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Abstract. This article is mainly based on the work [7], and it is dedicated to
the 60th anniversary of B. Bonnard, held in Dijon in June 2012.

We focus on a controlled Cucker–Smale model in finite dimension. Such dy-
namics model self-organization and consensus emergence in a group of agents.
We explore how it is possible to control this model in order to enforce or fa-
cilitate pattern formation or convergence to consensus. In particular, we are
interested in designing control strategies that are componentwise sparse in the
sense that they require a small amount of external intervention, and also time
sparse in the sense that such strategies are not chattering in time. These
sparsity features are desirable in view of practical issues.

We first show how very simple sparse feedback strategies can be designed
with the use of a variational principle, in order to steer the system to consensus.
These feedbacks are moreover optimal in terms of decay rate of some functional,
illustrating the general principle according to which “sparse is better”. We
then combine these results with local controllability properties to get global
controllability results. Finally, we explore the sparsity properties of the optimal

control minimizing a combination of the distance from consensus and of a norm

of the control.

1. Introduction.

1.1. Self-organization Vs organization via intervention. In recent years there
has been a very fast growing interest in defining and analyzing mathematical models
of multiple interacting agents in social dynamics. Usually individual based models,
described by suitable dynamical systems, constitute the basis for developing contin-
uum descriptions of the agent distribution, governed by suitable partial differential
equations. There are many inspiring applications, such as animal behavior, where
the coordinated movement of groups, such as birds (starlings, geese, etc.), fishes
(tuna, capelin, etc.), insects (locusts, ants, bees, termites, etc.) or certain mammals
(wildebeasts, sheep, etc.) is considered, see, e.g., [1, 5, 17, 18, 43, 44, 45, 55, 61, 63]
or the review chapter [8], and the numerous references therein. Models in microbi-
ology, such as the Patlak-Keller-Segel model [36, 46], describing the chemotactical
aggregation of cells and multicellular micro-organisms, inspired a very rich math-
ematical literature [32, 33, 48], see also the very recent work [3] and references
therein. Human motion, including pedestrian and crowd modeling [20, 21, 39, 42],
for instance in evacuation process simulations, has been a matter of intensive re-
search, connecting also with new developments such as mean field games, see [37]
and the overview in its Section 2. Certain aspects of human social behavior, as
in language evolution [22, 24, 35] or even criminal activities [57], are also subject
of intensive study by means of dynamical systems and kinetic models. Moreover,
relevant results appeared in the economical realm with the theoretical derivation of
wealth distributions [26] and, again in connection with game theory, the descrip-
tion of formation of volatility in financial markets [38]. Beside applications where
biological agents, animals and micro-(multi)cellular organisms, or humans are in-
volved, also more abstract modeling of interacting automatic units, for instance
simple robots, are of high practical interest [11, 34, 59, 40, 47, 56].
One of the leading concepts behind the modeling of multiagent interaction in the
past few years has been self-organization [5, 43, 44, 45, 61], which, from a mathe-
matical point of view, can be described as the formation of patterns, to which the
systems tend naturally to be attracted. The fascinating mechanism to be revealed
by such a modeling is how to connect the microscopical and usually binary rules
or social forces of interaction between individuals with the eventual global behavior
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or group pattern, forming as a superposition in time of the different microscopical
effects. Hence, one of the interesting issues of such socio-dynamical models is the
global convergence to stable patterns or, as more often and more realistically, the
instabilities and local convergence [48].
While the description of pattern formation can explain some relevant real-life be-
haviors, it is also of paramount interest how one may enforce and stabilize pattern
formation in those situations where global and stable convergence cannot be en-
sured, especially in presence of noise [66], or, vice versa, how one can avoid certain
rare and dangerous patterns to form, despite that the system may suddenly tend
stably to them. The latter situations may refer, for instance, to the so-called “black
swans”, usually referred to critical (financial or social) events [2, 60]. In all these
situations where the independent behavior of the system, despite its natural ten-
dencies, does not realize the desired result, the active intervention of an external
policy maker is essential. This naturally raises the question of which optimal policy
should be considered.
In information theory, the best possible way of representing data is usually the
most economical for reliably or robustly storing and communicating data. One of
the modern ways of describing economical description of data is their sparse rep-
resentation with respect to an adapted dictionary [41, Chapter 1]. In this paper
we shall translate these concepts to realize best policies in stabilization and con-
trol of dynamical systems modeling multiagent interactions. Beside stabilization
strategies in collective behavior already considered in the recent literature, see e.g.
[54, 56], the conceptually closest work to our approach is perhaps the seminal paper
[40], where externally driven “virtual leaders” are inserted in a collective motion
dynamics in order to enforce a certain behavior. Nevertheless our modeling still
differs significantly from this mentioned literature, because we allow us directly,
externally, and instantaneously to control the individuals of the group, with no
need of introducing predetermined virtual leaders, and we shall specifically seek for
the most economical (sparsest) way of leading the group to a certain behavior. In
particular, we will mathematically model sparse controls, designed to promote the
minimal amount of intervention of an external policy maker, in order to enforce
nevertheless the formation of certain interesting patterns. In other words we shall
activate in time the minimal amount of parameters, potentially limited to certain
admissible classes, which can provide a certain verifiable outcome of our system.
The relationship between parameter choices and result will be usually highly non-
linear, especially for several known dynamical systems, modeling social dynamics.
Was this relationship linear instead, then a rather well-established theory predicts
how many degrees of freedom are minimally necessary to achieve the expected out-
come, and, depending on certain spectral properties of the linear model, allows also
for efficient algorithms to compute them. This theory is known in mathematical
signal processing under the name of compressed sensing, see the seminal work [6]
and [25], see also the review chapter [29]. The major contribution of these papers
was to realize that one can combine the power of convex optimization, in particular
ℓ1-norm minimization, and spectral properties of random linear models in order to
show optimal results on the ability of ℓ1-norm minimization of recovering robustly
sparsest solutions. Borrowing a page from compressed sensing, we will model sparse
stabilization and control strategies by penalizing the class of vector valued controls
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u = (u1, . . . , uN ) ∈ (Rd)N by means of a mixed ℓN
1 − ℓd

