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Abstract 

Tool Condition Monitoring (TCM) systems can improve productivity and ensure 

workpiece quality, yet, there is a lack of reliable TCM solutions for complex and 

flexible industrial manufacturing. TCM methods which include the characteristics of the 

cut seem to be particularly suitable for these demanding applications. In the first section 

of this paper, three process-based indicators have been retained from literature dealing 

with TCM. They are analyzed using a cutting force model and experiments are carried 

out in industrial conditions. Specific transient cuttings encountered during the 

machining of the test part reveal the indicators to be unreliable. Consequently, in the 

second section, intermittent monitoring is suggested. Based on experiments carried out 

under a range of different cutting conditions, an adequate indicator is proposed: the 

relative radial eccentricity of the cutters is estimated at each instant and characterizes 

the tool state. It is then compared with the previous tool state in order to detect cutter 

breakage or chipping. Lastly, the new approach is shown to be reliable when 

implemented during the machining of the test part. 

 

 Keywords: milling; monitoring; cutting force model; cutter breakage; flexible 

manufacturing. 
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1. Introduction 

Machining problems, such as cutter breakage, excessive wear, chatter and collision, 

impede production consistency and quality. Loss can be significant, particularly when 

high added value parts like moulds and dies or aeronautical motor and structure parts 

are machined. They are manufactured in small batches or one-off productions. Thus, 

their machining should be monitored as soon as the first part is produced. Loss due to 

disturbance could be prevented, or at least limited, using an in-process Tool Condition 

Monitoring system (TCM). An accurate and reliable TCM system could increase 

savings of between 10% and 40% [1]. However, there is a lack of reliable TCM 

solutions for complex and flexible production in milling [2]; the subject of this paper. 

Part machining time can last for several days, without stopping during the off-duty 

hours of the operators. Thus, to prevent machining from being stopped too often, no 

false alarms can be allowed. The TCM system must therefore be completely reliable [3] 

as soon as the first part is machined. 

Fig. 1. TCM classification. 

Certain information is needed to evaluate process conditions. This is provided by one or 

several sensors which are placed in the machine tool. Various methods then allow 

analysis and decision-making, fig. 1. The teach-in method is used for mass production 

and most commercial TCM systems are based on this principle [4]. It requires the 

machining of a few parts (trial cuts) to measure a reference signal. Thresholds are then 

set on either side of the signal, based on heuristic knowledge [5]. As monitoring trial 

cuts is impossible, this is incompatible with flexible production [6]. 

 

It was suggested that the measured reference signal be replaced with an estimated one, 

using a cutting force model [7,8]. This enabled us to monitor the machining of the first 

part. The relevancy of this method relies on the accuracy of the force model. Till now, 
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average cutting force values per spindle revolution were estimated and the gap between 

measured and estimated forces was significant. Furthermore, in milling, it is assumed 

that if a tooth is chipped or broken, this tooth removes a smaller volume of material than 

before breakage and the following one a larger volume [9]. Therefore, the cutting force 

per tooth period should be considered, rather than per spindle revolution. This method is 

consequently not suitable for cutter breakage detection. 

 

The milling forces waveform has led various authors to feature extraction methods from 

the force signals of an incident. These methods are generic and applicable from the 

production of the first part. Many studies have been carried out on Artificial Intelligence 

(AI), e.g. neural networks, fuzzy logic. Neural networks or hybrid AI systems are viable 

for TCM [10]. Networks are trained using trial cuts. This then leads to the 

generalization problem: under other cutting conditions, the neural network may be 

unreliable [11]. Users may have to train the network again in order to monitor the 

machining of a new part [12].  

 

Other authors suggested specific feature extraction of an incident using Digital Signal 

Processing methods, e.g. autoregressive filter [13,14], synchronized averaging [15,16], 

wavelet transform [17,18]. However, if basic process knowledge is ignored, it is harder 

to differentiate tool breakage from the effects of tool runout or transient cutting. Indeed, 

adequate force models have been developed [6] and geometric, kinematic, and 

mechanistic characteristics of the cutting process are, or could potentially be, controlled 

during milling operations [11]. They can be used to improve or simplify the signal-

processing method and increase its reliability. 
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Little literature has been published on process-based signal processing, where 

characteristics of the cut were included (table 1). This method is particularly suitable for 

flexible production monitoring. 

