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Abstract

Cluster analysis is the distribution of objects into different groups or more
precisely the partitioning of a data set into subsets (clusters) so that the
data in subsets share some common trait according to some distance mea-
sure.Unlike classification, in clustering one has to first decide the optimum
number of clusters and then assign the objects into different clusters. Solu-
tion of such problems for a large number of high dimensional data points is
quite complicated and most of the existing algorithms will not perform prop-
erly. In the present work a new clustering technique applicable to large data
set has been used to cluster the spectra of 702248 galaxies and quasars having
1540 points in wavelength range imposed by the instrument. The proposed
technique has successfully discovered five clusters from this 702248X1540
data matrix.
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1. Introduction

Clustering is a technique used to place data elements into related groups
without advance knowledge of the group definitions. Clustering algorithms
are attractive for the task of identification in coherent groups for existing
data sets. It is a common problem in several streams of science although the
purpose and implication may vary. Depending on the assumption and nature
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of the data several techniques have been developed by scientists for clustering
in order to make proper analysis of data. Such datasets are generally multi-
variate in nature. The common problem is to find a suitable representation
of the multivariate data. Different clustering algorithms like k-means (Mac-
Queen (1967) [12]), hierarchical methods like agglomerative and divisive,
model based clustering under distributional assumptions,Bayesian methods
etc. have been widely used by several statisticians in order to identify the in-
ternal grouping structures of objects. Due to unusual nature of the data sets,
standard techniques often fail to identify the proper clusters. For example,
for heavy tailed distributions the distance based classifiers with L2 norm can
suffer from excessive volatility. Hall (2009)[7] suggested a new classifier by
mixing L1 and L2 norms where means and medians of marginal distributions
take different values. However in very high dimensional settings conventional
spatial median will create problems. For this componentwise medians were
used to construct robust classifier.
Dimension reduction techniques can be used as an initial step in statistical
modelling and clustering. Some dimension reduction techniques like Principal
Component Analysis (PCA) and Independent Component Analysis (Com-
mon (1994) [6]) have been used for clustering and identification of proper
variables for the purpose of grouping. Xia (2008)[16] suggested one method
of specification that involves separating of the linear components from the
non linear components, leading to further dimension reduction in the un-
known link function and, thus, better estimation and easier interpretation of
the model.
Depending on the physical situation, several limitations and specialities in the
data create the need for the development of new techniques appropriate for
those situations. In biostatistics, the situation where the number of variables
is much larger than the number of observations is quite common and some
new methods have already been developed.In such cases some initial reduc-
tion in the dimensionality is desirable before applying any PCA type method.
Johnstone et al.(2009)[9] suggested a simple algorithm for selecting a subset
of coordinates with large sample variances and proved that if PCA is done
on the selected subset then consistency is recovered even if p is much grater
than n. Several works (Johnstone et al. (2004)[8] , Zou et. al(2006)[17]) have
been reported on Sparse Principal Component Analysis. Jolliffe et al(2003
[10]) suggested a modified PCA based on the LASSO.When both the number
of variables and number of observations are quite large, most of the standard
techniques will fail. In particular for non Gaussian situation those problems
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are quite apparent.
Under astrostatistics, applications of dimension reduction and clustering
techniques are quite common but in such applications traditional techniques
often fail to explain the situation properly due to several unusual features
like non Gaussianity, presence of outliers etc. Chattopadhyay et. al ( 2009)
[5],2012b [4],2013 [2]) and Chattopadhyay et. al (2012a)[3] considered some
of the above problems.
Automatic sky surveys have begun to produce huge databases and forth-
coming telescopes will definitively lead the astrophysical science into the
era of big data requiring a renewal of traditional approaches to tackle data.
In Statistics, very often we face empirical and large datasets to analyze.
However, when clustering algorithm are applied to large datasets,minimal
requirements of domain knowledge is necessary to determine the input pa-
rameters.Further such algorithms should be able to discover clusters with
arbitrary shape and determine the optimum number of homogeneous classes
automatically.Popular clustering techniques such as the K-Means Cluster-
ing and Expectation Maximization (EM) Clustering, fail to give solution to
the combination of these requirements. Also in recent days many important
problems involve handling of large data sets where the standard clustering
techniques fail or become computationally expensive.
Thus keeping in view the above considerations some new approaches has
been developed which may be viewed as unsupervised clustering techniques or
Data Mining Approaches. These approaches mainly deal with large datasets.
Data sets can be large in three ways. Firstly,there can be a large number of
elements in the data set,secondly each element can have many features,and
finally there can be many clusters to discover.
The objective of the present work is to perform a cluster analysis of a large
sample of extragalactic spectra in order to identify important families of
galaxies and quasars.A first and similar work has been performed in Sanchez-
Almedia et al (2010) [15] using a k-means analysis. However, their clustering
is not very robust in the sense they could not conclude objectively on a par-
ticular partitioning. In order to make the works comparable, spectra have
been selected from the same database, and used the same spectral bands to
make the number of parameters tractable.
In this paper a new clustering method is discussed that is efficient in han-
dling data sets which may be considered as large in all three above mentioned
respects.This method was primarily introduced by McCallum (2000)[11].In
this work, the algorithm is properly designed in order to apply it to the spec-
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tra data.The concept related to choice of the ”cheap distance measure” is
considered from a new angle.

