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GAUSSIAN FLUCTUATIONS FOR LINEAR SPECTRAL STATISTICS OF

LARGE RANDOM COVARIANCE MATRICES

JAMAL NAJIM AND JIANFENG YAO

Abstract. Consider a N ×n matrix Σn = 1√
n
R

1/2
n Xn, where Rn is a nonnegative defi-

nite Hermitian matrix and Xn is a random matrix with i.i.d. real or complex standardized
entries. The fluctuations of the linear statistics of the eigenvalues:

Trace f(ΣnΣ
∗
n) =

N∑

i=1

f(λi), (λi) eigenvalues of ΣnΣ
∗
n,

are shown to be gaussian, in the regime where both dimensions of matrix Σn go to
infinity at the same pace and in the case where f is of class C3, i.e. has three continuous
derivatives. The main improvements with respect to Bai and Silverstein’s CLT [5] are
twofold: First, we consider general entries with finite fourth moment, but whose fourth
cumulant is non-null, i.e. whose fourth moment may differ from the moment of a (real or
complex) Gaussian random variable. As a consequence, extra terms proportional to

|V|2 = |E(Xn
11)

2|2 and κ = E |Xn
11|

4 − |V|2 − 2

appear in the limiting variance and in the limiting bias, which not only depend on the
spectrum of matrix Rn but also on its eigenvectors. Second, we relax the analyticity
assumption over f by representing the linear statistics with the help of Helffer-Sjöstrand’s
formula.

The CLT is expressed in terms of vanishing Lévy-Prohorov distance between the linear
statistics’ distribution and a Gaussian probability distribution, the mean and the variance
of which depend upon N and n and may not converge.

AMS 2000 subject classification: Primary 15A52, Secondary 15A18, 60F15.
Key words and phrases: large random matrix, fluctuations, linear statistics of the eigen-
values, central limit theorem.
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1. Introduction

Empirical random covariance matrices, whose probabilistic study may be traced back
to Wishart [57] in the late twenties, play an important role in applied mathematics. After
Marčenko and Pastur’s seminal contribution [43] in 1967, the large dimensional setting (where
the dimension of the observations is of the same order as the size of the sample) has drawn a
growing interest, and important theoretical contributions [5, 51, 36] found many applications
in multivariate statistics, electrical engineering, mathematical finance, etc., cf. [4, 19, 41, 44].
The aim of this paper is to describe the fluctuations for linear spectral statistics of large
empirical random covariance matrices. It will complete the picture already provided by Bai
and Silverstein [5] and will hopefully provide a generic result of interest for practitionners.

The model. Consider a N × n random matrix Σn = (ξnij) given by:

Σn =
1√
n
R1/2

n Xn , (1.1)

where N = N(n) and Rn is a N × N nonnegative definite hermitian matrix with spectral
norm uniformly bounded in N . The entries (Xn

ij ; i ≤ N, j ≤ n, n ≥ 1) of matrices (Xn) are

real or complex, independent and identically distributed (i.i.d.) with mean 0 and variance
1. Matrix ΣnΣ

∗
n models a sample covariance matrix, formed from n samples of the random

vector R
1/2
n Xn

·1, with the population covariance matrix Rn. In the asymptotic regime where

N,n→ ∞ and 0 < lim inf
N

n
≤ lim sup

N

n
< ∞ , (1.2)

(a condition that will be simply referred asN,n→ ∞ in the sequel), we study the fluctuations
of linear spectral statistics of the form:

tr f(ΣnΣ
∗
n) =

N∑

i=1

f(λi) , as N,n→ ∞ (1.3)

where tr (A) refers to the trace of A and the λi’s are the eigenvalues of ΣnΣ
∗
n. This subject

has a rich history with contributions by Arharov [3], Girko (see [23, 24] and the references
therein), Jonsson [37], Khorunzhiy et al. [40], Johansson [35], Sinai and Soshnikov [53, 54],
Cabanal-Duvillard [16], Guionnet [26], Bai and Silverstein [5], Anderson and Zeitouni [2],
Pan and Zhou [46], Chatterjee [18], Lytova and Pastur [42], Bai et al. [8], Shcherbina
[50], etc. There are also more recent contributions for heavytailed entries (see for instance
Benaych-Georges et al. [10]).

In their ’04 article [5], Bai and Silverstein established a CLT for the linear spectral statis-
tics (1.3) as the dimensions N and n grow to infinity at the same pace (N/n → c ∈ (0,∞))
and under two important assumptions:

(1) The entries (Xn
ij) are centered with unit variance and a finite fourth moment equal

to the fourth moment of a (real or complex) gaussian standard variable.
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(2) Function f in (1.3) is analytic in a neighbourhood of the asymptotic spectrum of
ΣnΣ

∗
n.

Such a result proved to be highly useful in probability theory, statistics and various other
fields.

The purpose of this article is to establish a CLT for linear spectral statistics (1.3) for
general entries Xn

ij with finite fourth moment and for non-analytic functions f , sufficiently
regular, hence to relax both Assumptions (1) and (2) in [5].

It is well known since the paper by Khorunzhiy et al. [40] that if the fourth moment of the
entries differs from the fourth moment of a Gaussian random variable, then a term appears
in the variance of the trace of the resolvent, which is proportional to the fourth cumulant of
the entries. This term does not appear if Assumption (1) holds true, because in this case,
the fourth cumulant is zero.

In Pan and Zhou [46], Assumption (1) has been relaxed under an additional assumption
on matrix Rn, which somehow enforces structural conditions on Rn (in particular, these
conditions are satisfied if matrix Rn is diagonal). In Hachem et al. [39, 29], CLTs have
been established for specific linear statistics of interest in information theory, with general
entries and (possibly non-centered) covariance random matrices with a variance profile. In
Bao et al. [9], the CLT is established for the white model (where Rn is equal to the identity
matrix) with general entries with finite fourth moment, featuring terms in the covariance
proportional to the square of the second non-absolute moment and to the fourth cumulant.

In Lytova and Pastur [42] and Shcherbina [50], both assumptions have been relaxed for
the white model. In this case, it has been proved that mild integrability conditions over the
Fourier transform of f was enough to establish the CLT. In Bai et al. [8], fluctuations for
the white model are addressed as well, for non-analytic functions f . Following Shcherbina’s
ideas, Guédon et al. [25] establish a CLT for linear statistics of large covariance matrices
with vectors with log-concave distribution. Following Lytova and Pastur, Yao [58] relaxes
the analyticity assumption in [5] by using interpolation techniques and Fourier transforms.
We follow here a different approach, inspired from Bordenave [12].

Non-Gaussian entries. The presence of matrix Rn yields interesting phenomena at the
CLT level when considering entries with non-Gaussian fourth moment: terms proportionnals
to the fourth cumulant and to |E(Xn

11)
2|2 appear in the asymptotic variance (described in

Section 2.3); however their convergence is not granted under usual assumptions (roughly,
under the convergence of Rn’s spectrum), mainly because these extra-terms also depend
on the eigenvectors of Rn. As a consequence, such terms may not converge unless some
very strong structural assumption over Rn (such as Rn diagonal) is made. This lack of
convergence has consequences on the description of the fluctuations.

Denote by Ln(f) the (approximately) centered version of the linear statistics (1.3), to be

properly defined below. Instead of expressing the CLT in the usual way, i.e. (
D−→ stands for

the convergence in distribution):

Ln(f)
D−−−−−→

N,n→∞
N (Bf

∞,Θ
f
∞) , (1.4)

for some well-defined parameters Bf
∞,Θ

f
∞, we prove that the distribution of the linear sta-

tistics Ln(f) becomes close to a family of Gaussian distributions, whose parameters (mean
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and variance) may not converge. More precisely, we establish that there exists a family of
Gaussian random variables N (Bf

n,Θ
f
n), such that

dLP

(
Ln(f),N (Bf

n,Θ
f
n)
)
−−−−−→
N,n→∞

0 , (1.5)

where dLP denotes the Lévy-Prohorov distance (and in particular metrizes the convergence
of laws). Details are provided in Section 2.5 and the fluctuation results are stated in Theorem
1 (for the resolvent f(λ) = (λ−z)−1) and Theorem 2 (for f of class C3, the space of functions
with third continuous derivative).

From a technical point of view, the analysis of the extra-term proportionnal to the fourth
cumulant requires to cope with quadratic forms of the resolvent (counterpart of isotropic
Marčenko-Pastur law). We provide the needed results in Section 5.

Expressing the CLT as in (1.5) makes it possible to avoid any cumbersome assumption
related to the joint convergence of Rn’s eigenvectors and eigenvalues; the technical price
to pay however is the need to get various uniform (in N,n) controls over the sequence
N (Bn,Θn). This is achieved by introducing a matrix meta-model in Section 2.6. The case
where matrix Rn is diagonal is simpler and the fluctuations express in the usual way (1.4);
it is handled in Section 3.4. Remarks on the white case (Rn = IN ) are also provided in
Sections 3.5 and 4.2.

This framework may also prove to be useful for other interesting models such as large
dimensional information-plus-noise type matrices [20, 30] and more generally mixed models
combining large dimensional deterministic and random matrices.

Non-analytic functions. In Section 3, we establish the CLT for the trace of the resolvent

tr (ΣnΣ
∗
n − zIN )

−1
.

In order to transfer the CLT from the resolvent to the linear statistics of the eigenvalues
tr f(ΣnΣ

∗
n), we will use (Dynkin-)Helffer-Sjöstrand’s representation formula1 for a function

f of class Ck+1 and with compact support [22, 34]. Denote by Φk(f) : C
+ → C the function:

Φk(f)(x+ iy) =
k∑

ℓ=0

(iy)ℓ

ℓ!
f (ℓ)(x)χ(y) , (1.6)

where χ : R → R+ is smooth, compactly supported, with value 1 in a neighbourhood of 0.
Function Φk(f) coincides with f on the real line and is an appropriate extension of f to the
complex plane. Let ∂ = ∂x + i∂y, then Helffer-Sjöstrand’s formula writes:

tr f(ΣnΣ
∗
n) =

1

π
Re

∫

C+

∂Φk(f)(z)tr (ΣnΣ
∗
n − zIN)−1 ℓ2(dz) , (1.7)

where ℓ2 stands for the Lebesgue measure over C+. An elementary proof of Formula (1.7)
can be found in [13, Chap. 5]. Closest to our work are the papers by Pizzo, O’Rourke,
Renfrew and Soshnikov [45, 48] where the fluctuations of the entries of regular functions of
Wigner and large covariance matrices are studied.

We believe that representation formula (1.7) provides a very streamlined way to handle
non-analytic functions and in fact enables us to state the fluctuations for the linear statistics
for functions of class C3, a lower regularity requirement than in [8, 42, 50, 58].

1In [33, Notes of chap. 8], it is written ”This formula is due to Dynkin but was popularized by Helffer and
Sjöstrand in the context of spectral theory, leading many authors to call it the Helffer-Sjöstrand formula”.
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Bias in the CLT and asymptotic expansion for the linear spectral statistics.

Beside the fluctuations, a substantial part of this article is devoted to the study of the bias
that we describe hereafter. In order to center the linear spectral statistics tr f(ΣnΣ

∗
n), we

consider the (first order) expansion of 1
N Etr f(ΣnΣ

∗
n):

1

N
Etr f(ΣnΣ

∗
n) = E0,n(f) +O

(
1

N

)
,

where E0,n(f) is O(1) and does not depend on the distribution of the entries of Xn, and
define Ln(f) as:

Ln(f) = tr f(ΣnΣ
∗
n)−NE0,n(f) .

A precise description of Ln(f) is provided in Section 2.4. In order to fully characterize the
fluctuations of Ln(f), we must study the second order expansion of 1

N E tr f(ΣnΣ
∗
n):

1

N
Etr f(ΣnΣ

∗
n) = E0,n(f) +

E1,n(f)
N

+ o

(
1

N

)
,

which will naturally yield the bias of Ln(f), as ELn(f) = E1,n(f) + o(1). Asymptotic
expansions for various matrix ensembles have already been studied, see for instance Pastur
et al. [1], Bai and Silverstein [5], Haagerup and Thorbjørnsen [27, 28], Schultz [49], Capitaine
and Donati-Martin [17], Vallet et al. [56], Hachem et al. [32], etc.

The asymptotic bias is expressed in Theorem 1 for the resolvent. In order to lift asymptotic
expansions from the resolvent to smooth functions, we combine ideas from Haagerup and
Thorbjørnsen [27] and Loubaton et al. [32, 56] together with some Gaussian interpolation
and the use of Helffer-Sjöstrand’s formula. For smooth functions, the statement is given
in Theorem 3. Somehow surprisingly, the condition over function f is stronger for the
asymptotic expansion to hold than for the CLT as function f needs to be of class C18 (cf.
Remark 4.4).

Outline of the paper. In Section 2, we provide some general background; we describe the
covariance of the normalized trace of the resolvent of ΣnΣ

∗
n in Section 2.3 and its bias in

Section 2.4. In Section 3, we state the fluctuation theorem (Theorem 1) for the trace of
the resolvent. In Section 4, we state the fluctuation theorem (Theorem 2) for general linear
statistics and describe its bias in Theorem 3. Sections 5, 6 and 7 are respectively devoted to
the proofs of Theorems 1, 2 and 3.

Acknowledgement. We are particularly indebted to Charles Bordenave who drew our
attention to Helffer-Sjöstrand’s formula and related variance estimates, which substantially
shorten the initial proof of fluctuations for non-analytic functions; we would like to thank
Reinhold Meise for his help to understand Tillmann’s article; finally, we would also like to
thank Djalil Chafäı, Walid Hachem and Philippe Loubaton for fruitful discussions.

2. General background - Variance and bias formulas

2.1. Assumptions. Recall the asymptotic regime where N,n → ∞, cf. (1.2), and denote
by

cn =
N

n
, ℓ

− = lim inf
N

n
and ℓ

+ = lim sup
N

n
.
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Assumption A-1. The random variables (Xn
ij ; 1 ≤ i ≤ N(n), 1 ≤ j ≤ n , n ≥ 1) are

independent and identically distributed. They satisfy:

EXn
ij = 0 , E|Xn

ij |2 = 1 and E|Xn
ij |4 <∞ .