Table 1. Summary of properties of process-based TCM criteria. 

At each spindle revolution, a force value is extracted for each tooth, before calculating 

the indicator value (fig. 2). Altintas and Yellowley [6] used the first and the second 

differences of mean forces, between adjacent teeth. It was shown that it was impossible 

to distinguish tool breakage from cutter runout [19]. Lee et al. [19] added a new 

indicator to the 1st order autoregressive filter proposed by Altintas [14]: the relative 

variation of average tooth force, between two consecutive revolutions. They introduced 

the idea that each tooth can be monitored individually. But the criteria [6,19] were 

affected by changes in cutting conditions and therefore tool breakage detection was 

unreliable [20]. Kim and Chu [20] proposed the Tool Failure Index (TFI), which is the 

ratio of peak-to-valley cutting forces between adjacent teeth, divided by its own past 

average ratio. The average ratio is intended to prevent the TFI from cutting conditions 

changes. In this paper, the TFI is retained for further experiments to examine whether it 

is unaffected by changes in cutting conditions. Lastly, Deyuan et al. [21] proposed two 

indicators: the peak rate Km is the ratio of the difference to the sum between peak 

forces of adjacent teeth. The relative eccentricity rate Bm is similar to the ratio of tooth 

eccentricity to maximum chip thickness. The authors specified that the indicators were 

independent of cutting conditions. As for TFI, the two indicators have been retained.  

 

Generally, few experiments are carried out to evaluate the relevancy of the criteria. 

Nevertheless, machining does not comply with High Speed Machining cutting 

conditions and trajectories used for complex and flexible industrial production. They 

consist of a simple straight path, conducted under an over-limited range of cutting 
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conditions. The latter are generally low, e.g. cutting speeds of less than 40 m/min while 

machining carbon steel or aluminium alloy [8,15,17,18,19,22,23]. In this way, 

significant and sudden changes are encountered neither in cutting conditions, nor in 

cutting forces, respectively. Thus, there is a lower risk that cutting forces transients 

would be misinterpreted and generate false alarms. So, there is generally a lack of 

experiments under industrial cutting conditions and trajectories. This is also the case 

with the retained criteria.  

 

In the first section of this paper, we will present a study of three process-based TCM 

indicators, extracted from literature. It is verified whether they are unaffected by 

changes in cutting conditions, so as to evaluate their relevancy for the monitoring of 

complex and flexible productions. Experiments were carried out under various real 

industrial machining settings. The criteria were found to be unreliable, due to 

misinterpretation of sudden changes in cutting conditions. Therefore, in the second 

section, intermittent monitoring is suggested, to tackle the problem of reliability. A new 

approach is proposed based on our experiments of milling forces under a range of 

cutting conditions. Relative radial eccentricity is estimated and this characterizes instant 

tool state. Unlike the criteria extracted from literature, this new approach was 

successfully implemented using the same experiments. 

Figure 2. Chip thickness and forces in milling. 

2. Criteria extracted from literature 

2.1. Definition [20,21] 

Peak Fj and peak-to-valley PVj values are extracted from milling resultant forces, for 

each tooth j and for each spindle revolution (fig. 2). jPV  represents the mean of PVj 

over the last ten spindle revolutions whereas F  is the mean of the peak forces during 
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the current spindle revolution. Z is the tooth number. Then, the criteria for each tooth 

and each spindle revolution are calculated as follows: 
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The TFI takes into account the last ten spindle turns to prevent it from tool runout and 

changes in cutting conditions. So, whether the tool is new or worn, TFI=1 during steady 

cuts. It focuses on sudden force transients to detect cutter breakage. After an event, it 

returns to 1. Thus, it is important to distinguish transient cut and problem correctly 

when forces vary. Bm and Km characterize the process at any given spindle revolution 

and their values are compared to fixed thresholds [21,24]. 