2-norm, i.e.,

N
∑

i=1

‖ui‖,

where here ‖ · ‖ is the ℓd
2-Euclidean norm on R

d. This mixed norm has been used
for instance in [28] as a joint sparsity constraint and it has the effect of optimally
sparsifying multivariate vectors in compressed sensing problems [27]. The use of
(scalar) ℓ1-norms to penalize controls dates back to the 60’s with the models of
linear fuel consumption [19]. More recent work in dynamical systems [64] resumes
again ℓ1-minimization emphasizing its sparsifying power. Also in optimal control
with partial differential equation constraints it became rather popular to use L1-
minimization to enforce sparsity of controls [9, 13, 14, 31, 49, 58, 65], for instance in
the optimal placement of actuators or sensors (see also the recent works [53, 52, 51]
where the sparsity is promoted by optimizing over characteristic functions having
a prescribed measure).
Differently from this previously mentioned work, we will investigate in this paper
optimally sparse stabilization and control to enforce pattern formation or, more
precisely, convergence to attractors in dynamical systems modeling multiagent in-
teraction. A simple, but still rather interesting and prototypical situation is given
by the individual based particle system we are considering here as a particular case















ẋi = vi

v̇i =
1

N

N
∑

j=1

vj − vi

(1 + ‖xj − xi‖2)β

(1)

for i = 1, . . . , N , where β > 0 and xi ∈ R
d, vi ∈ R

d are the state and consen-
sus parameters respectively. Here one may want to imagine that the vi’s actually
represent abstract quantities such as words of a communication language, opinions,
invested capitals, preferences, but also more classical physical quantities such as the
velocities in a collective motion dynamics. This model describes the emerging of
consensus in a group of N interacting agents described by 2d degrees of freedom
each, trying to align the consensus parameters vi (also in terms of abstract consen-
sus) with their social neighbors. One of the motivations of this model proposed by
Cucker and Smale was in fact to describe the formation and evolution of languages
[22, Section 6], although, due to its simplicity, it has been eventually related mainly
to the description of the emergence of consensus in a group of moving agents, for
instance flocking in a swarm of birds [23]. One of the interesting features of this
simple system is its rather complete analytical description in terms of its ability
of convergence to attractors according to the parameter β > 0 which is ruling the
communication rate between far distant agents. For β 6

1
2 , corresponding to a

still rather strong long - social - distance interaction, for every initial condition the
system will converge to a consensus pattern, characterized by the fact that all the
parameters vi(t)’s will tend for t → +∞ to the mean

v̄ =
1

N

N
∑

i=1

vi(t)

which is actually an invariant of the dynamics. For β > 1
2 , the emergence of con-

sensus happens only under certain configurations of state variables and consensus
parameters, i.e., when the group is sufficiently close to its state center of mass or



SPARSE CONTROL OF THE CUCKER-SMALE MODEL 5

when the consensus parameters are sufficiently close to their mean. Nothing in-
stead can be said a priori when at the same time one has β > 1

2 and the mentioned
conditions on the initial data are not fulfilled. Actually one can easily construct
counterexamples to formation of consensus, see our Example 1 below. In this sit-
uation, it is interesting to consider external control strategies which will facilitate
the formation of consensus, which is precisely the scope of this work.

1.2. The general Cucker-Smale model and introduction to its control. Let
us introduce the general Cucker–Smale model under consideration in this article.

We consider a system of N interacting agents. The state of each agent is described
by a pair (xi, vi) of vectors of the Euclidean space R

d, where xi represents the main
state of an agent and the vi its consensus parameter. The main state of the group
of N agents is given by the N -uple x = (x1, . . . , xN ). Similarly for the consensus
parameters v = (v1, . . . , vN ). The space of main states and the space of consensus
parameters is (Rd)N for both, the product N -times of the Euclidean space R

d

endowed with the induced inner product structure.
The time evolution of the state (xi, vi) of the ith agent is governed by the equa-

tions














ẋi(t) = vi(t),

v̇i(t) =
1

N

N
∑

j=1

a(‖xj(t) − xi(t)‖)(vj(t) − vi(t)),
(2)

for every i = 1, . . . , N , where a ∈ C1([0,+∞)) is a nonincreasing positive function.
Here, ‖ · ‖ denotes again the ℓd

2-Euclidean norm in R
d. The meaning of the second

equation is that each agent adjusts its consensus parameter with those of other
agents in relation with a weighted average of the differences. The influence of the
jth agent on the dynamics of the ith is a function of the (social) distance of the two
agents. Note that the mean consensus parameter

v̄ =
1

N

N
∑

i=1

vi(t)

is an invariant of the dynamics, hence it is constant in time.
For every v ∈ (Rd)N , we define the symmetric bilinear form B on (Rd)N × (Rd)N

by

B(u, v) =
1

2N2

N
∑

i,j=1

〈ui − uj , vi − vj〉 =
1

N

N
∑

i=1

〈ui, vi〉 − 〈ū, v̄〉,

where 〈·, ·〉 denotes the scalar product in R
d. We set

Vf = {(v1, . . . , vN ) ∈ (Rd)N | v1 = · · · = vN},

V⊥ = {(v1, . . . , vN ) ∈ (Rd)N |
N
∑

i=1

vi = 0}.
(3)

