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Abstract. When using convex probability sets (or, equivalently, lower previ-
sions) as models of uncertainty, identifying extreme points can be useful to per-
form various computations or to use some algorithms. In general, sets induced
by specific models such as possibility distributions, linear vacuous mixtures or
2-monotone measures may have extreme points easier to compute than generic
convex sets. In this paper, we study extreme points of another specific model:
comparative probability orderings between the elements of a finite space. We use
these extreme points to study the properties of the lower probability induced by
this set, and connect comparative probabilities with other uncertainty models.

Keywords: Comparative probabilities, credal sets, 2-monotone capacities, belief func-
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1 Introduction

In the last decades, there has been a growing interest on imprecise probability mod-
els as alternative models to probability in situations where the available information is
vague or scarce. This type of models include for instance belief functions [1], possi-
bility measures [2], 2- and n-monotone capacities [3] or probability boxes [4]. All the
above examples can be seen as instances of coherent lower and upper previsions [5].

The adequacy of each of these models for a particular problem depends, among
other things, on the interpretation we are giving to our uncertainty. In this paper, we
consider a robust Bayesian interpretation [6]: we assume the existence of a precise, but
unknown, probability model, and work with the set of probability measures that are
compatible with the available information. This gives rise to a credal set, as considered
by Levi in [7].

Here, we consider the case where the information is expressed by means of a com-
parative probability model [8]: we consider a finite probability space Ω and assume
that we are given judgements of the type “the probability of A is at least as great as
that of B”. Comparative probabilities have been deemed of particular interest within the
context of subjective probability theory [9,10,11]; see also [5, Section 4.5] for a study
from the point of view of coherent lower previsions. One of their advantages is that they
seem well suited for modelling qualitative judgements.



In spite of this, there are only few works dealing with the numerical and practical
aspects of comparative probabilities [12]. One reason for this is that it is not easy to
summarize the set of probabilities associated to the comparative assessments, for in-
stance by means of a lower and an upper probability, and this renders it difficult to
summarize the information about the probability of an event of interest. In this paper,
we solve this problem by characterizing the comparative probability models by means
of the extreme points of their associated credal sets. This is a problem that has been
studied for other types of imprecise probability models, such as 2-monotone capacities
[13], possibility measures [14], probability intervals [15] and belief functions [16]. In
this paper, we focus on probability sets generated by comparisons between singletons.
Focusing on this particular case allows us to derive nice graphical characterizations, and
we provide some practical examples where this special case may be useful. Such There
is only one partial result for this type of assessments [17], and we generalize it in this
paper.

After giving some preliminary results in Section 2, we shall see in Section 3 that,
when the comparison judgements are made on the probabilities of the singletons, a
graphical representation of these judgements makes it easy to derive the extreme points
of the associated credal sets. In Section 4, we use this result to discuss some practi-
cal aspects of these models: we establish tight lower and upper bounds on the number
of extreme points; investigate their relationship with other imprecise probability mod-
els; provide algorithms for the computation of these extreme points; and discuss the
computation of conditional lower probabilities and the merging of multiple comparison
judgements. Some additional remarks related to the practical use of these models and
their extensions are provided in Section 5.

2 Preliminaries

Consider a finite space X = {x1, . . . ,xn}, modelling the set of outcomes of some ex-
periment. In this paper, we assume that our information about these outcomes can be
modelled by means of comparative probability orderings of the states, i.e., statements
of the type “the probability of xi is at least as great as that of x j”. Hence, we shall
represent the available information by means of a subset L of X ×X .

The set of probability measures compatible with this information is given by

P(L ) = {p ∈ PX : ∀(i, j) ∈L , p(xi)≥ p(x j)}, (1)

where PX denotes the set of all probabilities on the power set of X .
For the purposes of this paper, it shall be useful to represent these assessments by

means of a graph G = (X ,L ) where the nodes are the elements of X and we draw
an edge between xi and x j when (i, j) ∈L .

