribution m
can also be interpreted as the random set corresponding
to an imprecisely observed random variable [8], in which
case Bel,Pl can be interpreted as probability bounds in-
ducing a convex set P(Bel) such that

P(Bel) = {P|∀A,Bel(A)≤ P(A)≤ Pl(A)}

is the set of all probabilities bounded by Bel and Pl. Note
that, since Bel and Pl are dual (Bel(A) = 1−Pl(Ac)), we
can concentrate on one of them. A distribution m can be
seen as a probability distribution over sets, and in this
sense it captures both probabilistic and set-based mod-
elling: any probability p can be modelled by a mass m
such that m({x}) = p(x) and any set E can be modelled
by the mass m(E) = 1.

Consider now a collection of events An =
{A1, . . . ,An|Ai ⊆X } of subsets of X and a mass
distribution m from which can be computed a belief
function Bel. Usually, we have the inequality [16]

Bel(∪n
i=1Ai)≥ ∑

I⊆An

(−1)|I |+1Bel(∩A∈I A) (4)

that is to be compared to Eq. (1). Belief functions are said
to be n-monotonic for any n > 0. Note that we can assume
without loss of generality that for any i, j, Ai 6⊆ A j (other-
wise Ai can be suppressed from Equation 4), that is there
is no inclusion between the sets of An. If Equation 4 be-
comes an equality, we will say that the belief is additive
for collection An, or An-additive for short.

2.2 General necessary and sufficient conditions

In the case of two events A1 and A2, none of which
is included in the other one, the basic condition for the
inclusion-exclusion law to hold is that focal sets included
in A1 ∪A2 should only lie (be included) in A1 or A2. In-
deed, otherwise, if ∃E 6⊆ A1 and E 6⊆ A2 with m(E) > 0,

then

Bel(A1∪A2)≥ m(E)+Bel(A1)+Bel(A2)−Bel(A1∩A2)

> Bel(A1)+Bel(A2)−Bel(A1∩A2).

So, one must check that Fm satisfies:

Fm∩2A1∪A2 = Fm∩
(
2A1 ∪2A2

)
where 2C denote the set of subsets of C. So, one must
check that ∀E ∈Fm such that E ⊆ A1∪A2, either E ⊆ A1
or E ⊆ A2, or equivalently
Lemma 1. A belief function is additive for {A1,A2} if and
only if ∀E ⊆ A1∪A2 such that (A1 \A2)∩E 6= /0 and (A2 \
A1)∩E 6= /0 then m(E) = 0.

Proof. Immediate, as E overlaps A1 and A2 without being
included in one of them if and only if (A1 \A2)∩E 6= /0
and (A2 \A1)∩E 6= /0.

This result can be extended to larger collections of sets
An,n > 2 in quite a straightforward way
Proposition 1. Fm satisfies the property
Fm ∩ 2A1∪...∪An = Fm ∩

(
2A1 ∪ . . .∪2An

)
if and only

if ∀E ⊆ (A1 ∪ . . .∪An), if E ∈Fm then 6 ∃Ai,A j such that
(Ai \A j)∩E 6= /0 and (A j \Ai)∩E 6= /0.

Proof. Fm∩2A1∪...∪An = Fm∩
(
2A1 ∪ . . .∪2An

)
if and only if 6 ∃E ∈Fm∩

(
2A1∪...∪An \

(
2A1 ∪ . . .∪2An

))
if and only if 6 ∃E ⊆ (A1∪ . . .∪An),E ∈Fm such that ∀i =
1, . . . ,n,E 6⊆ Ai
if and only if 6 ∃i 6= j,E ∈ Fm,E 6⊆ Ai,E 6⊆ A j,E ∩Ai 6=
/0,E ∩A j 6= /0
if and only if 6 ∃i 6= j,E ∈Fm, with (Ai \A j)∩E 6= /0 and
(A j \Ai)∩E 6= /0

So, based on Proposition 1, we have:
Theorem 2. The equality

Bel(∪n
i=1Ai) = ∑

I⊆An

(−1)|I |+1Bel(∩A∈I A) (5)

holds if and only if ∀E ⊆ (A1∪ . . .∪An), if m(E)> 0, then
6 ∃Ai,A j such that (Ai \A j)∩E 6= /0 and (A j \Ai)∩E 6= /0.