 

2.2. Analytic study 

In order to determine what the criteria depend on, Sabberwal [25] force models are 

used, where kt and kr are constants, hc(f )=fz.sin(f ) the instant chip thickness [26], ap the 

depth of cut, fz the feed per tooth. An overview and particulars of force models were 

published [27,28]. However, for an early study, Sabberwal force models were used. 
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The term εj defines tooth radial eccentricity, the influence of the cutter shape, tool and 

spindle runout and the amount of cutter chipping. Relative radial eccentricity ? εj is 

introduced in the expression of instant chip thickness removed by tooth #j [21,29]: 

1( ) .sin ( )c j z j j c jh f hϕ ϕ ε ε ϕ ε−= + − = + ∆  

(1) 

(2) 

(3) 
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Using the hypothesis that only one tooth participates in the cut at the same time (hc is 

the maximum chip thickness and K a specific cutting coefficient), 

. .( )j j p c jPV F K a h ε= = + ∆  

An equivalent formulation of criteria is obtained, depending on cutting conditions: 
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In the case of breakage or chipping of teeth #j, εj decreases. So, criteria formulation 

allows them to be detected. The influence of hc can be seen for each indicator. 

Therefore, if the feedrate or the width of cut varies during the machining of a part, the 

criteria should vary and this could affect their reliability.  

 

This explains why such experiments have been carried out, where feedrate and width of 

cut vary during machining. A corresponding test part was designed. A pocketing 

operation was chosen with a zigzag strategy, allowing up milling and down milling. 

This comprises both simple and sharp turns (figure 3), where the feedrate should drop, 

due to the limited acceleration available on the machine axes [30]. A contouring path 

finishes the pocket. 

Figure 3. Test part and toolpath (on the left). Experimental set-up (on the right). 

2.3. Experiments 

Cutting force signals were measured using a 9257A Kistler quartz three-component 

dynamometer, sampling at 64 kHz. The dynamometer was mounted between the 

workpiece and the table of a Sabre Cincinnati machining centre. The X and Y axes 

position encoders were measured using a sample frequency set at 500 Hz [31]. The 

workpiece was made of 7075 aluminium alloy. The parameters were the feed per tooth 

(0.08, 0.12, 0.16 and 0.2 mm/rev/tooth), the width of cut (15, 40, 65, 90% of tool 

diameter) and the tool (a 32 mm diameter with 2 inserts and a 20 mm diameter endmill 

(4) 

(5) 
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with 3 flutes). Different sets of these parameters were tested at every level of the 

workpiece. Depth of cut was 2.5 mm. Since cutting speed was 650 m/min, spindle 

speeds were 6 500 and 10 000 RPM, and feedrates ranged from 1 to 6 m/min. So, unlike 

many studies, the experiments were carried out under real industrial cutting conditions.  

 

The X and Y force components were low-filtered at twice the tooth passing frequency 

before calculating the resultant force. Then, force minimums and maximums were 

calculated for each tooth and for each spindle revolution, to evaluate Fj and PVj. Based 

on axes encoder measurements, the instant feedrate Vf was calculated as well as the 

instant width of cut ae. The edges of the workpiece were discretized every 0.05 mm. 

Then, for each new tool position, intersections with the swept volume of the tool led to 

the entry and exit angles of the teeth and then the instant width of cut ae was obtained. 

The Z axis of figure 4 represents the instant cutting conditions (Vf and ae) during the 

machining of the pocket. It reveals that sudden changes occur during turning. 

Figure 4. Instant feedrate and width of cut during pocket machining. 
(CAM settings: Vf=3.6 m/min, ae=65%, tool ø20mm) 

2.4. Implementation of criteria 

The criteria were applied to the force signals measured during the machining of the 

pocket. The instant feedrate and instant width of cut allowed a better understanding of 

the behaviour of these criteria (cf two first graphs in figure 5). The 3rd graph represents 

the resultant cutting forces (blue curve). Peak to valley values were extracted from the 

latter for each spindle revolution and each tooth (red, green, and black curves). Then, 

the TFI was calculated from these values (4th graph). In this way, peak values per tooth 

were extracted (5th graph) and Deyuan et al.’s criteria were calculated. 

Figure 5. Behaviour of the criteria during rough milling of pockets. 
(CAM settings: Vf=3.6 m/min, ae=65%, tool ø20mm) 
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During steady cuts, TFI = 1. Bm and Km take a set of values for each tooth. If a 

problem occurs, force signals are modified and the indicator values change, allowing 

incident detection [20,21]. Note that Bm always goes beyond the threshold proposed by 

Deyuan et al. during finish milling because the chip thickness is too inferior to the cutter 

eccentricity [24]. There would be a permanent false alarm, in this situation. 