Example 1. Consider the space X = {x1, . . . ,x5} and the set of assessments L =
{(1,3),(1,4),(2,5),(4,5)}. Its associated graph G is given by Figure 1. �

Note that the set P(L ) determined by Eq. (1) is always non-empty, because it
includes for instance the uniform probability distribution. It is interesting to compare it
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Fig. 1. Graph G of Example 1

with the set
P(K ) = {p ∈ PX : ∀(i, j) ∈L , p(xi)> p(x j)},

i.e., with the credal set associated by strict elementary probability comparisons, which
appear also sometimes in the literature. Since P(L ) is a closed convex polytope in Rn,
it follows from basic convex analysis that P(L ) corresponds to the closure of P(K )
when the latter set is non-empty, and that P(K ) is the topological interior of P(L ).
The non-emptiness of P(K ) is easy to characterise.

Proposition 1. P(K ) 6= /0 if and only if G is acyclic.

Hence, our results in this paper will also allow us to characterize the set P(K ). As
we shall see in Remark 1, we can also deal with assessments of equality between the
probabilities, which correspond to a cycle in G .

3 Extreme points of P(L ).

In this section, we characterise the extreme points of the credal set P(L ) associated
with a number of elementary probability comparisons. Consider a space X and a subset
L of X ×X , and let P(L ) be the set it determines by means of Eq. (1). Any of the
probability measures in P(L ) is completely determined by its mass function, and as a
consequence it can be seen as an element of the n-th dimensional Euclidean space. Then,
P(L ) is a closed convex subset of Rn in the Euclidean topology, that corresponds thus
to the closed convex hull of its set of extreme points. We shall determine these extreme
points by means of the graphical representation we have established in Section 2.

We shall make two assumptions on the graph G associated to L :

(G1) The first one is that G is acyclic, meaning that there are no assumptions of equality
between the probability of two different states.

(G2) The second is that G is connected, so for every i 6= j there is an undirected path in
G that connects the nodes xi and x j.

Remark 1. The results we obtain can be used to characterise the general case. On the
one hand, when G has cycles, we have some assumptions of equality P(xi) = P(x j)
between the probabilities of two elements xi,x j in our possibility space. It is not difficult
to determine the structure of the set P(L ) in that case: for each of the assumptions
of equality, we consider one of the elements xi in the corresponding set and store the



number of elements ni in X that are assumed to have the same probability as xi; from
this we derive the simplified space X

′ ⊂X for which the graph G
′

satisfies (G1).
By this, we can establish a one-to-one correspondence between the sets P(L ) ⊆

PX and P(L
′
)⊆ PX

′ : any probability P := (p1, . . . , pn) in P(L ) induces the prob-
ability P′ on P(L

′
), with P′(xi) = P(xi) ·ni. Then, once we determine the distributions

of the extreme points associated to the graph G
′
, we just have to ‘expand’ this graph by

reversing the above correspondence between the probabilities.
On the other hand, if G does not satisfy (G2), we can decompose it as a union

of its weakly connected components G1, . . . ,Gk. For each of these components we can
characterise their associated extreme points in the form we shall give below, and then
the extreme points associated to G will be the union of the sets of extreme points in
each of these subgraphs. �

In order to characterise the extreme points of P(L ), we are going to consider a
number of lemmas:

Lemma 1. Any extreme point p of P(L ) corresponds to a uniform probability mea-
sure over some subset A⊆X .

For every subset A of X , we shall denote by PA the uniform probability measure on
A, that is associated to the mass function

PA(xi) =

{
1
|A| if xi ∈ A

0 otherwise

for any i∈ {1, . . . ,n}. Using the acyclic graph G , we can now characterize those subsets
A⊆X for which PA is an extreme point of P(L ). For every x j ∈X , we shall denote
by H(x j) the set of ancestors of x j, i.e., those nodes xi such that there is a directed path
from xi to x j in G . By an abuse of notation, we shall also consider that x j is an ancestor
of itself, i.e., we shall assume that x j ∈ H(x j) for all j. Finally, for every A ⊆X , we
shall denote H(A) := ∪x∈AH(x).

The following lemma gives further insight onto which uniform probabilities may be
extreme points of the credal set P(L ).

Lemma 2. 1. If A 6= H(A), then PA is not an extreme point of P(L ).
2. If there are C1,C2 ⊆ A such that H(C1)∩H(C2) = /0 and H(C1)∪H(C2) = H(A),

then PH(A) is not an extreme point on P(L ).