Theorem 2 shows that going from A2-additivity for 2
given sets to An-additivity is straightforward, as ensuring
An-additivity comes down to checking the additivity con-
ditions for every pair of subsets in A .

Note that by duality one also can write a form of inclusion-
exclusion property for plausibility functions:

Pl(∩n
i=1Bi) = ∑

I⊆Bn

(−1)|I |+1Pl(∪B∈I B) (6)

for a family of sets Bn = {Ai : Ai ∈An}where An satisfies
the condition of Proposition 1.



3 When focal sets are Cartesian products

In this section, we investigate a practically important sub-
case where focal sets and events Ai, i = 1, . . . ,n are Carte-
sian products. That is, we assume that X = X 1× . . .×
X D := X 1:D is the product space of finite spaces X i,
i = 1, . . . ,D. We will call the spaces X i dimensions. We
will denote by Xi the value of a variable (e.g., the state of a
component, the value of a propositional variable) on X i.

Given A ⊆X , we will denote by Ai the projection of A
on X i. Let us call rectangular a subset A ⊆X that can
be expressed as the Cartesian product A = A1× . . .×AD

of its projections (in general, we only have A⊆ A1× . . .×
AD for any subset A). Note that a rectangular subset A is
completely characterized by its projections.

In the following we study the additivity property for fam-
ilies An containing rectangular sets only, when the focal
sets of mass functions defined on X are also rectangular
(to simplify the proofs, we will also assume that all rectan-
gular sets are focal sets). Note that, in practice, assuming
sets of A to be rectangular is not very restrictive, as in the
finite case, any set A⊆X can be decomposed into a union
of rectangular subsets.

3.1 Two sets, two dimensions

Let us first explore the case n = 2 and D = 2, that is
A2 = {A1,A2} with Ai = A1

i ×A2
i for i = 1,2. The main

idea in this case is that if A1 \A2 and A2 \A1 are rectangu-
lar with disjoint projections, then A2-additivity holds for
belief functions and this is characteristic.

Lemma 2. If A and B are rectangular and have disjoint
projections, then there is no rectangular subset of A∪B
overlapping both A and B

Proof. Consider C = C1×C2 overlapping both A and B.
So there is a1×a2 ∈ A∩C and b1×b2 ∈ B∩C. Since C is
rectangular, a1×b2 and b1×a2 ∈C. However if C⊆ A∪B
then a1× b2 ∈ A∪B and either b2 ∈ A2 or a1 ∈ B1. Since
a1 ∈ A1 and b2 ∈ B2 by assumption, we reach a contradic-
tion since projections are not disjoint.

We can now study characteristic conditions for additivity
for belief functions on two sets:

Theorem 3. Additivity applied to A2 = {A1,A2} holds for
belief functions if and only if one of the following condition
holds

1. A1
1∩A1

2 = A2
1∩A2

2 = /0

2. A1
1 ⊆ A1

2 and A2
2 ⊆ A2

1 (or changing both inclusion di-
rections)

X 1x1
1 x1

2 x1
3

x2
1

x2
2

x2
3

X 1x1
1 x1

2 x1
3

x2
1

x2
2

x2
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A1 A2

Figure 1: Situations satisfying Theorem 3
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Figure 2: Situations not satisfying Theorem 3

Proof. First note that inclusions of Condition 2 can be
considered as strict, as we have assumed A1,A2 to not be
included in each other (otherwise the result is trivial).
⇐ 1.: If A1

1 ∩A1
2 = A2

1 ∩A2
2 = /0, A1 and A2 are disjoint,

as well as their projections. Then by Lemma 2 additivity
holds for belief functions on any two sets.
⇐ 2.: A1

1 ⊂ A1
2 and A2

2 ⊂ A2
1 implies that A1 \A2 = A1

1×
(A2

1 \A2
2) and A2 \A1 = (A1

2 \A1
1)×A2

2. As they are rectan-
gular and have disjoint projections, Lemma 2 applies.
⇒ 1.: Suppose A1∩A2 = /0 with A1

1∩A1
2 6= /0. Then (A1

1∩
A1

2)× (A2
1∪A2

2) is rectangular, not contained in A1 nor A2
but contained in A1∪A2, so additivity does not hold.
⇒ 2.:Suppose A1

1 ⊂ A1
2 but A2

2 6⊂ A2
1. Again, (A1

1 ∩A1
2)×

(A2
1 ∪ A2

2) = A1
1 × (A2

1 ∪ A2
2) is rectangular, neither con-

tained in A1 nor A2 but contained in A1∪A2.

