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Abstract

We present a high-sensitivity measurement technique for mechanical nanoresonators. Due to

intrinsic nonlinear effects, different flexural modes of a nanobeam can be coupled while driving

each of them on resonance. This mode-coupling scheme is dispersive and one mode resonance

shifts with respect to the motional amplitude of the other. The same idea can be implemented

on a single mode, exciting it with two slightly detuned signals. This two-tone scheme is used here

to measure the resonance lineshape of one mode through a frequency shift in the response of the

device. The method acts as an amplitude-to-frequency transduction which ultimately suffers only

from phase noise of the local oscillator used and of the nanomechanical device itself. We also

present a theory which reproduces the data without free parameters.
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Nanoelectromechanical structures (NEMS) have been studied intensively both because

of their potential applications and their suitability for investigating different areas of funda-

mental physics. Over recent years NEMS have shown great promise as ultrasensitive force

sensors, they have been used to detect ever smaller masses [1], as well as being used to mea-

sure individual spins [2]. NEMS also possess relatively strong nonlinearities which means

that they are very suitable for investigating fundamental aspects of nonlinear dynamics [3, 4].

Moreover, it has also been possible to access the quantum regime for these systems [5, 6].

Detecting the tiny motion of nanomechanical devices is usually a challenging experimental

issue, especially for high (radio-)frequency modes. An interesting approach involving two

modes of the same structure was presented in Refs. [7]: due to (geometrical) nonlinearities,

the motional amplitude of the mode under study shifts the resonance position of another

mode, used as detector. This “mode-coupling” scheme has the potential to be extremely

efficient, since frequencies are relatively easy to measure with high accuracy.

Other kinds of multiple-tone driving schemes have been developed over the years, tackling

various issues of signal processing: with e.g. the parametric frequency tuning of a mode

[8], the frequency comb generation [9], or the audio-frequency mechanical mixing [10]. In

particular, two-tone driving of a single mode of a mechanical device has already been used for

amplifying purposes [11]. Here, we propose to adapt the mode-coupling scheme to a single

mode with a dedicated two-tone detection method (with a probe and a drive signal). This

“self-coupling” method essentially converts the amplitude of the motion into a frequency.

Provided one can measure the resonance position of the response to the probe signal with

high accuracy (i.e. using a device with a high quality factor and a local oscillator with very

good frequency stability), the method should only be limited by the phase noise of the setup.

The experiments are performed on a 15 µm long silicon-nitride doubly-clamped nanobeam

(Fig. 1). This material has been demonstrated to be an excellent choice for nanomechanical

purposes, leading to high frequency and high quality factor (Q) devices [12]. The structure

is 250 nm x 100 nm wide and thick, covered with 30 nm of aluminum. The fabrication

techniques are described in Ref. [13]. The sample is placed in cryogenic vacuum at 4.2 K.

We use a magnetomotive scheme to drive and detect the motion [14, 15]. The device is

excited with a Laplace force F (t) = ξI(t)lB, where l is the length of the beam, ξ a mode-

dependent number and B the magnetic field. The current is given by I(t) = V (t)/(R + r)

where V (t) is the drive voltage applied, r is the electrical resistance of the structure (about
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FIG. 1: (Color Online) Schematic of the experimental setup. A SEM picture of the sample is

shown, with an unused gate at the top. Two voltage signals are added and converted to a current

I(t) through a R = 1 kΩ bias resistance. With the field B = 0.84 T, it generates a superposed force

F (t) = Fd(t) + Fp(t), with drive and probe components. The response to the probe is measured

with a lock-in amplifier (detection inset, bottom left). The upper right inset shows examples of

the measured response of the device separately to the drive (upper points) and to the probe (lower

points), together with fits (full lines). Positions of the maximum of each response are indicated by

dashed lines with the corresponding frequencies ωres
p , ω0 and ωres

d .

100 Ω) and R the bias resistance. The out-of-plane motion is detected through the voltage

U(t) induced by the magnetic flux cut by the beam’s distortion.

We excite the first out-of-plane flexural mode of the beam with two slightly detuned

signals added together (Fig. 1). The resulting force is F (t) = Fd(t) + Fp(t), with Fd(t) =

Fd,0 cos(ωdt+φd) and Fp(t) = Fp,0 cos(ωpt+φp) the drive and probe components respectively.

The induced voltage U(t) is measured with a lock-in detector referenced on the probe signal

Fp(t) at ωp, leading thus to the probe response only.

The nanobeam’s mechanics is nonlinear due to the axial stress induced by the elongation

under motion [4, 7, 16, 17]. The motion of the first flexural mode under a force F (t) is

described by the well-known Duffing equation:

ẍ+∆ω ẋ+ ω2
0 x(1 + κx2) =

F (t)

m
, (1)

with ω0

2π
= 6.98 MHz the resonance frequency of the mode, ∆ω

2π
= 550 Hz its linewidth, m
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FIG. 2: (Color online) Frequency shift (ωres
p − ω0)/(2π) of the first mode resonance Ap excited at

ωp as a function of drive frequency ωd, for different amplitudes of the drive Fd,0. The probe force

component Fp,0 was 0.2 pN (arising from a current of 13 nA), generating itself an amplitude of

1 nm. Lines are the theoretical predictions; the scattering of points along the vertical axis is due

to the finite resolution of the experimentally determined resonance position (from our fits).

the mass and κ the non-linear Duffing parameter. The coordinate x(t) characterizing the

amplitude of the motion is defined here as the average displacement along the mode shape,

such that the mode mass equals the bare mass of the beam.