 

During simple turns (e.g., zone 1 fig. 3 or 1st turn fig. 5), the feedrate of the axes of the 

machine slows down whilst turning because the acceleration of each axis is limited [30]. 

Therefore, the feedrate decreases. It was found that ae also varies. Towards the end of a 

straight path preceding a turn, the width of cut increases due to the material left behind 

during the previous path, as between positions a and b in figure 6. Turning begins at 

position b. Since the acceleration available on machine tool axes is limited, feedrate 

slows down and the controller adds a portion of circle in the corner, to allow turning 

with a lower but acceptable feedrate [30]. Disregarding spindle rotation, the tool turns 

around an axis located on its left. Its right side moves into the material, increasing the 

exit angle f s and leading to down milling. On the left hand side, material has already 

been partially removed, so the entry angle f e decreases a little and ae reaches a peak at 

position c. During the second half of the turn, ae decreases because f e decreases further 

and f s has reached its maximum. After d, the link path begins, the tool penetrates the 

material and the width of cut can reach a full diameter immersion. Under these 

moderate changes in cutting conditions, criteria variations are negligible (figure 5) and 

tool breakage can be detected regardless [24]. 

Figure 6. Variation of the instant width of cut during turns. 

On the contrary, during sharp turns (2nd turn in figure 5), the changes in cutting 

conditions are more significant. The drop of ae is substantial because, in the second half 

of the turn, most of the material on the left of the tool has already been removed. 
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However, the influence of ae is negligible: beyond ae = 50% of tool diameter, 

max{sinf }=1. So, maximum chip thickness (hc=fz*max{sinf }) and peak forces are 

theoretically unaffected. In the ae graph in figure 5, a minimum of 35% is reached. This 

corresponds to f =75° and max{sinf }=0.95, i.e. 95% of its previous value. As the ae 

minimum is reached when the feedrate returns to a medium value, the influence of ae is 

negligible in this case, unlike during entry and exit transients and finish paths. 

 

During sharp turns, the fall in feedrate is significant and, due to the relative cutter 

eccentricity ? ej, some of the teeth remove hardly any material. That only a few teeth of 

the tool participate in the cut is quite usual: this happens during entry and exit 

transients, sharp turns and finish paths (according to cutting conditions). Figure 5 

reveals that, in these cases, false alarms would have been sounded. This can be 

explained by the equivalent formulation of the criteria (eq. 5) [24]. Consequently, the 

criteria are unreliable during significant changes in cutting conditions. This contradicts 

what the developers of the criteria [20,21] suggested.  

 

2.5. Conclusions of the studied criteria 

It was shown that the current process-based TCM criteria from literature are unreliable. 

Although during steady cut or moderate changes in cutting conditions, reliable tool 

breakage detection could be carried out, faulty detection would be encountered when 

some of the teeth do not participate in the cut, namely during entry and exit transients, 

sharp turns and finish paths (according to cutting conditions). The main problem of the 

TCM criteria is correctly distinguishing transient cuts and problems, when force 

transients occur.  
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For example, about 6 false alarms per pocket level were found applying the criteria to 

the force signals measured during our experiments, whereas no disturbances occurred 

during machining. The part is composed of 10 levels. Therefore, 60 false alarms would 

result during the complete machining of this relatively simple part. Numerous false 

alarms would be sounded during the machining of a complex industrial part. The TCM 

system would soon be switched off [4]. This is the reason why a new approach is 

suggested in the following section: to solve the problem of reliability. 

Figure 7. False alarms, applying criteria [20,21] to the machining of a pocket level. 

3. Intermittent monitoring of cutter eccentricity 

In this section, the authors will suggest intermittent monitoring of the tool state. The 

principle and restrictions of the TCM method are specified. Then, a suitable indicator 

which estimates the relative cutter eccentricity of the teeth is developed based on a 

milling forces study. 

3.1. Principle 

Numerous reasons may cause transients in milling forces. Some need the reaction of a 

TCM system, e.g. cutter breakage or chipping, excessive wear, chatter or collision, 

whereas others do not, e.g. entry or exit transients, turns, steps, hard points in the 

workpiece material, chip congestion and recycling, dynamic phenomena of the cut or 

cutter micro-welding. Interpreting every case from force signals is arduous and 

somewhat unreliable. This is why intermittent monitoring is proposed in this paper: only 

the zones where the TCM system can perform reliably are monitored. 