Figure 1 and 2 show various situations where conditions
of Theorem 3 are satisfied and not satisfied, respectively.

3.2 The multidimensional case

We can now proceed to extend Theorem 3 to the case
of any number D of dimensions. However, this extension
will not be as straightforward as going from Lemma 1 to
Proposition 1, and we need first to characterize when the
union of two disjoint singletons is rectangular. We will call
such rectangular unions minimal rectangles. A singleton is
a degenerated example of minimal rectangle.

Lemma 3. Let a= {a1}× . . .×{aD} and b= {b1}× . . .×
{bD} be two distinct singletons in X . Then, a∪b forms a



minimal rectangle if and only if there is only one i ∈ [1,D]
such that ai 6= bi

Proof. ⇒: If ai 6= bi for only one i, then a∪ b = {a1}×
. . .×{ai,bi}× . . .{aD} is rectangular.

⇐: Consider the case where singletons differ on two com-
ponents, say a1 6= b1 and a2 6= b2, without loss of general-
ity. In this case,

a∪b ={{a1}×{a2}×{a3}× . . .×{aD},
{b1}×{b2}×{a3}× . . .×{aD}}.

The projections of a∪ b on dimensions 1 and 2 of X are
{a1,b1} and {a2,b2} respectively, {ai} for i > 2. Hence,
the Cartesian product of the projections of a∪ b is the set
{a1,b1} × {a2,b2} × {a3} × . . .× {aD}. It contains ele-
ments not in a∪b (e.g. {a1}××{b2}×{a3}× . . .×{aD}).
Since a∪ b is not characterised by its projections on di-
mensions Xi, it is not rectangular, and this finishes the
proof.

As mentioned before, any set can be decomposed into rect-
angular sets, and in particular any rectangular set can be
decomposed into minimal rectangles. Let us now show
how Theorem 3 can be extended to D dimensions.

Theorem 4. Additivity holds on A2 = {A1,A2} for belief
functions if and only if one of the following condition holds

1. ∃ distinct p,q ∈ {1, . . . ,D} such that Ap
1 ∩Ap

2 = Aq
1∩

Aq
2 = /0

2. ∀i ∈ {1, . . . ,D} either Ai
1 ⊆ Ai

2 or Ai
2 ⊆ Ai

1

Proof. Again, we can consider that there are at least two
distinct p,q ∈ {1, . . . ,D} such that inclusions Ap

1 ⊂ Ap
2 and

Aq
2 ⊂ Aq

1 of Condition 2 are strict, as we have assumed
A1,A2 to not be included in each other (otherwise the re-
sult is trivial).
⇐ 1.: Any two singletons a1 ∈ A1 and a2 ∈ A2 will be such
that ai

1 ∈ Ai
1 and ai

2 ∈ Ai
2 must be distinct for i = p,q since

Ap
1 ∩Ap

2 = Aq
1∩Aq

2 = /0. Thus it will be impossible to create
minimal rectangles included in A1∪A2, and therefore any
rectangular set in it.
⇐ 2.: Let us denote by P the set of indices p such that
Ap

1 ⊂ Ap
2 and by Q the set of indices q such that Aq

2 ⊂ Aq
1.

Now, let us consider two singletons a1 ∈ A1 \ A2 and
a2 ∈ A2 \A1. Then

• ∃p ∈ P such that ap
1 ∈ Ap

1 \ Ap
2 , otherwise a1 is in-

cluded in A1∩A2

• ∃q ∈ Q such that aq
2 ∈ Aq

2 \ Aq
1, otherwise a2 is in-

cluded in A1∩A2

but since aq
1 ∈Aq

1 and ap
2 ∈Ap

2 by definition, a1 and a2 must
differ at least on two dimensions, hence one cannot form a
minimal rectangle not in A1∩A2.
⇒ 1: Suppose A1 ∩A2 = /0 with Aq

1 ∩Aq
2 6= /0 only for q.

