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ABSTRACT

Distributed environments, technological evolution, outsourcing market and information technology (IT)
are factors that considerably influence current and future industrial maintenance management. Repairing
and maintaining the plants and installations requires a better and more sophisticated skill set and con-
tinuously updated knowledge. Today, maintenance solutions involve increasing the collaboration of sev-
eral experts to solve complex problems. These solutions imply changing the requirements and practices
for maintenance; thus, conceptual models to support multidisciplinary expert collaboration in decision
making are indispensable. The objectives of this work are as follows: (i) knowledge formalization of
domain vocabulary to improve the communication and knowledge sharing among a number of experts
and technical actors with Conceptual Graphs (CGs) formalism, (ii) multi-expert knowledge management
with the Transferable Belief Model (TBM) to support collaborative decision making, and (iii) maintenance
problem solving with a variant of the Case-Based Reasoning (CBR) mechanism with a process of solving
new problems based on the solutions of similar past problems and integrating the experts’ beliefs. The

proposed approach is applied for the maintenance management of the illustrative case study.

1. Introduction

Today, the technological evolution combined with an ever-
increasing customer focus has greatly influenced industrial prac-
tice. Trends in industry (e.g. the growing outsourcing market and
the organizational changes due to mergers or relocations) have
shaped the current state of maintenance management in which
the reliability and availability of equipment and monitoring and
control systems are essential [49]. The maintenance policy
optimization has changed much during the last decade, from
failure-based maintenance (corrective maintenance only) via
condition-based maintenance (opportunity for e-maintenance) to
design-out maintenance (maintainability and reliability issues).
In this study, the term maintenance, following common usage, in-
cludes repairs and all system modifications that occur during the
use phase of the system’s life [4]. Equipment modifications are
aimed either at increasing the reliability (increasing the mean time
between failures (MTBF)) or the maintainability (decreasing the
mean time to repair (MTTR)) to improve the equipment availabil-
ity. The critical success factors for professional and sustainable
maintenance management include a sound technical and techno-
logical background with management skills and the flexibility to
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respond to the opportunities and threats for the maintenance
department [73]. The experts, as well as the maintenance firms
that execute maintenance jobs, are affected by these factors and
are concerned about collaborative knowledge management be-
cause seemingly identical problems will regularly demand varying
approaches and actions [36].

For large organizations, due to the concurrent engineering pro-
jects and geographically distributed activities, sharing lessons that
have been learned from experience feedback processes covering
time and space has become a key issue for performance improve-
ment. The successful application of knowledge management
necessitates the interaction within multi-disciplinary projects
(e.g. groups of people working on issues related to standardization)
and distributed decision-making processes as basic requirements
[61]. The value that knowledge management brings to mixed
groups results from the potential for enhancing and controlling
the flow of knowledge among heterogeneous sources across space
and time [45]. Maintenance is embedded in a given business con-
text and must be in accordance with environmental and safety reg-
ulations. Collaborative expectations concerning problem solving
and its impact also create knowledge conditions for maintenance
management [55]. Problem solving requires searching and sharing
knowledge among a group of actors in a particular context. Main-
tenance actors (technicians and experts) have much expertise (im-
plicit or tacit knowledge) from experiences over the years.
Capturing this knowledge, storing it and distributing it within



and across the communities of practice, is an important issue of
maintenance management. For organizations, experience manage-
ment [9] is useful for generating explicit knowledge to allow actors
to find relevant information, for consulting experts’ views on com-
plex installations and for acquiring other forms of implicit or tacit
knowledge. Using experience management as a maintenance man-
agement technique for industry can be a highly valuable and has a
large potential for reuse: for example, the guidelines for the diag-
nosis of a complex failure can be used for the subsequent repair ac-
tions or as fine-tuning parameter advice for determining high-tech
installation-implicit knowledge [50]. The application of knowledge
management technology in maintenance management can also of-
fer easy access to collaboration tools and community work areas in
which experts can share their views and knowledge. For these col-
laboration tools, an interoperability problem exists when there are
barriers (incompatibilities or mismatches) that obstruct the shar-
ing and exchange of information (between information systems)
[20]. Semantic technologies are interesting solutions for removing
conceptual barriers to interoperability that can be used at different
organization levels (business, process, service and data) [15,16] by
creating a positive knowledge-sharing environment in the organi-
zation. This technique is important for knowledge aggregation,
which is the synergistic use of knowledge from different resources
to complement insufficient knowledge and obtain new knowledge.

The proposal of this work is based on a cognitive knowledge
management approach that is applied for collaborative decision-
making situations. The goal of this study is to improve collabora-
tion among maintenance experts through the deployment of artifi-
cial intelligence tools to effectively share experiences to generate
knowledge and better resolve problems.

The paper is structured as follows. Section 2 provides a back-
ground of the state-of-the-art concerning knowledge management
(through experience feedback and Case-Based Reasoning), knowl-
edge representation formalisms and aggregation techniques. Sec-
tion 3 presents the proposed research approach and applies its
main components to collaborative maintenance management. An
illustrative application example of collaborative problem solving
of a maintained system from a case study is provided in Section 4.
Finally, Section 5 provides conclusions and discusses future
challenges.

2. State-of-the-art

For collaborative maintenance management, the capitalization
and reuse of expert knowledge is crucial and difficult to implement.
There are various psychological techniques (e.g. interviewing, pro-
tocol analysis and multidimensional scaling [70]) that can be uti-
lized to elicit and model expert knowledge in industrial decision-
making situations. It is essential to combine different theories to ad-
dress this challenge. More specifically, these theories include prob-
lem solving methods (e.g. Case-Based Reasoning (CBR)), knowledge
representation formalisms (e.g. Conceptual Graphs), and knowledge
aggregation techniques (e.g. the Transferable Belief Model (TBM)). It
is beneficial to review these theories in this section.

2.1. Knowledge management

2.1.1. Cognitive experience feedback

For this work, our approach fits within the experience feedback
framework detailed in [51]. In this framework, the authors propose
a structured description of a gradual transformation of an event
into knowledge, performed by the actors. Their cognitive experi-
ence feedback process is comprised of three levels: context, expe-
rience and knowledge/lessons learned. These levels are described
as follows.

e The context level leads to the event description. This level con-
tains a general problem to solve and occurs prior to in-depth
analysis. Context is useful when representing and reasoning
within a restricted state space in which a problem can be
solved. The identification of critical events is often performed
by a multidisciplinary committee. In this case, the risk criteria
are the reference terms (standards, measures, or expectations)
that are used to make a judgment or a decision regarding the
significance of the risk that will be assessed [24]. Risk criteria
may include associated costs and benefits, legal and statutory
requirements or actors’ concerns [3]. Thus, the experience feed-
back is systematically recorded beyond a critical threshold.
The experience level leads to the definition and implementation
of solutions for the event. An event must be analyzed according
to its context (search of the causes and evaluation of the effects
on the system) to propose corrective actions. A tree analysis
diagram is often used to list the various potential causes and
their weighting factors, which characterize their degree of plau-
sibility [59]. In a causal tree, the studied event (e.g. the unde-
sired event is the failed state of a system that may occur) is
placed at the top. This formalization is important because it
focuses on the most likely branches (e.g. safety nets) for validat-
ing the root causes.

The “knowledge” level or lessons learned refer to the knowl-
edge of the experiences and summarizes the involved analysis
(knowledge from the domain experts), the obtained knowledge
(measurement or prediction) and the generalized rules from
this set of experiences (e.g. rules from failure investigations).
For instance, certain design rules are generalized from the anal-
ysis of accidents and system failures in process industries [67].
Thus, lessons learned can considerably improve the decision
processes and represents a significant component of the knowl-
edge management approach for modern organizations [69].

We consider that an experience case can be represented as a
collection of information that incorporates context (description
of the problem), analysis (a search for the root cause of the prob-
lem) and a solution (set of actions that solve the problem). Thus,
an experience E; is represented by a triplet E; = (G, A;,S;), where G,
A; and S; respectively represent the context, analysis and solution,
which are described by several descriptors. Additionally, an expe-
rience base corresponds to a set of several experiences:

BExp :{Ei,iE {1,...,n}}

In our approach, the conceptualization of the domain vocabulary
and relevant knowledge relating to the activities of the concerned
organization should support the experience feedback framework.
The objectives of this study include explicitly representing the
experiential knowledge in an organization and allowing for the ac-
tor’s access and re-use of this knowledge.

The two main processes of an experience feedback process are
capitalization and exploitation [51]. The capitalization process is
based on three sub-processes: acquisition, formalization and
stocking of experiences (context description, analysis and solu-
tion). Exploitation is based on three sub-processes: retrieval, adap-
tation and generalization. These sub-processes are the core
techniques that support the experience feedback processes. We
are particularly interested in the sub-processes of exploitation;
thus, a promising technique for this knowledge reuse for problems
solving, called Case-Based Reasoning (CBR), is used.

2.1.2. Case-based reasoning

Case-Based Reasoning (CBR) is a cyclic and integrated process
for problem solving by learning from experiences. Usually, in
CBR, a case is composed of a problem part and a solution part
[41]; then, it is represented by this pair of elements, denoted as



case = (pb,sol(pb)). In particular, during the five-step process of
Case-Based Reasoning (see Fig. 1), a source case, denoted as sour-
ce_case = (source, sol(source)), is a case in which the solution will be
reused to solve a new problem. The new problem is called a target
case denoted as target_case = (target, sol(target)).