2. The Canopy Clustering Technique

The technique mainly divides the data set into overlapping subsets termed
as ”canopies” based on a ”cheap distance measure” (to be explained in later
sections). Then in the second stage of the method, clustering is performed
by measuring exact distances only between points which belong to a com-
mon canopy. Using canopies large data set clustering techniques can be
performed with great efficiency even after allowing a small proportion of
overlaps (common points between canopies) which were formerly impossible.
Also, under reasonable assumptions, appropriate selection of cheap distance
metric reduces computational cost without any loss in clustering accuracy.
Canopies can be applied to many domains and used with a variety of clus-
tering approaches such as Greedy Agglomerative Clustering, K-Means and
Expectation-Maximization.

2.1. Creating the canopies

The key idea of the canopy algorithm is that one can greatly reduce
the number of distance computations required for clustering by first cheaply
partitioning the data into overlapping subsets i.e., the canopies.
A canopy is simply a subset of the elements (the data points) that, according
to the approximate similarity measure, are within some distance threshold
from a central point. So, an element may appear in more than one canopy
and every element must appear in at least one canopy.

2.2. Cheap distance Metric

The idea of cheap distance measure comes from the point of view that
when the data set is too large in terms of both number of observations and
dimensions, in that situation it is very difficult to compute an exact distance
metric. In such cases, the idea is to select a distance measure which will
be computationally simple and cheap. This distance metric may be selected
in many ways. In situations where there are many variables or parameters
in the data set, pairwise distance is calculated only for variable(s) which is
(are) of most importance ( or count(s) for the maximum variability). Another
possible way may be to reduce the dimension of the data by some dimension
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reduction technique and select the distance metric based on the reduced
data set. After selecting the variable(s) which consists of the cheap distance
metric, an observation point is chosen at random and the from that point
distance (Euclidean/Manhattan) of all other points are calculated.

2.3. Selection of Distance thresholds

Given the above distance metric, the canopies are created by fixing two
distance thresholds, may be called T1 and T2 such that T1 > T2.Then a data
point is selected at random and its distance is measured approximately to
all other points. All the points that are within the distance threshold T1 are
put into a canopy and all the points which are within distance threshold T2

are removed. These steps are repeated until the list is empty and data gets
subdivided into overlapping canopies.

Since the selection of distance threshold is arbitrary (user defined), dif-
ferent cross validation techniques such as Time complexity, Calculation of
Precision and Recall may be adopted to fix the proper choices of T1 and
T2. Computational evaluation shows that the more accurate the selection of
distance thresholds, the less is the overlaps between canopies and the better
is the clustering accuracy.

In the present work, the cross validation technique based on precision
and recall is used. Precision is the fraction of correct predictions among all
points predicted to fall in the same cluster. Recall is the fraction of correct
predictions among all points that truely fall in the same cluster.

Some trial pair of values of thresholds T1 and T2 are selected arbitrarily
and canopies are formed based on the distance thresholds at each trial. Then
for each individual selection, a discriminant analysis is performed assuming
each canopy consists of a group. Then precisions and recalls are calculated
for each groups or canopies. The total precision and recall is calculated by
summing up the individual values. Then the pair of values of T1 and T2 is
chosen as the one for which precision and recall values are close to each other
and simultaneously the proportion of correct observations is also highest.