These are two orthogonal subspaces of (Rd)N . Every v ∈ (Rd)N can be written as

v = vf + v⊥

with vf = (v̄, . . . , v̄) ∈ Vf and v⊥ ∈ V⊥. Note that B restricted to V⊥×V⊥ coincides,
up to the factor 1/N , with the scalar product on (Rd)N .
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Given a solution (x(t), v(t)) of (2) we define the dispersion

X(t) := B(x(t), x(t)) =
1

2N2

N
∑

i,j=1

‖xi(t) − xj(t)‖2,

and the disagreement

V (t) := B(v(t), v(t)) =
1

2N2

N
∑

i,j=1

‖vi(t) − vj(t)‖2 =
1

N

N
∑

i=1

‖v(t)⊥i
‖2.

Consensus is a state in which all agents have the same consensus parameter, that
is, all agents have reached an agreement.

Definition 1 (Consensus point). A steady configuration of System (2) (x, v) ∈
(Rd)N × Vf is called a consensus point in the sense that the dynamics originating
from (x, v) is simply given by rigid translation x(t) = x + tv̄. We call (Rd)N × Vf

the consensus manifold.

The dynamics originating from a consensus point (x, v) ∈ (Rd)N × Vf is simply
given by a rigid translation of the main state x(t) = x + tv̄.

Definition 2 (Consensus). We say that a solution (x(t), v(t)) of System (2) tends
to consensus if the consensus parameter vectors tend to the mean v̄ = 1

N

∑

i vi,
namely if limt→∞ vi(t) = v̄ for every i = 1, . . . , N .

Note that, because of uniqueness, a solution of (2) cannot reach consensus within
finite time, unless the initial datum is already a consensus point. The consensus
manifold is invariant for (2).

For multi-agent systems of the form (2) sufficient conditions for consensus emer-
gence are a particular case of the main result in [30] and are given in the following
proposition.

Proposition 1. Let (x0, v0) ∈ (Rd)N × (Rd)N be such that X0 = B(x0, x0) and
V0 = B(v0, v0) satisfy

∫ ∞

√
X0

a(
√

2Nr)dr >
√

V0 . (4)

Then the solution of (2) with initial data (x0, v0) tends to consensus.

In the following we call the subset of (Rd)N × (Rd)N satisfying (4) the consensus
region, which represents the basin of attraction of the consensus manifold. Notice
that the condition (4) is actually satisfied as soon as V0 and X0 are sufficiently small,
i.e., the system has initially sufficient concentration in the consensus parameters and
in the main states.

Although consensus forms a rigidly translating stable pattern for the system
and represents in some sense a “convenient” choice for the group, there are initial
conditions for which the system does not tend to consensus, as the following example
shows.

Example 1 (Cucker–Smale system: two agents on the line). Consider the Cucker–
Smale system (2), with a(x) = 1/(1 + x2) in the case of two agents moving on
R with position and velocity at time t, (x1(t), v1(t)) and (x2(t), v2(t)). Assume for
simplicity that β = 1, K = 2, and σ = 1. Let x(t) = x1(t)−x2(t) be the relative main
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state and v(t) = v1(t) − v2(t) be the relative consensus parameter. Equation (2),
then reads







ẋ = v

v̇ = − v

1 + x2

with initial conditions x(0) = x0 and v(0) = v0 > 0. The solution of this system
can be found by direct integration, as from v̇ = −ẋ/(1 + x2) we have

v(t) − v0 = − arctanx(t) + arctanx0.

If the initial conditions satisfy arctanx0 + v0 < π/2 then the relative main state
x(t) is bounded uniformly by tan (arctanx0 + v0), and the boundedness of the state
variables is sufficient for consensus. If arctanx0 + v0 = π/2 then the system tends
to consensus as well since v(t) = π/2 − arctanx(t).

On the other hand, whenever arctanx0+v0 > π/2, which implies arctanx0+v0 >

π/2 + ε for some ε > 0, the consensus parameter v(t) remains bounded away from
0 for every time, since

v(t) = − arctanx(t) + arctanx0 + v0 > − arctanx(t) + π/2 + ε > ε,

for every t > 0. In other words, the system does not tend to consensus.

When the consensus in a group of agents is not achieved by self-organization of
the group, as in Example 1, it is natural to ask whether it is possible to induce the
group to reach it by means of an external action. In this sense we introduce the
notion of organization via intervention. We consider the system (2) of N interacting
agents, in which the dynamics of every agent are moreover subject to the action
of an external field. Admissible controls, accounting for the external field, are
measurable functions u = (u1, . . . , uN ) : [0,+∞) → (Rd)N satisfying the ℓN

1 − ℓd
2-

norm constraint
N
∑

i=1

‖ui(t)‖ 6 M, (5)

for every t > 0, for a given positive constant M . The time evolution of the state is
governed by















ẋi(t) = vi(t),

v̇i(t) =
1

N

N
∑

j=1

a(‖xj(t) − xi(t)‖)(vj(t) − vi(t)) + ui(t),
(6)

for i = 1, . . . , N , and xi ∈ R
d, vi ∈ R

d.
Our aim is then to find admissible controls steering the system to the consensus

region in finite time. In particular, we shall address the question of quantifying the
minimal amount of intervention one external policy maker should use on the system
in order to lead it to consensus, and we formulate a practical strategy to approach
optimal interventions.