Additionally, the problem and solution parts are described by
descriptors [43] as follows:

source = {d,...,d,} where d; is a source problem descriptor
(fori=1,...,n),

sol(source) = {Dj, ..., D;,} where D; is a source solution descrip-
tor (forj=1...,m),

target = {d, ..., df,} where df is a target problem descriptor (for
i=1,...,n),
sol(target) = {D%, ...
tor (forj=1,...,m).

,D,} where D]f is a target solution descrip-

The cardinal numbers of the problem and solution descriptions
may be different; however, there is a widespread assumption that
it is convenient to assume that these numbers are equal because a
one-to-one correspondence is possible to solve, even with larger
sets of descriptors. Without the limitations of this assumption,
we propose a more flexible approach with the generality needed
to face the broad spectrum of issues arising in professional prac-
tice. However, in order to make the sequence of the reasoning steps
more understandable, we have adopted this assumption in our
illustrative practical study.

A general CBR cycle may be described with the following five
cyclical steps (Fig. 1):

(1) elaborate a semantically derived list of core descriptors that
are related to the new problem (target case) while consider-
ing the principles of adaptability and efficiency;

(2) retrieve the previous case (source case) from the case base
that is most similar to the new problem;

(3) reuse (adapt) the solution from the retrieved case to deter-
mine a solution for the new problem;

(4) revise the proposed solution, while considering the differ-
ences between the new problem and the retrieved case;

(5) retain the new problem and its revised solution as a
new experience for the knowledge base (case base) if
appropriate.

However, the reuse of experiences for this context poses multi-
ple problems, which are often poorly resolved, including the reuse
of problem solving processes. For example, similar cases may not
have similar output/event states because the problem solver may
have different ways to deconstruct the problem. Therefore, certain
previous studies proposed the clustered ontology approach to rep-
resent the semantic meaning of a case [38,34]. In practice, various

New problem 1

Target case

(2)

Target case

RETRIEVE //;

CASE BASE

(3)
REUSE

Adapted and
repaired case

(4) Adapted source
REVISE case

Fig. 1. The case-based reasoning cycle [1].

types of industrial activities, including monitoring studies (avail-
ability and reliability) for infrastructures, can be supported with
the CBR principles [44]. When applied to maintenance manage-
ment, the CBR process can be associated with engineering analyt-
ical tools to ease knowledge reuse for equipment diagnosis and
repair and to develop a decision support system for maintenance
operators [53].

2.2. Formal knowledge representation languages

Comparing tacit (or implicit) and explicit knowledge, tacit
knowledge involves empirical knowledge that is difficult to repre-
sent because it is generally hidden inside personal mental models
[14]. Therefore, it is desirable to generate explicit knowledge from
implicit knowledge to share and reuse relevant empirical knowl-
edge. Several knowledge representation languages (e.g. Descrip-
tion Logics (DLs) [12,46] and OWL (Web Ontology Language) and
its different versions, including OWL-DL [32]) specify a variety of
available ontology models in which the analysis depends on their
semantic foundations. The semantics of a language are commonly
expressible through first-order logic; semantics may contain dif-
ferent features depending on their importance, as determined by
the developers, and should be selected according to the needs of
the resulting ontology-based application.

Select trends relating to ontology languages [68] are listed as
follows:

o the information modeling trend (e.g. frame logic [2]) in which
relations and interactions are considered as secondary, while
the model’s focus is on objects and object properties;

the semantic networks trend (e.g. Resource Description Frame-
work Schema (RDFS) [71]) in which the ontology is usually
described as an arbitrary graph with a less strict semantic;

the description logics trend (e.g. Description Logics (DLs) [12]
and Conceptual Graphs (CGs) [62]) in which the model focuses
on concepts and their roles. This trend uses first-order predicate
logic as the underlying formalism and uses abstraction and
refinement as structuring primitives. This trend combines
well-defined logical semantics with efficient reasoning.

(]

The information modeling and semantic networks trends lack
formal semantics or are generally independent of a logical theory,
whereas the description logics trend overcomes these deficiencies
[5]. Moreover, for several criteria (expressive power, reusability,
and formal precision), our work relates to the description logics
trend because it provides a method for understanding the applica-
tion domain and for reliable automated formal reasoning. Particu-
larly, the ontology with the Conceptual Graphs approach in this
paper is interesting for problem solving. The properties (e.g. formal
semantics, separation of types of knowledge and possible transla-
tions into other languages [63]) of Conceptual Graphs allow for
modeling and specifying the experience feedback processes in
which reasoning is essential.

The Conceptual Graph formalism [62] is a representation that
compromises between a formal language and a graphical language
because it is visual and includes a range of reasoning processes.
Conceptual Graphs can be used in many computer science areas
including text analysis, web semantics, and intelligent systems
[28].

2.3. Knowledge aggregation techniques

This section describes knowledge aggregation techniques to
perform a well-defined analysis and assist in collaborative decision
making. This research domain is clearly related to the problem of
representing, reasoning about and overcoming uncertainty with



experience feedback information. One of the key requirements of
expert knowledge modeling is capturing and interpreting impre-
cise and conflicting data regarding the physical world. This model-
ing technique aims to provide a method to manage and integrate
uncertainty at different stages of the analysis phase to achieve
the most suitable analysis of the information.

Two main purposes have to be considered for uncertainty rea-
soning: improving the quality of the analysis of information and
inferring new types of information analysis [10]. The respective
corresponding forms of reasoning are: (i) a multi-expertise fusion
to improve the quality of the analysis of information in which
the data from different areas of expertise are used to increase con-
fidence, resolution or accuracy and (ii) deducing a higher-level
analysis (e.g. failure analysis) from a lower-level analysis (e.g.
spectroscopic analysis, surface analysis or software based fault
location techniques) based on the arguments to infer the new anal-
ysis of information.

Several approaches have been used for reasoning with uncer-
tain context information (Fuzzy Logic [72], probabilistic logic
[21], Bayesian networks [52], hidden Markov models [39], and
the Dempster-Shafer theory of evidence [56]). In this work, we
use the Dempster-Shafer theory to represent any form of uncer-
tainty (from total or partial ignorance to full knowledge) because
it is a generalization of the Bayesian theory of subjective probabil-
ity and enables for an assessment of the degree of belief in a fuzzy
event. Additionally, the Dempster-Shafer theory has already been
successfully applied to industrial diagnosis problems [48,42] and
for solving classification problems with imperfect labels [66]. This
theory emphasizes the mathematical principles of evidence based
on belief functions and plausible reasoning to combine separate
pieces of information (evidence) for calculating the probability of
an event [57]. Specifically, we use reasoning mechanisms of the
Dempster-Shafer theory for combining the independent analysis
of multiple experts addressing the same problem, considering that
the solutions are highly subjective and that different experts can
establish different solutions for the same case [54]. The uncertainty
for this theory of evidence is represented by allocating the unit
mass of the belief among subsets of the set of reference Q. The
sum of the masses of all the subsets of one hypothesis constitutes
its belief, which is the support for a hypothesis and designates the
amount of belief that directly supports this given hypothesis. In
our context of maintenance activities, this hypothesis is considered
as the supposed cause of the occurrence of an adverse event. Thus,
belief functions allow us to model a lack of information from sub-
jective judgments [27]. The belief level is supported by the Trans-
ferable Belief Model (TBM) [58], which is an extension of the
Dempster-Shafer theory. Beliefs can be held at two levels: (1) a
credal level in which beliefs are interpreted and quantified with
the belief functions and (2) a pignistic level in which beliefs can
be used to make decisions and are quantified with probability
functions [59]. When a decision must be made, beliefs at the credal
level induce a probability measure at the pignistic level, i.e. there is
a pignistic transformation from the belief functions to the proba-
bility functions.

Certain general evidence properties, such as the independence
or the level of conflict, are considered for the selection of the
appropriate combination rule. Therefore, certain authors (e.g.
[25,37] have proposed a hierarchical approach with different com-
bination rules that are used for different source clusters and fusion
levels. The general idea of this rule is to conjunctively merge coher-
ent sources after disjunctively merging the different results. In
[29], this idea was applied for the continuous improvement of
industrial processes; thus, we will use a hierarchical procedure to
support the fusion of experts in the industrial maintenance
domain. This implementation in the industrial maintenance do-
main requires the development of a new research approach to:

(i) integrate models, methods and reasoning techniques that are
specific to the requirements of industrial maintenance and (ii) pro-
vide all the needed information to monitor and control the experi-
ences, capitalization and similarity searches to the smallest level of
granularity.

Experts are not symmetrically combined but rather are grouped
into expertise domains where they share a domain specific expla-
nation of the way that the world works, which includes the rele-
vant perceptual features in their domain. Within groups, beliefs
are combined using the cautious conjunction rule [19], whereas
across groups the non-interactive disjunction [57] is used.

Given, m; and m, are mass functions from two reliable distinct
experts belonging to the same competency domain; the non-inter-
active conjunction operator of two real-valued subset functions m;
and m; is defined, for any subset A c @, as follows:

mynmy(A) = Y m(X)-my(Y) VX, YcCQ

XnNY=A

Nevertheless, this conjunction procedure produces a trivial result
when the information sources conflict completely. In this case, the
fusion falls into pure contradiction with incompatible reasoning.