Next, if B is a subset of A and H(B) = H(A), both A and B give rise to the same
probability measure PH(B) = PH(A). This is related to the notion of strongly connected
nodes:

Definition 1. Two nodes xi,x j in the graph G are said to be strongly connected when
there is a directed path from xi to x j, or viceversa, and are called strongly disconnected
otherwise.

Equivalently, xi,x j are strongly connected when either xi ∈ H(x j) or x j ∈ H(xi).
This allows us to establish the following result:



Theorem 1. If PH(A) is an extreme point of P(L ), then there is some B ⊆ A with
H(B) = H(A) and such that any two nodes in B are strongly disconnected. Thus, the set
of extreme points coincide with the set of probabilities PH(A) generated by sets A

(EXT1) composed of strongly disconnected nodes of G and
(EXT2) that cannot be decomposed as in Lemma 2.

Remark 2. An interesting related result has been established in [17], in the context of
credal classification. The author considers the credal set determined by the comparisons
of the probabilities of the states, and computes the lower probability of the set A of
elements with no predecessor in G . In order to do this, she provides results analogous
to our Lemmas 1 and 2, and then in [17, Theorem B.2.2] she establishes which of the
elements in P(L ) attain the lower probability of A.

Our previous result subsumes these results, in the sense that we give the explicit
form of the extreme points (from which we may determine also the lower probability
of any other set, as well as the lower prevision induced by a comparative probability
model). Note moreover that we have showed that not all the uniform probability distri-
butions PH(A) determine an extreme point of P(L ). �

Example 2. The extreme points generated by Example 1 are summarised in Table 1.

Table 1. Extreme points of Example 1

p
A H(A) x1 x2 x3 x4 x5
{x1} {x1} 1 0 0 0 0
{x2} {x2} 0 1 0 0 0
{x3} {x1,x3} 1/2 0 1/2 0 0
{x4} {x1,x4} 1/2 0 0 1/2 0
{x5} {x1,x2,x4,x5} 1/4 1/4 0 1/4 1/4

{x1,x2} {x1,x2} 1/2 1/2 0 0 0
{x2,x3} {x1,x2,x3} 1/3 1/3 1/3 0 0
{x2,x4} {x1,x2,x4} 1/3 1/3 0 1/3 0
{x3,x4} {x1,x3,x4} 1/3 0 1/3 1/3 0
{x3,x5} {x1,x2,x3,x4,x5} 1/5 1/5 1/5 1/5 1/5

{x2,x3,x4} {x1,x2,x3,x4} 1/4 1/4 1/4 1/4 0

4 Practical aspects

4.1 Number of extreme points

Since extreme points correspond to uniform distributions over certain subsets A ⊆X ,
we immediately see that an upper bound of the number of extreme points is 2|X |. Note
that this is significantly lower than the maximal number of extreme points generated by
lower coherent probabilities, known to be |X |! [18]. We next show that this number of
extreme points can be reduced even further (recall that we are assuming throughout that
the graph G associated with L satisfies (G1) and (G2)):



Theorem 2. The maximal number of extreme points of P(L ) is 2(|X |−1), and the
minimum number is |X |. Each of these bounds can be attained.

To see that the upper bound given by the above theorem can indeed be reached, con-
sider the case where a single modal value is provided. Figure 2 illustrates the situation.

x1

x2 x3 x4 x5

Fig. 2. Graph G for x1 =modal value

Interestingly, the upper bound given in Theorem 2 is the same as the number of
extreme points of the credal set associated to a possibility measure, as showed in [14,
Section 5]. Our intuition for this is that possibility measures also determine an order
between the singletons, by means of their associated possibility distributions. On the
other hand, an example where the lower bound is reached is the case where L forms a
complete ordering of singletons {x1, . . . ,xn} (this is the case considered in [5, P. 195];
note that the result there is now a particular case of Theorem 1).

4.2 Extraction Algorithm

Using the results of Section 3, we can propose a pseudo-algorithm to extract extreme
points, summarised in Algorithm 1.

