
HAL Id: hal-00861970
https://hal.science/hal-00861970v1

Submitted on 15 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performing accurate simulations for deadline-aware
applications

Guthemberg Silvestre, Sébastien Monnet

To cite this version:
Guthemberg Silvestre, Sébastien Monnet. Performing accurate simulations for deadline-aware applica-
tions. HPCS 2013 - The 2013 International Conference on High Performance Computing & Simulation,
Jul 2013, Helsinki, Finland. pp.65-71, �10.1109/HPCSim.2013.6641394�. �hal-00861970�

https://hal.science/hal-00861970v1
https://hal.archives-ouvertes.fr


Performing accurate simulations for deadline-aware

applications

Guthemberg Silvestre and Sébastien Monnet

LIP6/UPMC/CNRS/INRIA

4 place Jussieu - 75005 Paris - France.

Email: {guthemberg.silvestre, sebastien.monnet}@lip6.fr

Abstract—One of the most appealing aspects of cloud comput-
ing is its potential capacity of offering customized services for
clients through Service Level Agreement (SLA) contracts. Emerg-
ing cloud providers are intended to provide services whose perfor-
mance targets are defined by precise data transfer deadlines. Yet,
enforcing strict transfer rates for cloud-like applications is not
simple. This has caught system designers and analysts’ interest,
and drawn their attention to study and evaluate the performance
of deadline-aware applications. In order to address the increasing
demand for performance evaluation tools for deadline-aware
simulations, we present a bandwidth scheduling component for
the PeerSim simulator. Our component provides a lightweight
and accurate fair-sharing of bandwidth and rate control enforce-
ment. We assume a simple approach that does not reproduce in-
depth transport protocol behaviour. Instead, our design focuses
in reducing the inherent impact on the overall simulation scal-
ability as bandwidth scheduling accuracy is improved. We have
studied the scalability and bandwidth scheduling accuracy of four
scheduling approaches, namely the simplest, lock-based, packet
or slot-based, and connection-oriented bandwidth scheduler. We
have verified that a connection-oriented approach allows us to
(i) improve considerably the accuracy of fair bandwidth sharing,
and (ii) implement a rate control mechanism properly. Our source
code is available online [3].

Keywords—Datacenter, Quality of Service, Cloud Services,
SLA, Rate Control, Peer-to-Peer.

I. INTRODUCTION

Cloud computing has reshaped the way we use the Internet.

Network and Content Delivery Network (CDN) providers

have made huge efforts on development and infrastructure

investments to offer cloud services with high scalability and

outstanding performance guarantees to customers. For in-

stance, Amazon Elastic Compute Cloud (Amazon EC2) [1]

offers a virtual computing environment where users can easily

configure and run online servers, paying only for resources

that they are actually using. Similarly, cloud users expect that

emerging Internet services could provide outstanding perfor-

mance guarantees, e.g. enforcing deadlines for data transfers

through SLA contracts. Unlike fair-share scheduling, where

bandwidth is equally distributed among concurrent transfers,

a deadline-aware approach, such as D3 [12], uses explicit rate

control to apportion bandwidth according to the flow deadline

to prevent SLA violations.

While cloud computing gives new opportunities for cus-

tomers to use innovative services, it makes software architec-

tures and system analysts facing new development challenges.

In this context, performance analysis plays a very important

role, and permit improving considerably the overall outcome

quality. In this work, we are mostly interested in performance

evaluations for cloud services through simulations.

According to Raj Jain [5], simulation is a useful technique

for computer systems performance analysis which provides

an easy way to predict the performance or compare several

alternatives. In the recent years, network simulation tools have

been continuously improved and used by system analysts for

carrying out proper performance evaluation studies. Scalabil-

ity, accuracy, and usability make part of the main issues when

analysts are looking for a simulator tool.