Assumption A-2. Consider a sequence (Rn) of deterministic, nonnegative definite hermit-
ian N ×N matrices, with N = N(n). The sequence (Rn, n ≥ 1) is bounded for the spectral
norm as N,n→ ∞:

sup
n≥1

‖Rn‖ <∞ .

In particular, we will have:

0 ≤ λ
−
R

△
= lim inf

N,n→∞
‖Rn‖ ≤ λ

+
R

△
= lim sup

N,n→∞
‖Rn‖ < ∞ .

2.2. Resolvent, canonical equation and deterministic equivalents. Denote by Qn(z)

(resp. Q̃n) the resolvent of matrix ΣnΣ
∗
n (resp. of Σ∗

nΣn):

Qn(z) = (ΣnΣ
∗
n − zIN)

−1
, Q̃n(z) = (Σ∗

nΣn − zIn)
−1

, (2.1)

and by fn(z) and f̃n(z) their normalized traces which are the Stieltjes transforms of the
empirical distribution of ΣnΣ

∗
n’s and Σ∗

nΣn’s eigenvalues:

fn(z) =
1

N
trQn(z) , f̃n(z) =

1

n
tr Q̃n(z) . (2.2)

The following canonical equation2 admits a unique solution tn in the class of Stieltjes trans-
forms of probability measures (see for instance [5]):

tn(z) =
1

N
tr (−zIN + (1− cn)Rn − zcntn(z)Rn)

−1 , z ∈ C \R+ . (2.3)

The function tn being introduced, we can define the following N ×N matrix

Tn(z) = (−zIN + (1− cn)Rn − zcntn(z)Rn)
−1 . (2.4)

Matrix Tn(z) can be thought of as a deterministic equivalent of the resolvent Qn(z) in the
sense that it approximates the resolvent in various senses. For instance,

1

N
trTn(z)−

1

N
trQn(z) −−−−−→

N,n→∞
0 , z ∈ C \ R+ ,

(in probability or almost surely). Otherwise stated, tn(z) = N−1trTn(z) is the deterministic
equivalent of fn(z). As we shall see later in this paper, the following property holds true:

u∗nQn(z)vn − u∗nTn(z)vn −−−−−→
N,n→∞

0 (2.5)

where (un) and (vn) are deterministic N×1 vectors with uniformly bounded euclidian norms
in N . As a consequence of (2.5), not only Tn conveys information on the limiting spectrum
of the resolvent Qn but also on the eigenvectors of Qn.

If Rn = IN , then tn is simply the Stieltjes transform of Marčenko-Pastur’s distribution
[43] with parameter cn.

2We borrow the name ”canonical equation” from V.L. Girko who established in [23, 24] canonical equations
associated to various models of large random matrices.
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2.3. Entries with non-null fourth cumulant and the limiting covariance for the

trace of the resolvent. As in [5], we first study the CLT for the trace of the resolvent.
Let V be the second moment of the random variable Xij and κ its fourth cumulant:

V = E(Xn
ij)

2 and κ = E
∣∣Xn

ij

∣∣4 − |V|2 − 2 .

If the entries are real or complex standard Gaussian, then V = 1 or 0 and κ = 0. Otherwise
the fourth cumulant is a priori no longer equal to zero. This induces extra-terms in the
computation of the limiting variance, mainly due to the following (V , κ)-dependent identity:

E(X∗
·1AX·1 − trA)(X∗

·1BX·1 − trB) = trAB + |V|2 trABT + κ

N∑

i=1

AiiBii , (2.6)

where X·1 stands for the first column (of dimension N×1) of matrix Xn and where A,B are
deterministic N ×N matrices. As a consequence, there will be three terms in the limiting
covariance of the quantity (1.3); one will raise from the first term of the right hand side
(r.h.s.) of (2.6), a second one will be proportional to |V|2, and a third one to κ. In order to
describe these terms, let:

t̃n(z) = −1− cn
z

+ cntn(z) . (2.7)

The quantity t̃n(z) is the deterministic equivalent associated to n−1tr (Σ∗
nΣn − zIn)

−1. De-
note by RT

n the transpose matrix of Rn (notice that since Rn is hermitian, RT
n = R̄n and we

shall use this latter notation) and by T T
n , the transpose matrix3 of Tn:

T T
n (z) =

(
−zIN + (1 − cn)R̄n − zcntn(z)R̄n

)−1
; (2.8)

notice that the definition of tn(z) in (2.3) does not change if Rn is replaced by R̄n since
the spectrum of both matrices Rn and R̄n is the same. We can now describe the limiting
covariance of the trace of the resolvent:

cov (trQn(z1), trQn(z2)) = Θ0,n(z1, z2) + |V|2Θ1,n(z1, z2) + κΘ2,n(z1, z2) + o(1) ,

△
= Θn(z1, z2) + o(1) , (2.9)

where o(1) is a term that converges to zero as N,n→ ∞ and

Θ0,n(z1, z2)
△
=

{
t̃′n(z1)t̃

′
n(z2)

(t̃n(z1)− t̃n(z2))2
− 1

(z1 − z2)2

}
, (2.10)

Θ1,n(z1, z2)
△
=

∂

∂z2

{
∂An(z1, z2)

∂z1

1

1− |V|2An(z1, z2)

}
, (2.11)

Θ2,n(z1, z2)
△
=

z21z
2
2 t̃

′
n(z1)t̃

′
n(z2)

n

N∑

i=1

(
R1/2

n T 2
n(z1)R

1/2
n

)
ii

(
R1/2

n T 2
n(z2)R

1/2
n

)
ii
(2.12)

with

An(z1, z2) =
z1z2
n

t̃n(z1)t̃n(z2)tr
{
R1/2

n Tn(z1)R
1/2
n R̄1/2

n T T
n (z2)R̄

1/2
n

}
. (2.13)

For alternative formulas for Θ0,n and Θ2,n, see Remarks 3.2 and 3.3.

At first sight, these formulas (established in Section 5) may seem complicated; however,
much information can be inferred from them.

3Beware that TT
n is not the entry-wise conjugate of Tn, due to the presence of z.
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The term Θ0,n. This term is familiar as it already appears in Bai and Silverstein’s CLT [5].
Notice that the quantities t̃n and t̃′n only depend on the spectrum of matrix Rn. Hence,
under the additional assumption that:

cn −−−−−→
N,n→∞

c ∈ (0,∞) and FRn
D−−−−−→

N,n→∞
FR , (2.14)

where FRn denotes the empirical distribution of Rn’s eigenvalues and FR is a probability
measure, it can easily be proved that

Θ0,n(z1, z2) −−−−−→
N,n→∞

Θ0(z1, z2) =

{
t̃′(z1)t̃′(z2)

(t̃(z1)− t̃(z2))2
− 1

(z1 − z2)2

}
, (2.15)

where t̃, t̃′ are the limits of t̃n, t̃
′
n under (2.14).

The term Θ1,n. The interesting phenomenon lies in the fact that this term involves prod-

ucts of matrices R
1/2
n and its conjugate R̄

1/2
n . These matrices have the same spectrum but

conjugate eigenvectors. If Rn is not real, the convergence of Θ1,n is not granted, even under
(2.14). If however Rn and Xn’s entries are real, i.e. V = 1, then it can be easily proved that
Θ0,n = Θ1,n hence the factor 2 in [5] between the complex and the real covariance.

The term Θ2,n. This term involves quantities of the type (R
1/2
n TnR

1/2
n )ii which not only

depend on the spectrum of matrix Rn but also on its eigenvectors. As a consequence, the
convergence of such terms does not follow from an assumption such as (2.14), except in
some particular cases (for instance if Rn is diagonal) and any assumption which enforces
the convergence of such terms (as for instance in [46, Theorem 1.4]) implicitely implies an
asymptotic joint behaviour between Rn’s eigenvectors and eigenvalues. We shall adopt a
different point of view here and will not assume the convergence of these quantities.

2.4. Representation of the linear statistics and limiting bias. Recall that tn(z) is
the Stieltjes transform of a probability measure Fn:

tn(z) =

∫

Sn

Fn(dλ)

λ− z
(2.16)

with support Sn included in a compact set. The purpose of this article is to describe the
fluctuations of the linear statistics

Ln(f) =

N∑

i=1

f(λi)−N

∫
f(λ)Fn(dλ) (2.17)

as N,n→ ∞.

For a smooth enough function f of class Ck+1 with bounded support, one can rely on
Helffer-Sjöstrand’s formula and write:

Ln(f) = tr f(ΣnΣ
∗
n)−N

∫
f(λ)Fn(dλ)

=
1

π
Re

∫

C+

∂Φk(f)(z) {trQn(z)−Ntn(z)} ℓ2(dz) . (2.18)

where Φk(f) is defined in (1.6) and the last equality follows from the fact that
∫
f(λ)Fn(dλ) =

1

π
Re

∫

C+

∂Φk(f)(z)tn(z)ℓ2(dz) .
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Based on (2.18), we shall first study the fluctuations of:

trQn(z)−Ntn(z) = {trQn(z)− EtrQn(z)}+ {EtrQn(z)−Ntn(z)}

for z ∈ C+. The first difference in the r.h.s. will yield the fluctuations with a covariance
Θn(z1, z2) described in (2.9) while the second difference, deterministic, will yield the bias:

EtrQn(z)−Ntn(z) = |V|2B1,n(z) + κB2,n(z) + o(1)

△
= Bn(z) + o(1) (2.19)

where

B1,n(z)
△
= −z3t̃3n

1
n trR

1/2
n T 2

n(z)R
1/2
n R̄

1/2
n T T

n (z)R̄
1/2
n

(
1− z2t̃2n

1
nTrR

2
nT

2
n

) (
1− |V|2z2t̃2n 1

nTrR
1/2
n Tn(z)R

1/2
n R̄

1/2
n T T

n (z)R̄
1/2
n

) ,

(2.20)

B2,n(z)
△
= −z3t̃3n

1
n

∑N
i=1

(
R

1/2
n TnR

1/2
n

)
ii

(
R

1/2
n T 2

nR
1/2
n

)
ii

1− z2t̃2n
1
n trR

2
nT

2
n

. (2.21)

The previous discussion on the terms Θ1,n and Θ2,n also applies to the terms B1,n and B2,n

(whose expressions are established in Section 5) which are likely not to converge for similar
reasons.

2.5. Gaussian processes and the central limit theorem. A priori, the mean Bn and
covariance Θn of (trQn −Ntn) do not converge. Hence, we shall express the Gaussian
fluctuations of the linear statistics (2.17) in the following way: we first prove the existence
of a family (Gn(z), z ∈ C)n∈N of tight Gaussian processes with mean and covariance:

EGn(z) = Bn(z) ,

cov(Gn(z1), Gn(z2)) = Θn(z1, z2) .

We then express the fluctuations of the centralized trace as

dLP ((trQn(z)−Ntn(z)) , Gn(z)) −−−−−→
N,n→∞

0 .

with dLP the Lévy-Prohorov distance between P and Q probability measures over borel sets
of R,Rd,C or Cd:

dLP (P,Q) = inf {ε > 0, P (A) ≤ Q(Aε) + ε for all Borel sets A} , (2.22)

where Aε is an ε-blow up of A (cf. [21, Section 11.3] for more details). If X is a random

variable and L(X) its distribution, denote (with a slight abuse of notation) by dLP (X,Y )
△
=

dLP (L(X),L(Y )).

Similarly, we will express the fluctuations of Ln(f) as:

dLP (Ln(f),Nn(f)) −−−−−→
N,n→∞

0 ,

where Nn(f) is a well-identified gaussian random variable.
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2.6. A meta-model argument. As we need to cope with a sequence of Gaussian processes
(Gn) instead of a single one, it will be necessary to establish various properties uniform in
n,N such as:

(1) the tightness of the sequence (Gn) (cf. Section 5.2);
(2) a uniform bound over the variances of (TrGn(z)) (cf. Section 6.2), needed to extend

the CLT to non-analytic functionals;
(3) a uniform bound over the biases of (TrGn(z)) (cf. Section 7.1.1), needed to compute

the bias for non-analytic functionals.

A direct approach based on the mere definition of process Gn’s parameters seems difficult,
mainly due to the definitions of Θn and Bn which rely on quantities (tn and t̃n) defined as
solutions of fixed-point equations. Since the previous properties will be established for the
processes (TrQn−Ntn) anyway, the idea is to transfer them to Gn by means of the following
matrix meta-model:

Let N , n and Rn be fixed and consider the NM ×NM matrix

Rn(M) =




Rn 0 · · ·
0

. . . 0
· · · 0 Rn


 . (2.23)

Matrix Rn(M) is a block matrix with N ×N diagonal blocks equal to Rn, and zero blocks
elsewhere; for all M ≥ 1 the spectral norm of Rn(M) is equal to the spectral norm of
Rn (which is fixed). In particular the sequence (Rn(M);M ≥ 1) with N,n fixed satisfies
assumption (A-2) with (Rn(M);M ≥ 1) instead of (Rn). Consider now the random matrix
model:

Σn(M) =
1√
Mn

Rn(M)1/2Xn(M) (2.24)

where Xn(M) is aMN×Mn matrix with i.i.d. random entries with the same distribution as
the Xij ’s and satisfying (A-1). The interest of introducing matrix Σn(M) lies in the fact that
matrices Σn(M)Σn(M)∗ and ΣnΣ

∗
n have loosely speaking the same deterministic equivalents.

Denote by tn, Tn and t̃n the deterministic equivalents of ΣnΣ
∗
n as defined in (2.3), (2.4) and

(3.1), and by tn(M), Tn(M) and t̃n(M) their counterparts for the model Σn(M)Σn(M)∗.
Taking advantage of the block structure of Rn(M), a straightforward computation yields
(N,n fixed):

∀M ≥ 1, tn(M) = tn, t̃n(M) = t̃n and Tn(M) =




Tn 0 · · ·
. . .

· · · 0 Tn


 .

Similarly, denote by Bn,M and Θn,M the quantities given by formulas (2.19) and (2.9) when
replacing N , tn, Tn and t̃n by NM , tn(M), Tn(M) and t̃n(M). Straightforward computation
yields:

∀M ≥ 1 , Bn,M = Bn and Θn,M = Θn .