 

The tool state is characterized by a set of parameters. As long as no problem occurs, the 

estimated tool state is assumed to remain identical (whatever the cutting conditions). 

Monitoring is paused during estimated tool state variation and resumes when stability 

returns. If the tool state is different, a problem has occurred. In this way, decisions are 
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made with certainty. The authors suggest that long-term effects such as tool wear could 

also be detected, by periodically comparing the current tool state with the initial tool 

state.  

 

A suitable indicator for intermittent monitoring is required. Whether the tool is new or 

damaged, TFI=1 during steady cuts and Deyuan et al.’s criteria vary by 140% under the 

range of cutting conditions of our experiments presented in §3.2; so, these criteria are 

incompatible with intermittent monitoring. Therefore, it is suggested that the relative 

radial eccentricity of cutters ? ej characterizes tool state, enabling detection of cutter 

breakage, chipping, and potentially reverse displacement of the cutting edge due to 

wear. Tool state is estimated using cutting force signals. As noted earlier, an average of 

forces during one spindle revolution is inaccurate for cutter breakage detection. Instant 

forces could be affected by industrial conditions and more difficult to implement. So, 

one value per tooth and per spindle revolution seems suitable. If Fj is considered, rather 

than PVj, it can be seen that the gap between the curves for each tooth is more 

consistent (cf. figure 5). Therefore characterizing tool state using force peaks is more 

relevant. 

 

3.2. Force model 

Since the estimated tool state has to be identical whatever the cutting conditions, a study 

of peak forces was carried out so as to develop an indicator independent of cutting 

conditions. A full factorial design of experiments was made, with 2 factors at 4 and 8 

levels (respectively fz 0.08, 0.12, 0.16, 0.2 mm/rev/tooth; and ae 100%, up milling 15, 

40, 65% and down milling 15, 40, 65, 90 % of tool diameter). The tool with 2 inserts 

was used and other experimental parameters can be found in §2.3. For each steady cut 
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corresponding to a 2-element set (fz,ae), cutting force peaks Fj were extracted for each 

tooth j, fig. 8.  

Figure 8. Cutting force peaks for each tooth, under various feedrates and widths of cut (on the left). 
Linear least square fitting of force peaks per tooth, under fixed width of cut (on the right). 

For a given ae, it was found that a constant slope kcj could be identified for each tooth 

(fig. 8). Considering eq. 6, kcj and bij were obtained by linear least square fitting, with 

correlation coefficients of at least R2=99.3% and 11% of deviation of kcj, disregarding 

ae=15% which is close to the limits of the model. Although bij varies, a permanent gap 

between force peaks of tooth #1 and #2, was observed. This is due to the radial 

eccentricity of the teeth, which distributes the material to be removed unevenly between 

teeth. 

.j c j c ijF k h b= +  

 

3.3. Indicator formulation 

As an invariant kc can be identified for each tooth when a given workpiece material is 

machined under various cutting conditions, the link between radial eccentricity and 

cutting forces can be summarized as in figure 9. 

Figure 9. Link between relative radial eccentricity and cutting forces, locally. 

The force reference F* corresponds to the mean of cutting force peaks (during the 

current spindle revolution) if every tooth removed the same volume of material, i.e. if 

there was no radial eccentricity. Eq. 3 implies that the larger the radial eccentricity is, 

the larger the chip thickness and the larger the force peak. They are linked by 

* .j j c j jF F F k ε∆ = − = ∆ , with 
1

0
Z

j
j

ε
=

∆ =∑  

(6) 

(7) 
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Then, current ? ej can be estimated from force peaks of the current spindle revolution, 

using eq. 8. In order to respect eq. 7, F* is defined as follows: 

*j
j

c j

F F
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−
∆ = , where 1
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Figure 10 shows that the relative radial eccentricity of tooth #1 is estimated at 

35 ±5 µm, under a wide range of cutting conditions (feed varying from 0.08 to 0.2 

mm/rev/tooth and width of cut from 15 to 100% of tool diameter, both up milling and 

down milling).  

Figure 10. Estimated relative radial eccentricity under various cutting conditions. 