2. Sparse Feedback Control of the Cucker-Smale Model.
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2.1. A first result of stabilization. Note first that if the integral
∫∞
0

a(r)dr
diverges then every pair (X, V ) > 0 satisfies (4), in other words the interaction
between the agents is so strong that the system will reach the consensus no matter
what the initial conditions are. In this section we are interested in the case where
consensus does not arise autonomously therefore throughout this section we will
assume that

a ∈ L1(0,+∞).

The quantity V (t) is, in fact, a Lyapunov functional for the uncontrolled Sys-
tem (2). For the controlled System (6) such quantity actually depends on the choice
of the control, which can be properly optimized. As a first observation we prove
that an appropriate choice of the control law can always stabilize the system to
consensus. Indeed, it is easy to see that, for every M > 0 and for every initial
condition (x0, v0) ∈ (Rd)N × (Rd)N , the feedback control defined pointwise in time
by

u(t) = −αv⊥(t),

with

0 < α 6
M

N
√

B(v0, v0)
,

satisfies the constraint (5) for every t > 0 and stabilizes the system (6) to consensus
(in infinite time). In other words the system (5)-(6) is (semi-globally) feedback
stabilizable. Nevertheless this result has a merely theoretical value: the feedback
stabilizer u = −αv⊥ is not convenient for practical purposes since it requires to act
at every instant of time on all the agents in order to steer the system to consensus,
which may require a large amount of instantaneous communications. In what follows
we address the design of more economical and practical feedback controls which can
be both componentwise and time sparse.

2.2. Componentwise sparse feedback stabilization. We introduce here a vari-
ational principle leading to a componentwise sparse stabilizing feedback law.

Definition 3. For every M > 0 and every (x, v) ∈ (Rd)N × (Rd)N , let U(x, v) be
defined as the set of solutions of the variational problem

min

(

B(v, u) + γ(B(x, x))
1

N

N
∑

i=1

‖ui‖
)

subject to

N
∑

i=1

‖ui‖ 6 M , (7)

where

γ(X) =

∫ ∞

√
X

a(
√

2Nr)dr. (8)

The meaning of (7) is the following. Minimizing the component B(v, u) =
B(v⊥, u) means that, at every instant of time, the control u ∈ U(x, v) is of the
form u = −α · v⊥, for some α = (α1, . . . , αN ) sequence of nonnegative scalars.
Hence it acts as an additional force which pulls the particles towards having the
same mean consensus parameter. Imposing additional ℓN

1 −ℓd
2-norm constraints has

the function of enforcing sparsity, i.e., most of the α′
is will turn out to be zero, as

we will in more detail clarify below. Eventually, the threshold γ(X) is chosen in
such a way that when the control switches-off the criterion (4) is fulfilled.

The componentwise sparsity feature of feedback controls u(x, v) ∈ U(x, v) is
analyzed in the next remark, where we make explicit the set U(x, v) according to
the value of (x, v) in a partition of the space (Rd)N × (Rd)N .
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Remark 1. First of all, it is easy to see that, for every (x, v) ∈ (Rd)N × (Rd)N and
every element u(x, v) ∈ U(x, v) there exist nonnegative real numbers αi’s such that

ui(x, v) =







0 if v⊥i
= 0,

− αi

v⊥i

‖v⊥i
‖ if v⊥i

6= 0,
(9)

where 0 6
∑N

i=1 αi 6 M .
The componentwise sparsity of u depends on the possible values that the αi’s

may take in function of (x, v). Actually, the space (Rd)N ×(Rd)N can be partitioned
in the union of the four disjoint subsets C1, C2, C3, and C4 defined by

C1 = {(x, v) ∈ (Rd)N × (Rd)N | max16i6N ‖v⊥i
‖ < γ(B(x, x))},

C2 = {(x, v) ∈ (Rd)N × (Rd)N | max16i6N ‖v⊥i
‖ = γ(B(x, x))},

C3 = {(x, v) ∈ (Rd)N × (Rd)N | max16i6N ‖v⊥i
‖ > γ(B(x, x)) and there exists a

unique i ∈ {1, . . . , N} such that ‖v⊥i
‖ > ‖v⊥j

‖ for every j 6= i},
C4 = {(x, v) ∈ (Rd)N ×(Rd)N | max16i6N ‖v⊥i

‖ > γ(B(x, x)) and there exist k > 2
and i1, . . . , ik ∈ {1, . . . , N} such that ‖v⊥i1

‖ = · · · = ‖v⊥ik
‖ and ‖v⊥i1

‖ >

‖v⊥j
‖ for every j /∈ {i1, . . . , ik}}.

The subsets C1 and C3 are open, and the complement (C1∪C3)
c has Lebesgue measure

zero. Moreover for every (x, v) ∈ C1 ∪ C3, the set U(x, v) is single valued and its
value is a sparse vector with at most one nonzero component. More precisely, one
has U |C1

= {0} and U |C3
= {(0, . . . , 0,−Mv⊥i

/‖v⊥i
‖, 0, . . . , 0)} for some unique

i ∈ {1, . . . , N}.
If (x, v) ∈ C2 ∪ C4 then a control in U(x, v) may not be sparse: indeed in these
cases the set U(x, v) consists of all u = (u1, . . . , uN ) ∈ (Rd)N such that ui =
−αiv⊥i

/‖v⊥i
‖ for every i = 1, . . . , N , where the αi’s are nonnegative real numbers

such that 0 6
∑N

i=1 αi 6 M whenever (x, v) ∈ C2, and
∑N

i=1 αi = M whenever
(x, v) ∈ C4.