An interesting feature of this meta-model lies in the fact that all the quantities associated
to Σn(M)Σn(M)∗ converge as M → ∞ to the deterministic equivalents tn, t̃n, etc. As a
consequence, one can easily transfer all the estimates obtained for

(
Tr (Σn(M)Σn(M)∗ − zINM )−1 −NMtn

)

to the process (Gn).
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3. Statement of the CLT for the trace of the resolvent

3.1. Further notations. If A is a N ×N matrix with real eigenvalues, denote by FA the
empirical distribution of the eigenvalues (δi(A), i = 1 : N) of A, that is:

FA(dx) =
1

n

N∑

i=1

δλi(A)(dx) .

Recall the definitions of Qn, tn, Tn and t̃n (cf. (2.1), (2.3), (2.4) and (2.7)). The following
relations hold true (see for instance [5]):

Tn(z) = −1

z

(
IN + t̃n(z)Rn

)−1
and t̃n(z) = − 1

z
(
1 + 1

n trRnTn(z)
) . (3.1)

Recall the definition of Fn in (2.16) and let similarly F̃n be the probability distribution
associated to t̃n. The central object of study is the signed measure:

N
(
FΣnΣ

∗

n −Fn

)
= n

(
FΣ∗

nΣn − F̃n

)
,

and its Stieltjes transform

Mn(z) = N(fn(z)− tn(z)) = n
(
f̃n(z)− t̃n(z)

)
. (3.2)

Denote by oP (1) any random variable which converges to zero in probability.

3.2. Truncation. In this section, we closely follow Bai and Silverstein [5]. We recall the
framework developed there and introduce some additional notations.

Consider a sequence of positive numbers (δn) which satisfies:

δn → 0, δnn
1/4 → ∞ and δ−4

n

∫

{|X11|≥δn
√
N}

|X11|4 → 0

as N,n → ∞. Let Σ̂n = n−1/2R
1/2
n X̂n where X̂n is a N × n matrix having (i, j)th entry

Xij1{|Xij |<δn
√
N}. This truncation step yields:

P

(
ΣnΣ

∗
n 6= Σ̂nΣ̂

∗
n

)
−−−−−→
N,n→∞

0 (3.3)

from which we deduce

tr (ΣnΣ
∗
n − zIN)−1 − tr (Σ̂nΣ̂

∗
n − zIN )−1 P−−−−−→

N,n→∞
0 , (3.4)

where
P−→ stands for the convergence in probability. Define Σ̃n = n−1/2R

1/2
n X̃n where X̃n is

a N × n matrix having (i, j)th entry (X̂ij − EX̂ij)/σn, where σ
2
n = E|X̂ij − EX̂ij |2. Using

the fact that λ(∈ R) 7→ 1
λ−z is Lipschitz with Lipschitz constant |z|−2, we obtain

E

∣∣∣tr (Σ̂nΣ̂
∗
n − zIN )−1 − tr (Σ̃nΣ̃

∗
n − zIN)−1

∣∣∣ ≤ 1

|z|2
N∑

i=1

E

∣∣∣λ̃i − λ̂i

∣∣∣ (a)−−−−−→
N,n→∞

0 ,

where λ̃i = λi(Σ̃nΣ̃
∗
n), λ̂i = λi(Σ̂nΣ̂

∗
n) and (a) follows from similar arguments as in [7,

Section 9.7.1]. Hence

tr (Σ̂nΣ̂
∗
n − zIN)−1 − tr (Σ̃nΣ̃

∗
n − zIN )−1 P−−−−−→

N,n→∞
0 , (3.5)
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Combining (3.4) and (3.5), we obtain

tr (ΣnΣ
∗
n − zIN)−1 − tr (Σ̃nΣ̃

∗
n − zIN )−1 P−−−−−→

N,n→∞
0 .

Moreover, the moments are asymptotically not affected by these different steps:

max
(∣∣∣EX̃2

ij − EX2
ij

∣∣∣ ;
(
E|X̃ij |2 − 1

)
;
(
E|X̃ij |4 − E|Xij |4

))
−−−−−→
N,n→∞

0 . (3.6)

Note in particular that the fourth cumulant of X̃ij converges to that of Xij . Hence, it is
sufficient to consider variables truncated at δn

√
n, centralized and renormalized. This will

be assumed in the sequel (we shall simply write Xij and all related quantities with Xij ’s
truncated, centralized, renormalized with no superscript any more).

3.3. The Central Limit Theorem for the resolvent. We extend below Bai and Silver-
stein’s master lemma [5, Lemma 1.1]. Let A be such that

A > λ
+
R

(
1 +

√
ℓ
+
)2

.

Denote by D, D+ and Dε the domains:

D = [0, A] + i[0, 1] ,

D+ = [0, A] + i(0, 1] ,

Dε = [0, A] + i[ε, 1] (ε > 0) . (3.7)

Theorem 1. Assume that (A-1) and (A-2) hold true , then

(1) The process {Mn(·)} as defined in (3.2) forms a tight sequence on Dε, more precisely:

sup
z1,z2∈Dε,n≥1

E |Mn(z1)−Mn(z2)|2
|z1 − z2|2

<∞

(2) There exists a sequence (Gn(z), z ∈ D+) of two-dimensional Gaussian processes
with mean

EGn(z) = |V|2B1,n(z) + κB2,n(z) (3.8)

where B1,n(z) and B2,n(z) are defined in (2.20) and (2.21), and covariance:

cov (Gn(z1), Gn(z2)) = E (Gn(z1)− EGn(z1)) (Gn(z2)− EGn(z2))

= Θ0,n(z1, z2) + |V|2 Θ1,n(z1, z2) + κΘ2,n(z1, z2) ,

and

cov
(
Gn(z1), Gn(z2)

)
= cov (Gn(z1), Gn(z2)) ,

with z1, z2 ∈ D+ ∪D+, and where Θ0,n, Θ1,n and Θ2,n are defined in (2.9), (2.10)-
(2.12). Moreover (Gn(z), z ∈ Dε) is tight.

(3) For any continuous functional F from C (Dε;C) to C,

EF (Mn)− EF (Gn) −−−−−→
N,n→∞

0

Remark 3.1. (1) The tightness of the process {Mn} immediately follows from Bai and
Silverstein’s lemma as this result has been proved in [5, Lemma 1.1] under Assump-
tion (A-1) with no extra conditions on the moments of the entries.
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(2) Differences between Theorem 1 and [5, Lemma 1.1] appear in the bias and in the
covariance where there are respectively two terms instead of one and three terms
instead of one in [5, Lemma 1.1].

(3) Since the extra terms do not converge, we need to consider a sequence of Gaussian
processes instead of a single Gaussian process as in [5, Lemma 1.1].

(4) In order to prove that the sequence of Gaussian processes is tight, we introduce
a meta-matrix model to transfer the tightness of {Mn} to {Gn} (see for instance
Section 5.2.1).

(5) Following Bai and Silverstein [5], it is relatively straightforward with the help of
Cauchy’s formula to describe the fluctuations of Ln(f) for f analytic with Theorem
1 at hand. We skip this step since we will directly extend the CLT to non-analytic
functions f in Section 4.

Remark 3.2. A closer look to Bai and Silverstein’s proof [5, Sec.2 p.578] yields the following
alternative expression for the term Θ0,n:

Θ0,n(z1, z2) =
∂

∂z2

{
∂A0,n(z1, z2)

∂z1

1

1−A0,n(z1, z2)

}
, (3.9)

with
A0,n(z1, z2) =

z1z2
n

t̃n(z1)t̃n(z2)tr {RnTn(z1)RnTn(z2)} . (3.10)

Such an expression will be helpful in Section 6.2. As an interesting consequence: In the case
where Rn and Xn have real entries (in particular V = E(Xij)

2 = 1) then A0,n = An and
Θ0,n = Θ1,n.

Remark 3.3. A closer look to the proof below (see for instance (5.32)) yields the following
formula for Θ2,n which will be of help in the sequel:

Θ2,n(z1, z2) =
1

n

N∑

i=1

∂

∂z1
[z1Tn(z1)]ii

∂

∂z2
[z2Tn(z2)]ii . (3.11)

Proof of Theorem 1 is postponed to Section 5.

The end of the section is devoted to various specializations of Theorem 1 in the case where
matrix Rn is diagonal. In this case, the results are simpler to express and comparisons can
easily be made with related works.

3.4. Covariance and bias in the special case of diagonal matrices (Rn). This case
partially falls into the framework developed in Pan and Zhou [46] (note that the case V 6= 0
and 1 is not handled there). Matrix Rn being nonnegative definite hermitian, its entries are
real positive if Rn is assumed to be diagonal. In this case, matrix Tn is diagonal as well (cf.
(2.4)), Tn = T T

n and simplifications occur for the following terms:

An(z1, z2) =
z1z2
n

t̃n(z1)t̃n(z2)trRnTn(z1)RnTn(z2) ,

Θ2,n(z1, z2) =
z21z

2
2 t̃

′
n(z1)t̃

′
n(z2)

n
tr
(
R2

nT
2
n(z1)T

2
n(z2)

)
,

B1,n(z) = −z3t̃3n
1
n trR

2
nT

3
n(

1− z2t̃2n
1
nTrR

2
nT

2
n

) (
1− |V|2z2t̃2n 1

nTrR
2
nT

2
n

) ,

B2,n(z) = −z3t̃3n
1
n trR

2
nT

3
n

1− z2t̃2n
1
n trR

2
nT

2
n

.
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As one may notice, all the terms in the variance and the bias now only depend on the
spectrum of Rn. Hence, the following convergence holds true under the extra assumption
(2.14):

An(z1, z2) −−−−−→
N,n→∞

A(z1, z2) = c t̃(z1)t̃(z2)

∫
λ2FR(dλ)

(1 + λt̃(z1))(1 + λt̃(z2))
,

Θ1,n(z1, z2) −−−−−→
N,n→∞

Θ1(z1, z2) =
∂

∂z2

{
∂A(z1, z2)

∂z1

1

1− |V|2A(z1, z2)

}
,

Θ2,n(z1, z2) −−−−−→
N,n→∞

Θ2(z1, z2) = c t̃′(z1)t̃
′(z2)

∫
λ2FR(dλ)

(1 + λt̃(z1))2(1 + λt̃(z2))2
,

B1,n(z) −−−−−→
N,n→∞

B1(z) = − cz3t̃3(z)

(1−A(z, z))(1− |V|2A(z, z))

∫
λ2FR(dλ)

(1 + λt̃(z))3
,

B2,n(z) −−−−−→
N,n→∞

B2(z) = − cz3t̃3(z)

1−A(z, z)

∫
λ2FR(dλ)

(1 + λt̃(z))3
.

where t̃, t̃′ are the limits of t̃n, t̃
′
n under (2.14). This can be packaged into the following result:

Corollary 3.1. Assume that (A-1) and (A-2) hold true. Assume moreover that Rn is
diagonal and that the convergence assumption (2.14) holds true. Then Mn(·) converges
weakly on Dε (defined in (3.7)) to a two-dimensional Gaussian process N(·) satisfying:

EN(z) = B(z) where B = |V|2B1 + κB2 , z ∈ Dε

and B1 and B2 are defined above and covariance

cov
(
N(z1), N(z2)

)
= Θ(z1, z2) where Θ = Θ0 + |V|2Θ1 + κΘ2 , z1, z2 ∈ Dε ∪Dε

and Θ0 defined in (2.15) and Θ1,Θ2 defined above.

3.5. Additional computations in the case where Rn is the identity. In this section,
we assume that Rn = IN .

The term proportional to |V|2. In this case, the quantity A(z1, z2) takes the simplified form

A(z1, z2) =
c t̃1t̃2

(1 + t̃1)(1 + t̃2)
.

where we denote t̃i = t̃(zi), i = 1, 2. Straightforward computations yield:

∂

∂zi
A(z1, z2) =

t̃′i
(1 + t̃i)t̃i

A(z1, z2) , i = 1, 2 .

and

Θ1(z1, z2) =
c t̃′1t̃

′
2

(1 + t̃1)2(1 + t̃2)2 (1− |V|2A(z1, z2))
2 =

c t̃′1t̃
′
2(

(1 + t̃1)(1 + t̃2)− |V|2c t̃1t̃2
)2 .

This formula is in accordance with [9, Formula (2.2)] (use [9, (3.4)] to equate both). If
needed, one can then use the explicit expression of the Stieltjes transform of Marčenko-
Pastur distribution (cf. also Proposition 4.2 below).
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4. Statement of the CLT for non-analytic functionals

In order to lift the CLT from the trace of the resolvent to a smooth function f , the key
ingredient is Helffer-Sjöstrand’s formula (1.7). Let

Ln(f)
(a)
= Tr f(ΣnΣ

∗
n)−N

∫
f(λ)Fn(dλ)

=

(
Tr f(ΣnΣ

∗
n)− ETr f(ΣnΣ

∗
n)

)
+

(
ETr f(ΣnΣ

∗
n)−N

∫
f(λ)Fn(dλ)

)

△
= L1

n(f) + L2
n(f) , (4.1)

where Fn in (a) is defined in (2.16). We describe the fluctuations of L1
n(f) for non-analytic

functions f in Section 4.1 and study the bias L2
n(f) in Section 4.3.

4.1. Fluctuations for the linear spectral statistics. Denote by C∞
c (Rd) (resp. Cm

c (Rd))
the set of infinitely differentiable (resp. Cm) functions from Rd to R with compact support;
by Cmp

c (R2) the set of functions from R2 to R m times differentiable with respect to the
first coordinate and p times with respect to the second one. As usual, if the subscript c is
removed in the sets above, then the corresponding functions may no longer have a compact
support.

Theorem 2. Assume that (A-1) and (A-2) hold true. Let f1, · · · , fk be in C3
c (R). Consider

the centered Gaussian random vector Z1
n(f)

△
= (Z1

n(f1), · · · , Z1
n(fk)) with covariance

cov
(
Z1
n(f), Z

1
n(g)

)
=

1

2π2
Re

∫

(C+)2
∂Φ2(f)(z1)∂Φ2(g)(z2)Θn(z1, z̄2)ℓ2(dz1)ℓ2(dz2)

+
1

2π2
Re

∫

(C+)2
∂Φ2(f)(z1)∂Φ2(g)(z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2) , (4.2)

for f, g ∈ {f1, · · · , fk}, where Φ2(f) and Φ2(g) are defined as in (1.6), and where Θn is
defined in (2.9); let

L1
n(f) = (L1

n(f1), · · · , L1
n(fk)) with L1

n(f) = tr f(ΣnΣ
∗
n)− Etr f(ΣnΣ

∗
n) .