In this work, we present a PeerSim component for band-

width scheduler that permits simulating deadline-aware appli-

cations. PeerSim [6] is a highly scalable Peer-to-Peer (P2P)

simulator. We have been particularly interested in PeerSim’s

modularity and user-friendly API. Our component allows

system analysts to easily define and run simulations where

accurate fair-sharing bandwidth and strict rate control en-

forcement are key issues. It is suitable for simulating cloud

application that requires a deadline-aware control protocol on

top of P2P networks. We have designed and implemented an

accurate and lightweight mechanism for enforcing fair-sharing

policy on data transfers and strict rate control, whenever it

is required. It does not reproduce the complexity of in-depth

transport protocol behaviour. Instead, we focus on proper

dynamics of bandwidth sharing based on a connection-oriented

approach. It allows us to apportion bandwidth resources on

cloud environments. Like PeerSim, our component is simple

to use and can be easily customised for many different set-ups.

In this work, our contributions are three-fold:

• We provide a user-friendly PeerSim component that

allows system analysts to simulate accurately and lightly

fair-sharing of bandwidth resources on Peer-to-Peer net-

works.

• Our component offers an implementation of the main

functionalities of the newborn deadline-aware control

protocols. It permits enforcing rate control to allocate

bandwidth following strict application-level SLA con-

tracts for cloud services simulations.

• We evaluate the performance of four simple bandwidth



scheduling mechanisms regarding their scalability and

capacity of providing accurate bandwidth sharing on

Peer-to-Peer networks.

For space constraints, in this work we focus on the design

of our lightweight connection-oriented bandwidth scheduler

component and on evaluating its transfer accuracy, flexibility,

and overhead. More details about its functioning are available

on the component repository [3]. Further evaluations and usage

details of its functionalities in terms of deadline-aware services

and transfer rate enforcement are available on previous works

[8] and [9], where we study SLA-based resource allocation

in edge networks. The remaining sections are organised as

follows. Section II presents some related works. In Section III,

we describe the design of our component in details by ex-

plaining its main functionalities and implemented protocol

layers on PeerSim. Then we evaluate the performance of

four different bandwidth scheduling approaches in Section IV.

A comparative study of these approaches and some final

discussions are presented in Section V. Finally, Section VI

concludes.

II. RELATED WORK

We have focused our efforts in studying works that help

us to develop our component for Peer-to-Peer networks.

We are mostly interested in evaluating scalability, accuracy,

and usability of mechanisms and components for simulating

deadline-aware cloud applications properly.

Weingartner et al. [11] evaluated the overall performance

of five popular simulators. They concludes that ns-3 [2] out-

performs its opponents, including OMNet++ [10]. One of the

most advantages of using simulators such as ns-3 is that they

provide a full set of realistic protocol models. However, their

intrinsic set-up complexity undermines the simulator usability,

particularly for inexperienced analysts, and its realistic models

implementations might reduce significantly the scalability for

cloud services, such as data transfer with rate control. Accord-

ing to a survey in Peer-to-Peer simulators by Dinh et al. [4],

the use of simulators like ns-3 is actually very occasional, and

most analysts opt to develop their own tool. However, these

tools are not necessarily made publicly available, becoming

single paper or study-simulators, preventing simulation results

reproductions.

Following a different approach, PeerSim [6], a highly scal-

able P2P simulator written in Java, is much more straightfor-

ward, and offers a modular API and a number of built-in P2P

protocols. It permits performing discrete-event simulations

through two different engines, namely cycle-driven and event-

driven simulation engines. Simulation engines basically differ

in complexity and representativeness. Cycle-driven engine runs

quicker, is easier to configure, but assumes simpler scenario

definitions. Event-driven engine is much more flexible, permits

implementing a larger number of protocol and algorithms, and

gives fine-grained results. Since the main focus of PeerSim is

scalability, its built-in modules lack of packet-level or flow-

level data transfer simulation support by default, therefore

limiting accuracy in bandwidth usage simulations. In order to

overcome this issue, Russo et al. [7] have proposed a PeerSim

slot-based Network protocol that simulates bandwidth usage

based on priority sharing policy. While priority sharing policy

enhances the level of details of bandwidth usage simulations,

allowing fair chunk-level simulation without causing major

damages to scalability, it does not provide any rate control

mechanism, and it is not accurate enough for deadline-aware

data transfer simulations.