By showing that the choice of feedback controls as in Definition 3 optimizes the
Lyapunov functional V (t), we can again prove convergence to consensus.

Theorem 1 ([7]). For every (x, v) ∈ (Rd)N × (Rd)N , and M > 0, set F (x, v) =
{(v,−Lxv + u) | u ∈ U(x, v)}, where U(x, v) is as in Definition 3. Then for every
initial pair (x0, v0) ∈ (Rd)N × (Rd)N , the differential inclusion

(ẋ, v̇) ∈ F (x, v) (10)

with initial condition (x(0), v(0)) = (x0, v0) is well-posed and its solutions converge
to consensus as t tends to +∞.

Remark 2. By definition of the feedback controls u(x, v) ∈ U(x, v), and from
Remark 1, it follows that, along a closed-loop trajectory, as soon as V (t) is small
enough with respect to γ(B(x, x)) the trajectory has entered the consensus region
defined by (4). From this point in time no action is further needed to stabilize the
system, since Proposition 1 ensures then that the system is naturally stable to con-
sensus. When the system enters the region C1 the control switches-off automatically
by being set to 0 forever. In [7] it is proved that the time T needed to steer the

system to the consensus region is not larger than N
M

(

√

V (0) − γ(X̄)
)

, where γ is

defined by (8), and X̄ = 2X(0) + N4

2M2 V (0)2.

Within the set U(x, v) as in Definition 3, which in general does not contain only
sparse solutions, there are actually selections with maximal sparsity.
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Definition 4. We select the componentwise sparse feedback control u◦ = u◦(x, v) ∈
U(x, v) according to the following criterion:

• if max16i6N ‖v⊥i
‖ 6 γ(B(x, x))2, then u◦ = 0,

• if max16i6N ‖v⊥i
‖ > γ(B(x, x))2 let j ∈ {1, . . . , N} be the smallest index such

that

‖v⊥j
‖ = max

16i6N
‖v⊥i

‖

then

u◦
j = −M

v⊥j

‖v⊥j
‖ , and u◦

i = 0 for every i 6= j.

The control u◦ can be, in general, highly irregular. If we consider for instance a
system in which there are two agents with maximal disagreement then the control
u◦ switches at every instant from one agent to the other and it is everywhere dis-
continuous. The natural definition of solution associated with the feedback control
u◦ is therefore the notion of sampling solution as introduced in [12].

Definition 5 (Sampling solution). Let U ⊂ R
m, f : R

n × U → R
n be continuous

and locally Lipschitz in x uniformly on compact subset of R
n ×U . Given a feedback

u : R
n → U , τ > 0, and x0 ∈ R

n we define the sampling solution of the differential
system

ẋ = f(x, u(x)), x(0) = x0,

as the continuous (actually piecewise C1) function x : [0, T ] → R
n solving recur-

sively for k > 0

ẋ(t) = f(x(t), u(x(kτ))), t ∈ [kτ, (k + 1)τ ]

using as initial value x(kτ), the endpoint of the solution on the preceding interval,
and starting with x(0) = x0. We call τ the sampling time.

This notion of solution is of particular interest for applications in which a mini-
mal interval of time between two switchings of the control law is demanded. As the
sampling time becomes smaller and smaller the sampling solution of (6) associated
with our componentwise sparse control u◦ as defined in Definition 4 approaches
uniformly a Filippov solution of (10), i.e. an absolutely continuous function satis-
fying (10) for almost every t. In particular we have the following statement.

Theorem 2 ([7]). Let u◦ be the componentwise sparse control defined in Defini-
tion 4. For every M > 0, τ > 0, and (x0, v0) ∈ (Rd)N × (Rd)N let (xτ (t), vτ (t)) be
the sampling solution of (6) associated with u◦. Then (xτ (t), vτ (t)) tends uniformly
to a Filippov solution of (10) as τ tends to 0.

Let us stress that, as a byproduct of our analysis, we shall eventually construct
practical feedback controls which are both componentwise and time sparse.

2.3. Time sparse feedback stabilization. Theorem 1 gives the existence of a
feedback control whose behavior may be, in principle, very complicated and that
may be nonsparse. In this section we are going to exploit the variational principle (7)
to give an explicit construction of a piecewise constant and componentwise sparse
control steering the system to consensus. The idea is to take a selection of a feedback
in U(x, v) which has at most one nonzero component for every (x, v) ∈ (Rd)N ×
(Rd)N , as in Definition 4, and then sample it to avoid chattering phenomena (see,
e.g., [67]).
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Theorem 3 ([7]). Fix M > 0 and consider the control u◦ law given by Definition 4.
Then for every initial condition (x0, v0) ∈ (Rd)N × (Rd)N there exists τ0 > 0 small
enough, such that for all τ ∈ (0, τ0] the sampling solution of (6) associated with
the control u◦, the sampling time τ , and initial pair (x0, v0) reaches the consensus
region in finite time.

Remark 3. The maximal sampling time τ0 depends on the number of agents N ,
the ℓN

1 − ℓd
2-norm bound M on the control, the initial conditions (x0, v0), and the

rate of communication function a(·). In [7] the explicit bound on τ0 is given by

τ0

(

a(0)(1 +
√

N)
√

B(v0, v0) + M
)

+ τ2
0 2a(0)M 6

γ(X̄)

2
, (11)

where

X̄ = 2B(x0, x0) +
2N4

M2
B(v0, v0)

2.