Similarly, for mass functions m; and m; from two expert groups
in which at least one expert is reliable and belong to different com-
petency domains, the disjunction operator is defined by:

myUmy(A) = Y my(X)-my(Y) VX, YCQ

XuY=A

Finally, any Basic Belief Assignment (BBA) m, such that m(&) # 1,
defines a pignistic probability function of m as:

m(A)

Bet P(Hi) = ) JAI(T = m(@))

Ac2? HieA

3. Framework for knowledge reuse from multiple experts in
maintenance

The multidisciplinary problem solving in maintenance requires
the knowledge of various application domains and assumes knowl-
edge integration from distributed sources [22]. Aggregation of the
knowledge of the involved domain experts provides the opportu-
nity to express diverse opinions about the possible solution and
anticipated efficacy in accordance with the maintenance require-
ments. Our proposal relies on the integration of different ap-
proaches for the knowledge management aimed at the
development of an adequate and efficient methodology for experi-
ence feedback in the collaborative context of industrial mainte-
nance management. Thus, the general scheme of our approach
(Fig. 2) relies primarily on the process of experience feedback in
the context of industrial maintenance. This process involves three
sub-processes: the capitalization of past experiences, their pro-
cessing and their exploitation. In the capitalization phase, acquisi-
tion of experience and storing is performed. We aim to achieve the
knowledge representation formalism of Conceptual Graphs (CGs),
which uses domain ontology for the representation of experiences
in our application context. This language will be particularly suit-
able for the knowledge formalization and visualization [35]. The
processing phase envisages the creation of knowledge, i.e. once
the experiences are formalized and capitalized, an analysis is per-
formed to extract knowledge from this set of experiences. Finally,
in the exploitation process, we aim to perform Case-Based Reason-
ing (CBR) as a technique of problem solving that is based on the
adaptation of the solutions from past problems to solve new
similar problems. Particularities of this technique are primarily
performed in the retrieve phase, which we will consider a measure
of the semantic similarity and adaptation of the Transferable Belief
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Fig. 2. General scheme of the proposed approach.

Model (TBM) to retrieve the case that will be the object of the
adaptation phase. We choose the Transferable Belief Model as an
aggregation approach to express and exploit the experts’ opinions,
which are sometimes vague and uncertain.

It is important to consider the method that the experts use to
analyze a contextual situation to describe the features that influ-
ence the occurrence of a maintenance problem. Because the re-
trieval process is directly related to the structure of the
knowledge base, dependencies induced from a hierarchical do-
main ontology structure can suggest instructive clarifications for
the problem-solving CBR. We propose an extension of the CBR
paradigm by integrating the analysis of the problem-solving epi-
sodes, which can potentially be useful for the retrieval and adap-
tation phases of CBR. For experience feedback processes, this
analysis contains traces of reasoning (a resolution plan and justi-
fications (alternatives and failed attempts)) with the judgments
(degree of belief) of the experts, according to the available related
information. The retrieval process is comprised of two steps: (i) a
set of potentially similar cases is retrieved through feature-to-fea-
ture matches; (ii) this obtained set is linked to the subjective
judgments made by a group of experts and used to find the opti-
mal similar case. The case adaptation is achieved through the
principle of management dependencies between the descriptors
of the problem and the descriptors of the solution. This principle
uses industry-specific domain knowledge pertaining to equip-
ment failure modes and maintenance activity strategies as well
as key metrics for measuring equipment performance and
reliability.

3.1. Knowledge representation

A simple Conceptual Graph [62] is a finite, connected, directed,
bipartite graph consisting of concept nodes (denoted as boxes) that
are connected to conceptual relation nodes (denoted as circles). In
the alternative linear notation, concept nodes are written within
[ ]-brackets while conceptual relation nodes are denoted within
()-brackets. The concepts set and the relations set are disjoint.

A concept is composed of a type and a marker [(type):
(marker)], for example, [Resource: Maintainer23]. The type of con-
cept represents the occurrence of the object class. The concepts are
grouped in a hierarchical structure called a concept lattice, show-
ing their inheritance relationships. The marker specifies the

meaning of a concept and identifies a considered instance of con-
cept (the “*” denotes an undefined instance).

A conceptual relation binds two or more concepts according to
the following diagram:

[C1] < (relation’s name) — [C;] (“C1 is related to C2 by this spe-
cific relation”).

For the maintenance management analysis, the most common
relations are dependency relations, specifically, causal, conditional,
temporal and Boolean connectives, such as alternating-OR and
exclusive-OR relations (either relations).

Fig. 3 provides a graphical model (in the form of a Conceptual
Graph) detailing the structure of a case. An even on a parallel lathe
is taken as an example of experience. This structure is represented
as a CG with three parts: (i) the context part that describes the
functional mode of the object of the maintenance (parallel lathe),
the failure (overheating), the symptom (vibration), and the poten-
tially failing components, in this case the mobile truck and the mo-
tor; (ii) the analysis presents the candidate causes and selects the
primary cause of problem (rotor-stator rub), i.e. the active hypoth-
esis, finally (iii) the solution concerns the actions (corrective or
preventive) performed (in this case, air gap optimization). More
globally, the case is described as: in the experience Exp1, the con-
text C1 requires the analysis A1, which generates the solution S1.
This CG is built using the different concepts of the ontological
vocabulary and their relations in the maintenance management
(Figs. 5 and 6).

For the Conceptual Graph formalism, the information is struc-
tured as blocks of nested graphs linked by conceptual relations.
Therefore, in this particular graphical formalism, we are describing
the elements of a feedback process as well as respecting the struc-
ture context, analysis and solution. In the example, the solution
consists of a non-instantiated decision action, which is the mainte-
nance on specific equipment with a certain degree of freedom. The
interpretation of this Conceptual Graph with predicate logic is
performed by translating the concepts into binary predicates
(predicate of the concept + predicate of the nesting concept) and
the binary relations into ternary predicates (predicate of the two
linked concepts + predicate of the nesting concept) [13].

We follow the generally shared distinction in knowledge engi-
neering between task knowledge and domain knowledge. Task
knowledge specifies the goal(s) that an application pursues, and
the method for achieving these goals can be determined through



Fig. 3. An example of conceptual graph.

decomposition into subtasks and (ultimately) inferences [64]. For
example, the diagnosis task (finding a malfunction) in Common-
KADS [65] seems to have similarities with our work, notably the
similar terminology: complaint/symptom, hypothesis, differential,
finding(s)/evidence, and fault. In diagnosis, the underlying
knowledge typically contains knowledge about the system behav-
ior but also includes real expertise that is derived from practical
experiences in the domain [33]. The main addition for our
approach concerns the explicit integration of experienced knowl-
edge along with the associated beliefs for adaptive knowledge
reuse and a traceability of the reasoning process (e.g. fault(s) with
the evidence gathered for the fault(s) and the judgmental
knowledge).

3.2. Knowledge reuse process as a variation of the CBR process

For the formal knowledge modeling of multiple maintenance
experts to facilitate and improve the quality of industrial experi-
ence feedback, we conducted a thorough reflection on properly
capitalizing on these experiences and efficiently reusing them.
Thus, our work is focused on enriching the description of each case
with the information about the credibility of the analysis that is
associated with problem solving. This technique includes the cred-
ibility of the specific expertise domains of the involved experts and
their beliefs about the different assumptions related to the root
cause analysis during the problem solving of the studied case. In
our CBR approach, the research phase of the most similar cases fea-
tures three new elements (Fig. 4): (i) exploiting the taxonomical
knowledge that can provide a higher degree of similarity between
concepts, (ii) gathering the different hypothesis that were consid-
ered in the root cause analysis process, and (iii) grouping domain
experts scientific domains (according to their scientific profiles)
and combining their thoughts and beliefs that are associated with
the hypothesis for a collaborative decision-making process. It is
important to integrate the subjective and objective data in the
knowledge base to enrich the representation system with informa-
tion on cases and promote the relevant experience feedback pro-
cess. Additionally, the subjective opinions of experts can be
synthesized with respect to the problem to validate the hypothesis.
Thus, for each experience case, we will include an analysis part that
is comprised of the hypothesis, the subjective opinion of the ex-
perts (pignistic probability) and the objective outcome (hypothesis
validation).

Most credible similar
cases Target case

New problem

RETRIEVE Retrieved source cases

CASE BASE

T (3)
REUSE
(5)
RETAIN

Adapted and
repaired case

(4) Adapted source
REVISE case

Fig. 4. A CBR variation featuring expert analysis as an extension of the classic CBR.

3.2.1. Case elaboration

A case elaboration is the first step of the CBR process in which a
general method consists of completing or filtering the raw descrip-
tion of a problem basis on the domain knowledge and then infers
new descriptors and importance weights [43]. Domain ontology
of case descriptors is useful for hierarchical description of the con-
cept/relation type sharing within the entire case base.

3.2.2. Information retrieval

Information retrieval about similar cases requires an efficient
comparison between the descriptors for the similarity evaluation.
Considering the wide range of available semantic similarity ap-
proaches, our work focused the taxonomical exploitation of the
ontology.