Recently, researchers have extensively studied strict SLA

enforcement in datacenters networks. D3 [12] is a remark-

able example of this approach. It provides a deadline-aware

control protocol that uses explicit rate control to apportion

bandwidth according to flow deadline. That provides the

ability to increase the aggregate throughput in datacenter

environments compared to TCP. In this work, we are proposing

an implementation of this kind of bandwidth scheduling as a

lightweight PeerSim component.

III. COMPONENT DESIGN

In this section we outline our approach for simulating

deadline-aware applications. We present the design of our

PeerSim component, detailing its protocol layers, main mod-

ules, and functionalities.

We have implemented a modular component for simulating

deadline-aware cloud application on top of PeerSim simulator.

Figure 1 shows the layers of our component and their interac-

tions with PeerSim. Configurations are made through the main

PeerSim API, ensuring usability.

Our component is composed by three layers: Network,

Transport, and Application. Each layer provides an interface

for the upper layer and allows developers to easily add

additional functionalities. For simplicity, we have selected the

PeerSim node, with identifier zero, for being a special node

in our PeerSim component. It is called coordinator. It stores

Global structures that are essential for consistency and state of

the on-going simulation, such as addresses mapping and full

connections’ state.

A Monitoring module was implemented to provide peri-

odical information about the state of nodes. It tracks data

transfers information such as number of accomplished flows,

instantaneous number of bits sent, bandwidth usage, active

connections, and so on.

In this Section, a data communication between pair of nodes

is named according to the layer level as connection, flow,

and transfer for Network, Transport, and Application layer

respectively. The following Subsections describe the main

functionalities of each layer in details.



Pe
er

Si
m

 E
ng

in
e

Network: 
rate control, multihoming

Transport: 
connection handler 

Application: 
strict SLA, deadline-aware

M
on

ito
rin

g

logs

Figure 1. A modular PeerSim component for simulating deadline-aware
applications.

A. Network Layer

Network layer implements a lightweight connection-

oriented bandwidth scheduler and offers two essential band-

width mechanisms for deadline-aware applications: fair-share

and strict rate control.

Accurate fair-share scheduling of bandwidth permits appor-

tioning network resources equally and dynamically throughout

active connections. It simulates the common behaviour of

communications between nodes without traffic priorities. Our

evaluations focus on the accuracy of this functionality in this

work.

Enforcing strict rate control is the main goal of our com-

ponent. It aims to provide a precise rate control mechanism

for enforcing strict SLA contracts. A deadline is attributed to

each connection according to the upper layer requested rate.

Deadline is the maximum amount of time, in milliseconds

precision, for a connection ends. During the bandwidth allo-

cation for connections, each node verifies the requested rate

and reserve bandwidth properly. Towards accurate bandwidth

allocation that captures the main aspects of network dynamics,

we consider that correct fair-share of bandwidth is applied for

non-reserved resources, as depicted in Figure 2.

Minimum
rate for C1 C1

C2

C3

C2

C1

(a) (b)

Figure 2. Rate control enforcement and fair-sharing scheduling dynamics.

Figure 2 (a) shows that a minimum rate of 40% of the

bandwidth is enforced in connection C1 that competes with

connection C2 for network resources. Since further resources

are available, C1 would be able to have more than required

rate, finishing earlier than expected. In this particular case,

fair-share scheduling ensures 50% of the bandwidth for C2 .

In Figure 2 (b), we consider, in the meanwhile, the arrival of a

third connection C3. C2 and C3 do not require a minimum rate.

As result, Network layer enforces the minimum rate for C1,

what is equal to 40% in this example, and applies fair-share for

the remaining resources, 60% of the bandwidth, throughout C2

and C3. It allows us to accurately reproduce network dynamics

with rate control enforcement. Further insights into deadline-

aware approach used in this work are available on Wilson et

al. work [12].