2.4. 2nd Stage: subdivision of canopies

Once the canopies are formed in the first stage of the clustering, the
major canopies are identified (i.e., the canopies containing larger number of
observations). Then standard clustering approaches such as K-Means,Greedy
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Agglomerative or Expectation-Maximization techniques may be applied for
further subdivision of the larger canopies. In these case expensive (actual)
distance comparisons are performed within elements of a canopy.
There are many methods for selecting the estimates of the cluster centroids
named as prototypes.

One of the approaches of selecting prototypes for further clustering, is
to restrict the selection within points of a particular canopy. As a result
different prototypes are selected from different canopies.

Another way may be to select prototypes based on the entire data points
instead of restricting the selection of prototypes within a particular canopies
like the previous method.

In this paper, the first method has been adopted for selecting prototypes
and K-Means clustering technique has been used for further subdivision of
major groups or canopies.

3. Computational Complexity of The Canopy Method:

Since the canopy technique uses the cheap distance metric at the first
step, it can reduce the computational complexity of a clustering algorithm
as a whole. Assuming that there are n data points,c canopies are formed
based on the distance thresholds ,after formation of canopies there are a
total number of N data points (including overlap or loss or both) and each
data point falls into say m canopies on an average and the canopies are of
equal size ,then there will be approximately mN/c data points per canopy.
Hence, the total number of distance comparisons at this stage will be almost
O(c(mN/c)2) = O(m2N2/c).

In the next step, clustering is performed within each canopy using the
K-Means Technique and suppose there are k clusters. Then if for all the
clusters , each point falls on an average in m canopies as before, there will
be mN/c exact distance comparisons in m different canopies since here only
overlapping points are considered. Hence, for k clusters, the time complexity
gets reduced to O(km(mN)/c) = O(Nkm2/c) per iteration.

Now, instead of canopies, if the Greedy Agglomerative clustering is per-
formed on N data points, it requires O(N2) distance comparisons.
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If Expectation-Maximization or K-Means technique is performed on N
data points and the number of clusters is k, then the computational com-
plexity for those methods will be of O(Nk).

Now m is the average number of canopies to which every data point
belongs to.Hence m ≥ 1, and if there is no overlap, m=1. In addition, if
the pair (T1, T2) is chosen properly, then m is the smallest as compared to
the number of observations. Hence, m ≪ N (or n). Since the number of
observations is large and the number of overlaps kept as small as possible,
then m ∼ 1. Then O(m2N2/c) ∼ O(N2/c) which makes obvious that the
more canopies are found, the more interesting the method is.

It may also be noted that if the number of canopies are i.e., c is quite
large and if the distance thresholds are selected properly, the number of
overlapping observations will be negligible compared to the total number of
observations. Hence, m≪c, so that the fraction m2/c < 1.
It will imply that O(m2N2/c) <O(N2) and O(Nkm2/c) <O(Nk).

Thus, comparing all the methods discussed above, it can be said that the
canopy technique reduces the complexity as a whole.

Hence it may be concluded that canopy technique has the property that
all points in any true cluster must fall in the same canopy ensuring that
no accuracy is lost by restricting comparisons of items to those in the same
canopy.

4. Spectra Data

The spectra of 702248 galaxies and quasars with resdshift smaller than
0.25 were retrieved from the Sloan Digital Sky Survey (SDSS) database, re-
lease 7 (http://www.sdss.org/dr7/). Raw spectra have 3850 points in wave-
length range imposed by the instrument, λ = 3800 and λ = 9250 Angstrom.
The spacing is uniform in resolution (δλ/λ) = 1/4342). However, because of
the redshifting of the spectra due to the expansion of the Universe, the far-
thest objects of the sample (redshift of 0.25) have no data above the restframe
wavelengths of 9250/1.25 =7400 Angstrom. The useful range of wavelengths
after correction for redshift is thus between 3806 and 7371 Angstrom.

To preserve the shape of spectral lines, the Shannon criteria has been used
while correcting for the redshift. For this purpose, we doubled the sampling
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of the spectra beforehand, so that 5740 points are obtained within the useful
wavelength range after redshift correction. Even for a large dimension this
number is quite large for Principal Component Analysis(PCA). For this we
then halved the sampling again, and selected the same wavelength bands as
in Sanchez-Almedia et al (2010; readers may see their paper for the details
and Fig. 5 for a visual representation). These bands supposedly contain most
of the physics of galaxies, and reduce the number of points for each spectra
to 1539.