Moreover, as in Remark 2, the sampled control is switched-off as soon as the sampled
trajectory enters the region C1. In particular the systems reaches the consensus
region defined by (4) within time

T 6 T0 =
2N

M
(
√

V (0) − γ(X̄)).

The control is then set to zero in a time that is not larger than

2
√

N

M
(
√

N
√

V (0) − γ(X̄)).

3. Sparse is Better.

3.1. Instantaneous optimality of componentwise sparse controls. The com-
ponentwise sparse control u◦ of Definition 4 corresponds to the strategy of acting,
at each instant of time, on the agent whose consensus parameter is farthest from
the mean and to steer it to consensus. Since this control strategy is designed to act
on at most one agent at each time, we claim that in some sense it is instantaneously
the “best one”. To clarify this notion of instantaneous optimality which also implies
its greedy nature, we shall compare this strategy with all other feedback strategies
u(x, v) ∈ U(x, v) and discuss their efficiency in terms of the instantaneous decay
rate of the functional V .

Proposition 2 ([7]). The feedback control u◦(t) = u◦(x(t), v(t)) of Definition 4,
associated with the solution ((x(t), v(t)) of Theorem 2, is a minimizer of

R(t, u) =
d

dt
V (t),

over all possible feedback controls in U(x(t), v(t)). In other words, the feedback
control u◦ is the best choice in terms of the rate of convergence to consensus.

This result is somewhat surprising with respect to the perhaps more intuitive
strategy of activating controls on more agents. This can be viewed as a mathemat-
ical description of the general principle:

A policy maker, who is not allowed to have prediction on future
developments, should always consider more favorable to intervene
with stronger actions on the fewest possible instantaneous optimal
leaders than trying to control more agents with minor strength.
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4. Sparse Controllability Near the Consensus Manifold. In this section we
address the problem of controllability near the consensus manifold. The stabiliza-
tion results of Section 2 provide a constructive strategy to stabilize the multi-agent
system (6): the system is first steered to the region of consensus, and then in free
evolution reaches consensus in infinite time. Here we study the local controllability
near consensus, and infer a global controllability result to consensus.

The following result states that, almost everywhere, local controllability near
the consensus manifold is possible by acting on only one arbitrary component of a
control, in other words whatever is the controlled agent it is possible to steer a group,
sufficiently close to a consensus point, to any other point sufficiently close. The main
ingredient is the Kalman controllability condition for the linearized system. Recall
that the consensus manifold is (Rd)N × Vf , where Vf is defined by (3).

Proposition 3 ([7]). For every M > 0, for almost every x̃ ∈ (Rd)N and for
every ṽ ∈ Vf , for every time T > 0, there exists a neighborhood W of (x̃, ṽ) in
(Rd)N × (Rd)N such that, for all points (x0, v0) and (x1, v1) of W , for every index
i ∈ {1, . . . , N}, there exists a componentwise and time sparse control u satisfying
the constraint (5), every component of which is zero except the ith (that is, uj(t) = 0
for every j 6= i and every t ∈ [0, T ]), steering the control system (6) from (x0, v0)
to (x1, v1) in time T .

As a consequence of this local controllability result, we infer that we can steer
the system from any consensus point to almost any other one by acting only on one
agent. This is a partial but global controllability result, whose proof follows the
strategy developed in [15, 16] for controlling heat and wave equations on steady-
states.

Now, it follows from the results of the previous section that we can steer any
initial condition (x0, v0) ∈ (Rd)N × (Rd)N to the consensus region defined by (4),
by means of a componentwise and time sparse control. Once the trajectory has
entered this region, the system converges naturally (i.e., without any action: u =
0) to some point of the consensus manifold (Rd)N × Vf , in infinite time. This
means that, for some time large enough, the trajectory enters the neighborhood
of controllability whose existence is claimed in Proposition 3, and hence can be
steered to the consensus manifold within finite time. Since the consensus manifold
is connected then there exists a control able move the system in order to reach
almost any other desired consensus point. Hence we have obtained the following.

Corollary 1 ([7]). For every M > 0, for every initial condition (x0, v0) ∈ (Rd)N ×
(Rd)N , for almost every (x1, v1) ∈ (Rd)N × Vf , there exist T > 0 and a compo-
nentwise and time sparse control u : [0, T ] → (Rd)N , satisfying (5), such that the
corresponding solution starting at (x0, v0) arrives at the consensus point (x1, v1)
within time T .

5. Sparse Optimal Control of the Cucker-Smale Model. In this section we
investigate the sparsity properties of a finite time optimal control with respect to a
cost functional involving the discrepancy of the state variables to consensus and a
ℓN
1 − ℓd

2-norm term of the control.
While the greedy strategies based on instantaneous feedback as presented in Sec-

tion 2 models the more realistic situation where the policy maker is not allowed
to make future predictions, the optimal control problem presented in this section
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actually describes a model where the policy maker is allowed to see how the dy-
namics can develop. Although the results of this section do not lead systematically
to sparsity, what is interesting to note is that the sparsity of the optimal control
is actually encoded in terms of the codimension of certain manifolds, which have
actually null Lebesgue measure in the space of cotangent vectors.