We have also designed a multihoming scheme as part of

the Network layer. Our goal is to allow users to easily define

cloud-like scenarios, from machine-network virtualization to

datacenter environments. Figure 3 shows the main blocks of

our multihoming network model. We have defined Broadcast

Domain (BD) as an essential block of our model. In a nutshell,

it models isolated portions of PeerSim node’s bandwidth. BD0,

or host domain, represents the whole bandwidth available on

a node, which might simulate a datacenter uplink as well

a simple host’s network interface card. Then multihoming

takes place by adding additional in-built BDs, with indexes

greater or equal to one, so-called guest domains. Thanks to

a maximum guest domain bandwidth limit enforcement, any

bandwidth values might be freely and independently assigned

to guest domains. Last but not least, this modules keeps and

exports an address table, including BD to global pseudo-

network address mapping, to easy usage and provide trans-

parency of multihoming network functionality. Evaluations

with deadline enforcement and multihoming functionalities

have been omitted from this work due to space constraints,

but are available on our previous works [8] and [9].

...

Multihoming network

BD3 BDN-1BD2BD1

Addr BD
0 1
1 2
2 3

N N+1

... ...

BD0

Figure 3. A multihoming network model for cloud-like simulations.

B. Transport Layer

We propose a Transport layer to interface with our deadline-

aware Network layer. We assume that data transfers are

handled between pair of nodes as connection-oriented data

streams, called flows. It provides two main services for upper

layers: connection management and accountability.

Flow management allows us to have full control of Network

connections, including addresses’ mapping for multihoming,

creation, and deletion operations. Whenever a new node from

upper layer is inserted in the simulation, Transport layer han-

dles the mapping between Application and Network addresses.

There is an single instance of this mapping structure per simu-

lation in the coordinator node. It ensures mapping consistency

and proper node selection in multihoming scenarios. Transport

layer provides a easy way to create flows with a couple of

parameters. It stores connections identifiers returned by the

Network layers for accountability or deletions. A wide range of

flow information and statistics are available, e.g. instantaneous



and precise number of bits already sent can be easily retrieved

from Network.

C. Application Layer

This layer provides the main interface for running deadline-

aware simulations. Many logical nodes may be hosted in

a single Application layer in cloud-like scenario. So that,

in a single PeerSim node, we are able to easily simulate

multiple logical nodes, such as multiple virtual machines or

even an entire datacenter. To each logical node is assigned an

application-level address, which is mapped to network-level

address through Transport layer mapping. This allows users

to define and to operate multihoming properly.

Along with few definitions in the main PeerSim configura-

tion file, Application layer requires a CSV input file with SLA

contracts’ definitions. Our current design allows us to define

and use multiple SLA contracts. A SLA contract defines a

strict transfer rate for a class of nodes. Then SLA contracts

should be assigned to nodes accordingly.

Its functioning is straightforward. Application events or

logical nodes’ transfer requests are sent to Transport layer that

interacts with Network for performing a transfer. Its behaviour

depends on how Network layer is operating. Considering a

Network layer applying just fair-share of bandwidth, an event

is always treated, and when the transfer finishes, Transport

layer notifies Application. Then Application checks if the

transfer meets its respective SLA contract on behalf of the re-

quester. On the other hand, if Network is configured to enforce

rate control from SLA contracts, before starting the transfer,

an admission control process takes place for verifying if there

is enough network resources in both source and destination

Networks for fulfilling the Application request. If there is no

enough spare resources, Network raises a connections failure

message, and requester’s Application layer is notified.

IV. SIMULATIONS RESULTS

In this Section, we aim to evaluate the performance and

measure the accuracy of different bandwidth scheduling ap-

proaches in order to provide deadline-aware data transfer with

strict rate control. We have studied four scheduling approaches

for bandwidth allocation on top of PeerSim simulator: the sim-

plest bandwidth scheduler, a lock-based bandwidth scheduler,

a packet-based bandwidth scheduler, and a connection-oriented

bandwidth scheduler.