In his works, Lin [40] defined the theoretical justifications of the
similarity measure that is derived from a set of assumptions about
a universal definition of similarity in terms of information theory.
From those assumptions, he proved that the similarity between
two objects is only related to their common attributes and differ-
ences, demonstrating the convenience of adopting a non-linear
logarithm-based fractional function [40]. In accordance with these
fundamental assumptions, Batet et al. [7] introduced a similarity
measure that is based on exploiting the full taxonomic knowledge
of an ontology by considering the number of differences between
the superconcepts (i.e. ancestors or subsumers of a concept) for a
pair of concepts. For a full concept hierarchy or taxonomy of con-
cepts (C) of an ontology, a superconcept is defined as:



T(Ci) = {C; € C,(; is the superconcept of C;} U{C}

Therefore, in this context, the stated similarity measure is based on
an inverted logarithm function of the ratio between the number of
non-shared superconcepts and the total number of superconcepts
modeled in the ontology [7] as follows:

|T(Co) UT(Coy)| — [T(Co") N T(Coy)|
IT(Co’) UT(Coy)|

simpsy (Co’, Co;) = —log,

Co’ is a concept from the target case,

Co; is a concept from the source case i,

|T(Co’) U T(Co;)| is the total number of superconcepts between
the two concepts for comparison,

|T(Co’) N T(Co;)| is the number of shared superconcepts between
the two concepts for comparison.

For the unnormalized nature of the first encountered measure,
it is necessary to consider a renormalization (value within the
range [0,1]) defined as [30]:

Simﬂ«;(Co’, CO,') =1

. ’ \ __ Simggy (Co’,Co;)
Slmﬂ(c(CO S COI) = gy (A1)

if Co’ = Co;
if Co'#Co;

In the renormalized formula, H is the height of the ontology (i.e. the
number of edges on the longest path from the root node to a lowest
node).

This measure allows for comparing two concepts. However, we
are interested in a more general measure to compare two descrip-
tors. Thus, from the study by Haouchine et al. [26], we suggest a
new measure of local similarity (Msin;) that is composed of three
local similarities (presence checking, taxonomic similarity and
the comparison of functional modes or performance levels) be-
tween the source case i and the target case in the descriptor j, which
is defined as follows:

M' — (pPresence ., Value . ,State
S'mu*‘w",'j pr *(pu

The descriptor is filled in the source
case and the target case

The descriptor is not filled in the
source case or the target case

Presence Presence _
Py Py =1

Presence _
Dij =0

(normal, degraded and abnormal modes) or its performance level
(in our context, upper, normal and lower).

Then, a global similarity measure Sim(source;, target) to compare
two cases is obtained by the weighted sum of these functions over
the entire set of descriptors. Weights represent the knowledge
about the importance of the “influence” of the problem descriptor
values on the solution.

n
Sim(source;, target) = > "Mam, * Wj
=

n is the number of problem descriptors,

i is the associated number of the case source,

j is the associated number of the descriptor,

Msim, is the local similarity of source case i and descriptor j,
wj is the weight associated with descriptor j with 0 < w; < 1 et

Z;:le =1.

Then, for the analysis modeling using the experts’ opinions re-
use principle, which has been introduced in the top of Section 3.2,
we propose the following mechanism to reuse the most similar
cases as follows: during the research phase of experience cases
(similar to using contextual information to guide retrieval), the
resulting set of retrieved cases is ranked in decreasing order for
the similarity measure. This order suggests that the most similar
cases appear at the top of this list and an acceptable similarity
threshold is determined for the problem case. We will use the asso-
ciated two scores for each hypothesis of this set (which determine
whether this hypothesis will be proposed for solving the new prob-
lem). The first score, called the “subjective score”, is calculated
from the similarity of the contexts and from the subjective opin-
ions of domain experts (pignistic probability) [29], which is ob-
tained with the reasoning mechanisms of the Dempster-Shafer
theory [57]. The pignistic probability is based on the agent’s beliefs
[59], and measures the probability that a domain expert has an op-
tion (a diagnosis and associated treatment plan) when required to
make a decision. The second score, called the “objective score”, is
calculated from the similarity of the contexts and from the valida-
tion of the hypothesis.

3.2.3. Reuse case (knowledge adaptation)

For most reasoning situations, adaptation knowledge acquisi-
tion is complex and domain-dependent. Thus, we adhere to the
principle of adaptation-guided retrieval [60] such that the adapta-

qD}j{alue qDi\j{alue =1 If CO/ = CO,'

simpsy (Co’, Co;)

Py = SiMiG = oo T 2

H: H is the height of the ontology. simgsy (Co’, Co;) = —log,

|T(Co") UT(Coy)| — |T(Co") N T(Coy)
T(Co’) UT(Coy)|

@5tate (Pgtate =1 If
FunctionalMode(Co’) = FunctionalMode(Co;)
or Level (Co’) = Level (Co;)
(Pg_rate c [0 ]] If
FunctionalMode(Co’) # FunctionalMode(Co;)
or Level (Co’) # Level (Co;)

For (pf}mfe, without restricting the generality of the proposed descrip-
tors, there is an implicit dependence between a functional mode
and the level descriptors. In fact, in most situations, the state of
industrial equipment is described either by its functional mode

tion knowledge contributes to the retrieval knowledge. Following
the principles developed in [18], we are interested in the manage-
ment of the differences and dependencies between the descriptor
of the problems and the descriptors of the solutions. Haouchine
et al. [26] proposed an adaptation algorithm that builds the ontol-
ogy and the dependence relationships resulting from a similarity
path in the solution space. This algorithm is an adaptation algo-
rithm that is dedicated to the technical diagnosis problem, and it
has been applied with a failure model based on domain expertise.
In particular, this approach is appropriate for the pattern of causal
relationships between the various failures that may occur in indus-
trial equipment [26]. This failure model enables for the determina-
tion of dependencies and influences, as they are used in adaptation.
In our work, we consider that it is relevant to also use this adapta-
tion approach because this research study suggests we acquired a
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failure model from the domain expertise in the industrial
maintenance.

3.2.4. Revise

The revision phase is also called the repair phase. Following the
adaptation phase, a solution is proposed for the target case. The
suggested solution will be evaluated and eventually modified.
Therefore, once the case is revised and validated, it can be applied
to become a new experience in the knowledge base.

3.2.5. Retain

Finally, the new case is stored in the case base for future use.
Thus, the case base is the source of the feedback and the appropri-
ate maintenance of this base is important for ensuring suitable
functioning of the system.

4. Application example: a case study of a complex system

In this section, we present an overview of the complex system
that is used as an application example. We have deliberately sim-
plified the model to provide understandable explanations. This
section is organized as follows: Section 4.1 presents an ontology
that was developed with a functional decomposition of descriptors
that is necessary for the implementation of the proposed mecha-
nisms. Section 4.2 describes the Case-Based Reasoning principles
that takes account of the opinions of the different experts regard-
ing the technical realities within the industrial maintenance.
Section 4.3 presents a discussion of the example with the current
results of the evaluation phase that is still in progress, while
Section 4.4 explores our current architecture with the tools used
in our framework.

4.1. Ontology of the domain

Fig. 5 includes the ontology of the concept types that are asso-
ciated with the maintained system that we will study. In the first
part, there is a classification of the machines according to their
functionality. Next, there is a classification of the components of
these machines according to their type: mechanical, pneumatic,
hydraulic, electrical and electronic. Other concepts are concerned
with the machines’ symptoms, the status of the machines and
components, failures that may arise and repair actions associated
with each problem to remove or tolerate the discovered malfunc-
tions. These concept types consist of different parts, which each
correspond to the descriptors of the cases. We will examine a par-
ticular technical diagnostic based on the patterns of the context,
analysis and solution that are used for modeling the experience
cases (see Section 2.1.1). A measure that is based on the taxonom-
ical exploitation of the ontology is used to compare the values of

Table 1

The context part of the case base.
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Table 2
The analysis and solution parts of the case base.

Case Analysis Solution
Hypothesis Subjective score Objective score Failure Cause Ds1
(Diagnosis) (Pignistic Probability) (Validation)
Maintenance action
Source 1 H1 0.108 0 Air gap optimization
H2 0.505 1 Rotor-stator rub
H3 0.387 0
Source 2 H4 0.4 0 Jack replacement
H6 0.6 1 Solenoid valve
Source 3 H3 0.143 0 Distributor replacement
H5 0.556 1 Distributor
H6 0.301 0
Source 4 H3 0.7 1 Axle Rolling replacement
H4 0.3 0
Source 5 H1 0.505 1 Jack Actuator replacement
H2 0.183 0
H4 0.312 0

the semantic features of conceptual elements in a given domain
vocabulary. The context is comprised of the object of the mainte-
nance, the failure, the symptom and a given set of (potentially fail-
ing) components with an associated diagnosis. The analysis
contains certain hypothesis of the underlying causes for the system
failures and the experts’ beliefs about each of these causes (pignis-
tic probabily and validation).

For this simplified application, the proposed lightweight ontol-
ogy is similar to a simple taxonomy mainly having an order rela-
tion between the concepts. This type of relation can be a
hierarchical tree describing a semantic link of the specialization
between the considered concepts of the studied domain. Generally,
an ontology can contain axioms, rules and constraints to more pre-
cisely represent the knowledge from the application domain [23].