4. Implementation using the test part experiments 

4.1. Initial tool state 

The first step of the proposed method consists in identifying the kcj constants, which are 

specific to the tool and the material of the workpiece. A few straight paths are machined 

on a small part made of the same material as the workpiece, over a variety of feeds and 

widths of cut. Then, force peaks per tooth are extracted and kcj is determined by linear 

least square fitting. The initial tool state is also estimated. 

Figure 11. Estimated relative radial eccentricity while implementing the intermittent monitoring 
method with pocket machining. (CAM settings: Vf=2.08 m/min, ae=65%, tool ø32mm) 

4.2. Monitoring during test part machining 

Once kcj is identified, the current ? ej is estimated from force peaks and eq. 8, during the 

machining of any part, enabling TCM. The monitoring is paused during transients of the 

estimated ? ej. Transients are relatively short; they last about 0.1 s. In figure 11, 90% of 

machining time is monitored (95%, disregarding entry and exit transients) and a rapid 

reaction is possible in the case of problem. Note that the estimated ? ej remains constant 

during most width of cut variations, fig. 11. 

(8) 
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Even if the TCM is sometimes interrupted for 0.1 s (e.g. during toolpath turnings), the 

proposed method allows reliable monitoring of any flexible production, preventing false 

alarms. 

 

5. Conclusions 

From the TCM literature, three process-based criteria were retained for further 

experiments, using industrial cutting conditions and trajectories. It was found that they 

were unreliable in several cases, i.e. when some of the teeth do not participate in the cut, 

as during entry and exit transients or sharp turns. Thus, they are affected by changes in 

cutting conditions. Calculated using cutting force signals, the criteria fail to distinguish 

correctly between problems and particular transient cuts. So, until now, there were no 

efficient and reliable solutions for the monitoring of flexible production in milling. 

 

Since interpreting certain transient cuttings correctly is arduous, the authors suggested 

intermittent monitoring, where the TCM would be suspended during force transients, 

ensuring reliability. The tool state is calculated using force peaks per tooth during every 

spindle revolution and is characterized by the relative eccentricity of the teeth. The tool 

state is memorized and compared with the previous one. The method implies that the 

estimation has to be independent of cutting conditions. This is the reason why we have 

proposed a new indicator, presented in this paper and based on an experimental study of 

the milling forces under a wide range of cutting conditions. The method was then 

successfully implemented using the same experiments as for the aforementioned 

criteria, i.e. under industrial cutting conditions and trajectories. It was shown that, using 

only force signals, intermittent but reliable monitoring of flexible production is possible.  



 16

References 

[1] Rehorn A.G., Jiang J., Orban P.E., State-of-the-art methods and results in tool 

condition monitoring: a review, International Journal of Advanced Manufacturing 

Technology, 24 (11-12) (2004) 806-815. 

[2] Klocke F., Reuber M., Process monitoring in mould and die finish milling 

operations - challenges and approches, in: Proc. of the 2nd International Workshop on 

Intelligent Manufacturing Systems, Leuven, Belgium, 22-24 Sept., 1999, pp. 747-756. 

[3] Tansel I.N., Bao W.Y., Reen N.S., Kropas-Hugues C.V., Genetic tool monitor 

(GTM) for micro-end-milling operations, International Journal of Machine Tools and 

Manufacture, 45 (3) (2005) 293–299. 

[4] Jemielniak K., Commercial Tool Condition Monitoring Systems, International 

Journal of Advanced Manufacturing Technology, 15 (10) (1999) 711-721. 

[5] O'donnell G., Young P., Kelly K., Byrne G., Towards the improvement of tool 

condition monitoring systems in the manufacturing environment, Journal of Materials 

Processing Technology, 119 (2) (2001) 133-139. 

[6] Altintas Y., Yellowley I., In-process detection of tool falure in milling using cutting 

force models, ASME Journal of Engineering for Industry, 111 (1989) 149-157. 

[7] Bertok P., Takata S., Matsushima K., Ootsuka J., Sata T., A system for monitoring 

the machining operation by referring to a predicted cutting torque pattern, Annals of the 

CIRP, 32 (1) (1983) 439-444. 

[8] Saturley P.V., Spence A.D., Integration of Milling Process Simulation with On-Line 

Monitoring and Control, International Journal of Advanced Manufacturing Technology, 

16 (2) (2000) 92-99. 

[9] Prickett P.W., John C., An overview of approaches to end milling tool monitoring, 

International Journal of Machine Tools and Manufacture, 39 (1) (1999) 105-122. 