We have defined an evaluation scenario with 1000 nodes.

For simplicity, we assume a fully meshed and connected

network topology, in which each node is equipped with a full-

duplex 10Mbps link. We simulate data transfers in a content

distribution network where each node plays a distinct role

of either content provider or consumer. Content consumers

randomly select a source per request for downloading. We

consider that content size follows a bounded Pareto distribu-

tion that ranges from 1MB to 1GB. We simulate one hour of

content transfer. Our primary factors for performance analysis

are:

• Number of content sources: that is the number of nodes

that play content provider role, whose uplink bandwidth

is shared by consumers’ downloads for content distribu-

tion.

• Content mean size: by changing the shape parameter

of Pareto distribution, we have been able to evaluate

bandwidth allocation performance with different content

average sizes.

• Degree of parallelism: by degree of parallelism we mean

the number of simultaneous active downloads performed

by a content consumer node. During the simulations boot-

strap, a number of parallel downloaded is launched from

each consumer at the same time, according to the degree

of parallelism . When a download is accomplished, a new

download is immediately performed in order to keep the

degree of parallelism.

The evaluation of our simulations towards deadline-aware

transfers have been measured by three simple metrics: average

uplink bandwidth usage of nodes playing content provider

role, average memory usage, and average computation time

per content transfer. We have performed our simulations using

server with an Intel Xeon E5450 3.00 GHz, and a RAM of

4GB. We describe and evaluate each approach in the following

Subsections.

A. The Simplest Bandwidth Scheduler

Here, we describe an easy way to implement a bandwidth

scheduler for data transfer simulations. In order to transfer data

between two nodes, the source node computes the bandwidth

available to the destination by simply selecting the smallest

bandwidth value between the two nodes, and then computing

the duration of the data transfer based on the requested content

size. This scheduler provides a static bandwidth allocation

between the source and destination, that extremely speeds up

simulation.

Assuming an evaluation scenario where each content con-

sumer does not perform parallel downloads, that means degree

of parallelism equals to one, and a content mean size of 8 MB,

we have varied the number of content sources or providers

from 10 to 50 % of the total of nodes. Figure 4 shows the

average uplink bandwidth usage per content provider.

For this scenario, our implementation requires about 9.2

MB of memory on average, and the average computation

time is only 0.4 microseconds per message sent. Although

the simplest scheduler consumes very few computational of

resources, it provides highly imprecise bandwidth usage results

as the number of sources decreases, and concurrent content

accesses occur. As expected, the maximum average is reached

when 50% of nodes play the role of content provider. This

evaluation metric soars to 90Mbps when 10% of nodes are

content providers because there is no bandwidth sharing



A
ve

ra
ge

 b
an

dw
id

th
 (

M
bp

s)

Content providers percentage

10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

Figure 4. Average uplink bandwidth usage of content providers for different
number of content sources.

policy for concurrent transfers on sources, generating highly

inconsistent results.

B. A Lock-based Bandwidth Scheduler

We enhanced the previous bandwidth scheduler in order to

improve bandwidth allocation precision without much increas-

ing in computational resources consumption. We implemented

a lock-based mechanism that prevents overlap of bandwidth

consumptions when there are more consumers than sources.

Its behaviour is quite similar to the previous approach. But,

instead of starting a new transfer whenever it is requested,

the content provider verifies the availability of the whole

bandwidth in both source and destination. If at least one of

them has already started a new data transfer, the request is

queued on the content source, and FIFO policy is enforced.

This simple improvement permits to avoid over-consuming in

bandwidth usage of nodes. However, it undermines bandwidth

allocation efficiency. Considering the worst case of the previ-

ous approach, where 10% of nodes are content providers, we

show in Figure 5 what happens with average bandwidth usage

on content providers when content mean size changes. Average

bandwidth usage falls sharply from 8.5 to 5.1 Mbps when

mean content size is multiplied by 4. That causes an increasing

amount of idle bandwidth resources despite the higher load,

simulating inaccurate bandwidth apportion.