An ontology that contains many relations other than class-sub-
class relations is richer than a taxonomy with only class-subclass
relationships. Fig. 6 includes the taxonomy of the relation types
that are associated to system.

4.2. Applying case-based reasoning principles with the experts’
opinions

Using this lightweight ontology of concept types (taxonomy),
we illustrate our case base and especially the method for searching
for similar solutions by matching the source and target problems.
We built a case base containing five source cases with eight
descriptors for the context part (Table 1) and one descriptor for
the solution part (Table 2). Additionally, each descriptor in the con-
text part is comprised of two parts (concept and value), as shown
below. We will, therefore, illustrate the proposed approach to re-
use the past experiences and integrating the experts’ beliefs with
a detailed description of the problem solving mechanism for a tar-
get case in relation to the cases that are stored in the case base. The
cases are represented in Tables 1 and 2 to illustrate the different
steps of the CBR. Case source 1 corresponds to the Conceptual
Graph of Fig. 3.

Therefore, the process for calculating the pignistic probabilities
and the validation of the hypothesis are shown below.

For source case 1, three hypothesis (H1,H2,H3) that were de-
duced from the ontology are the possible causes of the occurrence
of this case and are evaluated by the experts (Expert 1, Expert 2,
and Expert 3) by allocating the unit mass of belief among the sub-
sets of the set of reference Q (Table 3) in order to find the primary
cause (failure cause) of problem. We consider that experts 1 and 3

Table 3
Conjunctive and disjunctive combinations of the experts.
Hypotheses Expert Expert Expert Exp (Exp 1 N Exp
1 2 3 1NExp3 3)UExp2
0 0 0 0.39 0.39
H1 0.3 0 0 0.03 0
H2 0 0.85 0 0.06 0.05
H3 0 0 0.6 0.3 0
H1uUH2 0.2 0 0 0.02 0.04
H1UH3 0 0 0 0 0
H2 UH3 0 0 03 0.15 0.38
H1UH2UH3 05 0.15 0.1 0.05 0.13
Table 4
Conjunctive and disjunctive combination of the experts.
Pignistic probability Validation
Bet P(H1) 0.108 1]
Bet P(H2) 0.505 1
Bet P(H3) 0.387 0

are members of the same domain while expert 2 is member of an-
other domain.

Because Experts 1 and 3 are members of the same domain, a
conjunctive combination is applied (Exp1 n Exp3). We illustrate
the detailed calculation of the H2 hypothesis as follows:

mynms(H2) = Y my(H;)-my(H)) VH;, HjCQ

HinH;=H2

my Nms3(H2) = mq(H2) = m3(H2) 4+ my(H2) * m3(H1 UH2)
+my(H2) « m3(H2UH3) +m;(H2) * ms(H1
UH2 UH3) +my(H1 UH2) * m3(H2) +m;(H2
UH3) x m3(H2)+my(H1 UH2 UH3) * m3(H2)
+my(H1UH2) * m3(H2 UH3) +m;(H2 UH3)
* m3(H1 UH2)

=02 % 0.3 =0.06
Similarly, a disjunctive combination is applied for the two expert

groups of different domains. Thus, the disjunctive fusion between
(Exp1 N Exp3) and Exp2 for H2 is:



M3 Umy(H2) = > my(Hi)-my(H;) VHi, H;C Q

H;UH;=H2

My Umy(H2) = my3(H2) Umy(H2) = 0.06 « 0.85 = 0.05

Finally, the pignistic probabilities of each hypothesis are (Table 4):
For example:

m123(H2) m123(H1 UHZ) mlzg(HZ UH3)

N mi3(H1 UH2 UH3)

translate the relative importance of the descriptors that are main
contributors to the analysis. This information is derived from the
collective expertise gained in the target domain. The global similar-
ity measure Sim(source;, target) is:

The calculation for the global similarity between the source 1
and target case is described by:

1
BetP(H2)=1_m(®)( T 5 + =

As result, the pignistic probability is based on the agent’s beliefs,
and the validation of the hypothesis is the selected option for the
expert group (Table 4).

4.2.1. lllustration of the CBR variation featuring expert analysis

To illustrate the first step of the CBR, we build the target case, as
described in Table 5. The elaboration phase consists of completing
all the descriptors that are needed to describe the context of the
new problem.

Therefore, the second phase involves calculating the local simi-
larity of each descriptor between the target case and source case
(Table 6).

For example, a detailed calculation for the local similarity for
the descriptor 1 (ds1) between the Source 1 and Target is per-
formed, as follows.

Presence —
D11 =1

3 > =0.505

Sim(source,, target)

8
= ZMsim]j * Wj
=

Sim(sourcey, target) = (0.61 x 0.15)(0.61 % 0.3)(0.51 * 0.2)
x (0.43 x 0.07)(0 * 0.07)(0 = 0.07)(0.51
x 0.07)(0 = 0.07)

Sim(sourcey, target) = 0.44

Now, we determine the measures that integrate the experts’ opin-
ions for the two related cases. For a similarity threshold of 40%,
source case 1 and source case 5 will be selected and used in the
next step. The analysis part (hypothesis, pignistic probability, and
validation) was already established when the case was stored in
the case base.

|T(Parallel Lathe) U T(Frontal Lathe)| — |T(Parallel Lathe) N T(Frontal Lathe)|

Value __
011 =

|T (Parallel Lathe) U T (Frontal Lathe)|

log,(H +2)

T(Parallel Lathe) = {Lathe, Machining, Machine, System}
U {Parallel Lathe}

T(Frontal Lathe) = {Lathe, Machining, Machine, System}
U {Frontal Lathe}

|{Lathe Machining, Machine, System, Parallel Lathe, Frontal Lathe}| —

We now refer to the results from the two selected cases in Ta-
ble 8. The calculated similarities and the analysis part for each case
are presented (three hypothesis (H1, H2 and H3) were considered
for source case 1, and the hypothesis H1, H2, and H4 were consid-
ered for source case 5).

|{Lathe, Machining, Machine, System}|

Value __
P11

|{Lathe, Machining, Machine, System, Parallel Lathe, Frontal Lathe}|

64
vawe _—108, %"

L T log,(4+2) 061

State __
P11 =

Thus, the measure of local similarity (Msin;) is comprised of three
local similarities, as follows:

__ ~Presence Value State
Msim; = @i * @™ + @y

Mgim,, =1 + 061 + 1=0.61

Once we have calculated every local similarity, we compute the glo-
bal similarity between each source case and the target case (Table 7)
taking into account the weight of each descriptor. These weights

log,(H+2)

The subjective score [1] is obtained as the product of the con-
textual similarity measures with the pignistic probabilities. The
objective score [2] is deducted from the contextual similarity mea-
sures and the validation of the hypothesis in the resolution of the
case sources. Subsequently, we consider the hypotheses (H1, H2,
H3, and H4) from the selected cases with the greatest subjective
and objective scores to determine an average between these two
measures. Finally, the hypothesis H1 of source case 5 was selected
for solving the target case (Table 8).

Therefore, the goal of the adaptation phase is to reuse the infor-
mation of the source case (source case 5) to build a solution for the
problem of the target case (Table 9). The output of this phase is a
suggested solution in the target case but must be revised before
its application and its capitalization in the knowledge base.



Table 5
The target case.

Case  Context
General Information (potentially failing) Components
ds1 ds2 ds3 ds4 ds5 ds6 ds7 ds8
Machine FM Failure Level Symptom Level Mechanical FM Pneumatic FM Hydraulic FM Electrical FM Electronic FM
(anomaly)
Target Frontal Degraded Faulty Upper Abnormal Upper Socle Failing Movement Degraded
lathe distributor speed generator
evaluation of maintenance objectives as well as their implementa-
Table 6 tion. This evaluation process is done using a bottom-up approach
Local similarity measures between the target case with other cases in the case base. and includes collaborative actions with partner companies in the
Local similarity  ds1 ds2 ds3 ds4 ds5 ds6 ds7 ds8 area.of industrial maintenance.. . .
Srcel Target 061 061 051 o043 o o 051 o ’ Firstly, the lesson learned principles bas_ed on the expenmenta_—
Srce2[Target 022 013 013 043 0 0 027 0 tion that we propose and the used modeling to represent experi-
Srce3/Target 023 007 039 061 0 0 0 0 ences, taking into account three classical parts (context, analysis
Srced/Target 013 013 027 061 O 0 0 0 and solution) are really close to the working logic of the enterprise.
Srce5/Target 031 051 1 026 0 0 051 O

4.3. Discussion of the example

Several projects focusing on the maintenance problems were
carried out in the LGP (Production Engineering Laboratory) with
our involvement. A lot of them, aimed primarily at capitalizing
the relevant knowledge from experience feedback, were settled
in partnership with some departments (e.g. quality and mainte-
nance) in the transport industry (railway and aircraft). The lessons
learned enable procedures to be easily cross compared in the do-
main knowledge, so that they can spot opportunities for leverage.
We extracted from these projects the previous example allowing
us to study proposed methodology functionalities by estimating
the complementarity of the implicated methods and the articula-
tion mechanisms of associated tools.