Implementing this algorithm mainly requires to be able, for a given set B, to check
whether elements of B are strongly disconnected and to compute H(B). An instrumental
tool to do this is the matrix M corresponding to the transitive closure C (L )⊆X ×X
of L , with M(i, j) = 1 iff (i, j) ∈ C (L ). M can be efficiently computed by applying
Warshall algorithm (see [19]) to matrix L with L(i, j) = 1 iff (i, j) ∈L .

Once this is done, checking whether two elements xi,x j are strongly disconnected
can be done in linear time. Checking that B is made of strongly disconnected elements
is equivalent to check whether all pairs of elements xi,x j ∈ B are strongly disconnected,
hence at most in quadratic time. As H(B) = ∪x∈BH(x), computing H(B) is also linear.
This means that the complexity of the loop going from Line 10 to 13 in Algorithm 1 is
quadratic.

Algorithm 1 also tries to minimize the number of sets of nodes to check by reducing
the search to sets that are not known to be sets containing connected nodes, rather than
making a naı̈ve search among all subsets B ⊆X . However, the algorithm would still
have to check, at worst, an exponential number of sets.

4.3 n-monotonocity

Next, we investigate in more detail the set of probabilities P(L ) from the point of
view of the theory of coherent lower previsions developed in [5]. Since the set P(L )



Algorithm 1: Extreme point search
Input: Set L of comparisons
Output: Extreme points of P(L )

1 List← /0;
2 for i = 1, . . . ,n do
3 Build extreme points corresponding to H(xi);
4 List← xi;

5 Candidate set← List ;
6 for i = 2, . . . ,n do
7 List← /0 ;
8 foreach set B in Candidate set do
9 for i = 1, . . . ,n do

10 if xi is strongly disconnected from the elements B and H(B∪{xi}) is a new
extreme point then

11 Add H(B∪{xi}) to extreme points ;
12 List← B∪{xi} ;

13 Candidate set← List ;

is a closed convex set of probabilities, its lower envelope P, given by

P(A) = min{P(A) : P ∈P(L )} ∀A⊆X (2)

is a coherent lower probability. As such, it can be given a behavioural interpretation in
terms of acceptable betting rates.

Coherent lower probabilities include as particular cases most of the imprecise prob-
ability models that we can find in the literature, such as 2-monotone capacities, belief
functions, or necessity measures; see [20] for more details. In particular, a coherent
lower probability is 2-monotone when for any A,B⊆X we have

P(A∪B)+P(A∩B)≥ P(A)+P(B). (3)

These are also called convex functions on Choquet capacities of order 2 [3,21]. When
|X | ≤ 3, a coherent lower probability on P(X ) is always 2-monotone [22], and as
consequence this is also true for the comparative probability models we consider in this
paper. On the other hand, when |X | ≥ 4, there exist coherent lower probabilities on
P(X ) which are not 2-monotone. We next show that, in general, the coherent lower
probabilities induced by comparative probability models will not be 2-monotone.

Example 3. Consider X = {x1,x2,x3,x4} and L = {(1,2),(1,3),(2,4),(3,4)}. From
Theorem 1, the extreme points of P(L ) are associated to the mass functions{
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}
;

as a consequence, if we consider the events A = {x1,x3} and B = {x1,x4}, we see that

P(A∪B)+P(A∩B) = 1/2+ 1/4 < P(A)+P(B) = 1/2+ 1/3.



Hence, P violates the 2-monotonicity condition. �

From this, we can deduce that belief functions, that are in particular 2-monotone,
are not expressive enough to represent comparative probability models.

On the other hand, from a convex set of probability measures we can also determine
lower and upper expectation functionals. Similarly to Eq. (2), the real-valued functional
P given by

P( f ) = min{P( f ) : P ∈P(L )} (4)

for any function f : X → R is called a coherent lower prevision. Here, we are also
using P to denote the expectation functional associated to the probability measure P,
given by P( f ) = ∑x∈X f (x)p(x).