Then the following rectangular set contained in A1∪A2

(A1
1∩A1

2)×·· ·× (Aq−1
1 ∩Aq−1

2 )× (Aq
1∪Aq

2)

×(Aq+1
1 ∩Aq+1

2 ) . . .× (AD
1 ∩AD

2 ) (7)

is neither contained in A1 nor A2, so additivity will not
hold.
⇒ 2.: suppose A1∩A2 6= /0 and Aq

1 6⊆ Aq
2, Aq

1 6⊇ Aq
2 for some

q. Again, the set (7) is rectangular, neither contained in A1
nor A2 but contained in A1∪A2.

Using Proposition 1, the extension of An-additivity to D-
dimensional sets is straightforward:

Theorem 5. Additivity holds on AN = {A1, . . . ,AN} for
belief functions if and only if, for each pair Ai,A j, one of
the following condition holds

1. ∃ distinct p,q ∈ {1, . . . ,D} such that Ap
i ∩Ap

j = Aq
i ∩

Aq
j = /0

2. ∀` ∈ {1, . . . ,D} either A`
i ⊆ A`

j or A`
j ⊆ A`

i

3.3 On the practical importance of rectangular focal
sets

While limiting ourselves to rectangular subsets in A is not
especially restrictive, the assumption that focal sets have
to be restricted to rectangular sets may seem restrictive (as
it is not allowed to cut any focal set into smaller rectan-
gular subsets without redistributing the mass). However,
such mass assignments on rectangular sets are found in
many practical situations:

• such masses can be obtained by defining marginal
masses mi on each space X i, i = 1, . . . ,D and then
combining them under an assumption of (random set)
independence [7]. In this case, the joint mass m as-
signs to each rectangular set E the mass

m(E) =
D

∏
i=1

mi(E i). (8)

Additionally, computing belief and plausibility func-
tions of any rectangular set A becomes easier in this
case, as

Bel(A) =
D

∏
i=1

Beli(Ai), Pl(A) =
D

∏
i=1

Pli(Ai), (9)

where Beli,Pli are the measures induced by mi;



• as all we need is to restrict masses to product events,
we can also consider cases of unknown independence
or of partially known dependence, as long as this
knowledge can be expressed by linear constraints on
the marginal masses [1];

• using more generic models than belief functions is
possible [9], since the mass positivity assumption can
be dropped without modifying our results.

4 Inclusion-exclusion for monotone
functions

In this section, we show that the inclusion-exclusion prin-
ciple can be applied to evaluate some events of interest for
monotone functions, and we provide an illustration from
Multi-State Systems (MSS) reliability.

4.1 Checking the conditions

Let φ : X 1:D→ Y be a D-placed function, where X j =

{x j
1, . . . ,x

j
k j
} is a finite ordered set, for every j = 1, . . . ,D.

We note ≤ j the order relation on X j and assume (with-
out loss of generality) that elements are indexed such that
x j

i < j x j
k iff i < k. We also assume that the output space

Y is ordered and we note ≤Y the order on Y , assuming
an indexing such that yi <Y yk iff i < k. Given two ele-
ments x,y ∈X 1:D, we simply write x ≥ y if x j ≥ j y j for
j = 1, . . . ,n, and x < y if moreover x 6= y (i.e., x j < j y j for
at least one j).

We assume that the function is non-decreasing in each of
its arguments X j, that is

φ(x1
i1 , . . . ,x

`
i` , . . . ,x

D
iD)≤Y φ(x1

i1 , . . . ,x
`
i′`
, . . . ,xD

iD) (10)

iff i` ≤ i′`. Note that a function monotone in each variable
X j can always be transformed into a non-decreasing one,
simply by reversing≤ j for those variables X j in which φ

is non-increasing.

We now consider the problem of estimating the uncertainty
of some event {φ(·)≥ d} (or {φ(·)< d}, obtained by du-
ality). Evaluating the uncertainty over such events is in-
strumental in a number of applications, such as risk anal-
ysis [2]. Given a value d ∈ Y , let us define the concept of
minimal path and minimal cut vectors.

Definition 1. A minimal path (MP) vector x of function
φ for value d is an element x ∈X 1:D such that φ(x) ≥ d
and φ(y) < d for any x > y (x is a minimal element in
{x : φ(x)≥ d}).
Definition 2. A minimal cut (MC) vector x of function φ

for value d is an element x ∈ X 1:D such that φ(x) < d
and φ(y) ≥ d for any x < y (x is a maximal element in
{x : φ(x)< d}).