A
ve

ra
ge

 b
an

dw
id

th
 (

M
bp

s)

Content mean size (MB)

2 3.5 5 6.5 8

0
1
2
3
4
5
6
7
8
9

10

●

●

●
● ●

Figure 5. Impact of content mean size on average uplink bandwidth usage
of content providers.

The performance of bandwidth allocation for this approach

is optimal when data transfers have the same length, e.g.

considering a uniform distribution for content size. Whatever

the workload, parallel transfers can not be simulated properly.

C. A Packet-based Bandwidth Scheduler

This approach was based on the PeerSim bandwidth man-

ager module proposed by Russo et al. [7]. In order to simulate

parallel transfers and bandwidth sharing with low computa-

tional resources consumption, they introduced a bandwidth

scheduler based on slots and priority sharing policy. They

assume whenever a source node connect to a destination to

transfer data, it allocates a bandwidth’s slot for an amount of

time, depending on the data size. They consider that uplink

and downlink are asymmetric, with downlink greater than

uplinks. In general, it permits that multiple uplink slots match

into a single downlink, providing transfer parallelism with

high performance. Although it is highly configurable, and

simulates fairly bandwidth sharing for heterogeneous networks

transmitting blocks of equal size, it is hard to be successfully

reused in generic scenarios, particularly when accurate fair-

share scheduling is required.

We have implemented a simpler version of this approach,

called a packet-based bandwidth scheduler, that is easier to

configure, and enhances significantly the bandwidth schedul-

ing mechanism. In our implementation, we promote the chunk

size as a key parameter. Slots duration does not depend of

bandwidth match any more. Instead, we assume that a slot is

a portion of bandwidth according to the chunks size definition.

For example, if a uplink bandwidth is equal to 10Mbps, and the

chunks size is 1MB, the number of slots is defined by dividing

bandwidth by chunks size, in this case, it would be about

10. We have also added a queue for untreated or on-going

requests that permits improving significantly the scheduling

of content transfer with multiple chunks. When a request does

not have enough available slots on both source and destination

for transmitting its all chunks, the remaining chunks are put

into the queue. Remaining chunks are served following FIFO

queueing and according to the slots availability. Considering

a degree of parallelism equal to four and content mean size

of 3MB, we have evaluated the content delivery performance

by computing the average uplink bandwidth usage on content

providers, and scalability through measuring the computation

time per transfer of different chunk sizes. Figure 6 shows that

we are able to improve significantly bandwidth sharing accu-

racy by reducing the chunk size. In this case, when the chunk

size is reduced from 8MB to 500KB, the average uplink usage

increases from 2.5Mbps to 8.9Mbps. Yet improved accuracy

pays its price, as depicted in Figure 7. The computation time

per transfer for the same range of chunk sizes is increased

from 3.1 to 5.3 microseconds.

Although this approach improves the dynamics of band-

width sharing resources, it introduces a crucial trade-off be-

tween accuracy and scalability. The smaller is the chunk size,

the better is the accuracy it provides, but with an increasing

computational resources consumption. Whatever the chunks



A
ve

ra
ge

 b
an

dw
id

th
 (

M
bp

s)

Chunk size (MB)

0.5 1 2 4 8

0
1
2
3
4
5
6
7
8
9

10

Figure 6. Average uplink
bandwidth usage on content
providers with different chunk
sizes.

T
im

e/
m

sg
.(

m
ic

ro
se

co
nd

s)

Chunk size (MB)

0.5 1 2 4 8

0

1

2

3

4

5

6
●

●

● ● ●

Figure 7. Average compu-
tational time per transfer with
different chunk sizes.

size and the related computational cost, the use of packet-

based, or slot-based, approach causes bandwidth allocation

imprecision for incoming requests, that must wait the next

free slot, or packet reading cycle, before starting. This is

particularly damaging for small transfer lengths and strict rate

control enforcement.