Similarly to Eq. (3), a coherent lower prevision is called 2-monotone when

P( f ∨g)+P( f ∧g)≤ P( f )+P(g)

for any f ,g : X → R, where ∨ denotes the point-wise maximum and ∧ denotes the
point-wise minimum. This type of lower previsions has been studied in detail in [22,23].
They are interesting, because, unlike coherent lower previsions, they can be calculated
as the Choquet integral with respect to the lower probability that is their restriction
to events. Moreover, 2-monotonicity has been showed to be equivalent to comonotone
additivity [23, Theorem 15]. However, we can prove that the coherent lower prevision
associated to a one-to-one comparison model is not 2-monotone as soon as X has more
than two elements:

Theorem 3. Consider a space X with |X | ≥ 3, and let L be a number of probability
comparisons on the elements of X whose associated graph satisfies (G1) and (G2). Let
P be the coherent lower prevision determined by (4). Then P is not 2-monotone.

Although it is an open problem at this stage, we think that with similar arguments
to those in the proof it can be showed that a comparative probability model on the
singletons never determines a 2-monotone lower prevision even when the associated
graph G violates (G1) or (G2).

4.4 Conditioning

A classical operation when dealing with uncertainty is that of conditioning. Here we
will study the problem of computing lower conditional probabilities P(A|B) from the
credal set P(L ). Out of the many possible notions we can consider in this case, we
think that the most intuitive under the robust Bayesian interpretation we are considering
in this paper is that of regular extension [5, Appendix J], that produces

P(A|B) = inf
P∈P(L )

{P(A|B) : P(B)> 0}, (5)

where P(A|B) is obtained from P through Bayes Rule of conditioning.
Note that in order to apply this rule, we need that there is some probability measure

P in P(L ) such that P(B) > 0 (or, in other words, that the upper probability P(B)



is positive); but this is no restriction in the case of comparative probabilities, because
there will always be an extreme point P of P(L ) for which P(B) > 0: it suffices to
consider PH(xi) with xi ∈ B. On the contrary, the lower probability P(B) will be positive
if and only if for any xi ∈X it holds that B∩H(xi) 6= /0, i.e., if and only if B contains
all the nodes without a predecessor.

To attain the conditional lower probability P(A|B) given by Eq. (5), we need to find
the extreme point for which P(B) is positive and the fraction P(A∩B)/P(B) minimal. This
can be done easily by the procedure described in Algorithm 2. Note that it is sufficient to
concentrate on extreme points generated by subsets C of B\A, as we want to minimise
the ratio |H(C)∩B∩A|/|H(C)∩B|. From this, we easily derive the following algorithm:

Algorithm 2: Conditional Probability computation
Input: Set L of comparisons
Output: Lower conditional probability P(A|B) with A⊂ B

1 Cond← 1 ;
2 foreach Set C ⊆ B\A do
3 Value← |H(C)∩(A∩B)|/|H(C)∩B| ;
4 if Value < Cond then Cond← Value

5 Return Cond ;

4.5 Multiple source merging

When multiple sources provide different comparisons, for instance when two differ-
ent experts provide assessments L1 and L2, it becomes necessary to merge them
in a single representation. The two most common rules to do so are the conjunc-
tion and disjunction, that respectively come down to computing P(L1)∩P(L2) and
CH(P(L1)∪P(L2)), where CH denotes the convex hull (the disjunction usually pro-
ducing non-convex probability sets). Our next result shows that simple operations on
L1 and L2 can provide exact or approximated results of these operations.

Proposition 2. 1. The disjunctively merged set CH(P(L1)∪P(L2)) is such that
CH(P(L1)∪P(L2))⊆P(L1∩L2), and the inclusion can be strict.

2. The conjunctively merged set satisfies P(L1)∩P(L2) = P(L1∪L2).

5 Practical examples and extensions

In this section, we propose some particular examples of situations where elementary
comparative probability models can be used, and discuss some possible extensions.



5.1 Imprecise mass functions

Elementary comparative probability models can be related to the work on imprecise
mass functions discussed by Augustin [24] and Denoeux [25]. Recall that a belief func-
tion P on the power set of X is uniquely determined by its associated basic probability
assignment m, by means of the formula [1]

P(A) = ∑
E⊆A

m(E). (6)

The basic probability assignment m(E) of a set E represents the weight of the avail-
able evidence supporting that the outcome of the experiment belongs to E. It holds that
∑E⊆X m(E) = 1, so we may regard m as the probability mass function of some proba-
bility measure on P(P(X )). This arises for instance in the context of finite random
sets.