Variables in the spectra cannot be standardized because they are of the
same unit and are somehow related to each other. We thus normalized the
spectra globally with the flux average between λ =4300 Angstrom et λ =5000
Angstrom. We included the normalization factor as an additional parameter
since the average level of each spectra reflects more or less the mass of the
galaxy, which is an important physical property. This normalization factor
of the global spectra is the only variable to be standardized in our analysis.
The remaining question is to centralize or not the spectra (represented by
the other 1539 variables). We believe that there is no absolute answer, and
we considered both cases in our study. It should be remarked that a mean
spectrum have no particular physical meaning, and like the spectrum of each
galaxy which is a mixture of spectra coming from many stars and gaseous
clouds, it merely reveals the average prominence of some features (stellar
populations and atomic/molecular lines) in the objects under study. The
sample finally consists in 702248 spectra with 1540 points (variables) for
each.

5. Data Analysis

5.1. KMeans Analysis

Principal Component Analysis(PCA) showed that the rst four principal
component account for 85 percent of the variability and hence only the first
four principal component are retained. Thus the data set is reduced to a
matrix consisting of 702248 rows and four columns By performing a direct
k-means analysis on the entire dataset (with respect to PC1,PC2,PC3 and
PC4),three clusters are found. The cluster sizes are 2,513468 and 188778
respectively.

From table1 we see that the first cluster size is negligible, and the other
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two have significantly different mean spectra, although one of the group
contains 73 percent of the full sample. However, the dispersion is large.

Next another KMeans analysis has been performed on the entire data set
with respect to PC2,PC3 and PC4, i.e., by excluding PC1 which results in a
more balanced cluster sizes i.e., 113888, 391589 and 196771 respectively.

5.2. Choice of the cheap distance

Principal Component analysis showed that the first four principal com-
ponent account for 85 percent of the variability and hence only the first four
principal component are retained. Thus the data set reduced to a matrix con-
sisting of 702248 rows and four columns representing the first four Principal
Components of the data sets respectively.

One obvious choice for the cheap distance is the first principal component.
It is the direction of maximum variance, even though not necessarily the
direction of highest clustering. However, by using subsamples, we have found
that i) the loadings of PC1 and PC2 depend on the sample up to a given size,
ii) the first PC looses any discriminant role from 400000 objects upwards
because nearly each variable reaches the maximum variance, and iii) the
second PC above 400000 objects resembles the first PC for some smaller
samples (Fig 1, 2, 3, 4). This confirms that, in the present sample, the
first PC indicates the direction of maximum variance, more and more clearly
when the number of observations increases, but no clustering is present in
this direction.From previous works on spectra data it has been found that
mean subtraction ( ”mean centering”) is necessary for performing PCA to
ensure that the first principal component describes the direction of maximum
variance. If mean subtraction is not performed, the first principal component
might instead correspond more or less to the mean of the data(Miranda
et al.[14] ). A mean of zero is needed for finding a basis that minimizes
the mean square error of the approximation of the data. Unsurprisingly, a
canopy technique using the first PC as the cheap distance did not provide
a satisfactory result. Four groups were found, but the mean spectra of each
group were nearly identical, with large standard deviations.

Since the loadings of the second PC without centralizing the spectra is
identical to the first PC with centralizing them, we performed a canopy
technique with the second PC as the cheap distance. For comparison, we
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also performed a k-means with the first PC and a k-means without the first
PC, as discussed in the earlier section.

5.3. Selection of distance thresholds T1 and T2

After computing the cheap distance measures of all pairs of points be-
tween the 2nd principal component column, it is found that the mean of the
distance column is 66.242.

Hence the trial pairs of values for T1 and T2 are taken as (65,58), (72,63),
(68,62) and (70,65). Then for each set of trial the canopies (with overlapping
observations) are formed and the proportion of correct observations, preci-
sion and recall values are calculated. The results are given in Tables 1,2,3
and 4.

From Table 1 we get, proportion correct = 0.767,total precision = 1.861,to-
tal recall = 2.144, difference between total recall and total precision = 0.283.
From Table 2 we have, proportion correct = 0.821,total precision = 2.202,to-
tal recall = 2.429, difference between total recall and total precision = 0.227.

From Table 3, we get ,proportion correct = 0.888,total precision = 2.674,
total recall = 2.651 , difference between total recall and total precision =
0.048. From table 4 we have, proportion correct = 0.935,total precision =
2.641, total recall = 2.815 , difference between total recall and total precision
= 0.174.