D. A Connection-oriented Bandwidth Scheduler

To overcome packet-based scheduler issues, improve accu-

racy in fair-share apportion, and simulate proper rate control

for deadline-aware applications, we have designed and im-

plemented a connection-oriented bandwidth scheduler in our

Network layer for PeerSim, that was also initially based on

the bandwidth manager module proposed by Russo et al. [7].

In fact, we are not interested in reproducing a wide range of

realistic networking aspects, as data retransmission, packet-

loss, or jitter. Instead, we focus on implementing a lightweight

and accurate bandwidth scheduler that simulates the overall

dynamics of bandwidth allocation on end-nodes. Therefore,

we put great emphasis on enforcing fair-share scheduling for

Peer-to-Peer networks. In our model, connection objects keep

only the more precious information about the transfer, such

as source-destination addresses, data to be transmitted, current

allocated bandwidth, and remaining time. It permits computing

bandwidth allocation and reproducing parallel and concurrent

data transfer properly. We have run and compared the accuracy

of our connection-oriented approach and a packet-based one,

as depicted in Figure 8. For a chunk size of packet-based

approach equals to 500KB, our connection-oriented bandwidth

scheduler performs roughly 10% better.

Since fair sharing policy is enforced properly, we have been

able to implement an accurate rate control mechanism based

on D3 [12], discussed in Subsection III-A, that permits sim-

ulating data transfer for deadline-aware applications. Despite

of improving consistently the bandwidth allocation accuracy,

unsurprisingly it requires more computational resources than

other approaches evaluated in this work.

V. PERFORMANCE ANALYSIS SUMMARY

To provide a comparative study among the evaluated band-

width schedulers, we have measured the performance in terms

A
ve

ra
ge

 b
an

dw
id

th
 (

M
bp

s)

Time (minutes)

0 5 10 15 20 25 30 35 40 45 50 55 60

0
1
2
3
4
5
6
7
8
9

10

connection−oriented scheduler
packet−based scheduler

Figure 8. Average bandwidth usage on content providers.

TABLE I
OUTLINE OF SCALABILITY AND ACCURACY RESULTS OF FOUR

BANDWIDTH SCHEDULING APPROACHES.

Approach Accuracy Parallelism Computation

time per

transfer

(µs)

Average

memory

usage

(MB)

Simplest Lowest Not
allowed

0.5 8

Lock-based Limited Not
allowed

2.2 162

Packet-
based

Fair Allowed 3.8 177

Connection-
oriented

Highest Allowed 46.8 431

of scalability and accuracy over a common simulation set-up.

In this common scenario, we assume the default configurations

of Section IV, we set the degree of parallelism to one, number

of content providers to 100, or 10% of the total of nodes, and

the content mean size to 3MB. For packet-based approach,

we chose a chunk size of 500KB, half of minimum content

size. Table I provides an outline of evaluation results for all

bandwidth schedulers. We highlight our main finds in the

remaining part of this Section.

The simplest bandwidth scheduler: While the simplest

approach is the easiest to implement, and highly scalable with

a staggering computation time of only 0.5 µs per accomplished

transfer and average memory usage of only 8MB, it performs

the worst bandwidth sharing precision, and does not permit

simulating parallel transfers. This approach might be useful for

huge Peer-to-Peer networks that does not require fine-grained

bandwidth tracking.

A lock-based bandwidth scheduler: Compared to the sim-

plest approach, it performs a much better bandwidth allocation

precision with excellent scalability in simulation duration, a

still tiny computation cost per transfer of 2.2 µs. But the fact

of implementing a FIFO queueing for scheduling incoming

transfer requests causes a 20-fold increase in the average

memory usage. Neither it offers parallelism, for us, an essential

data transfer functionality. Lock-based approaches are rather

suitable for scenarios with large number of nodes where data

transmission in pipeline is acceptable.