We can then use our results to build imprecise mass functions. If we have assess-
ments of the type m(Ai)≥ m(A j), we may consider the set of the mass functions com-
patible with these assessments. This is a convex set of probability measures whose ex-
treme points can be determined by means of Theorem 1. Note that, by means of Eq. (6),
each of these mass functions determines a belief function, that in turn is equivalent to a
convex set of probability measures on P(X ). Hence, a convex set of mass functions
also induces a convex set of probabilities on P(X ) [24]; however, its lower probabil-
ity will not be, in general, a belief function (nor, as we can deduce from Example 3,
2-monotone).

This can be useful for instance in the context of inner/outer measures [26]. We
may think of an infinite space X that is partitioned into n sets A1, . . . ,An, and where a
probability measure P(Ai) is associated to each set Ai. Such an assessment induces on
the power set of X a set of probabilities that can be described by m(Ai) = P(Ai). In
this situation, comparative statements between the probabilities P(Ai) are equivalent to
comparative statements between the masses m(Ai), and the set of extreme masses can
then be derived using our results.

5.2 Extension to general comparative probability models: some comments

The most important extension of our work would be to consider arbitrary comparative
probability models, where we allow for comparisons between any pair of events (the
case of partitions is treated in Section 5.1), that is to allow any comparison P(A)≥ P(B)
with A,B⊆X . These are the models studied extensively in [8,10,11], amongst others.

Note that, when considering comparative probability models, we can assume that
the sets A,B we compare are disjoint, since the assessments P(A) ≥ P(B) and P(A \
B) ≥ P(B \A) are equivalent. However, the existence of a probability compatible with
the assessments is no longer trivial, and therefore the associated set P(L ) may be
empty: think for instance of the case of X = {x1,x2,x3} and the assessments P({x1})≥
P({x2,x3}),P({x2})≥ P({x1,x3}) and P({x3})≥ P({x1,x2}). These are equivalent to
P({x1}) ≥ 0.5,P({x2}) ≥ 0.5 and P({x3}) ≥ 0.5, and there is no probability measure
satisfying all of them simultaneously.



When P(L ) is non-empty, then it is a closed convex set which is characterized by
its finite number of extreme points. However, as the next example shows, we cannot ex-
pect the extreme points of such assessments to be as simple as the extreme points gener-
ated by the comparison of the probabilities of the states. In particular, the extreme points
of the associated credal sets will not be necessarily associated with uniform probabil-
ity distributions over some subsets, and finding an easy graphical representation from
which they could be extracted seems hard.

Example 4. Consider X = {x1,x2,x3} and the assessments P({x2}) ≥ P({x1}) and
P({x1,x2}) ≥ P({x3}), and let P be the credal set determined by these assessments.
The extreme points of P are given by the mass functions

{(0,1,0),(1/2,1/2,0),(1/4,1/4,1/2),(0,1/2,1/2)}.�

6 Conclusions

Comparative probability models constitute a useful approach to modelling uncertain
information about a probability model, especially when the available information is
of a qualitative nature. However, most of the works in the literature about these mod-
els have focused on axiomatizing those comparative probability models that can be
associated to a set of probability measures. In this paper, we have deepened on the
link between elementary comparative probability models and imprecise probabilities,
by: (a) characterizing the structure of the set of probability measures associated to a
comparative probability model, and (b) studying the properties of the lower probabil-
ity induced by this set. Interestingly, we have showed that this lower probability may
not be 2-monotone, from which it follows that 2-monotone capacities (and in particular
belief functions, or possibility measures) are not expressive enough to be able to deal
with this type of qualitative information. Moreover, we have showed that the maximum
number of extreme points is similar to the maximal number of extreme points of credal
sets induced by possibility measures, and smaller than those induced by 2-monotone
capacities or belief functions.

We have also suggested some practical situations where this model can be useful,
such as the elicitation of modal or least probable values or imprecise mass functions.
However, this model remains quite simple and of limited expressiveness; it would be de-
sirable to determine to which extent the results presented in this paper can be extended
to the case of general comparisons between disjoint events, discussed in Section 5.2.
Another important open problem would be to provide algorithms for the computation
of the lower prevision induced by a comparative probability model, and to study in
detail the applications of these results in fields such as qualitative decision making.
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