These functionalities provided us relevant actions to knowledge
modeling and reasoning, constituting a first basic validation that
we extend to other cases. The focus was on a collaborative engage-
ment of methods and tools in the contextualizing and the

Table 7
Global similarity measures.

The implementation of experienced knowledge capitalization is
essential in industrial maintenance management and this is in line
with the continuous improvement strategy of many intelligence-
driven organizations. It is clearly connected to the requirements
of a modern work organization which plays a key role in promoting
products and services that feature outstanding quality.

Secondly, the relevant cases of the case database can be easily
recovered for solving the new problem thanks to the way as we de-
scribe and manipulate the experiences in the industrial process.
Recovering the case that is similar to the new problem but also
the most credible is assimilated to the daily work of the enterprises
because it does not change the manner of experts’ reasoning in
problem solving. So, we have found a favorable work environment
that has been of great benefit to the establishment of the industrial
partnership services.

Thirdly, our strategy of integration of the opinions of several ex-
perts, particularly necessary in complex systems and complex sit-
uations (as maintenance activities) or when expertise is not
specifically well-defined, appeared well-suited to treated cases
and to the behavior of actors in these collaborative contexts.
Flexible and reliable elements are provided for knowledge

Global similarity ds1 ds2 ds3 ds4 ds5 ds6 ds7 ds8 Weighted mean

Weight/dsi 0.15 0.3 0.2 0.07 0.07 0.07 0.07 0.07 1

Srcel/Target 0.61 0.61 0.51 0.43 0 0 0.51 0 0.44

Srce2/Target 0.22 0.13 0.13 0.43 0 0 0.27 0 0.15

Srce3/Target 0.23 0.07 0.39 0.61 0 0 0 0 0.17

Srce4/Target 0.13 0.13 0.27 0.61 0 0 0 0 0.16

Srce5/Target 0.31 0.51 1 0.26 0 0 0.51 0 0.45

Table 8
Selected cases with measures that integrate the experts’ opinions.
Case Global Analysis Experts’ Opinions (Beliefs)
similarity
Measure Hypothesis Pignistic Validation Subjective Score  Objective Score  Hypothesis Measure Mean
(Diagnosis) Probability [1] [2] (Diagnosis) - scores
[ 121
Source  0.44 H1 0.108 0 0.05 0 H1 (srce 5) 023 045 034
1 H2 0.505 1 0.22 0.44 H2 (srce 1) 022 044 033

H3 0.387 0 0.17 0 H3 (srce 1) 017 0 0.09

Source  0.45 H1 0.505 1 0.23 0.45 H4 (srce 5) 014 0 0.07

5 H2 0.183 0 0.08 0

H4 0.312 0 0.14 0




Table 9
Adaptation of the source case 5 to the target case.

Case Context

General information

(potentially failing) Components

ds1 ds2 ds3 ds4 ds5 ds6 ds7 ds8
Machine FM Failure Level Symptom Level Mechanical FM Pneumatic FM Hydraulic FM Electrical FM Electronic FM
(anomaly)
Source Milling Degraded Switch Upper Abnormal Upper Fixed Failing Motor Degraded
5 machine broken speed bound

Target Frontal Degraded Faulty Upper Abnormal Upper Socle Failing Movement  Degraded

lathe distributor speed generator

Analysis Solution

Case Failure Cause Maintenance action
Source 5 Jack Actuator replacement
Target Jack Actuator replacement

Dempster-Shafer theory ]

Local similarities
Global similarity

Tools for
knowledge
reuse

Fig. 7. The tools used to support the architecture.

Ontology

representation and reasoning and contribute to their implementa-
tion as a part of an operational process in practice.

Finally, our approach seems to be easily transposable to new
real industrial case in order to improve the solving problems pro-
cess using past experiences and experts beliefs in collaborative
decisions making.

Another special feature that strengthens the applicability of our
methodology is that several tools may be used at each level of the
software architecture. This is due to the ontology component facul-
ties that guarantee semantic interoperability, consistency and
adaptation to different needs. In practice, this proposal does not
hinder current and future progress towards collaboration.

In the next section, we present a related architecture with the
tools used in our framework.

4.4. Proposed architecture

In order to support the methodological approach and research
activities undertaken to complete the comprehensive characteriza-
tion of the proposed framework and without loss of generality, we
rely on the following architecture that presents the used tools
(Fig. 7). According to the previous developments, three main blocks
comprise this architecture: experience feedback system (EF), con-
ceptual graphs support (CGs) with its underlying ontology level
and transferable belief model (TBM) with similarity measures.

As reference support for the experience feedback process ap-
plied to problem solving, we rely on the T-Rex/ProWhy software.
This software has been developed by the LGP initially for an enter-
prise of railway sector (Alstom Transport) before its porting in
other companies. It is a support tool for problem solving process
and experience feedback [31]. For exploitation of capitalized

experiences, this tool permits the use of software engines allowing
a relevant search of past experiences (by keywords or similarity)
using the case-based reasoning steps.

In view of ontology modeling, we selected Conceptual Graphical
User Interface (CoGui) [6] because of the flexibility of this toolbox,
the quality of the reasoning module and the user interface that al-
lows efficient knowledge manipulation and visualization in con-
ceptual graphs. The intuitive user interface of CoGui provides the
ability to personalize any ontological preferences and different
models of conceptual graphs with a variety of advanced controls
and reasoning tools for specialization, equivalence, inference and
validation.

CoGui supports a variety of web semantics formats and also
incorporates a compatibility module for interoperability manage-
ment, as well as a reasoning system for information retrieval to dem-
onstrate how CoGui components might be used in an actual
implementation. In addition to the advantage of addressing the
complementary aspects of an ontology building project that the tar-
get modeled system, domain knowledge, formal management rules,
and experiences formalization with the Conceptual Graphs, it allows
all involved group experts to find the best expression module for let-
ting them share their understanding of the considered situation with
the group. The clearly organization of CoGui makes navigation easy
and allows rapid access to even more information and knowledge
manipulation without changing the logic of the user.

However, CoGui does not yet incorporate an explicit procedure
for taking account of the similarity measures between the concepts
of ontologies, although this option can been included in the last
version that allows the integration of other specific modules. In
our case, we made some similarity measurements (local similari-
ties and global similarity) with the external module so that the
comparison of concepts matches the ontological application asso-
ciated to domain knowledge and experiences. This has been writ-
ten in calculation tables which are easily incorporated into case
retrieval procedures, and the instructions are clear for knowledge
reuse with experts’ beliefs.

From a practical viewpoint of belief functions implementation,
we use a special software tool developed in LGP with the Centre
for Resources and Competences “Engineering Decision and Com-
munication for the Enterprise” (CRC-IDCE) of the National School
of Engineers of Tarbes. This toolbox allows to combine experts
knowledge using the same variables theoretically defined. The
belief functions are treated as optional changes in probability dis-
tributions using the credibility and plausibility measures defined
in the Transferable Belief Model. Regarding propagation
mechanisms, with the help of this tool we have developed a spe-
cific propagation procedure using the propagation mechanisms
introduced by Smets and Kennes [58]. In fact, we customize
and use proven belief functions associated to some management



procedures attaching the degree of similarity between concepts
of compared cases (similarity measures) with our existing software
that uses Ruby Programming Language frameworks available which
provide for convenient planning, configuration and operation.

5. Conclusion and related works

The knowledge capitalization in maintenance management is
an important issue that significantly contributes to improving the
performance of industrial systems. To facilitate collaborative main-
tenance management, our work is devoted to the formal knowl-
edge modeling of multiple experts as decision support in
problem solving within this area. This method allows for common
information with rigorous semantics in the collaborative decision-
making process, facilitating the exchange and sharing of knowl-
edge among maintenance actors.

Our proposal was structured with three elements: (i) the use of
Conceptual Graphs as a knowledge representation language, (ii)
the Transferable Belief Model for collaborative decision making
with multiple maintenance experts, and (iii) the Case-Based Rea-
soning for using past experiences while integrating experts’ beliefs.

For Case-Based Reasoning, we use an ontology-based similarity
measure for the information retrieval of the most appropriate infor-
mation for the current case. The similarity measure is characterized
with semantic techniques that are based on a hierarchical organiza-
tion of concepts of the modeled system within a formal ontology. This
formalization is particularly important because it guarantees good
logical foundations of the reasoning process. A well-built ontology
supports the graph-based operations and facilitates adequate and sig-
nificant results. It is also important to reuse the analysis part contain-
ing the reasoning step for the problem solution. This important
feedback of how human beings reason, learn and adapt can then be
exploited by the system maintainers, since it is a fundamental knowl-
edge component. Thus, from the different parts included in a given
case, the context is based on the similarity search mechanism, the
analysis integrates the reuse of the experts’ advice and the solution
adaptation considers the domain ontology and its established depen-
dency relations for each studied experiment.

We have detailed the various steps of our proposal with an
application example that allows us to involve the proposed ap-
proach in situations that are similar to those in industry. This
application has been instructive for the contributions of the work
to demonstrate the model and its limitations. Therefore, prospects
for further research are also presented.