A packet-based bandwidth scheduler: A packet-based band-

width scheduler provides a quite fair scalability. Compared to

a lock-based scheduler, it performs a minimal rise in average

memory usage, an additional memory usage of 14MB on

average, and a relatively high, but still impressive enough,

increase of 70% in the computation time per transfer. Allowing

parallelism in data transfers, it offers a good bandwidth

scheduling mechanism for a wide range of applications. How-

ever, it exposes analysts to a trade-off between scalability

and bandwidth scheduling precision through the choice of the

chunks size. Assuming bandwidth allocation precision as a key

feature for deadline-aware applications, this approach does not

fit for purpose.

A connection-oriented bandwidth scheduler: Accuracy in

simulating fair-share scheduling of bandwidth is at the core

of our implementation. It performs precise bandwidth sharing

thanks to connections-oriented approach. Unlike simulators

that implement in-depth transport protocol behaviours, we

minimize the computational cost improving scalability by

maintaining only the most essential connections information.

Although it causes a nearly 11-fold increase in computation

time per transfer and a memory usage two and half times

higher both compared to packet-based approach, connection-

oriented bandwidth scheduler provides proper fair-share of

bandwidth, what allowed us to successfully implement a strict

rate control for simulating deadline-aware cloud applications.

VI. CONCLUSIONS

We have designed and implemented a PeerSim component

that provides accurate bandwidth sharing and rate control

properly. Our component is particularly useful for predicting

the performance of deadline-aware cloud services. It allows

analysts to easily set-up and customized simulations thanks

to the PeerSim modular and user-friendly API. We have

evaluated the performance our bandwidth scheduling approach

and compared it to three simpler and more scalable band-

width approaches. As we have shown, simulation accuracy

always pays its price. Our approach is not the fastest, neither

reproduces in-depth transport protocol behaviours. We have

rather chosen to implement a straightforward, lightweight,

and accurate enough approach based on a connection-oriented

bandwidth scheduler that fits deadline-aware cloud application

requirements properly.

ACKNOWLEDGMENTS

We are grateful to Véronique Simon and Alessandro Russo

for their valuable help at the early stages of this work.

REFERENCES

[1] Amazon elastic compute cloud (amazon ec2).
http://aws.amazon.com/ec2/, 2012.

[2] ns-3: a discrete-event network simulator for internet systems.
http://www.nsnam.org/, 2012.

[3] Arenbm: a simple bandwidth scheduler component for peersim.
https://github.com/guthemberg/arenbm.git, 2013.

[4] Tien Tuan Anh Dinh, M. Lees, G. Theodoropoulos, and R. Minson.
Large scale distributed simulation of p2p networks. In Proc. 16th

Euromicro Conference on Parallel, Distributed and Network-Based

Processing PDP 2008, pages 499–507, 2008.
[5] R. Jain. The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling,. May
1991.

[6] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P simula-
tor. In Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09), pages
99–100, September 2009.

[7] A. Russo and R. Lo Cigno. Delay-aware push/pull protocols for live
video streaming in p2p systems. In Communications (ICC), 2010 IEEE

International Conference on, pages 1 –5, May 2010.
[8] G. Silvestre, S. Monnet, R. Krishnaswamy, and P. Sens. Aren: a

popularity aware replication scheme for cloud storage. In ICPADS, 2012.
[9] Guthemberg Silvestre, Sébastien Monnet, Ruby Krishnaswamy, and

Pierre Sens. Caju: a content distribution system for edge networks. In
Proceedings of the 1st Workshop on Big Data Management in Clouds

(BDMC ’12), August 2012.
[10] András Varga and Rudolf Hornig. An overview of the omnet++ simula-

tion environment. In Simutools ’08: Proceedings of the 1st international

conference on Simulation tools and techniques for communications,

networks and systems & workshops, pages 1–10, ICST, Brussels, Bel-
gium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[11] Elias Weingartner, Hendrik vom Lehn, and Klaus Wehrle. A perfor-
mance comparison of recent network simulators. In Proceedings of the

IEEE International Conference on Communications 2009 (ICC 2009),
Dresden, Germany, 2009. IEEE.

[12] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
Better never than late: meeting deadlines in datacenter networks. In
Proceedings of the ACM SIGCOMM 2011 conference, pages 50–61,
August 2011.