From the Tables 1,2,3 and 4 it is observed that the proportion of correct
grouping of observations is highest for the pair (70, 65) i.e., 0.935. Also,
the difference(0.174) between the total precision (2.815) and the total recall
(2.815) is quite small. Although for the pair (68,62), the difference between
the total recall and total precision is smallest (0.048), it can be seen that
the proportion correct (0.888) is lesser than the previous choice. Also, with
the choice (70,65), the number of overlaps reduces in a significant amount
than the other choices considered. Thus keeping in view all these points, the
distance thresholds are fixed at T1 = 70 and T2 = 65.

5.4. Subdivision of major canopies into further clusters

With the above choices of the distance thresholds, 3 major canopies are
formed having larger number of observations. The other canopies contains
negligible observations and that can be ignored.
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Now, as it is seen from the above table that the total observation be-
comes 721209, meaning that there are some duplicate observations or over-
lap. Now, to see whether elimination of overlaps increases the proportion
correct or not, duplicate/repeated observations are ignored and only mutu-
ally exclusive observations are considered. Then the sizes of the canopies
become 453298, 202065 and 43533 respectively.The summary of classifica-
tion for these canopies is given in Table 5 which shows proportion correct =
0.955,total precision = 2.723, total recall = 2.871 , difference between total
recall and total precision = 0.148.
From Table 5, it may be seen that, after eliminating the duplicate observa-
tions, the proportion of correct classification increases. Also the precision
and recall values are closer to each other. Now, one point is, because of this
elimination the total number of observations becomes 698896, whereas, the
actual number of observations were 702248. But, since the proportion of
missing observations is insignificant,it can be ignored.

In the next step, canopy 1 or C1 is divided into 2 clusters by K-means
technique and the other canopies are kept as it is. Let the clusters be named
as K1, K2, K3, K4 .The summary of classification together with precision
and recall values are shown in Table 6.

Also, the subdivision of the 1st canopy into 2 clusters reduces the pro-
portion correct. Thus, the next subdivision is done for the 2nd canopy, other
canopies being kept as it is.
Let the clusters be denoted by G1, G2, G3, G4. The summary of classifica-
tion and precision-recall values are shown in table 11.

Table 6 shows proportion correct = 0.917, total precision = 3.586 , total
recall= 3.711 ,difference between total recall and total precision = 0.125

From Table 7, we get proportion correct = 0.923, total precision = 3.560,
total recall = 3.638 ,difference between total recall and total precision =
0.078

Here also the proportion of correct classification reduces from the pro-
portion obtained without subdiving the canopies (refer to Table 5). Also the
difference between the precision and recall has been increased. Next both the
subdivisions of canopy 1 and canopy 2 are taken together and canopy 3 is
kept as is it. Hence,now there are 5 clusters. The summary of classification
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for these clusters are given Table 8.

Table 8 gives proportion correct = 0.940, total precision = 4.685, total
recall = 4.743 ,difference between total recall and total precision = 0.058.
From table 12 it can be shown that the proportion of correct classification is
0.94 whereas the proportion of correct classification for 3 canopies (without
subdivision) was 0.955. So, the proportion is not reducing in a significant
amount. But, on the other end, the difference between total recall and total
precision is 0.058, whereas for 3 canopies the difference between total recall
and total precision was 0.148. So, this subdivision is more appropriate in
that case.

Finally the 5 clusters along with their sizes, WSS and descriptive measures
are given in Table 9.

Table 9 shows that the within cluster sum of squares reduces in a signif-
icant amount by subdividing the 1st and 2nd canopy. Also, the proportion
correct is quite high (0.94) and the total recall and the total precision are
closest to each other. Considering all these facts, the number of clusters is
finally taken as k = 5.

6. Interpretation of the Clusters

The mean spectra for clusters 1 to 5 appear to be ordered according to the
ratio between the blue and red parts, cluster 1 being the reddest and cluster
5 the bluest (Fig. 5). Hence, the stellar population on average is younger
from cluster 1 to cluster 5.

This is corroborated by the stronger emission lines in cluster 5 (Fig. 6)
which are characteristic of young stellar populations. However, it is interest-
ing to note that cluster 3 has stronger emission lines than cluster 4 which
is bluer. This could be probably interpreted as a different mixture of stellar
populations and a different proportion of ongoing star formation.