Let p1, . . . , pP be the set of all minimal path vectors of
some function for a given performance level d (means
to obtain minimal paths are provided by Xue [18]).
We note Api = {x ∈X 1:D|x≥ pi} the set of configura-
tions dominating the minimal path vector pi and AP =
{Ap1 , . . . ,ApP} the set of events induced by minimal path
vectors. Note that

Api =×
D
j=1{x j|x j ≥ j p j

i } (11)

is rectangular, hence we can use results from Section 3.

Lemma 4. The rectangular sets AP induced by minimal
path vectors satisfy Theorem 5

Proof. Consider two minimal path vectors Api , Ap j and a
dimension `, then either {x`≥` p`i }⊆ {x`≥` p`j} or {x`≥`

p`i } ⊇ {x` ≥` p`j}.

It can be checked that {x ∈X 1:D|φ(x)≥ d} = ∪P
i=1Api .

We can therefore write the inclusion/exclusion formula for
belief functions:

Bel(φ(x)≥ d) = Bel(Ap1 ∪ . . .∪ApP)

= ∑
I⊆AP

(−1)|I |+1Bel(∩A∈I A),

= 1−Pl(φ(x)< d) (12)

Under the hypothesis of random set independence, com-
puting each term simplifies into

Bel(Ap j ∩ . . .∩Apk) =
D

∏
i=1

Bel({xi ≥max{pi
j, . . . , pi

k})

The computation of Bel(φ(x) < d) can be done simi-
larly by using minimal cut vectors. Let C1, . . . ,CC be
the set of all minimal cut vectors of φ . Then ACi =

{x ∈X 1:D|x≤ Ci} = ×D
j=1{x j|x j ≤ j C j

i } is rectangular
and we have the following result, whose proof is similar
to the one of Lemma 4.

Lemma 5. The rectangular sets AC induced by minimal
cut vectors satisfy Theorem 5

Denoting by AC = {AC1 , . . . ,ACC} the set of events
induced by minimal cut vectors, we have that
{x ∈X 1:D|φ(x)< d} = ∪C

i=1ACi , hence applying the
inclusion/exclusion formula for belief functions gives

Bel(φ(x)< d) = Bel(AC1 ∪ . . .∪ACC)

= ∑
I⊆AC

(−1)|I |+1Bel(∩A∈I A),

= 1−Pl(φ(x)≥ d). (13)

Let us now illustrate how this result can be applied to reli-
ability problems.



4.2 Application to Multi-State Systems (MSS)
reliability

Using the inclusion/excusion formula is a classical way
of estimating system reliability. In this section we show
that, thanks to our results, we can extend it to the case
where system components can be in multiple states and
where the uncertainty about these states is given by belief
functions. We refer to Lisnianski and Levitin [15] for a
detailed review of the problem.

MSS analysed in this section are such that

• their components are s-independent, meaning that the
state of one component has no influence over the state
of other components;

• the states of each component are mutually exclusive;

• the MSS is coherent (if one state component effi-
ciency increases, the overall efficiency increases).

Let us now show that for such systems, we can define min-
imal path sets and minimal cut sets that satisfy the exclu-
sion/inclusion principle.

In reliability analysis, variables X j, j = 1, . . . ,D corre-
spond to the D components of the system and the value
x j

i is the ith state of component j. Usually, states are or-
dered according to their performance rates, hence we can
assume the spaces X j to be ordered. X 1:D corresponds
to the system states and Y = {y1, . . . ,yY} is the ordered
set of global performance rates of the system.

The structure function φ : X 1:D → Y links the system
states to its global performance. As the system is coherent,
function φ is non-decreasing, in the sense of Eq. (10).

As a typical task in multi-state reliability analysis is to es-
timate with which certainty a system will guarantee a level
d of performance, results from Section 4.1 directly apply.
Example 1. Let us now illustrate our approach on a com-
plete example, inspired from Ding and Lisnianski [10].

In this example, we aim to evaluate the availability of a
flow transmission system design presented in Fig. 3 and
made of three pipes. The flow is transmitted from left to
right and the performance levels of the pipes are measured
by their transmission capacity (tons of per minute). It is
supposed that elements 1 and 2 have three states: a state
of total failure corresponding to a capacity of 0, a state of
full capacity and a state of partial failure. Element 3 only
has two states: a state of total failure and a state of full
capacity. All performance levels are precise.