We consider the optimal control problem of determining a trajectory solution
of (6), starting at (x(0), v(0)) = (x0, v0) ∈ (Rd)N × (Rd)N , and minimizing a cost
functional which is a combination of the distance from consensus with the ℓN

1 − ℓd
2-

norm of the control (as in [27, 28]), under the control constraint (5). More precisely,
the cost functional considered here is, for a given γ > 0,

∫ T

0

N
∑

i=1

(

(

vi(t) −
1

N

N
∑

j=1

vj(t)
)2

+ γ
N
∑

i=1

‖ui(t)‖
)

dt. (12)

Using classical results in optimal control theory (see for instance [4, Theorem 5.2.1]
or [10, 62]), this optimal control problem has a unique optimal solution (x(·), v(·)),
associated with a control u on [0, T ], which is characterized as follows. According
to the Pontryagin Minimum Principle (see [50]), there exist absolutely continuous
functions px(·) and pv(·) (called adjoint vectors), defined on [0, T ] and taking their
values in (Rd)N , satisfying the adjoint equations



























ṗxi
=

1

N

N
∑

j=1

a(‖xj − xi‖)
‖xj − xi‖

〈xj − xi, vj − vi〉(pvj
− pvi

),

ṗvi
= −pxi

− 1

N

∑

j 6=i

a(‖xj − xi‖)(pvj
− pvi

) − 2vi +
2

N

N
∑

j=1

vj ,

(13)

almost everywhere on [0, T ], and pxi
(T ) = pvi

(T ) = 0, for every i = 1, . . . , N .
Moreover, for almost every t ∈ [0, T ] the optimal control u(t) must minimize the
quantity

N
∑

i=1

〈pvi
(t), wi〉 + γ

N
∑

i=1

‖wi‖, (14)

over all possible w = (w1, . . . , wN ) ∈ (Rd)N satisfying
∑N

i=1 ‖wi‖ 6 M .
In analogy with the analysis in Section 2 we identify five regions O1,O2,O3,O4,O5

covering the (cotangent) space (Rd)N × (Rd)N × (Rd)N × (Rd)N :

O1 = {(x, v, px, pv) | ‖pvi
‖ < γ for every i ∈ {1, . . . , N}},

O2 = {(x, v, px, pv) | there exists a unique i ∈ {1, . . . , N} such that ‖pvi
‖ = γ and

‖pvj
‖ < γ for every j 6= i},

O3 = {(x, v, px, pv) | there exists a unique i ∈ {1, . . . , N} such that ‖pvi
‖ > γ and

‖pvi
‖ > ‖pvj

‖ for every j 6= i},
O4 = {(x, v, px, pv) | there exist k > 2 and i1, . . . , ik ∈ {1, . . . , N} such that

‖pvi1
‖ = ‖pvi2

‖ = · · · = ‖pvik
‖ > γ and ‖pvi1

‖ > ‖pvj
‖ for every j /∈

{i1, . . . , ik}},
O5 = {(x, v, px, pv) | there exist k > 2 and i1, . . . , ik ∈ {1, . . . , N} such that

‖pvi1
‖ = ‖pvi2

‖ = · · · = ‖pvik
‖ = γ and ‖pvj

‖ < γ for every j /∈ {i1, . . . , ik}}.
The subsets O1 and O3 are open, the submanifold O2 is closed (and of zero Lebesgue
measure) and O1∪O2∪O3 is of full Lebesgue measure in (Rd)N ×(Rd)N . Moreover
if an extremal (x(·), v(·), px(·), pv(·)) solution of (6)-(13) is in O1 ∪ O3 along an
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open interval of time then the control is uniquely determined from (14) and is
componentwise sparse. Indeed, if there exists an interval I ⊂ [0, T ] such that
(x(t), v(t), px(t), pv(t)) ∈ O1 for every t ∈ I, then (14) yields u(t) = 0 for almost
every t ∈ I. If (x(t), v(t), px(t), pv(t)) ∈ O3 for every t ∈ I then (14) yields uj(t) = 0
for every j 6= i and

ui(t) = −M
pvi

(t)

‖pvi
(t)‖

for almost every t ∈ I. Finally, if (x(t), v(t), px(t), pv(t)) ∈ O2 for every t ∈ I, then
(14) does not determine u(t) in a unique way: it yields that uj(t) = 0 for every
j 6= i and

ui(t) = −α
pvi

(t)

‖pvi
(t)‖

with 0 6 α 6 M , for almost every t ∈ I. However u is still componentwise sparse
on I.
The submanifolds O4 and O5 are of zero Lebesgue measure. When the extremal is in
these regions, the control is not uniquely determined from (14) and is not necessarily
componentwise sparse. More precisely, if (x(t), v(t), px(t), pv(t)) ∈ O4∪O5 for every
t ∈ I, then (14) is satisfied by every control of the form

uij
(t) = −αj

pvij
(t)

‖pvij
(t)‖ , j = 1, . . . , k,

and ul = 0 for every l /∈ {i1, . . . , ik}, where the αi’s are nonnegative real numbers

such that 0 6
∑k

j=1 αj 6 M whenever (x(t), v(t), px(t), pv(t)) ∈ O5, and such that
∑k

j=1 αj = M whenever (x(t), v(t), px(t), pv(t)) ∈ O4.

In [7, Proposition 5], it is proved that the submanifolds O4 and O5 are stratified
submanifolds (in the sense of Whitney) of codimension larger than or equal to two.
More precisely, O4 (respectively, O5) is the union of submanifolds of codimension
2(k− 1) (respectively, 2k), where k is the index appearing in the definition of these
subsets and it is as well the number of active components of the control at the same
time.