In the absence of a second drive tone (Fp,0 = 0), Eq. (1) leads to the standard Duffing

response. Written in terms of Ad, the complex amplitude of the motion at frequency ωd,

this takes the form

Ad =
Fd,0 e

i φd

2mω0

×
1

β |Ad|
2 − δω + i ∆ω

2

, (2)

where β = 3

8
ω0 κ is the frequency pulling factor and δω = ωd − ω0 is the detuned angular

frequency (in Radian/s) between the drive and the natural (linear) frequency of the beam.

In the limit of very weak drives, Ad is small and Eq. (2) reduces to the standard Lorentzian

expression. For larger values of the drive, the system displays a characteristic frequency

pulling and the response is peaked with respect to the frequency ωd at a value ωres
d =

ω0+β |Ad|
2 (see Fig. 1 top right inset). However, for a sufficiently strong drive the amplitude

reaches a threshold value Ac and the solution becomes bistable [16, 18].

Applying two frequency-detuned drives around ω0 leads to new oscillating solutions for the
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system [11]. We define the detuning between the probe and drive frequency as δ = ωp − ωd

which we assume to be small δ ≪ ωd , ωp and we also assume that both frequencies are close

to resonance δω ≪ ωd , ωp. The Duffing non-linearity in the beam means that in general

the amplitude of the motion at the probe frequency, Ap, and that at the drive frequency,

Ad, are not independent of each other.

In the present paper, we consider the case where the probe excitation is weak so that

Ap always remains small whilst the drive excitation can be relatively strong so that the

amplitude Ad ranges from the Lorentzian regime up to the onset of bistability. Assuming a

weak probe signal, we can work to linear order in the response at the probe frequency, Ap,

so that the response at ωd is independent of Ap, and follows Eq. (2). However, as the drive

excitation can be relatively large the probe response at ωp depends on Ad in a non-trivial

way,

Ap =
Fp,0 e

i φp

2mω0

×
1

2 β |Ad|
2 − δω − δ + i ∆ω

2
− β2 |Ad|

4

2β |Ad|
2 − δω+ δ− i ∆ω

2

. (3)

Our assumption that the amplitude of the response at the pump frequency is small means

that unlike Eq. (2), there is no dependence on the amplitude Ap in the right hand side of

Eq. (3).

Experimentally, we sweep ωd for a given drive force Fd,0 and measure the position of the

resonance peak Ap at ωp = ωres
p (Fig. 2). The frequency position of this peak ωres

p can

be computed numerically from Eq. (3), leading to the full lines in Fig. 2. Note that all

mechanical parameters of the device were carefully measured using the calibration method

described in Ref. [15], so the calculation has no free parameters. We thus demonstrate that

the resonance lineshapes obtained from Eq. (3) fit perfectly the data even for the regime

where the response at the drive frequency is nonlinear. Our resolution here is only limited

by our simple fitting procedure for the resonance position of the probe, which is typically

within ±20 Hz.

From Fig. 2 we can extract the maximum height of each curve, in terms of frequency

shifts, with respect to Fd,0. This is shown in Fig. 3 together with a numerical calculation

using Eq. (3) (full line). A particularly simple result is obtained in the limit of small Fd,0,

where the β2 |Ad|
4 term in Eq. (3) can be neglected. In this limit the amplitude Ap is thus
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FIG. 3: (Color online) Maximum heights of the peaks measured in Fig. 2 (in terms of Ap frequency

shifts) as a function of drive force Fd,0. A numerical calculation using Eq. (3) is shown with the

full (red) line. A comparison with the analytic first order behavior, from Eq. (4), is also shown

(dashed line).

the standard Lorentzian (of a linear oscillator), centered at the frequency:

ωres
p = ω0 + 2β |Ad|

2 . (4)

Note the factor of 2 compared to ωres
d . Inserting the maximal amplitude of the Ad peak

resonance, Eq. (2), into this expression leads to the parabolic curve in Fig. 3 (dashed line),

which matches the full numerical result (given as a full line in Fig. 3) for small drives.

Expression Eq. (4) is similar to what is obtained for the mode coupling scheme (where for

weak excitations the frequency shift in one mode depends quadratically on the amplitude of

a second mode [7, 17, 19]), though here only a single mode is involved.

Turning now to the application of this method for the detection of small amplitudes

of mechanical motion, the figure of merit is essentially 2β, the frequency shift per unit

amplitude squared. For our silicon nitride doubly-clamped beam we obtain a value of about

100 Hz/nm2 which is 15 times larger than the inter-mode coupling value reported in Ref.

[17], for a similar device. In other words, a motion of 1 nm which induces a voltage of only

450 nV at 7 MHz in the standard magnetomotive scheme, shifts the resonance peak of the

probe signal by 20% of its linewidth.

In conclusion, we presented a method enabling the accurate measurement of a nanome-
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chanical mode resonance peak. The experiment was performed using a doubly-clamped

nanobeam resonating at 7 MHz, and the complete theory describing the results is given.

The technique uses two signals slightly frequency-detuned, mimicking the mode coupling

scheme though instead using only a single mode. This two-tone “self-coupling” detection

converts the motion into a frequency through the measurement of the resonance position of

the linear response to one of the tones. It is thus ultimately only limited by the phase noise

of the whole setup. We believe this scheme could be of interest to many areas of applied

physics, even outside of the nanomechanics field.
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