Potential short- and medium-term future studies related to this
work are as follows:

e In the capitalization process, a case base that is partitioned
according to the areas of the experts’ competencies that aims
to produce a knowledge base satisfying a given integrity con-
straint would be beneficial. Thus, when a new event occurs,
each expert reasons within his own case base, and each local
expert is integrated in the global resolution of the target case;
thereby, providing effective case combination for the Case-
Based Reasoning [17]. This method can be implemented in prac-
tice within a collaborative environment with Web services and
modern e-collaboration principles [47].

Another aspect to consider involves the importance of risk man-
agement with non-additive beliefs of the different actors of the
collaborative work for maintenance. The need for a study of
experts’ beliefs, practices and attitudes toward uncertainty
and the expert’s methods for experience sharing with operators
will lead to the exploration of methods to master the full-scale
risks and decision making in conflict situations [8].

Other work can involve the performance evaluation of our prop-
osition using certain task-analytic constructs to identify the

(]

(]

factual expertise for the formulation of the decision support
[11]. Several methods are possible for improving performance
based on experience including the quality level of the final deci-
sions, the duration of the process of the solution elaboration,
and significant potential benefits (e.g. better productivity and
ability to deal with more complex problems).

References

[1] A. Aamodt, E. Plaza, Case-based reasoning: foundational issues,
methodological variations, and system approaches, Artificial Intelligence
Communications 7 (1) (1994) 39-59.

[2] J. Angele, G. Lausen, Ontologies in f-logic, in: S. Staab, R. Studer (Eds.),
Handbook on Ontologies, Springer-Verlag, Berlin, 2004, pp. 29-50.

[3] T. Aven, E. Zio, Some considerations on the treatment of uncertainties in risk
assessment for practical decision making, Reliability Engineering & System
Safety 96 (1) (2011) 64-74.

[4] A. Avizienis, ].C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, IEEE Transactions on Dependable and
Secure Computing 1 (1) (2004) 11-33.

[5] F. Baader, 1. Horrocks, U. Sattler, Description logics, in: F. van Harmelen, V.
Lifschitz, B. Porter (Eds.), Handbook of Knowledge Representation, Elsevier,
2007, pp. 135-179 (Chapter 3).

[6] J.F. Baget, M. Chein, M. Croitoru, A. Gutierrez, M. Leclere, M.L. Mugnier, Logical,
graph based knowledge representation with CoGui, in: Graphes et
Appariement d’Objets Complexes (GAOC) Workshop Collocated with 10IEME
Conference Internationale Francophone sur I'Extraction et la Gestion des
Connaissances (EGC 2010), Hammamet, Tunisia, 2010.

[7] M. Batet, D. Sinchez, A. Valls, An ontology-based measure to compute
semantic similarity in biomedicine, Journal of Biomedical Informatics 44 (1)
(2011) 118-125.

[8] F.Beaudouin, B. Munier, A revision of industrial risk management: decisions and
experimental tools in risk business, Risk and Decision Analysis 1 (1)(2009) 3-20.

[9] R. Bergmann, Experience Management: Foundations, Development
Methodology, and Internet-Based Applications, Lecture notes in Computer
Science, Lecture notes in Artificial Intelligence, vol. 2432, Springer, 2002.

[10] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, D.
Riboni, A survey of context modelling and reasoning techniques, Pervasive and
Mobile Computing 6 (2) (2010) 161-180.

[11] F. Bolger, G. Wright, Assessing the quality of expert judgment: issues and
analysis, Decision Support Systems 11 (1) (1994) 1-24.

[12] A. Borgida, On the relative expressiveness of description logics and predicate
logics, Artificial Intelligence 82 (1/2) (1996) 353-367.

[13] M. Chein, M.L. Mugnier, Graph-Based Knowledge Representation:
Computational Foundations of Conceptual Graphs, Series: Advanced
Information and Knowledge Processing, Springer, London, United Kingdom,
2008. 445p. (Hardcover).

[14] Y.J. Chen, Development of a method for ontology-based empirical knowledge
representation and reasoning, Decision Support Systems 50 (1) (2010) 1-20.

[15] YJ. Chen, Y.M. Chen, H.C. Chu, H.Y. Kao, On technology for functional
requirement-based reference design retrieval in engineering knowledge
management, Decision Support Systems 44 (4) (2008) 798-816.

[16] D. Chen, G. Doumeingts, F. Vernadat, Architectures for enterprise integration
and interoperability: past, present and future, Computers in Industry 59 (7)
(2008) 647-659.

[17] ]. Cojan, . Lieber, Belief merging-based case combination, in: L. McGinty, D.C.
Wilson (Eds.), Proceedings of The Eighth International Conference on Case-
Based Reasoning: Case-Based Reasoning Research and Development Lecture
Notes in Computer Science, Lecture Notes in Artificial Intelligence, vol. 5650,
Springer, 2009, pp. 105-119.

[18] M. d’Aquin, J. Lieber, A. Napoli, Adaptation knowledge acquisition: a case study
for case-based decision support in oncology, Computational Intelligence 22 (3/
4) (2006) 161-176.

[19] T. Denceux, Conjunctive and disjunctive combination of belief functions
induced by nondistinct bodies of evidence, Artificial Intelligence 172 (2/3)
(2008) 234-264.

[20] Y. Ducq, D. Chen, B. Vallespir, Interoperability in enterprise modelling:
requirements and roadmap, Advanced Engineering Informatics 18 (4) (2004)
193-203.

[21] R. Fagin, J.Y. Halpern, N. Megiddo, A logic for reasoning about probabilities,
Information and Computation 87 (1/2) (1990) 78-128.

[22] G. Fernandez, ]. Francisco, A.C. Marquez, Framework for implementation of
maintenance management in distribution network service providers,
Reliability Engineering & System Safety 94 (10) (2009) 1639-1649.

[23] F. Fiirst, F. Trichet, Axiom-based ontology matching, Expert Systems 26 (2)
(2009) 218-246. http://dx.doi.org/10.1111/j.1468-0394.2009.00482.X.

[24] R. Gouriveau, D. Noyes, Risk management - dependability tools and case-
based reasoning integration using the object formalism, Computers in Industry
55 (3) (2004) 255-267.

[25] M. Ha-Duong, Hierarchical fusion of expert opinions in the transferable belief
model, application to climate sensitivity, International Journal of Approximate
Reasoning 49 (3) (2008) 555-574.

[26] K. Haouchine, B. Chebel-Morello, N. Zerhouni, Adaptation-guided retrieval for
a diagnostic and repair help system dedicated to a pallets transfer, in: M.



Schaaf (Ed.), Workshop Proceedings of The Ninth European Conference on
Case-Based Reasoning, Trier, Germany, 2008, pp. 33-42.

[27] C. Hilhorst, P. Ribbers, E. van Heck, M. Smits, Using Dempster-Shafer theory
and real options theory to assess competing strategies for implementing IT
infrastructures: a case study, Decision Support Systems 46 (1) (2008) 344-
355.

[28] P. Hitzler, H. Scharfe, Conceptual Structures in Practice, Chapman & Hall/CRC
Studies in Informatics Series, 2009.

[29] H.Jabrouni, B. Kamsu-Foguem, L. Geneste, C. Vaysse, Continuous improvement
through knowledge-guided analysis in experience feedback, Engineering
Applications of Artificial Intelligence 24 (8) (2011) 1419-1431.

[30] H. Jabrouni, B. Kamsu-Foguem, L. Geneste, C. Vaysse, Structural-model
approach of causal reasoning in problem solving processes, in: Proceedings
of The Twelfth IEEE International Conference on Information Reuse and
Integration, Las Vegas, Nevada, USA, 2011b, pp. 32-35.

[31] H.Jabrouni, B. Kamsu-Foguem, L. Geneste, C. Vaysse, Analysis Reuse Exploiting
Taxonomical Information and Belief Assignment in Industrial Problem Solving,
Computers in Industry (2013), http://dx.doi.org/10.1016/j.compind.2013.
07.004.

[32] E. Jiménez Ruiz, B. Cuenca Grau, I. Horrocks, R. Berlanga, Supporting
concurrent ontology development: framework, algorithms and tool, Data &
Knowledge Engineering 70 (1) (2011) 146-164.

[33] B. Kamsu-Foguem, Knowledge-based support in non-destructive testing for
health monitoring of aircraft structures, Advanced Engineering Informatics 26
(4) (2012) 859-869.

[34] B. Kamsu-Foguem, T. Coudert, L. Geneste, C. Béler, Knowledge formalization in
experience feedback processes: an ontology-based approach, Computers in
Industry 59 (7) (2008) 694-710.

[35] B. Kamsu-Foguem, G. Diallo, C. Foguem, Conceptual graph-based knowledge
representation for supporting reasoning in African traditional medicine,
Engineering Applications of Artificial Intelligence 26 (4) (2013) 1348-1365.

[36] B. Kamsu-Foguem, D. Noyes, Graph-based Reasoning in Collaborative
Knowledge Management for Industrial Maintenance, Computers in Industry
(2013), http://dx.doi.org/10.1016/j.compind.2013.06.013.

[37] J. Klein, C. Lecomte, P. Miché, Hierarchical and conditional combination of
belief functions induced by visual tracking, International Journal of
Approximate Reasoning 51 (4) (2010) 410-428.

[38] A. Lau, E. Tsui, W.B. Lee, An ontology-based similarity measurement for
problem-based case reasoning, Expert Systems with Applications 36 (3 Part 2)
(2009) 6574-6579.