 17

[10] Monostori L., AI and Machine Learning Techniques for Managing Complexity, 

Changes and Uncertainties in Manufacturing, in: Proc. IFAC, 15th Triennial World 

Congress, Barcelona, Spain, 12-janv., 2002, pp. 119-130. 

[11] Furet B., Garnier S., La surveillance automatique de l'Usinage à Grande Vitesse, 

in : Proc. 2e assises UGV, Lille, France, 13-14 March, 2002, pp. 221-230. 

[12] Tarng Y.S., Chen M.C., Liu H.S., Detection of tool failure in end milling, Journal 

of Materials Processing Technology, 57 (1) (1996) 55-61. 

[13] Lan M.S., Naerheim Y., In-process detection of tool breakage, Journal of 

Engineering for Industry, 108 (1986) 191-196. 

[14] Altintas Y., In-process detection of tool breakage’s using time series monitoring of 

cutting forces, International Journal of Machine Tools and Manufacture, 28 (2) (1988) 

157–172. 

[15] Li X., Detection of Tool Flute Breakage in End Milling Using Feed-Motor Current 

Signatures, in: Trans. ASME/IEEE J. Mechatronics, 6 (4) (2001) 491-498. 

[16] Tzeng G.T., Encoder-less Synchronized Averaging Using Order Tracking and 

Interpolation, in: ASME Proceedings of IMECE, 61148 (2004). 

[17] Lee B.Y., Tarng Y.S., Application of the Discrete Wavelet Transform to the 

monitoring of tool failure in end milling using the spindle motor current, International 

Journal of Advanced Manufacturing Technology, 15 (4) (1999) 238-243. 

[18] Xu S.X., Zhao J., Zhan J.M., Le G., Research on a fault monitoring system in free-

form surface CNC machining based on wavelet analysis, Journal of Materials 

Processing Technology, 129 (3) (2002) 588-591. 

[19] Lee J.M., Choi D.K., Kim J., Chu C.N., Real time tool breakage monitoring for NC 

milling process, Annals of the CIRP, 44 (1) (1995) 59-62. 



 18

[20] Kim G.D., Chu C.N., In-Process Tool Fracture monitoring in Face Milling Using 

Spindle Motor Current and Tool Fracture Index, International Journal of Advanced 

Manufacturing Technology, 18 (6) (2001) 383-389. 

[21] Deyuan Z., Huntay H., Dingchang C., On-line detection of tool breakages using 

teletering of cutting forces in milling, International Journal of Machine Tools and 

Manufacture, 35 (1) (1995) 19-27. 

[22] Chen J.C., An effective fuzzy-nets training scheme for monitoring tool breakage, 

Journal of Intelligent Manufacturing, 11 (1) (2000) 85-101. 

[23] Romero-Troncoso R.J., Herrera-Ruiz G., Terol-Villalobos I., Jauregui-Correa C., 

Driver current analysis for sensorless tool breakage monitoring of CNC milling 

machines, International Journal of Machine Tools and Manufacture, 43 (15) (2003) 

1529-1534. 

[24] Garnier S., Ritou M., Furet B., Hascoet J.Y., Comparison and Analysis of In-

process Tool Condition Monitoring Criterions in Milling, in: Proc. 7th International 

Conference on Advanced Manufacturing Systems and Technology, Udine, Italy, 9-10 

June, 2005, pp. 523-532. 

[25] Sabberwal A.J.P., Chip Section and Cutting Force During the Milling Operation, 

Annals of the CIRP, (1960) 197-203. 

[26] Martelloti M.E., An analysis of the the milling forces, Transactions of ASME, 63 

(1941) 677-700. 

[27] Smith S., Tlusty J., An overview of modeling and simulation of the milling 

process, Journal of Engineering for Industry, 113 (1991) 169-175. 

[28] Cherif M., Thomas H., Furet B., Hascoet J.Y., Generic modelling of milling forces 

for CAD/CAM applications, International Journal of Machine Tools and Manufacture, 

44 (1) (2004) 29-37. 



 19

[29] Kasashima N., Mori K., Herrera-Ruiz G., Taniguchi N., Online Failure Detection 

in Face Milling Using Discrete Wavelet Transform, Annals of the CIRP, 44 (1) (1995) 

483-487. 