The state performance levels and the state probabilities
of the flow transmitter system are given in Table 2.
These probabilities could have been obtained the impre-
cise Dirichlet model [4] considered in Li et al. [14]. We

1

2

3

Figure 3: Flow transmission system

aim to estimate the availability of the system when d = 1.5.
The minimal paths are

p1 =(x1
1,x

2
2,x

3
3)= (0,1.5,4), p2 =(x1

3,x
2
1,x

3
3)= (1.5,0,4).

The set Ap1 and Ap2 of vectors a such that a≥ p1, b≥ p2
are

Ap1 = {0,1,1.5}×{1.5,2}×{4} and
Ap2 = {1.5}×{0,1.5,2}×{4},

and their intersection Ap1 ∩Ap2 consists of vectors c such
that c≥ p1∨ p2 (with ∨= max), that is:

Ap1 ∩Ap2 = {1.5}×{1.5,2}×{4}.

Applying the inclusion/exclusion formula for a requested
level d = 1.5, we obtain

Bel(φ ≥ 1.5) = Bel(Ap1)+Bel(Ap2)−Bel(Ap1 ∩Ap2)

For example, we have

Bel(Ap1) = Bel({0,1,1.5}×{1.5,2}×{4})
= Bel({0,1,1.5}).Bel({1.5,2}).Bel({4})
= 1∗0.895∗0.958
= 0.8574

and Bel(Ap2), Bel(Ap1 ∩Ap2) can be computed similarly.
Finally we get

Bel(φ ≥ 1.5) = 0.8574+0.7654−0.6851 = 0.9377

and by duality with Bel(φ < 1.5), we get

Pl(φ ≥ 1.5) = 1−Bel(φ < 1.5) = 0.9523.

The availability As of the flow transmission system
for a requested performance level d = 1.5 is given by
[Bel(A),Pl(A)] = [0.9377,0.9523].

5 The case of Boolean formulas

In this section, we consider binary spaces X i, and lay bare
conditions for applying the inclusion/exclusion property to
Boolean formulas expressed in Disjunctive Normal Form
(DNF).



x1 0 0 0 0 0 0 1 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5
x2 0 0 1.5 1.5 2 2 0 0 1.5 1.5 2 2 0 0 1.5 1.5 2 2
x3 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

y = Φ(x1,x2,x3) 0 0 0 1.5 0 2 0 1 0 2.5 0 3 0 1.5 0 3 0 3.5

Table 1: Performance rates of the oil transmission system

X j 1 2 3
p j

1 [0.096,0.106] [0.095,0.105] -
p j

2 [0.095,0.105] [0.195,0.205] [0.032,0.042]
p j

3 [0.799,0.809] [0.7,0.71] [0.958,0.968]
g j

1 0 0 -
g j

2 1 1.5 0
g j

3 1.5 2 4

Table 2: Parameters of the flow transmission system

In propositional logic, each X i = {xi,xi} can be associ-
ated to a variable also denoted by xi, and X 1:D is the set
of interpretations of the propositional language generated
by the set V of variables xi. In this case, xi is understood as
an atomic proposition, while xi denotes its negation. Any
rectangular set A⊆X 1:D can then be interpreted as a con-
junction of literals (often called a partial model), and given
a collection of n such partial models An = {A1, . . . ,An},
the event A1 ∪ . . .∪An is a Boolean formula expressed in
Disjunctive Normal Form (DNF - a disjunction of conjunc-
tions). All Boolean formulas can be written in such a form.

A convenient representation of a partial model A is in
the form of an orthopair [6] (P,N) of disjoint subsets
of indices of variables P,N ⊂ [1,D] such that A(P,N) =∧

k∈P xk∧
∧

k∈N xk. Then a singleton in X 1:D is of the form∧
k∈P xk ∧

∧
k∈P xk, i.e. corresponds to an orthopair (P,P).

We consider that the uncertainty over each Boolean vari-
able xi is described by a belief function Beli. For sim-
plicity, we shall use xi as short for {xi} in the argument
of set-functions. As X i is binary, its mass function mi

only needs two numbers to be defined, e.g., li = Beli(xi)
and ui = Pli(xi). Indeed, we have Beli(xi) = li = mi(xi),
Pli(xi) = 1−Beli(xi) = 1−mi(xi) and mi(X i) = ui− li.
For D marginal masses mi on X i, i = 1, . . . ,D, the joint
mass m on X 1:D can be computed as follows for any par-
tial model A(P,N), applying Equation(8):

m(A(P,N)) = ∏
i∈P

li
∏
i∈N

(1−ui) ∏
i/∈P∪N

(ui− li) (14)

We can particularize Theorem 5 to the case of Boolean
formulas, and identify conditions under which the belief
or the plausibility of a DNF can be easily estimated us-
ing Equality (1), changing probability into belief. Let us
see how the conditions exhibited in this theorem can be
expressed in the Boolean case.