Then, the sequence of Rk-valued random vectors Z1
n(f) is tight and the following convergence

holds true:
dLP

(
L1
n(f), Z

1
n(f)

)
−−−−−→
N,n→∞

0 , (4.3)

or equivalently for every continuous bounded function F : Rk → C,

EF (L1
n(f))− EF (Z1

n(f)) −−−−−→
N,n→∞

0 . (4.4)

Proof of Theorem 2 is postponed to Section 6.

We provide hereafter some information on the covariance operator.

Let N1, N2 ∈ N and f ∈ CN1+1,N2+1
c (R2); denote by z1 = x + iu, z2 = y + iv and let

ΦN1,N2
(f) be defined as

ΦN1,N2
(f)(z1, z2) =

∑

n1 = 0 : N1

n2 = 0 : N2

∂n1+n2

∂xn1∂yn2
f(x, y)

(iu)n1

n1!

(iv)n2

n2!
χ(u)χ(v) , (4.5)
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where χ : R → R+ is smooth, compactly supported with value 1 in a neighbourhood of the
origin. Denote by ∂1 = ∂x + i∂u and ∂2 = ∂y + i∂v.

Proposition 4.1. For every f ∈ C3,3
c (R2), denote by

Υ(f) =
1

2π2
Re

∫

(C+)2
∂2∂1Φ2,2(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2)

+
1

2π2
Re

∫

(C+)2
∂2∂1Φ2,2(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2) .

Then Υ(f) is a distribution (in the sense of L. Schwartz) on C3,3
c (R2). Moreover Υ admits

the following boundary value representation:

Υ(f) = − 1

4π2
lim
εց0

∫

R2

f(x, y) {Θn(x+ iε, y + iε) + Θn(x− iε, y − iε)

−Θn(x− iε, y + iε)−Θn(x+ iε, y − iε)} dx dy . (4.6)

Notice that for every f, g ∈ C3
c (R) then f ⊗ g ∈ C3,3

c (R2) (where (f ⊗ g)(x, y) = f(x)g(y))
and

Υ(f ⊗ g) = cov
(
Z1
n(f), Z

1
n(g)

)
.

Proof of Proposition 4.1 is postponed to Section 6.3.

Remark 4.1. By relying on Tillmann’s results [55], one may prove that the support of Υ
(as a distribution) in included in Sn × Sn. We provide a more direct approach in a slightly
simpler case in Section 4.2.

4.2. More covariance formulas. We provide here more explicit formulas for the variance
than those given in Theorem 2 and Proposition 4.1; we also verify that these formulas are
in agreement with other formulas available in the literature.

Recall that by [52, Theorem 1.1], the limit limεց0 t̃n(x + iε) denoted by t̃n(x) exists for
all x ∈ R, x 6= 0; the same holds true for tn.

Proposition 4.2. Assume that (A-1) and (A-2) hold true and let f, g ∈ C3
c (R); assume

moreover for simplicity that V = EX2
ij is either equal to 0 or 1 and that Rn has real entries.

Then the covariance of (Zn(f), Zn(g)) in Theorem 2 writes

cov(Z1
n(f), Z

1
n(g)) =

1 + |V|2
2π2

∫

S2
n

f ′(x)g′(y) ln

∣∣∣∣∣
t̃n(x) − t̃n(y)

t̃n(x) − t̃n(y)

∣∣∣∣∣ dx dy

+
κ

π2n

N∑

i=1

(∫

Sn

f ′(x) Im (xTn(x))ii dx

)(∫

Sn

g′(y) Im (y Tn(y))ii dy

)
. (4.7)

Proof for Proposition 4.2 is postponed to Section 6.4.

Remark 4.2. Notice that the first term in the r.h.s. matches with the expression provided
in [5, Eq. (1.17)] (see also [6, Eq. (9.8.8)]).

Remark 4.3. Concerning the cumulant term, we shall compare it with the explicit formula
provided in [42] (see also [47]) in the case where Rn = IN . Recall that in the context of
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Marčenko-Pastur’s theorem where Rn = IN , we have Sn = [λ−, λ+] where λ− = (1−√
cn)

2,
λ+ = (1 +

√
cn)

2 and (Tn(x))ii = tn(x). We will prove hereafter that:

κcn
π2

(∫ λ+

λ−

f ′(x)Im{x tn(x)} dx
)(∫ λ+

λ−

g′(y)Im{y tn(y)} dy
)

=
κ

4cnπ2

(∫ λ+

λ−

f(x)
x− (1 + cn)√

(λ+ − x)(x − λ−)
dx

)(∫ λ+

λ−

g(y)
y − (1 + cn)√

(λ+ − y)(y − λ−)
dy

)
(4.8)

Notice that the l.h.s. of the equation above is the cumulant term as provided in (4.7) if
Rn = IN while the r.h.s. is the cumulant term as provided4 in [42].

In the case where Rn = IN , the Stieltjes transform of Marčenko-Pastur’s distribution has
an explicit form given by (see for instance [47, Chapter 7]):

tn(z) =
1

2cnz

{√
(z − (1 + cn))2 − 4cn − (z − (1− cn))

}

where the branch of the square root is fixed by its asymptotics: z− (1+ c)+ o(1) as z → ∞.
In particular, if x ∈ [λ−, λ+] then

√
(z − (1 + c))2 − 4c

∣∣
z=x+i0

= i
√
(λ+ − x)(x − λ−) .

Hence

Im{x tn(x)} =

√
(λ+ − x)(x − λ−)

2cn
.

It remains to perform an integration by parts to get
∫ λ+

λ−

f ′(x)Im{x tn(x)} dx = −
∫ λ+

λ−

f ′(x)

√
(λ+ − x)(x − λ−)

2cn
dx

=
1

2cn

∫ λ+

λ−

f(x)
(1 + cn)− x√

(λ+ − x)(x − λ−)
dx

which yields (4.8).

As a corollary of Proposition 4.2, we obtain the following extension of Theorem 2.

Recall that Sn is the support of the probability measure Fn. Due to Assumption (A-2),
it is clear that

Sn ⊂ S∞
△
=

[
0,λ+

R

(
1 +

√
ℓ
+
)2]

, (4.9)

uniformily in n. Denote by h ∈ C∞
c (R) a function whose value is 1 on a η-neighborhood Sη

∞
of S∞.

Corollary 4.3. Assume that (A-1) and (A-2) hold true and let fℓ ∈ C3(R) with 1 ≤ ℓ ≤ k;
assume moreover that V = EX2

ij is either equal to 0 or 1 and that Rn has real entries. Let

h ∈ C∞
c (R) be as above. Then (4.3)-(4.4) remain true with L1

n(f) replaced by

L1,h
n (f) =

(
tr fℓ(ΣnΣ

∗
n)− Etr (fℓh)(ΣnΣ

∗
n) ; 1 ≤ ℓ ≤ k

)

and with the gaussian random vector Z1
n(fh) as in Theorem 2.

4Denote by the superscript LP the quantities in [42] and use the correspondance cLP ↔ 1/c, aLP ↔ c and
κLP
4

↔ (aLP)4κ = c2κ to check that the r.h.s. of (4.8) equates the formula provided in [42].
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Proof of Corollary 4.3 is postponed to Section 6.5.

4.3. First-order expansions for the bias in the case of non-analytic functionals.

Theorem 3. Assume (A-1) and (A-2) hold true and let f ∈ C18
c (R). Denote by

Z2
n(f) =

1

π
Re

∫

C+

∂Φ17(f)(z)Bn(z)ℓ2( dz) , (4.10)

where Bn is defined in (2.19). Then

ETr (f)(ΣnΣ
∗
n)−N

∫
f(λ)Fn(dλ) − Z2

n(f) −−−−−→
N,n→∞

0 .

Proof of Theorem 3 is postponed to Section 7.

Remark 4.4 (Why eighteen?). A quick sketch of the proof of Theorem 3 provides some hints.
Let f have a bounded support. By gaussian interpolation (whose cost is f ∈ C8), we only
need to prove:

ETr f(ΣC

n(Σ
C

n)
∗)−N

∫
f(λ)Fn(dλ) → 0 ,

where ΣC
n is the counterpart of Σn with NC(0, 1) i.i.d. entries. The proof of the latter is

based on Helffer-Sjöstrand’s formula:

ETr f(ΣC

n(Σ
C

n)
∗)−N

∫
f(λ)Fn(dλ) =

1

π
Re

∫

C+

∂Φk(f)
{
TrEQC

n −Ntn
}
dℓ2

where QC
n = (ΣC

n(Σ
C
n)

∗ − zIN )−1, and on the following estimate, stated in Proposition 7.1:
∣∣ETr (ΣC

n(Σ
C

n)
∗ − zIN )−1 −Ntn(z)

∣∣ ≤ 1

n
P12(|z|)P17(|Im(z)|−1) , (4.11)

where Pk denotes a polynomial with degree k and positive coefficients. In view of Proposition
6.2, f needs to be of class C18. If one can improve estimate (4.11) and decrease the powers of
|Im(z)|−1, then one will automatically lower the regularity assumption over f . Notice that
in the case of the Gaussian Unitary Ensemble, counterpart of (4.11) features |Im(z)|−7 on
its r.h.s. (cf. [27, Lemma 6.1]) hence the needed regularity is f ∈ C8 in this case.

Proposition 4.4. Let Z2
n(f) be defined as in (4.10), then Z2

n is a distribution (in the sense
of L. Schwartz) on C18

c (R) and

Z2
n(f) =

−i

2π
lim
εց0

∫

R

f(x) {Bn(x+ iε)− Bn(x− iε)} dx . (4.12)

Moreover, the singular points of Bn(z) are included in Sn and so is the support of Z2
n (as a

distribution). In particular, one can extend Z2
n to C18(R) by

Ž2
n(f) = Z2

n(fh) , f ∈ C18(R) ,

where Ž2
n is the extension to C18(R) and h ∈ C∞

c (R) has value 1 on Sn.

Proof of Proposition 4.4 is postponed to Section 7.2.

Corollary 4.5. Assume (A-1) and (A-2) hold true. Let f ∈ C18(R) and h ∈ C∞
c (R) be

a function whose value is 1 on a neighborhood of S∞, then the following convergence holds
true:

ETr (fh)(ΣnΣ
∗
n)−N

∫
f(λ)Fn(dλ) − Ž2

n(f) −−−−−→
N,n→∞

0 .

The proof is straighforward and is therefore omitted.
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5. Proof of Theorem 1 (CLT for the trace of the resolvent)

Recall that Mn(z) = trQn(z)−Ntn(z). It will be convenient to decompose Mn(z) as:

Mn(z) =M1
n(z) +M2

n(z) where

{
M1

n(z) = trQn(z)− trEQn(z)
M2

n(z) = N (Efn(z)− tn(z))
. (5.1)

Denote by ξj the N × 1 vector

ξj = Σ·j =
1√
n
R1/2X·j

and by Ej the conditional expectation with respect to Gj , the σ-field generated by ξ1, · · · , ξj ;
by convention, E0 = E. We split Theorem 1 into intermediate results. Recall the definitions
of Dε, D

+ and D in (3.7). Let

Γ = D+ ∪D+ where D+ = {z̄ , z ∈ D+} .
Proposition 5.1. Assume that (A-1) and (A-2) hold true; let z1, z2 ∈ Γ, then:

M 1
n (z) =

n∑

j=1

Zn
j (z) + oP (1) ,

where the Zn
j ’s are martingale increments with respect to the σ-field Gi and

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2)−Θn(z1, z2)

P−−−−−→
N,n→∞

0 , (5.2)

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2)−Θn(z1, z2)

P−−−−−→
N,n→∞

0 , (5.3)

where Θn is defined in (2.9). Moreover,

M 2
n (z)− Bn(z) −−−−−→

N,n→∞
0 ,

where Bn is defined in (2.19).

Proposition 5.2. There exists a sequence (Gn(z), z ∈ Γ) of two-dimensional Gaussian
processes with mean EGn(z) = Bn(z) and covariance

cov (Gn(z1), Gn(z2)) = E (Gn(z1)− EGn(z1)) (Gn(z2)− EGn(z2))

= Θn(z1, z2) .

Moreover, (Gn(z), z ∈ Dε) is tight.

5.1. Proof for Proposition 5.1. The fact that (Mn) is a tight sequence has already been
established in [5] (regardless of the assumption κ = 0 and |V| = 0/1). In order to proceed,
we shall heavily rely on the proof of [5, Lemma 1.1] which is the crux of Bai and Silverstein’s
paper. In Section 5.1.1 we recall the main steps of Bai and Silverstein’s computations of the
variance/covariance. In Sections 5.1.2 and 5.1.3, we compute the extra terms in the limiting
variance. In Section 5.1.4, we compute the limiting bias (some details are postponed to
Appendix A.1). In Section 5.3, we finally conclude the proof of Theorem 1 and address
various subtleties which appear due to the existence of a sequence of Gaussian limiting
processes.
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In the sequel, we shall drop subscript n and write Q and R instead of Qn and Rn. Denote
by Qj(z) the resolvent of matrix ΣΣ∗ − ξjξ

∗
j , i.e.

Qj(z) =
(
−zI +ΣΣ∗ − ξjξ

∗
j

)−1
.

The following quantities will be needed:

βj(z) =
1

1 + ξ∗jQj(z)ξj
,

β̄j(z) =
1

1 + 1
n trRnQj(z)

,

bn(z) =
1

1 + 1
nEtrRnQ1(z)

,

εj(z) = ξ∗jQj(z)ξj −
1

n
trRnQj(z) ,

δj(z) = ξ∗jQ
2
j(z)ξj −

1

N
trRnQ

2
j(z) =

d

dz
εj(z) .

5.1.1. Preliminary variance computations. We briefly review in this section the main steps
related to the computation of the variance/covariance as presented in [5]. These standard
steps will finally lead to Eq. (5.7) which will be the starting point of the computations
associated to the |V|2- and κ-terms of the variance.

Let z ∈ Γ.

N (fn(z)− Efn(z)) = −
n∑

j=1

(Ej − Ej−1) βj(z)ξ
∗
jQ

2
j(z)ξj

= −
n∑

j=1

Ej

(
β̄j(z)δj(z)− β̄2

j (z)εj(z)
1

n
trRQ2

j

)
+ oP (1) .