[30] Dugas A., Lee J.J., Hascoet J.Y., High speed milling : solid simulation and 

machine limits, collective book, Kluwer Academic Publishers, New-York, 2001, pp. 

287-295. 

[31] Dugas A., Terrier M., Hascoet J.Y., Free form surface measurement method and 

machine qualification for high speed milling, in: Proc. of IDMME, Clermont-Ferrand, 

France, 14-16 May, 2002, cd rom. 



 20

 

Fig. 1. TCM classification. 

Industrial & academic approaches 
to TCM in milling 

Part specific approaches Generic approaches 

Teach-in 
method 

Predictive 
method 

Simple signal 
processing 

Process-based 
signal processing 

Artificial 
Intelligence 



 21

 

f  
f s 

N 
a e

 
f z 

Ft 

tooth j 

e  j-1 
tooth j -1 

hc(f ) 

Fx 

Fr Fy 

 

time 

resultant force  

m
ea

n 
fo

rc
e 

pe
ak

-t
o-

va
lle

y 

pe
ak

 

1 spindle 
revolution 

 

Figure 2. Chip thickness and forces in milling. 



 22

Zone 1 

Zone 2 

 

dynamometer 

 

Figure 3. Test part and toolpath (on the left). Experimental set-up (on the right). 
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Figure 4. Instant feedrate and width of cut during pocket machining. 
(CAM settings: Vf=3.6 m/min, ae=65%, tool ø20mm) 
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Figure 5. Behaviour of the criteria during rough milling of pockets. 
(CAM settings: Vf=3.6 m/min, ae=65%, tool ø20mm) 

 

 

(this figure is intended to be reproduced in black-and-white)

15.8 16 16.2 16.4 16.6 16.8 17 

200 

400 

15.8 16 16.2 16.4 16.6 16.8 17 

-0.5 

0 

0.5 

15.8 16 16.2 16.4 16.6 16.8 17 
-1.5 

-1 

-0.5 

0 

V
f (

m
/m

in
) 

a e
 (%

 ø
to

ol
) 

fo
rc

e 
PV

j (
N

) 
K

m
 

fo
rc

e 
F j

 (N
) 

B
m

 

Time (s) 

steady cut 

15.8 16 16.2 16.4 16.6 16.8 17 0 

200 

400 

15.8 16 16.2 16.4 16.6 16.8 17 0 
5 

10 

15.8 16 16.2 16.4 16.6 16.8 17 
1 
2 
3 
4 
5 

15.8 16 16.2 16.4 16.6 16.8 17 0 

50 

100 

T
FI

 

false alarm 

Tooth #1 
Tooth #2 
Tooth #3 

1st
  t

ur
n 

2nd
 tu

rn
 

moderate changes significant changes 



 25

Figure 6. Variation of the instant width of cut during turns. 
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Figure 7. False alarms, applying criteria [20,21] to the machining of a pocket level. 
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Figure 8. Cutting force peaks for each tooth, under various feedrates and widths of cut (on the left). 
Linear least square fitting of force peaks per tooth, under fixed width of cut (on the right). 

 

 

(this figure is intended to be reproduced in black-and-white)

fz (mm/tooth) 

tooth #1 

tooth #2 

linear fittings 

Force peaks  (N) 
under fixed ae 



 28

Figure 9. Link between relative radial eccentricity and cutting forces, locally. 
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Figure 10. Estimated relative radial eccentricity under various cutting conditions. 

 

 

(this figure is intended to be reproduced in black-and-white)

up milling 

 down milling 

 

ae 

 
fz

?
e 1

 ( 
µm

)  

 

hc (mm) 

 

?
e 1

 ( 
µm

)  

 



 30

Figure 11. Estimated relative radial eccentricity while implementing the intermittent monitoring 
method with pocket machining. (CAM settings: Vf=2.08 m/min, ae=65%, tool ø32mm) 
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Process-based 
TCM criteria 

Cutter breakage or 
chipping detection 

Unaffected by 
cutter eccentricity 

Unaffected by changes 
in cutting conditions 

Altintas Yellowley [6]  X X 
Lee et al. [19]   X 
Kim Chu [20]   ?? 

Deyuan et al. [21]   ?? 

Table 1. Summary of properties of process-based TCM criteria. 

 