Consider the first condition of Theorem 5

∃p 6= q ∈ {1, . . . ,D} such that Ap
i ∩Ap

j = Aq
i ∩Aq

j = /0.

Note that when spaces are binary, Ap
i = xp (if p ∈ Pi),

or Ap
i = xp (if p ∈ Ni), or yet Ap

i = X i (if p 6∈ Pi ∪Ni).
Ai ∩A j = /0 therefore means that for some index p, p ∈
(Pi ∩N j)∪ (Pj ∩Ni) (there are two opposite literals in the
conjunction).

The condition can thus be rewritten as follows, using or-
thopairs (Pi,Ni) and (Pj,N j):

∃p 6= q ∈ {1, . . . ,D} such that p,q ∈ (Pi∩N j)∪ (Pj ∩Ni).

For instance, consider the equivalence connective x1 ⇐⇒
x2 = (x1 ∧ x2)∨ (x1 ∧ x2) so that A1 = x1 ∧ x2 and A2 =
x1 ∧ x2. We have p = 1 ∈ P1 ∩N2,q = 2 ∈ P1 ∩N2, hence
the condition is satisfied and Bel(x1 ⇐⇒ x2) = Bel(x1 ∧
x2)+Bel(x1∧ x2) (the remaining term is Bel( /0).

The second condition of Theorem 5 reads

∀` ∈ {1, . . . ,D} either A`
i ⊆ A`

j or A`
j ⊆ A`

i

and the condition A`
i ⊆ A`

j can be expressed in the Boolean
case as:

` ∈ (Pi∩N j)∪ (Ni∩P j)∪ (Pi∩Ni∩P j ∩N j).

The condition can thus be rewritten as follows, using or-
thopairs (Pi,Ni) and (Pj,N j):

Pi∩N j = /0 and Pj ∩Ni = /0

For instance consider the disjunction x1 ∨ x2, where A1 =
x1 and A2 = x2, so that P1 = {1},P2 = {2},N1 = N2 = /0.
So Bel(x1∨ x2) = Bel(x1)+Bel(x2)−Bel(x1∧ x2).

We can summarize the above results as

Proposition 6. The set of partial models An =
{A1, . . . ,An} satisfies the inclusion/exclusion principle if
and only if, for any pair Ai,A j one of the two following
conditions is satisfied:

• ∃p 6= q ∈ {1, . . . ,D} s.t. p,q ∈ (Pi∩N j)∪ (Pj ∩Ni).

• Pi∩N j = /0 and Pj ∩Ni = /0

This condition tells us that for any pair of partial models, :



• either conjunctions Ai,A j contain at least two oppo-
site literals,

• or events Ai,A j have a non-empty intersection and
have a common model.

These conditions allow us to check, once a formula has
been put in DNF, whether or not the inclusion/exclusion
principle applies. Important particular cases where it ap-
plies are disjunctions of partial models having only pos-
itive (negative) literals, of the form A1 ∪ . . .∪ An, where
N1 = . . . = Nn = /0 (P1 = . . . = Pn = /0). This is the typical
Boolean formula one obtains in fault tree analysis, where
the system failure is due to the failures of some subsets of
components, the latter failures being modelled by positive
literals. More generally, the inclusion/exclusion principle
applies to disjunctions of partial models which can, via a
renaming, be rewritten as a disjunction of conjunctions of
positive literals: namely, whenever a single variable never
appears in a positive and negative form in two of the con-
junctions.

As an example where the inclusion/exclusion principle
cannot be applied, consider the formula x1 ∨ (x1 ∧ x2)
(which is just the disjunction x1 ∨ x2 we already consid-
ered above). It does not hold that Bel(x1 ∨ (x1 ∧ x2) =
Bel(x1)+Bel(x1∧x2), since the latter sum neglects m(x2),
where x2 is a focal set that implies neither x1 nor x1 ∧ x2.
Note that this remark suggests that normal forms that are
very useful to compute the probability of a Boolean for-
mula efficiently may not be useful to speed up compu-
tations of belief and plausibility degrees. For instance,
x1 ∨ (x1 ∧ x2) is a binary decision diagram (BDD) [5] for
the disjunction, and this form prevents Bel(x1 ∨ x2) from
being computed using the inclusion/exclusion principle.