Stronger absorption features are typical of older stellar populations, and
the mean spectra are fully consistent with this picture (Fig. 7). cluster 1 and
cluster 2 have the oldest stellar populations, and differ from the global slope,
cluster 2 mean spectrum being slightly flatter, and from a Na absorption
feature that is slightly deeper for cluster 2. In addition, the absorption
features are clearly deeper in cluster 4 than in cluster 3.
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It is not in the scope of the present paper to detail the astrophysical inter-
pretation, but it is already clear that a combination of canopy and k-means
techniques applied to more than 700 000 raw spectra were able to distinguish
five groups which have clear specific and consistent physical properties. Five
classes is probably not enough to fully describe the huge diversity of galaxies
in the Universe. However, there are at least three reasons why this number
is reasonable. Firstly, the raw spectra as we used them provide information
only on star colours and gaseous tracers. Our study ignores the dynamical
properties of the galaxy constituents (given by the width of the emission or
absorption lines), as well as more detailed properties of physical conditions,
such as the temperature and radiative environment of the gas clouds, that are
given by line ratios. These measures require model-fitting of specific regions
of the spectra. Secondly, the spectrum of a galaxy comes from a mixture of
gas clouds and of a huge number of stars from several distinct populations
with distinct properties. Such global spectra have a higher probability of
looking more or less similar. Thirdly, chemical and physical processes that
explain galaxy diversity are continuous processes. They mainly yield a con-
tinuum of variance for each variable, hence the large number of spectra of
our sample is certainly rather homogeneous in the parameter space, making
clustering quite difficult.

7. Discussion

Sanchez Almeida (2010)[15] used a k-means analysis and found several
classifications. They note that their k-means result depends very much on
the initial seeds. Using some criteria, they end up with four classifications,
and chose one arbitrarily. This partitioning has 28 clusters and subsequently
they gave some astrophysical meaning to them.

Our study is clearly in disagreement with their work.Our analysis is free
from seed dependence problem as we have used the method proposed by
Milligan, (1980)[13]. Being much more robust, our results never find several
possible partitioning and in all cases only a very small number of clusters is
found if any at all, even when using a direct k-means computation as they
did. We explain this disagreement(very small number of clusters:5 instead
of 28) in two ways. Firstly, we are probably facing a curse of dimensionality
with this large sample with a large number of variables. This problem is
strengthened by the homogeneity of the observations in the parameter space.
Spectra of galaxies result from continuous physical processes and increasing
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the number of observations make the spectra to fill the entire space of possible
occurrences. Secondly, each spectrum is a mixture of an assembly of billions
of stars and gas clouds. In other words, the clustering of extragalactic spectra
is very probably not prominent at all, or it is blurred by the too many
variables present in spectra.

The PCA have helped us to select the most discriminant variables, but
even so only three groups have been identified. In addition, and may be more
importantly, we have shown how much the principal components depend on
the sample and on the sample size. One should not forget that PCA works
well when there is much more observations than variables. Hence building
general classifications, or identifying physical groups in the eigenvector space,
can be misleading, unless a kind of cross-validation is made as we have done
in this paper.

8. Conclusion

From the present work we may draw the following conclusions:

1. The most important finding is that for a large number of high dimen-
sional data points the proposed method is a very good technique for
clustering.

2. Even PCA performs differently with large data and one should take
care of those limitations.

3. In astronomy, analysis of spectra data is very common and for proper
statistical analysis one should take care of different Astronomical as
well as statistical properties.

4. For canopy technique the choice of the ”cheap distance measure” is an
important issue and proper choice will lead to a good answer.
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Table1:Summary of classification of canopies with precision and recall for T1 =65 and T2= 58::

Put into Groups True Groups

1 2 3 Total N N correct Precision

1 478326 1962 2681 482969 478326 0.99

2 36949 87278 6963 131190 87278 0.665

3 58056 76668 35044 169768 35044 0.206

Total N 573331 165908 44688 - - -

N Correct 478326 87278 35044 - - -

Recall 0.834 0.526 0.784 - - -

Table2:Summary of classification into canopies with precision and recall for T1 =72 and T2= 63:

Put into Groups True Groups

1 2 3 Total N N correct Precision

1 403321 32861 3524 439706 403321 0.917

2 68247 190674 7058 265979 190674 0.717

3 17958 12256 39770 69984 39770 0.568

Total N 485926 235791 50352 - - -

N Correct 403321 190674 39770 - - -

Recall 0.830 0.809 0.790 - - -

Table3:Summary of classification of canopies with precision and recall for T1 =68 and T2= 62:

Put into Groups True Groups

1 2 3 Total N N correct Precision

1 384047 33369 1893 419309 383047 0.913

2 28616 297708 2873 249197 217708 0.874

3 4135 9459 61845 75439 61845 0.820

Total N 416798 260536 66611 - - -

N Correct 384047 207708 61845 - - -

Recall 0.921 0.836 0.928 - - -

Table4:Summary of classification into canopies with precision and recall for T1 =70 and T2= 65:

Put into Groups True Groups

1 2 3 Total N N correct Precision

1 438421 15237 0 453658 438421 0.966

2 14874 186535 336 201745 186535 0.925

3 3 16454 49349 65806 49349 0.750

Total N 453298 218226 49685 - - -

N Correct 438421 186535 49349 - - -

Recall 0.967 0.855 0.993 - - -

Table5:Summary of classification into 3 canopies with precision and recall after eliminating overlaps:

Put into Groups True Groups

1 2 3 Total N N correct Precision

1 441348 8502 0 449850 441348 0.981

2 11947 183094 387 195428 183094 0.937

3 3 10469 43146 53618 43146 0.805

Total N 453298 202065 43533 - - -

N Correct 441348 183094 43146 - - -

Recall 0.974 0.906 0.991 - - -

Table6:Summary of result of subdivision of canopy 1 into two clusters with precision and recall

Put into Groups True Groups

1 2 3 4 Total N N correct Precision

1 152039 7939 0 0 159978 152039 0.950

2 16559 274601 17879 0 309039 274601 0.888

3 10 2150 170503 1 172663 170503 0.987

4 0 0 13683 43532 57215 43532 0.761

Total N 168608 284690 202065 43533 - - -

N Correct 152039 274601 170503 43532 - - -

Recall 0.902 0.965 0.844 1.000 - - -
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Table7:Summary of result of subdivision of canopy 2 into two clusters with Precision and recall:

Put into Groups True Groups

1 2 3 4 Total N N correct Precision

1 418073 12 1264 0 419349 418073 0.997

2 13 81825 5320 7650 94808 81825 0.863

3 35210 2804 109282 0 147296 109282 0.742

4 2 1558 0 35883 37443 35883 0.958

Total N 453298 86199 115866 43533 - - -

N Correct 418073 81825 109282 35883 - - -

Recall 0.922 0.949 0.943 0.824 - - -

Table8:Summary of result of subdivision of canopy 1 and canopy 2

into 2 clusters each with precision and recall:

Put into Groups True Groups

1 2 3 4 5 Total N N correct Precision

1 160511 5027 0 0 0 165538 160511 0.970

2 8083 264248 36 2679 0 275046 264248 0.961

3 2 0 83005 4339 3427 90773 83005 0.914

4 12 15415 2394 108848 0 126669 108848 0.859

5 0 0 764 0 40106 40870 40106 0.981

Total N 168608 284690 86199 115866 43533 - - -

N Correct 160511 264248 83005 108848 40106 - - -

Recall 0.952 0.968 0.963 0.939 0.921 - - -

Table9:Canopies with sizes,wss and descriptive measures:

Canopy Sizes wss PC1 PC2 PC3 PC4

Mean S.E.Mean Mean S.E.Mean Mean S.E.Mean Mean S.E.Mean

C1 168608 103153104.005 235.21 0.03 296.41 0.05 17.650 0.006 102.47 0.02

C2 284690 112477167.915 205.41 0.02 258.31 0.02 16.976 0.005 98.749 0.015

C3 86199 64095947.252 115.53 0.07 160.20 0.05 21.417 0.011 107.33 0.02

C4 115866 50857574.152 162.80 0.04 208.51 0.04 19.412 0.008 104.75 0.02

C5 43533 468132949.793 30.06 0.48 102.84 0.11 25.064 0.038 109.43 0.05
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Figure 1: Eigenvectors (loadings) for the first and the second principal components for
four mutually exclusive subsamples of 100 000 spectra.
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Figure 2: Eigenvectors (loadings) for the first and the second principal components for
random subsamples of 300 000 spectra.
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Figure 5: Mean spectra for each cluster. The vertical gray stripes are the bands from
which the 1540 parameters (spectrum wavelengths) were chosen.
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Figure 6: Mean spectra for each cluster with identification of emission lines.
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Figure 7: Mean spectra for each cluster with identification of absorption lines.
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