[39] L. Liao, D.J. Patterson, D. Fox, H. Kautz, Learning and inferring transportation
routines, Artificial Intelligence 171 (5/6) (2007) 311-331.

[40] D. Lin, An information-theoretic definition of similarity, in: J.W. Shavlik (Ed.),
Proceedings of the Fifteenth International Conference on Machine Learning,
Morgan Kaufmann, San Francisco, California (USA), 1998, pp. 296-304.

[41] R. Lopez De Mantaras, D. Mcsherry, D. Bridge, D. Leake, B. Smyth, S. Craw, B.
Faltings, M.L. Maher, M.T. Cox, K. Forbus, M. Keane, A. Aamodt, I. Watson,
Retrieval, reuse, revision and retention in case-based reasoning, Knowledge
Engineering Review 20 (3) (2006) 215-240.

[42] H. Luo, S.L. Yang, XJ. Hu, X.X. Hu, Agent oriented intelligent fault diagnosis
system using evidence theory, Expert Systems with Applications 39 (3) (2012)
2524-2531.

[43] A. Mille, From case-based reasoning to traces-based reasoning, Annual
Reviews in Control 30 (2) (2006) 223-232.

[44] A. Mille, B. Fuchs, B. Chiron, Reasoning based on the experiment: a new
paradigm in industrial supervision, Revue d'intelligence artificielle 13 (1)
(1999) 97-128.

[45] M. Mohamed, M. Stankosky, A. Murray, Applying knowledge management
principles to enhance cross-functional team performance, Journal of
Knowledge Management 8 (3) (2004) 127-142.

[46] B. Motik, B. Cuenca Grau, I. Horrocks, U. Sattler, Representing ontologies using
description logics, description graphs, and rules, Artificial Intelligence 173 (14)
(2009) 1275-1309.

[47] A. Muller, A. Crespo Marquez, B. lung, On the concept of e-maintenance:
review and current research, Reliability Engineering & System Safety 93 (8)
(2008) 1165-1187.

[48] L. Oukhellou, A. Debiolles, T. Denceux, P. Aknin, Fault diagnosis in railway track
circuits using Dempster-Shafer classifier fusion, Engineering Applications of
Artificial Intelligence 23 (1) (2010) 117-128.

[49] L. Pintelon, L. Gelders, F. Van Puyvelde, Maintenance Management, ACCO,
Leuven, Belgium, 2000.

[50] L. Pintelon, F. Van Puyvelde, Maintenance Decision Making, ACCO, Leuven,
Belgium, 2007.

[51] H. Rakoto, P. Clermont, L. Geneste, Elaboration and exploitation of lessons
learned, in: M. Musen, B. Neumann, R. Studer (Eds.), Proceedings of The IFIP
Seventeenth World Computer Congress-TC12 Stream on Intelligent
Information Processing, vol. 328, Springer, Norwell, Massachusetts, 2002.

[52] A. Ranganathan, J. Al-Muhtadi, R.H. Campbell, Reasoning about uncertain
contexts in pervasive computing environments, IEEE Pervasive Computing 3
(2) (2004) 62-70.

[53] L. Rasovska, B. Chebel-Morello, N. Zerhouni, A mix method of knowledge
capitalization in maintenance, Journal of Intelligent Manufacturing 19 (3)
(2008) 347-359.

[54] Y. Reich, A. Kapeliuk, A framework for organizing the space of decision
problems with application to solving subjective, context-dependent problems,
Decision Support Systems 41 (1) (2005) 1-19.

[55] A. Seguy, D. Noyes, P. Clermont, Characterisation of collaborative decision
making processes, International Journal of Computer Integrated
Manufacturing 23 (11) (2010) 1046-1058.

[56] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, New
Jersey (USA), 1976.

[57] G. Shafer, Perspectives on the theory and practice of belief functions,
International Journal of Approximate Reasoning 4 (5/6) (1990) 323-362.

[58] P. Smets, R. Kennes, The transferable belief model, Artificial Intelligence 66 (2)
(1994) 191-234.

[59] P. Smets, Decision making in the TBM: the necessity of the pignistic
transformation, International Journal of Approximate Reasoning 38 (2)
(2005) 133-147.

[60] B. Smyth, M.T. Keane, Using adaptation knowledge to retrieve and adapt
design cases, Knowledge-Based Systems 9 (2) (1996) 127-135.

[61] J.L. Soubie, P. Zaraté, Distributed decision making: a proposal of support
through cooperative systems, Group Decision and Negotiation 14 (2) (2005)
147-158.

[62] J.F. Sowa, Conceptual structures: information processing in mind and machine,
The Systems Programming Series, vol. 481, Addison-Wesley, Reading,
Massachusetts, USA., 1984.

[63] JJF. Sowa, Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Brooks Cole Publishing Co., Pacific Grove,
California, USA, 2000. p. 608.

[64] G. Schreiber, Knowledge engineering, in: F. van Harmelen, V. Lifschitz, B.
Porter (Eds.), Foundations of Artificial Intelligence, Handbook of Knowledge
Representation, vol. 3, 2008, pp. 929-946 (Chapter 25).

[65] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. van de
Velde, B. Wielinga, Knowledge Engineering and Management: The
CommonKADS Methodology, The MIT Press, Cambridge, MA, 1999. ISBN: 0-
262-19300-0.

[66] M. Tabassian, R. Ghaderi, R. Ebrahimpour, Combining complementary
information sources in the Dempster-Shafer framework for solving
classification problems with imperfect labels, Knowledge-Based Systems 27
(2012) 92-102.

[67] J.R. Taylor, Understanding and combating design error in process plant design,
Safety Science 45 (1/2) (2007) 75-105.

[68] P. Van Eck, J. Engelfriet, D. Fensel, F. van Harmelen, Y. Venema, M. Willems, A
survey of languages for specifying dynamics: a knowledge engineering
perspective, IEEE Transactions on Knowledge and Data Engineering 13 (3)
(2001) 462-496.

[69] R.0. Weber, D.W. Aha, Intelligent delivery of military lessons learned, Decision
Support Systems 34 (3) (2003) 287-304.

[70] G. Wright, P. Ayton, Eliciting and modelling expert knowledge, Decision
Support Systems 3 (1) (1987) 13-26.

[71] H. Yao, L. Etzkorn, Automated conversion between different knowledge
representation formats, Knowledge-Based Systems 19 (6) (2006) 404-412.

[72] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and
Systems 100 (Supplement 1) (1999) 9-34.

[73] E. Zio, Reliability engineering: old problems and new challenges, Reliability
Engineering & System Safety 94 (2) (2009) 125-141.

Paula Andrea POTES RUIZ is PhD student at the
National Polytechnic Institute of Toulouse (INPT) and
her research unit is the Production Engineering Labo-
ratory (LGP) of National Engineering School of Tarbes
(ENIT). She received her engineer degree from National
University of Colombia - Manizales in 2011, and her
Master Degree from ENIT-INPT in 2011. Her research
activities mainly deal with industrial maintenance
management and her work is centered on the devel-
opment Methodologies (ontology and data-driven
models) for Collaborative Knowledge Management.

Dr. Bernard KAMSU-FOGUEM is currently a tenured
Associate Professor at the National Engineering School
of Tarbes (ENIT) of National Polytechnic Institute of
Toulouse (INPT) and leads his research activities in the
Production Engineering Laboratory (LGP) of ENIT-INPT,
aresearch entity (EA1905) of the University of Toulouse.
He has a Master’s in Operational Research, Combina-
torics and Optimisation (2000) from National Poly-
technic Institute of Grenoble, and a PhD in Computer
Science and Automatic (2004) from the University of
Montpellier 2. He got the “accreditation to supervise
research” (abbreviated HDR) from INPT in 2013,
reflecting a consistent research and typically around 15-20 publications in peer
reviewed journals.

In ENIT, his main courses are oriented on artificial intelligence methods, Ontology
engineering, information systems, knowledge management and Visual analysis in

of



Human-computer Interaction. His current research work concerns the focuses on
Knowledge Representation and Reasoning, Data mining (the analysis step of the
“Knowledge Discovery in Databases” process) and Knowledge Management for
Collaboration and Decision Support. His articles propose methodologies and rep-
resentations that are related to Semantic-based Information and Engineering Sys-
tems with particular emphases both on knowledge and engineering applications
(e.g. quality, industrial maintenance, construction and telemedicine).

iy

Pr. Daniel Noyes is professor at the National Engi-
neering School of Tarbes of National Polytechnic Insti-
tute of Toulouse (ENIT-INPT). He received his Speciality
Doctorate degree from the Toulouse Paul Sabatier Uni-
versity in 1975, and his Docteur és-Sciences degree from
the Toulouse National Polytechnic Institute in 1987.

In ENIT, his main courses are oriented on tools and
methods for the design and control of production sys-
tems including dependability concepts and risk analysis
principles.

He was director of the “Production Engineering
Research Laboratory” of ENIT-INPT for 10 years (2001-

2011) whose activities are dealing with mechanical engineering and industrial

engineering.

His current research work concerns the dependability of the production systems,
risk management, e-maintenance and collaborative decision making, and he is the
author or co-author of more than one hundred papers for international and national
journals and conferences.