We can give explicit expressions for the belief and plausi-
bility of conjunctions or disjunctions of literals in terms of
marginal mass functions:

Proposition 7. The belief of a conjunction C(P,N) =∧
k∈P xk ∧

∧
k∈N xk, and that of a disjunction D(P,N) =∨

k∈P xk ∨
∨

k∈N xk of literals forming an orthopair (P,N)
are respectively given by:

Bel(C(P,N)) = ∏
i∈P

li
∏
i∈N

(1−ui), (15)

Bel(D(P,N)) = 1−∏
i∈P

(1− li)∏
i∈N

ui. (16)

Proof. Bel(C(P,N)) can be obtained by applying Equa-
tion (9) to C(P,N).

For Bel(D(P,N)), we have

Pl(C(N,P)) = Pl(∧i∈Nxi∧∧i∈Pxi)

= ∏
i∈N

(1− li)∏
i∈P

ui

= 1− (1−∏
i∈N

(1− li)∏
i∈P

ui)

= 1−Bel(∨i∈Nxi∨∨i∈Pxi)

= 1−Bel(D(P,N))

where the second equality following from Equation (9).

Using the fact that Bel(C(N,P)) = 1−Pl(D(P,N)), we can
deduce

Pl(D(P,N)) = 1−∏
i∈P

li
∏
i∈N

(1−ui). (17)

Pl(C(P,N)) = ∏
i∈P

ui
∏
i∈N

(1− li). (18)

To compute the plausibility of a formula φ , we can put
it in conjunctive normal form, that is as a conjunction of
clauses ∧k

i=1κi where the κi’s are disjunctions of literals.
Then we can write:

Pl(φ) = 1−Bel(¬(∧k
i=1κi)) = 1−Bel(∨k

i=1¬κi) (19)

Noticing that the terms ¬κi are rectangular (partial mod-
els), we can apply Proposition 6 again (this trick can be
viewed as an application of results of Subsection 4.1 to
ordered scale X = {0 < 1}). As a consequence we can
compute the belief and the plausibility of any logical for-
mula that obeys the conditions of Proposition 6 in terms of
the belief and plausibilities of atoms xi.
Example 2. For instance consider the formula φ = (x1 ∧
x2)∨(x1∧x2)∨x3, with A1 = x1∧x2, A2 = x1∧x2, A3 = x3.
It satisfies Proposition 6, and

Bel(φ) = Bel(x1∧ x2)+Bel(x1∧ x2)

+Bel(x3)−Bel(x1∧ x2∧ x3)−Bel(x1∧ x2∧ x3)

= l1(1−u2)+(1−u1)l2 + l3(1− l1(1−u2)− (1−u1)l2)

In CNF, this formula reads : (x1∨x2)∧(x1∨x2)∧x3. Then:

Pl(φ) = 1−Bel((x1∧ x2)∨ (x1∧ x2)∨ x3);

= 1−Bel(x1∧ x2)−Bel(x1∧ x2)−Bel(x3)

+Bel(x1∧ x2∧ x3)+Bel(x1∧ x2∧ x3)

= 1− l1l2− (1−u1)(1−u2)−1+u3 + l1l2(1−u3)

+(1−u1)(1−u2)(1−u3)

6 Conclusion

We provided necessary and sufficient conditions for the in-
clusion/exclusion principle to hold with belief functions.



To demonstrate the usefulness of those results, we dis-
cussed their application to system reliability and to uncer-
tainty evaluation over DNF and CNF Boolean formulas.

We can mention several lines of research that would com-
plement the present results: (1) find necessary and suf-
ficient conditions for the inclusion/exclusion principle to
hold for plausibilities in the general case (a counterpart
to Proposition 5); (2) investigate the relation between the
assumption of random set independence (made in this pa-
per) and other types of independence [12]; (3) investigate
how to decompose an event / a formula into a set of event
satisfying the inclusion/exclusion principle (e.g., classical
BDDs do not always provide adequate solutions).
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