Denote by

Zn
j (z) = −Ej

(
β̄j(z)δj(z)− β̄2

j (z)εj(z)
1

n
trRQ2

j(z)

)
= −Ej

d

dz

(
β̄j(z)εj(z)

)
.

Hence,

M1
n(z) = N (fn(z)− Efn(z)) =

n∑

j=1

Zn
j (z) + oP (1)

The r.h.s. appears as a sum of martingale increments. Such a decomposition is important
since it will enable us to rely on powerful CLTs for martingales (see [11, Theorem 35.12], and
the variations below in Lemmas 5.6 and 5.7). These CLTs rely on the study of the terms:

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) and

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) .

Notice that since Zn
j (z) = Zn

j (z̄), we have Ej−1Z
n
j (z1)Z

n
j (z2) = Ej−1Z

n
j (z1)Z

n
j (z2). Since

the set Γ is stable by complex conjugation, it is sufficient to study the limiting behavior of:
n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) , z1, z2 ∈ Γ
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in order to prove (5.2) and (5.3). Now,

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) =

∂2

∂z1∂z2





n∑

j=1

Ej−1

[
Ej

(
β̄j(z1)εj(z1)

)
Ej

(
β̄j(z2)εj(z2)

)]


 . (5.4)

Following the same arguments as in [5, pp. 571], one can prove that it is sufficient to study
the convergence in probability of

n∑

j=1

Ej−1

[
Ej

(
β̄j(z1)εj(z1)

)
Ej

(
β̄j(z2)εj(z2)

)]
.

Moreover,

n∑

j=1

Ej−1

[
Ej

(
β̄j(z1)εj(z1)

)
Ej

(
β̄j(z2)εj(z2)

)]

=

n∑

j=1

bn(z1)bn(z2)Ej−1 [Ejεj(z1)Ejεj(z2)] + oP (1) ,

=
n∑

j=1

z1t̃n(z1)z2t̃n(z2)Ej−1 [Ejεj(z1)Ejεj(z2)] + oP (1) . (5.5)

Hence, it is finally sufficient to study the limiting behaviour (in terms of convergence in
probability) of the quantity:

n∑

j=1

Ej−1 (Ej εj(z1)Ej εj(z2)) , z1, z2 ∈ Γ . (5.6)

Denote by AT the transpose matrix of A. Applying (2.6) yields :

n∑

j=1

Ej−1 (Ej εj(z1)Ej εj(z2)) =
1

n2

n∑

j=1

tr
(
R1/2

EjQj(z1)REjQj(z2)R
1/2
)

+
|V|2
n2

n∑

j=1

tr

(
R1/2

EjQj(z1)R
1/2
(
R1/2

EjQj(z2)R
1/2
)T)

+
κ

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii
.

(5.7)

The limiting behaviour of the first term of the r.h.s. has been completely described in [5]
where it has been shown that:

∂2

∂z1∂z2



z1z2t̃n(z1)t̃n(z2)

1

n2

n∑

j=1

tr
(
R1/2

EjQj(z1)REjQj(z2)R
1/2
)


 = Θ0,n(z1, z2)+oP (1) ,

(5.8)
with Θ0,n(z1, z2) defined in (2.10).

We shall focus on the second and third terms.
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5.1.2. The term proportional to |V|2 in the variance. Notice first that the value of tn and t̃n
is the same whether R is replaced by R̄ in (2.3) and (3.1) since tn and t̃n only depend on the
spectrum of R (which is the same as the spectrum of R̄). Notice also that (R1/2)T = R̄1/2,
hence: (

R1/2
EjQj(z2)R

1/2
)T

= R̄1/2
EjQ

T
j (z2)R̄

1/2 .

Recall the definition of T T
n (z) given by (2.8). Taking into account the fact that for a deter-

ministic matrix A,

EξTj Aξj =
V
n
tr (R̄1/2AR1/2) and Eξ∗jA ξ̄j =

V̄
n
tr (R1/2AR̄1/2) , (5.9)

and following closely [5, Section 2], it is a matter of bookkeeping5 to establish that:

|V|2z1z2
n2

t̃n(z1)t̃n(z2)

n∑

j=1

tr

(
R1/2

EjQj(z1)R
1/2
(
R1/2

EjQj(z2)R
1/2
)T)

(5.10)

= |V|2An(z1, z2)×
1

n

n∑

j=1

1

1−
(
j−1
n

)
|V|2An(z1, z2)

+ oP (1)

=

∫ |V|2An(z1,z2)

0

dz

1− z
+ oP (1)

where

An(z1, z2) =
z1z2
n

t̃n(z1)t̃n(z2)tr
{
R1/2Tn(z1)R

1/2R̄1/2T T
n (z2)R̄

1/2
}
.

Finally,

∂2

∂z1∂z2
(5.10) = |V|2Θ1,n(z1, z2) + oP (1) = |V|2 ∂

∂z2

{
∂An(z1, z2)/∂z1
1− |V|2An(z1, z2)

}
+ oP (1) .

(5.11)

5.1.3. The cumulant term in the variance. We now handle the term proportional to κ in
(5.7):

1

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii
. (5.12)

The objective is to prove that EjQj(z) can be replaced by Tn(z) in the formula above, which
boils down to prove a convergence of quadratic forms of the type (2.5). Such a convergence
has already been established in [32] for large covariance matrices based on a non-centered
matrix model with separable variance profile.

By interpolating between the quantity (5.12) and its counterpart when the entries are
complex i.i.d. standard Gaussian, we will be able to rely on the results in [32] by using the
unitary invariance of a Gaussian matrix (see Proposition 5.4 and Eq. (5.29) below).

Let δz be the distance between the point z ∈ C and the real nonnegative axis R+:

δz = dist(z,R+) . (5.13)

5Similar computations for the term proportional to |V|2 in the bias are outlined in Appendix A.1.
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Proposition 5.3. Assume that (A-1) and (A-2) hold true and let un be a deterministic
N × 1 vector, then:

E |u∗nQ(z)un − u∗n EQ(z)un|2 ≤ 1

n
Φ(|z|)Ψ

(
1

δz

)
‖un‖2 ,

where Φ and Ψ are fixed polynomials with coefficients independent from N,n, z and (un).

Proof of Proposition 5.3 is an easy adaptation6 of [32, Prop. 2.7] and is therefore omitted.

Denote by XC
n a N × n matrix whose entries are independent standard complex circular

Gaussian r.v. (i.e. XC
ij = U + iV where U, V are independent N (0, 2−1) random variables);

denote accordingly ΣC
n = n−1/2R1/2XC

n , ξ
C
j =

(
ΣC

n

)
·j and

QC

n(z) =
(
−zIN +ΣC

n

(
ΣC

n

)∗)−1

.

We now drop subscripts N and n.

Proposition 5.4. Assume that (A-1) and (A-2) hold true and let , then:

∣∣u∗nEQ(z)un − u∗n EQ
C(z)un

∣∣ ≤ 1√
n
Φ(|z|)Ψ

(
1

δz

)
‖un‖2 , (5.14)

where un is a deterministic N × 1 vector and Φ and Ψ are fixed polynomials with coefficients
independent from N,n, z. Moreover,

∣∣ETrQ(z)− ETrQC(z)
∣∣ ≤ K

|z|3
Im(z)7

, (5.15)

where K is independent from N,n, z.

Notice that (5.14) is of direct use in this section while (5.15) will be used in Section 7.

Proof. We first prove (5.14). Consider the resolvent

Q(i)(z) =

(
i∑

ℓ=1

ξCi ξ
C∗
i +

n∑

ℓ=i+1

ξiξ
∗
i − zIN

)−1

defined for 1 ≤ i ≤ n− 1. Denote by Q(0) = Q and by Q(n) = QC and write

u∗E(Q−QC)u =

n∑

i=1

u∗E(Q(i−1) −Q(i))u . (5.16)

We shall evaluate the difference u∗E(Q(0) −Q(1))u, the other ones being handled similarly.

Denote by Q̌(z) = (
∑n

i=2 ξiξ
∗
i − zIN )

−1
, then:

Q(0) = Q̌− Q̌ξ1ξ
∗
1 Q̌

1 + ξ∗1 Q̌ξ1
and Q(1) = Q̌− Q̌ξC1 ξ

C∗
1 Q̌

1 + ξC∗1 Q̌ξC1
. (5.17)

6Notice in particular all the cancellations that appear when adapting the proof of [32, Prop. 2.7], due to
the fact that Σn is centered here; notice also the fact that R not being diagonal has virtually no impact.
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Dropping the subscript 1 to lighten the notations, we get:

u∗E
(
Q(0) −Q(1)

)
u = u∗E

(
Q̌ξCξC∗Q̌

1 + ξC∗Q̌ξC
− Q̌ξξ∗Q̌

1 + ξ∗Q̌ξ

)
u

= u∗E

(
Q̌ξCξC∗Q̌

1 + ξC∗Q̌ξC
− Q̌ξCξC∗Q̌

1 + 1
n trRQ̌

)
u

+u∗E

(
Q̌ξCξC∗Q̌

1 + 1
n trRQ̌

− Q̌ξξ∗Q̌

1 + 1
n trRQ̌

)
u

+u∗E

(
Q̌ξξ∗Q̌

1 + 1
n trRQ̌

− Q̌ξξ∗Q̌

1 + ξ∗Q̌ξ

)
u .

The second term in the r.h.s. above is zero (simply compute the conditional expectation
with respect to Q̌), the first and third term are of a similar nature; we therefore only estimate
the third one denoted by ∆3 below.

|∆3| =

∣∣∣∣∣u
∗
E

(
Q̌ξξ∗Q̌

1 + 1
n trRQ̌

− Q̌ξξ∗Q̌

1 + ξ∗Q̌ξ

)
u

∣∣∣∣∣

=

∣∣∣∣∣E
ξ∗Q̌uu∗Q̌ξ

(1 + ξ∗Q̌ξ)(1 + 1
n trRQ̌)

(
ξ∗Q̌ξ − 1

n
trRQ̌

)∣∣∣∣∣

≤ |z|2
|Im(z)|2

{
E

∣∣∣∣ξ
∗Q̌ξ − 1

n
trRQ̌

∣∣∣∣
2

E
∣∣ξ∗Q̌uu∗Q̌ξ

∣∣2
}1/2

, (5.18)

where the last inequality follows from Cauchy-Schwarz inequality plus the fact that both(
−z(1 + ξ∗Q̌ξ)

)−1
and

(
−z(1 + n−1trRQ̌)

)−1
are Stieltjes transforms and hence upper-

bounded in modulus by |Im(z)|−1. A control for the first expectation in the above inequality
directly follows from classical estimates (see for instance [7, Lemma B.26]):

E

∣∣∣∣ξ
∗Q̌ξ − 1

n
trRQ̌

∣∣∣∣
2

≤ K

n2
E|X11|4E

(
trRQ̌RQ̌∗) ≤ K

n

‖R‖2
|Im(z)|2 cnE|X11|4 , (5.19)

where K is a constant whose value may change from line to line but which remains indepen-
dent from N,n. The second expectation can be handled in the following way:

E
∣∣ξ∗Q̌uu∗Q̌ξ

∣∣2 = E

∣∣∣∣ξ
∗Q̌uu∗Q̌ξ − 1

n
trRQ̌uu∗Q̌+

1

n
trRQ̌uu∗Q̌

∣∣∣∣
2

≤ 2E

∣∣∣∣ξ
∗Q̌uu∗Q̌ξ − 1

n
trRQ̌uu∗Q̌

∣∣∣∣
2

+ 2E

∣∣∣∣
1

n
trRQ̌uu∗Q̌

∣∣∣∣
2

≤ K

n2
E|X11|4Etr (R1/2Q̌uu∗Q̌R1/2)(R1/2Q̌uu∗Q̌R1/2)∗

+
2

n2
E
∣∣u∗Q̌RQ̌u

∣∣2

≤ K

n2

‖R‖2‖u‖4
|Im(z)|4 . (5.20)
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It now remains to gather (5.19) and (5.20) to get:
∣∣∣u∗E

(
Q(0) −Q(1)

)
u
∣∣∣ ≤ 1

n
√
n
Φ(|z|)Ψ

(
1

δz

)
‖u‖2.

Finally, the result follows by upper-bounding each term of the sum in (5.16) and (5.14) is
proved.

We now establish (5.15). Using a similar decomposition as in (5.16), we get:

ETr (Q −QC) =

n∑

i=1

ETr (Q(i−1) −Q(i)) .

We focus on the first term, use (5.17) and follow a similar notational convention by dropping
subscript 1.

ETr
(
Q(0) −Q(1)

)
= ETr

(
Q̌ξCξC∗Q̌

1 + ξC∗Q̌ξC
− Q̌ξξ∗Q̌

1 + ξ∗Q̌ξ

)
= E

(
ξC∗Q̌2ξC

1 + ξC∗Q̌ξC
− ξ∗Q̌2ξ

1 + ξ∗Q̌ξ

)

= E

(
ξC∗Q̌2ξCξ∗Q̌ξ − ξ∗Q̌2ξξC∗Q̌ξC

(1 + ξC∗Q̌ξC)(1 + ξ∗Q̌ξ)

)
+ E

(
ξC∗Q̌2ξC − ξ∗Q̌2ξ

(1 + ξC∗Q̌ξC)(1 + ξ∗Q̌ξ)

)
.

(5.21)

Denote by

A1 = (ξC∗Q̌2ξC)(ξ∗Q̌ξ)− (ξ∗Q̌2ξ)(ξC∗Q̌ξC) ,

A2 = ξC∗Q̌2ξC − ξ∗Q̌2ξ ,

B1 =
1

(1 + ξC∗Q̌ξC)(1 + ξ∗Q̌ξ)
− 1

(1 + ξC∗Q̌ξC)(1 + 1
n trRQ̌)

,

B2 =
1

(1 + ξC∗Q̌ξC)(1 + 1
n trRQ̌)

− 1

(1 + 1
n trRQ̌)

2
,

B3 =
1

(1 + 1
n trRQ̌)

2
.

With these notations at hand, we have:

B1 +B2 +B3 =
1

(1 + ξC∗Q̌ξC)(1 + ξ∗Q̌ξ)

and

ETr
(
Q(0) −Q(1)

)
= EA1(B1 +B2 +B3) + EA2(B1 +B2 +B3) .