Therefore, it is interesting to see that the componentwise sparsity features of the
optimal control are coded in terms of the codimension of the above submanifolds.
Note that, since px(T ) = pv(T ) = 0, there exists ε > 0 such that u(t) = 0 for
every t ∈ [T − ε, T ]. In other words, at the end of the interval of time the extremal
(x(·), v(·), px(·), pv(·)) is in O1.

It is an open question of knowing whether the extremal may lie on the sub-
manifolds O4 or O5 along a nontrivial interval of time. What can be obviously
said is that, for generic initial conditions ((x0, v0), (px(0), pv(0))), the optimal ex-
tremal does not stay in O4 ∪O5 along an open interval of time; such a statement is
however unmeaningful since the pair (px(0), pv(0)) of initial adjoint vectors is not
arbitrary and is determined through the shooting method by the final conditions
px(T ) = pv(T ) = 0.

6. Numerical simulations. In this section we present numerical simulations to
study the estimates on the time of action of the feedback stabilizer and on the
maximal sampling time given in Remark 3. In general, it is of paramount interest for
application to have precise estimates on the sampling time or on the controllability
time, in order to study the feasibility of the control processes. A smaller sampling
time provides a more precise control law, which, in principle, can steer the system to
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Figure 1. Distribution of the final time of controllability for N =
5 and for initial consensus parameters randomly generated 500
times.

the consensus region in a smaller time. On the other hand, the smaller the sampling
time is the higher the complexity of the control will be.

Throughout the section we consider a system of N agents on R
2 with interac-

tion function a(x) = 1/(1 + x2) and bound on the control M = 1. Moreover we
consider initial main states all equal to the origin. The initial control parameters
v(0) are chosen randomly and rescaled in such a way that the initial disagreement is
25π2/(2N) that is 100 times the threshold for B(v(0), v(0)) given by the sufficient
condition for consensus (4) which in this case reads

√

V (0) 6

∫ +∞

0

a(
√

2Nr)dr =
π

2
√

2N
.

First, let un consider a system of N = 5 agents. In this setting the estimate for
the sampling time (11) guarantees that for a sampling time not greater than 1/60
the control scheme converges. Nevertheless, numerically one finds that the system is
steered to the consensus region even for quite large sampling times, as, for instance
1/10. We generate randomly the initial condition for the consensus parameters
500 times. The final time of action of the control, for which the system is in the
consensus region is always larger than 1.892 and smaller 2.842. The distribution of
the final times are represented in the histogram of Figure 1. Note that the estimates
of Remark 3 are very far from sharp. Indeed, according to Remark 3, the system
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enters the consensus in a time not larger than 13.64 and the control switches off in
time not larger than 14.78.
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Figure 2. Distribution of the final time of controllability for N =
20 and for initial consensus parameters randomly generated 250
times.

Similarly we study the same test with N = 20 agents. The sampling time should
be smaller than 1/105 according to (11). According to Remark 3 the system enters
the consensus region within time 27.2 and the control switches off within time 30.5.
We run 250 trials with sampling time 1/50, to improve the computation time. The
minimal time of controllability is 1.97 while the maximal is 2.17. Data are collected
in Figure 2.

Finally, to study the relation between the sampling time and the final time we
present some simulation with N = 20 agents. The final time depends on the initial
conditions and on the geometric structure of the “flock”. It is, therefore, in principle
very hard to compute a priori the final time. However, it is possible to give some
estimates, as in Remark 3. The simulation presented below goes a little further
and shows the relation between the sampling time and the final time. The initial
consensus parameters are represented in Figure 3, as above the initial disagreement
is 25π2/(2N). In Figure 4 we present the final time of action of the control as a
function of the sampling time. We run 198 simulations for sampling times ranging
from 0.006 to 0.2 with an increment of 0.002. We observe that the smallest final
time 2.019 is associated with the smallest sampling time 0.006. However, even for
bigger sampling time, we have small final times, for instance we have that for a



SPARSE CONTROL OF THE CUCKER-SMALE MODEL 17

sampling time of 0.04 the final time is 2.02 and for a sampling time of 0.086 the
final time is 2.021. We note that there is an “optimal” final time, associated with
the Filippov solution as in Theorem 2, which is a lower bound for the controllability
time for sampling solutions. On the other hand, in general, the upper bound on the
final time increases as the sampling time increases. Studying these two bounds is a
very interesting problem in view of the applications.
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[9] E. Casas, C. Clason, and K. Kunisch. Approximation of elliptic control problems in measure
spaces with sparse solutions. SIAM J. Control Optim., 50(4):1735–1752, 2012.

[10] L. Cesari. Optimization—Theory and Applications, volume 17 of Applications of Mathematics
(New York). Springer-Verlag, New York, 1983.

[11] Y. Chuang, Y. Huang, M. D’Orsogna, and A. Bertozzi. Multi-vehicle flocking: scalability of
cooperative control algorithms using pairwise potentials. IEEE International Conference on

Robotics and Automation, pages 2292–2299, 2007.
[12] F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic controllability

implies feedback stabilization. IEEE Trans. Automat. Control, 42(10):1394–1407, 1997.
[13] C. Clason and K. Kunisch. A duality-based approach to elliptic control problems in non-

reflexive Banach spaces. ESAIM Control Optim. Calc. Var., 17(1):243–266, 2011.
[14] C. Clason and K. Kunisch. A measure space approach to optimal source placement. Comput.

Optim. Appl., 53(1):155–171, 2012.
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