Notice that EA1B3 = EA2B3 = 0. By Cauchy-Schwarz inequality, Proof of Prop. 5.4 will
be completed as long as we establish the following estimates:

{
E|A1|2

}1/2 ≤ K√
n

1

Im(z)3
, (5.22)

{
E|A2|2

}1/2 ≤ K√
n

1

Im(z)2
, (5.23)

{
E|B1|2

}1/2 ≤ K√
n

|z|3
Im(z)4

, (5.24)

{
E|B2|2

}1/2 ≤ K√
n

|z|3
Im(z)4

. (5.25)
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Estimates (5.24)-(5.25) can be established as (5.18). In order to establish (5.22), we compute
exactly the expectation E|A1|2 writing

E
∣∣ξC∗Q̌2ξCξ∗Q̌ξ − ξ∗Q̌2ξξC∗Q̌ξC

∣∣2

= E
(
ξC∗Q̌2ξCξ∗Q̌ξ − ξ∗Q̌2ξξC∗Q̌ξC

) (
ξC∗Q̌2ξCξ∗Q̌ξ − ξ∗Q̌2ξξC∗Q̌ξC

)
, (5.26)

which splits into 4 terms:

(5.26) = E

{∣∣ξC∗Q̌2ξC
∣∣2 ∣∣ξ∗Q̌ξ

∣∣2
}
− E

{(
ξ∗Q̌2ξ

) (
ξ∗Q̌ξ

) (
ξC∗Q̌ξC

) (
ξC∗Q̌2ξC

)}

+E

{∣∣ξ∗Q̌2ξ
∣∣2 ∣∣ξC∗Q̌ξC

∣∣2
}
− E

{(
ξ∗Q̌2ξ

) (
ξ∗Q̌ξ

) (
ξC∗Q̌ξC

) (
ξC∗Q̌2ξC

)}
.

Using the independence of ξ, ξC and Q̌ together with formula (2.6), lengthy but straightfor-
ward computations yield the estimate

E
∣∣ξC∗Q̌2ξCξ∗Q̌ξ − ξ∗Q̌2ξξC∗Q̌ξC

∣∣2 ≤ K

n Im(z)6
.

Similar computations yield

E
∣∣ξC∗Q̌2ξC − ξ∗Q̌2ξ

∣∣2 ≤ K

n Im(z)4
, (5.27)

and (5.22)-(5.23) are established. Estimate (5.15) is established and proof of Prop. 5.4 is
completed.

�

Corollary 5.5. Assume that (A-1) and (A-2) hold true, then the following convergence
holds true:

1

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii

− 1

n

N∑

i=1

(
R1/2T (z1)R

1/2
)
ii

(
R1/2T (z2)R

1/2
)
ii

P−−−−−→
n,N→∞

0 .

Proof. We first transform the sum to be calculated:

1

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii
. (5.28)

Using Proposition 5.3 enables us to replace the conditional expectation Ei by the true ex-
pectation in every term

(
R1/2EjQj(z)R

1/2
)
ii
. Now using the fact that

Q = Qj −
Qjξjξ

∗
jQj

1 + ξ∗jQjξj

and computations similar to those made in Proposition 5.4, one can replace EQj by EQ.
Finally, by Proposition 5.4, EQ can be replaced by EQC. We are led to study the sum:

1

n

N∑

i=1

(
R1/2

EQC(z1)R
1/2
)
ii

(
R1/2

EQC(z2)R
1/2
)
ii
.
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Denote by Rn = Un∆U
∗
n the spectral decomposition of covariance matrix Rn. Since matrix

Un is unitary, then Yn = U∗
nX

C
n has i.i.d. standard complex Gaussian entries and the

resolvent writes:

QC(z) =
(
R1/2

n XC

n

(
XC

n

)∗
R1/2

n − zIN

)−1

= Un

(
∆1/2YnY

∗
n∆

1/2 − zIN

)−1

U∗
n

△
= UnQ∆(z)U

∗
n . (5.29)

Denote by T∆(z) the matrix

T∆(z) = (−zIN + (1− cn)∆− zcntn(z)∆)
−1

,

where tn(z) is defined in (2.3); notice that the definition of tn(z) only depends on the
spectrum of Rn (or equivalently ∆); notice also that

Tn(z) = Un T∆(z)U
∗
n . (5.30)

It has been proved in [32, Theorem 1.1] that for every deterministic N × 1 vector vn:

E |v∗n (Q∆(z)− T∆(z)) vn|2 ≤ 1

n
Φ2(|z|)Ψ2

(
1

δz

)
‖vn‖4 .

Hence,

|v∗nEQ∆(z)vn − v∗nT∆(z)vn| ≤
(
E |v∗n (Q∆(z)− T∆(z)) vn|2

)1/2

≤ ‖vn‖2√
n

√
Φ2(|z|)Ψ2

(
δ
−1
z

)
≤ ‖vn‖2√

n

(
1 + Φ2(|z|)

2

)(
1 + Ψ2

(
δ
−1
z

)

2

)
.

In particular, let ei be the ith coordinate vector, then

∣∣∣
(
R1/2

EQ(z)R1/2
)
ii
−
(
R1/2T (z)R1/2

)
ii

∣∣∣

=
∣∣∣
(
R1/2UEQ∆(z)U

∗R1/2
)
ii
−
(
R1/2UT∆(z)U

∗R1/2
)
ii

∣∣∣

≤ ‖R1/2U∗ei‖2√
n

(
1 + Φ2(|z|)

2

)(
1 + Ψ2

(
δ
−1
z

)

2

)
,

which completes the proof. �

Combining the result in Corollary 5.5 together with (5.5) and (5.7), we have proved so
far that:

∂2

∂z1∂z2




z1z2t̃n(z1)t̃n(z2)

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii





=
1

n

N∑

i=1

∂2

∂z1∂z2

{
z1z2t̃n(z1)t̃n(z2)

(
R1/2

n Tn(z1)R
1/2
n

)
ii

(
R1/2

n Tn(z2)R
1/2
n

)
ii

}
+ oP (1) .

(5.31)
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Taking into account (3.1) and the matrix identity U(I + V U)−1V = 1 − (I + UV )−1, we
obtain:

(5.31) =
1

n

N∑

i=1

∂2

∂z1∂z2

(
IN − (IN + t̃n(z1)Rn)

−1
)
ii

(
IN − (IN + t̃n(z2)Rn)

−1
)
ii
+ oP (1) ,

=
1

n

N∑

i=1

∂

∂z1
[z1Tn(z1)]ii

∂

∂z2
[z2Tn(z2)]ii + oP (1) ,

=
z21z

2
2 t̃

′
n(z1)t̃

′
n(z2)

n

N∑

i=1

(
R1/2

n T 2
n(z1)R

1/2
n

)
ii

(
R1/2

n T 2
n(z2)R

1/2
n

)
ii
+ oP (1) ,

= Θ2,n(z1, z2) + oP (1) , (5.32)

where Θ2,n is given by formula (2.12).

Now gathering (5.8), (5.11) and (5.32), we have established so far:

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) = Θn(z1, z2) + oP (1)

which is the first part of Proposition 5.1.

5.1.4. Computations for the bias. In this section, we are interested in the computation of
N(Efn(z)− tn(z)). As

f̃n(z) = − (1− cn)

z
+ cnfn(z) and t̃n(z) = − (1− cn)

z
+ cntn(z) ,

we immediately obtain N(Efn(z)− tn(z)) = n(Ef̃n(z) − t̃n(z)). Combining (2.7) and (3.1)
yields:

− z − 1

t̃n(z)
+

1

n
trRn

(
IN + t̃n(z)Rn

)−1
= 0 . (5.33)

Following Bai and Silverstein [5, Section 4], we introduce the quantity An(z) defined as:

An(z) = zEf̃n(z) + 1 +
1

n
tr
(
IN + Ef̃n(z)Rn

)−1

− cn

= zEf̃n(z) + 1 +
1

n
tr
(
IN + Ef̃n(z)Rn

)−1

− 1

n
tr I−1

N

= −Ef̃n(z)

(
−z − 1

Ef̃n(z)
+

1

n
trRn(IN + Ef̃n(z)Rn)

−1

)
,

hence

− An(z)

Ef̃n(z)
= −z − 1

Ef̃n(z)
+

1

n
trRn(IN + Ef̃n(z)Rn)

−1 . (5.34)

Substracting (5.33) to (5.34) finally yields:

Ef̃n(z)−t̃n(z) = −An(z)t̃n(z)

[
1− t̃n(z)Ef̃n(z)

n
trR2

n

(
IN + Ef̃n(z)Rn

)−1 (
IN + t̃n(z)Rn

)−1

]−1

,

which is the counterpart of [5, Eq. (4.12)]. The same arguments as in [5] now yields:

n
(
Ef̃n(z)− t̃n(z)

)
= −nAn(z)t̃n(z)

[
1− t̃2n(z)

n
trR2

n

(
IN + t̃n(z)Rn

)−2
]−1

+ o(1) . (5.35)
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It remains to study the behaviour of nAn(z). Following [5, Eq. (4.10)], we obtain:

nAn(z) =

b2n
n
EtrQ1

(
Ef̃nRn + IN

)−1

RnQ1Rn − b2n nE

[(
ξ∗1Q1ξ1 −

1

n
trQ1Rn

)

×
(
ξ∗1Q1

(
Ef̃nRn + IN

)−1

ξ1 −
1

n
trQ1

(
Ef̃nRn + IN

)−1

Rn

)]
+ o(1) .

Applying (2.6) to the right term to the r.h.s. of the previous equation (recall thatRT = R̄),
we obtain:

nAn(z) = −|V|2 b
2
n

n
EtrR1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n R̄1/2

n QT
1 R̄

1/2
n

− κ
b2n
n

N∑

i=1

(
R1/2

n Q1R
1/2
n

)
ii

(
R1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n

)

ii

+ o(1) . (5.36)

The first term of the r.h.s. has been fully analyzed in [5] in the case where Rn and Xn are
real matrices. We adapt these computations to the general case and outline in Appendix
A.1 the proof of the identity:

− |V|2 b
2
n

n
EtrR1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n R̄1/2

n QT
1 R̄

1/2
n

= |V|2
z3 t̃2n
n trR

1/2
n T 2

n(z)R
1/2
n R̄

1/2
n T T

n (z)R̄
1/2
n

1− |V|2z2 t̃2n
n trR

1/2
n Tn(z)R

1/2
n R̄

1/2
n T T

n (z)R̄
1/2
n

+ o(1) , (5.37)

where T T
n (z) is defined in (2.8). The term proportional to the cumulant in (5.36) can be

analyzed as in Section 5.1.3, and one can prove that:

− κ
b2n
n

N∑

i=1

(
R1/2

n Q1R
1/2
n

)
ii

(
R1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n

)

ii

= −κz
2t̃2n
n

N∑

i=1

(
R1/2

n TnR
1/2
n

)
ii

(
R1/2

n Tn
(
t̃nRn + IN

)−1
R1/2

n

)
ii
+ o(1) . (5.38)

We now plug (5.37) and (5.38) into (5.35) to conclude.

n
(
Ef̃n(z)− t̃n(z)

)
= −|V|2 z

3t̃3n
n

trR
1/2
n T 2

n(z)R
1/2
n R̄

1/2
n T T

n (z)R̄
1/2
n(

1− |V|2z2 t̃2n
n trR

1/2
n Tn(z)R

1/2
n R̄

1/2
n T T

n (z)R̄
1/2
n

)(
1− t̃2n

n trR2
nT

2
n

)

−κz
3t̃3n
n

N∑

i=1

(
R

1/2
n TnR

1/2
n

)
ii

(
R

1/2
n T 2

nR
1/2
n

)
ii

1− z2 t̃2n
n trR2

nT
2
n

+ o(1) .

Proof of Proposition 5.1 is completed.

5.2. Proof of Proposition 5.2. Recall the meta-model introduced in Section 2.6.
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5.2.1. The Gaussian process Gn. Let

Mn,M (z) = tr (Σn(M)Σn(M)∗ − zINM )−1 −MNtn(z) .

Applying Proposition 5.1 to the matrix model Σn(M)Σn(M)∗ yields:

∀z ∈ Γ , M 1
n,M (z) =

nM∑

j=1

ZM
j (z) + oP (1) ,

where the ZM
j ’s are martingale increments and

nM∑

j=1

Ej−1Z
M
j (z1)Z

M
j (z2)

P−−−−−−−−−−−−→
N,n fixed , M→∞

Θn(z1, z2) ,

M 2
n,M (z) −−−−−−−−−−−→

N,n fixed ,M→∞
Bn(z) .

Notice that there is a genuine limit in the previous convergence. Applying the cen-
tral limit theorem for martingales [11, Theorem 35.12] plus the tightness argument for
(Mn,M (z), z ∈ Γ) provided by Proposition 5.1 immediately yields the fact that Mn,M con-
verges in distribution to a Gaussian process (Gn(z), z ∈ Γ) with mean Bn(z) and covariance
function Θn(z1, z2).

5.2.2. Tightness of the sequence of Gaussian processes (Gn). In order to prove that the se-
quence of Gaussian processes (Gn) is tight, we shall prove, according to Prohorov’s theorem,
that it is relatively compact in distribution. Consider the set of matrices:

{(Rn(M),M ≥ 1) ; Rn is a N × n matrix, N = N(n);n ≥ 1}
where Rn(M) is defined in (2.23). Since ‖Rn(M)‖ = ‖Rn‖ for all M ≥ 1, we have

sup
M≥1,N,n→∞

‖Rn(M)‖ = sup
N,n→∞

‖Rn‖ <∞

by Assumption (A-2). Hence, by Proposition 5.1, the family {Mn,M ;M ≥ 1}N,n→∞ is tight,
hence relatively compact in distribution. As the distribution L(Gn) of the Gaussian process
Gn is the limit (in M) of the distribution L(Mn,M ) of Mn,M , L(Gn) belongs to the closure
of {L(Mn,M )}, which is compact. Finally, {L(Gn)} is included in a compact set, hence is
relatively compact. In particular, the family of Gaussian processes (Gn) is tight.

5.3. Proof of Theorem 1. The two propositions below are minor variations of known
results. They will be helpful to conclude the proof of Theorem 1.

Lemma 5.6 (CLT for martingales I). Suppose that for each n Yn1, Yn2, · · · , Ynrn is a real
martingale difference sequence with respect to the increasing σ-field {Gn,j} having second
moments. Assume moreover that (Θ2

n) is a sequence of nonnegative real numbers, uniformly
bounded. If

rn∑

j=1

E
(
Y 2
nj | Gn,j−1

)
−Θ2

n
P−−−−→

n→∞
0 ,

and for each ε > 0,
rn∑

j=1

E
(
Y 2
nj1|Ynj|>ε

)
−−−−→
n→∞

0 ,
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then, for every bounded continuous function f : R → R

Ef




rn∑

j=1

Ynj


− Ef(Zn) −−−−→

n→∞
0 , (5.39)

where Zn is a centered Gaussian random variable with variance Θ2
n.

Hereafter is the multidimensional and complex extension of Lemma 5.6 we shall rely on
in the sequel:

Lemma 5.7 (CLT for martingales II). Suppose that for each n (Ynj ; 1 ≤ j ≤ rn) is a Cd-
valued martingale difference sequence with respect to the increasing σ-field {Gn,j ; 1 ≤ j ≤ rn}
having second moments. Write:

Y T
nj = (Y 1

nj , · · · , Y d
nj) .

Assume moreover that (Θn(k, ℓ))n and (Θ̃n(k, ℓ))n are uniformly bounded sequences of
complex numbers, for 1 ≤ k, ℓ ≤ d. If

rn∑

j=1

E
(
Y k
nj Ȳ

d
nj | Gn,j−1

)
−Θn(k, ℓ)

P−−−−→
n→∞

0 , (5.40)

rn∑

j=1

E
(
Y k
njY

ℓ
nj | Gn,j−1

)
− Θ̃n(k, ℓ)

P−−−−→
n→∞

0 , (5.41)

and for each ε > 0,
rn∑

j=1

E
(
|Ynj |21|Ynj|>ε

)
−−−−→
n→∞

0 , (5.42)

then, for every bounded continuous function f : Cd → R

Ef




rn∑

j=1

Ynj


− Ef(Zn) −−−−→

n→∞
0 , (5.43)

where Zn is a Cd-valued centered Gaussian random vector with parameters

EZnZ
∗
n = (Θn(k, ℓ))k,ℓ and EZnZ

T
n = (Θ̃n(k, ℓ))k,ℓ .

Lemmas 5.6 and 5.7 are variations around the Central Limit Theorem for martingales
(see Billingsley [11, Theorem 35.12]) which enables us to prove (in the real case):

∀t ∈ R , Eeit
∑rn

j=1
Ynj − e−

t2Θ2
n

2 → 0

and Lévy theorem for the weak convergence criterion via characteristic functions (see Kallen-
berg [38, Theorem 5.3 and Theorem 5.5]) which yields (5.43) from the above convergence.
Details of the proof are omitted.

Lemma 5.8 (Tightness and weak convergence). Let K be a compact set in C; let X1, X2, · · ·
and Y1, Y2, · · · be random elements in C(K,C). Assume that for all d ≥ 1, for all z1, · · · , zd ∈
K, for all f ∈ C(Cd,C) we have:

Ef(Xn(z1), · · · , Xn(zd))− Ef(Yn(z1), · · · , Yn(zd)) −−−−→
n→∞

0 .
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Assume moreover that (Xn) and (Yn) are tight, then for every continuous and bounded
functional F : C(K,C) → C, we have:

EF (Xn)− EF (Yn) −−−−→
n→∞

0 .

Lemma 5.8 can be proved as [38, Lemma 16.2]; the proof is therefore omitted.

We are now in position to conclude.

In order to apply Lemma 5.7, it remains to check that Θn as defined in (2.9) is uniformly
bounded for z1, z2 ∈ Γ fixed but this is an easy byproduct of Proposition 5.2.

Proposition 5.1 together with Lemma 5.7 (notice that condition (5.42) can be proved as
in [5]) yield the fact that for every z1, · · · , zd ∈ Γ and for every bounded continuous function
f : Γd → C:

Ef(Mn(z1), · · · ,Mn(zd))− Ef(Gn(z1), · · · , Gn(zd)) −−−−−→
N,n→∞

0 ,

where Gn is well-defined by Proposition 5.2. Now the tightness ofMn and Gn together with
Lemma 5.8 yield the last statement of Theorem 1.

6. Proof of Theorem 2 (Fluctuations for non-analytic functionals)

In this section, we will assume that the random variables (Xn
ij) are truncated, centered

and normalized, following Section 3.2.

6.1. Useful properties. Recall that Sn ⊂ S∞
△
=

[
0,λ+

R

(
1 +

√
ℓ
+
)2]

uniformily in n.

Denote by h ∈ C∞
c (R) a function whose value is 1 on a η-neighborhood Sη

∞ of S∞.

Proposition 6.1. (1) Assume that (A-1) and (A-2) hold true; let the random variables
(Xn

ij) be truncated as in Section 3.2, function h be defined as above and f : R → R

be a continuous function. Then

tr f(ΣnΣ
∗
n)− tr (fh)(ΣnΣ

∗
n)

a.s.−−−−−→
N,n→∞

0 .

(2) Let hn be a smooth function on R with compact support and whose value is 1 on a
η-neighborhood Sη

n of Sn; then:∫

R

f(λ)Fn(dλ) =

∫

R

(fhn)(λ)Fn(dλ) , .

Proof of Proposition 6.1 is straightforward and is based on the fact that almost surely,

lim sup
N,n→∞

‖ΣnΣ
∗
n‖ < λ

+
R

(
1 +

√
ℓ
+
)2

+ η ,

a fact that can be found in [7] for instance. Details are left to the reader.

The following proposition underlines how a sufficient regularity of function f compensates
the singularity in Im(z)−1 near the real axis.

Proposition 6.2. Let µ, ν be two probability measures on R and gµ and gν their associated
Stieltjes transforms. Assume that

|gµ(z)− gν(z)| ≤
|h(z)|
Im(z)k

, z ∈ C
+ ,
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where h is a continuous function over cl(C+), the closure of C+.

Let f : R → R be a function of order Ck+1 with bounded support; recall the definition of
Φk(f) in (1.6) and denote by

‖f‖k+1 = sup
0≤ℓ≤k+1

‖f (ℓ)‖∞ where ‖g‖∞ = sup
x∈R

|g(x)| .

Then ∣∣∣∣
∫
f dµ−

∫
f dν

∣∣∣∣ ≤ 1

π

∣∣∣∣
∫

C+

∂Φk(f)(z) {gµ(z)− gν(z)} ℓ2( dz)
∣∣∣∣ ,

≤ K‖f‖k+1

∫

supp(f)×supp(χ)

|h(z)|ℓ2(dz) ,

≤ K ′‖f‖k+1 . (6.1)

Proof. Write

∂Φk(f)(x+ iy) = ∂xΦk(f)(x+ iy) + i∂yΦk(f)(x+ iy)

=
(iy)kf (k+1)(x)

k!
χ(y) + i

k∑

ℓ=0

(iy)ℓf (ℓ)(x)

ℓ!
χ′(y) .

From this and the fact that χ is equal to 1 for y small enough, we deduce that

∂Φk(f)(x+ iy) =
(iy)kf (k+1)(x)

k!

near the real axis. Hence
∣∣∂Φk(f)(x+ iy)

∣∣ ≤ 1supp(f)×supp(χ)(x, y)K‖f‖k+1y
k near the real

axis, which yields (6.1). �

6.2. Proof of Theorem 2. Recall the definition of the sets D, D+ and Dε given in (3.7)

and the fact that constant A > λ
+
R

(
1 +

√
ℓ
+
)2

.

Lemma 6.3. Let (ϕn(z), z ∈ D+ ∪ D+)n∈N and (ψn(z), z ∈ D+ ∪ D+)n∈N be centered

complex-valued continuous random processes an such that ϕ(z̄) = ϕ(z) and ψ(z̄) = ψ(z).
Assume that:

(i) The following convergence in distribution holds true: for all d ≥ 1 and (z1, · · · , zd) ∈
D+,

dLP

(
(ϕn(z1), · · · , ϕn(zd)), (ψn(z1), · · · , ψn(zd))

)
−−−−→
n→∞

0

(ii) For all ε > 0, ϕn(z) and ψn(z) are tight on Dε.

(iii) The process (ψn(z)) is gaussian with covariance matrix κn(z1, z2), (z1, z2 ∈ D+ ∪
D+).

(iv) The following estimates hold true

∀n ∈ N , ∀z ∈ D+, varϕn(z) ≤
1

Im(z)2k
and varψn(z) ≤

1

Im(z)2k
.

(v) Let functions gℓ : R → R (1 ≤ ℓ ≤ L) be Ck+1 and have compact support.
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Then,

dLP

(
1

π
Re

∫

C+

∂Φk(g)(z)ϕn(z) ℓ2(dz) ,
1

π
Re

∫

C+

∂Φk(g)(z)ψn(z) ℓ2(dz)

)
−−−−→
n→∞

0 ,

where

∂Φk(gj)(z) = (∂x + i∂y)

k∑

ℓ=0

(iy)ℓ

ℓ!
g
(ℓ)
j (x)χ(y) and ∂Φk(g) =

(
∂Φk(gj) ; 1 ≤ j ≤ L

)

with χ being smooth, compactly supported with value 1 in a neighbourhood of 0. Moreover,

1

π
Re

∫

C+

∂Φk(g)(z)ψn(z) ℓ2(dz)

is centered gaussian with covariance matrix:

cov

(
1

π
Re

∫

C+

∂Φk(gk)(z)ψn(z) ℓ2(dz) ,
1

π
Re

∫

C+

∂Φk(gℓ)(z)ψn(z) ℓ2(dz)

)

=
1

2π2
Re

∫

(C+)2
∂Φk(gk)(z1)∂Φk(gℓ)(z2)κn(z1, z̄2)ℓ2(dz1)ℓ2(dz2)

+
1

2π2
Re

∫

(C+)2
∂Φk(gk)(z2)∂Φk(gℓ)(z2)κn(z1, z2)ℓ2(dz1)ℓ2(dz2) , (6.2)

for 1 ≤ k, ℓ ≤ L.

Proof of Lemma 6.3 is provided in Appendix A.2.

The strategy to prove Theorem 2 closely follows this lemma. Denote by

ϕn(z) = trQn(z)− EtrQn(z) and ψn(z) = Gn(z)− EGn(z) ,

the process Gn being defined in Theorem 1, then conditions (i), (ii) and (iii) are immediate
consequences of Theorem 1. In order to check condition (iv), we establish the following
proposition:

Proposition 6.4. Assume that (A-1) and (A-2) hold true, then:

(i) (Bordenave [12], Hachem et al. [31, Lemma 6.3], Shcherbina [50]) For all z ∈ C
+,

var trQn(z) ≤
C

Im(z)4
,

(ii) For all z ∈ C+,

varGn(z) ≤
C

Im(z)4
,

where C is a constant that may depend polynomially on |z|.

Proof of Proposition 6.4 is postponed to Appendix A.3.

Taking into account the estimates established in Proposition 6.4 immediatly yields the
first part of Theorem 2 in the case where functions (gℓ) have a bounded support and satisfy
(v) with k = 2, i.e. are C3. It remains to prove the equivalence between (4.3) and (4.4). but
this immediately follows from:

Proposition 6.5. Let (Xn) and (Yn) be C
d-valued random variables and assume that both

sequences are tight, then the following are equivalent:



GAUSSIAN FLUCTUATIONS FOR LARGE RANDOM COVARIANCE MATRICES 35

(i) the following convergence holds true: dLP (Xn, Yn) −−−−→
n→∞

0 .

(ii) for every continuous bounded function f : Cd → C, E f(Xn)− E f(Yn) −−−−→
n→∞

0 ,

Proposition 6.5 can be proved easily by contradiction using the fact that dLP metrizes
the convergence of laws; its proof is hence omitted.

6.3. Proof of Proposition 4.1. Let f ∈ C∞
c (R2). A simple but lengthy computation

yields the fact that

∂2∂1ΦN1,N2
(f)(x + iu, y + iv) =

∂N1+N2+2

∂xN1+1∂yN2+1
f(x, y)× (iu)N1

N1!

(iv)N2

N2!
(6.3)

for u, v small enough. Let now N1 = N2 = 2. Since |Θn(z1, z2)| ≤ K|z1z2|−2 for any
z1, z2 ∈ C+ and z1, z2 in a compact set (use Cauchy-Schwarz and apply Proposition 6.4),
Υ(f) is well-defined. Let K be a compact set in R2 and let f ∈ C∞

c (R2) with support
included in K, then one can easily prove that

|Υ(f)| ≤ CK‖f‖3,3 with ‖f‖3,3 = sup
ℓ, p ≤ 3

(x, y) ∈ K

‖∂ℓx∂pyf(x, y)‖∞ .

This in particular implies that Υ is a distribution on C∞
c (R2), of finite order (3, 3) and hence

uniquely extends as a distribution on C3,3
c (R2).

Moreover, Υ(f) can be written as:

Υ(f) = lim
ε↓0

1

2π2
Re

∫

(C+
ε )2

∂2∂1Φ2,2(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2)

+ lim
ε↓0

1

2π2
Re

∫

(C+
ε )2

∂2∂1Φ2,2(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2) ,

where C+
ε = {z ∈ C, Im(z) ≥ ε}. Taking into account the facts that:

∂2∂1Φn1,n2
(f)(z1, z2) = ∂2∂1Φn1,n2

(f)(z1, z2) and Θn(z1, z2) = Θn(z1, z2) ,

we can expand Υ(f) as:

Υ(f) = lim
ε↓0

1

4π2

∫

(C+
ε )2

∂2∂1Φ2,2(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2)

+ lim
ε↓0

1

4π2

∫

(C+
ε )2

∂2∂1Φ2,2(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2)

+ lim
ε↓0

1

4π2

∫

(C+
ε )2

∂2∂1Φ2,2(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2)

+ lim
ε↓0

1

4π2

∫

(C+
ε )2

∂2∂1Φ2,2(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2) .



36 J. NAJIM, J. YAO

We now apply twice Green’s formula to each integral and obtain

Υ(f) = − lim
ε↓0

1

4π2

∫

R2

Φ2,2(f)(x1 + iε, x2 + iε)Θn(x1 + iε, x2 + iε)dx1 dx2

− lim
ε↓0

1

4π2

∫

R2

Φ2,2(f)(x1 − iε, x2 − iε)Θn(x1 − iε, x2 − iε)dx1 dx2

+ lim
ε↓0

1

4π2

∫

R2

Φ2,2(f)(x1 + iε, x2 − iε)Θn(x1 + iε, x2 − iε)dx1 dx2

+ lim
ε↓0

1

4π2

∫

R2

Φ2,2(f)(x1 − iε, x2 + iε)Θn(x1 − iε, x2 + iε)dx1 dx2 .

Notice that the sign changes in the two last integrals follow from the contour orientations in
Green’s formula. We now prove

lim
ε↓0

∫

R2

Φ2,2(f)(x1 + iε, x2 + iε)Θn(x1 + iε, x2 + iε)dx1 dx2

= lim
ε↓0

∫

R2

f(x1, x2)Θn(x1 + iε, x2 + iε)dx1 dx2 . (6.4)

The three other integrals can be handled similarly and this will achieve the boundary value
representation (4.6) for Υ(f).

Using the mere definition of ΦN1,N2
(f) (cf. (4.5)) and Green’s formula we get:

∫

(C+
ε )2

∂2∂1Φ1,0(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2)

= −
∫

R2

Φ1,0(f)(x1 + iε, x2 + iε)Θn(x1 + iε, x2 + iε)dx1 dx2

= −
∫

R2

f(x1, x2)Θn(x1 + iε, x2 + iε)dx1 dx2 − iε

∫

R2

∂xf(x1, x2)Θn(x1 + iε, x2 + iε)dx1 dx2 .

We extract the first term of the r.h.s. from the equation above. Taking into account (6.3)
and the fact that |Θn(z1, z2)| ≤ |z1z2|−2 for z1, z2 in a compact set of C \ R, we obtain:

lim sup
ε↓0

∣∣∣∣ε
3

∫

R2

f(x1, x2)Θn(x1 + iε, x2 + iε)dx1 dx2

∣∣∣∣ <∞ .

By applying the same argument to the quantity
∫

(C+
ε )2

∂2∂1Φ4−ℓ,0(f)(z1, z2)Θn(z1, z2)ℓ2(dz1)ℓ2(dz2)

for ℓ = 2 then ℓ = 1 and ℓ = 0, we can similarly prove that

lim sup
ε↓0

∣∣∣∣ε
ℓ

∫

R2

f(x1, x2)Θn(x1 + iε, x2 + iε)dx1 dx2

∣∣∣∣ <∞ for ℓ = 2, 1, 0.

We finally obtain

lim sup
ε↓0

∣∣∣∣
∫

R2

f(x1, x2)Θn(x1 + iε, x2 + iε)dx1 dx2

∣∣∣∣ <∞ .

Expanding Φ2,2(f) into (6.4) and using the above estimate immediatly yields (6.4).

Proof of Proposition 4.1 is completed.



GAUSSIAN FLUCTUATIONS FOR LARGE RANDOM COVARIANCE MATRICES 37

6.4. Proof of Proposition 4.2. The covariance writes (in short)

cov(Z1
n(f), Z

1
n(g)) = − 1

4π2
lim
ε↓0

∑

±1,±2

(±1±2)

∫
f(x)g(y)Θn(x ±1 iε, y ±2 iε) dxdy ,

where ±1,±2 ∈ {+,−} and ±1±2 is the sign resulting from the product ±11 by ±21.
Unfolding Θn = Θ0,n + |V|2Θ1,n + κΘ2,n, we have three terms to compute. According
to the assumptions of Proposition 4.2, either |V|2 equals 1 or 0. In the latter case, the term
corresponding to Θ1,n vanishes; if |V|2 = 1, then the quantities An and A0,n (respectively
defined in (2.13) and (3.10)) are equal, and so are Θ0,n and Θ1,n. We first establish

− 1

4π2
lim
ε↓0

∑

±1,±2

(±1±2)

∫
f(x)g(y)Θ0,n(x±1 iε, y ±2 iε) dxdy

=
1

2π2

∫

S2
n

f ′(x)g′(y) ln

∣∣∣∣∣
t̃n(x)− t̃n(y)

t̃n(x)− t̃n(y)

∣∣∣∣∣ dxdy . (6.5)

The proof relies on formula (3.9) and the following expression of A0,n

1−A0,n(z1, z2) =
(z1 − z2)t̃n(z1)t̃n(z2)

t̃n(z1)− t̃n(z2)
(6.6)

which can be obtained using (3.1). Using (3.9) and performing a double integration by parts
yields
∫
f(x)g(y)Θ0,n(x+ iε, y + iε) dxdy =

∫
f ′(x)g′(y) ln |1−A0,n(x+ iε, y + iε)| dxdy

+i

∫
f ′(x)g′(y)Arg (1−A0,n(x+ iε, y + iε)) dxdy

Following [5, Section 5], we need only to consider the logarithm term and show its convergence
since the Arg term will eventually disappear (functions f and g being real, the covariance
will be real as well). Using (6.6), we obtain
∫
f ′(x)g′(y) ln |1−A0,n(x+ iε, y + iε)| dxdy =

∫
f ′(x)g′(y) ln

∣∣∣∣
(x− y)t̃n(x+ iε)t̃n(y + iε)

t̃n(x+ iε)− t̃n(y + iε)

∣∣∣∣ dxdy

and the sum writes
∑

±1,±2

(±1±2)

∫
f(x)g(y)Θn(x ±1 iε, y ±2 iε) dxdy

= 2

∫
f ′(x)g′(y) ln

{∣∣∣∣
(x− y)t̃n(x+ iε)t̃n(y + iε)

t̃n(x+ iε)− t̃n(y + iε)

∣∣∣∣×
∣∣∣∣

t̃n(x+ iε)− t̃n(y − iε)

(x− y + 2iε)t̃n(x+ iε)t̃n(y − iε)

∣∣∣∣
}
dxdy ,

(a)
= 2

∫
f ′(x)g′(y)

{
ln

∣∣∣∣
x− y

x− y + 2iε

∣∣∣∣+ ln

∣∣∣∣
t̃n(x+ iε)− t̃n(y − iε)

t̃n(x+ iε)− t̃n(y + iε)

∣∣∣∣
}
dxdy ,

where (a) follows from the fact that t̃n(z̄) = t̃n(z) and |z| = |z̄|. It is straightforward to
prove that the first integral of the r.h.s. vanishes as ε → 0. Using similar arguments as in
[5, Section 5], one can prove that

∑

±1,±2

(±1±2)

∫
f(x)g(y)Θn(x±1 iε, y ±2 iε) dxdy = 2

∫
f ′(x)g′(y) ln

∣∣∣∣∣
t̃n(x)− t̃n(y)

t̃n(x)− t̃n(y)

∣∣∣∣∣ dxdy ,
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which is the desired result. We now establish

− κ

4π2
lim
ε↓0

∑

±1,±2

(±1±2)

∫
f(x)g(y)Θ2,n(x±1 iε, y ±2 iε) dxdy

=
κ

π2n

N∑

i=1

(∫

Sn

f ′(x) Im (xTn(x))ii dx

)(∫

Sn

g′(y) Im (y Tn(y))ii dy

)
(6.7)

Due to formula (3.11), we only need to prove

i

2π
lim
ε↓0

∑

±∈{+,−}
±
∫
f(x)

∂

∂x
[(x± iε)Tn(x± iε)]ii dx =

1

π

∫

Sn

f ′(x) Im (xTn(x))ii dx .

(6.8)

Performing an integration by parts and taking into account the fact that Tn(z̄) = Tn(z)
yields

i

2π
lim
ε↓0

∑

±∈{+,−}
±
∫
f(x)

∂

∂x
[(x± iε)Tn(x± iε)]ii dx

= − i

2π
lim
ε↓0

∫
f ′(x)2i Im [(x+ iε)Tn(x+ iε)]ii dx

(a)
=

1

π

∫

Sn

f ′(x)Im (xTn(x))ii dx ,

where step (a) follows from the fact that

inf
1 ≤ i ≤ N,

z ∈ (0, A] × (0, B]

∣∣(1 + t̃n(z)λi)
∣∣ > 0 (6.9)

where the λi’s stand for Rn’s eigenvalues. In fact, assume that (6.9) holds true, then using the
spectral decomposition of Rn, the pointwise convergence of t̃n(z) to t̃n(x) as C

+ ∋ z → x ∈ R

(see for instance [52]) and formula (3.1), then one obtains the pointwise convergence

Im [(x+ iε)Tn(x+ iε)]ii −−−→ε→0
Im [xTn(x)]ii

for x > 0. Since Im(t̃(x)) = 0 outside Sn, so is Im [xTn(x)]ii. Finally, (6.9) provides a
uniform bound for Im [(x+ iε)Tn(x+ iε)]ii and (a) follows from the dominated convergence
theorem. It remains to prove (6.9). Assume that the infemum is zero, then there exists
λ∗ ∈ {λ1, · · · , λN} with λ∗ 6= 0 and a sequence (zℓ) such that t̃n(zℓ) → − 1

λ∗ and zℓ → x∗ ∈ R.
Formula (3.1) yields

∀z ∈ C
+ , t̃n(z) =

1

−z + 1
n

∑N
i=1

λi

1+t̃n(z)λi

⇔ 1

n

N∑

i=1

λi

1 + t̃n(z)λi
=

1

t̃n(z)
+ z .

Taking z = zℓ yields a contradiction since since the l.h.s. goes to infinity while the r.h.s.
remains bounded. Necessarily, (6.9) holds true and (6.7) is proved.

Proof of Proposition 4.2 is completed by gathering (6.5), (6.7) and using the fact that
Θ0,n = Θ1,n.
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6.5. Proof of Corollary 4.3. In order to establish the fluctuations in the case where func-
tions (fℓ) are C

3 in a neighborhood of S∞ but may not have a bounded support, we proceed
as following: Write

tr fℓ(ΣnΣ
∗
n)− Etr (fℓh)(ΣnΣ

∗
n)

= tr fℓ(ΣnΣ
∗
n)− tr (fℓh)(ΣnΣ

∗
n)︸ ︷︷ ︸

Γ1
ℓ

+tr (fℓh)(ΣnΣ
∗
n)− Etr (fℓh)(ΣnΣ

∗
n)︸ ︷︷ ︸

Γ2
ℓ

.

By Proposition 6.1, the vector (Γ1
ℓ) almost surely converges to zero while the fluctuations

for vector (Γ2
ℓ) are described by Theorem 2 with covariance given by Proposition 4.2, where

functions fk and fℓ must be replaced by (fkh) and (fℓh). The variance formula provided in
this proposition shows that cov(Zn

1 (fℓh), Z
n
1 (fℓ′h)) does not depend on function h as long

as h has value 1 on Sn.

7. Proof of Theorem 3 (bias for non-analytic functionals)

7.1. Proof of Theorem 3. Recall the notations ΣC
n, Q

C
n, etc. introduced in Section 5. We

split the bias into two terms

ETr f(ΣnΣ
∗
n)−N

∫
f(λ)Fn(dλ) = ETr f(ΣnΣ

∗
n)− ETr f(ΣC

n(Σ
C

n)
∗)

+ ETr f(ΣC

n(Σ
C

n)
∗)−N

∫
f(λ)Fn(dλ) ,

△
= T1 + T2 .

We will prove the following. Provided that function f is of class C8 with bounded support,
then:

ETr f(ΣnΣ
∗
n)− ETr f(ΣC

n(Σ
C

n)
∗)− 1

π
Re

∫

C+

∂Φ7(f)(z)Bn(z) ℓ2(dz) −−−−−→
N,n→∞

0 . (7.1)

Provided that function f is of class C18 with bounded support, then:

ETr f(ΣC

n(Σ
C

n)
∗)−N

∫
f(λ)Fn(dλ) −−−−−→

N,n→∞
0 . (7.2)

As one can check, it is much more demanding in terms of assumptions to prove (7.2) than
(7.1). Convergence in (7.2) should be compared to the results in Haagerup and Thørbjornsen
[27] (counterpart in the GUE case), Schultz [49] (GOE), Capitaine and Donati-Martin [17],
Loubaton et al. [56] (’signal plus noise’ model), etc.

7.1.1. Proof of (7.1). The heart of the proof lies in Helffer-Sjöstrand’s formula, in Theorem
1 (bias part) and in a dominated convergence argument. By Theorem 1,

ETr (ΣnΣ
∗
n − zIN )−1 −Ntn(z)− Bn(z) −−−−−→

N,n→∞
0 .

The same argument yields:

ETr
(
ΣC

n(Σ
C

n)
∗ − zIN

)−1 −Ntn(z) −−−−−→
N,n→∞

0 ,

because in the later case V = κ = 0, hence the bias is zero for the matrix model ΣC
n(Σ

C
n)

∗.
Substracting yields:

ETrQn(z)− ETrQC

n(z)− Bn(z) −−−−−→
N,n→∞

0 .
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Recall that by Proposition 5.4,

∣∣ETrQn(z)− ETrQC

n(z)
∣∣ ≤ K

|z|3
Im(z)7

. (7.3)

In order to transfer this bound to Bn(z), we invoke a meta-model argument (cf. Section 2.6):
Consider matrix Σn(M) and its counterpart ΣC

n(M) as defined in (2.24) and recall that in
this case, we have a genuine limit:

ETr (Σn(M)Σ∗
n(M)− zINM )

−1 − ETr
(
ΣC

n(M)(ΣC

n(M))∗ − zINM

)−1 −−−−−−−→
M → ∞
N, n fixed

Bn(z) .

Since the estimate (7.3) remains true for all M ≥ 1, we obtain:

|Bn(z)| = lim
M→∞

∣∣∣ETr (Σn(M)Σn(M)∗ − zIMN )
−1 − ETr

(
ΣC(M)n(Σ

C

n(M))∗ − zINM

)−1
∣∣∣

≤ K
|z|3

Im(z)7
. (7.4)

Write

ETr f(ΣnΣ
∗
n)− ETr f(ΣC

n(Σ
C

n)
∗)− 1

π
Re

∫

C+

∂Φ(f)(z)Bn(z) ℓ2(dz)

=
1

π
Re

∫

C+

∂Φ(f)(z)
{
ETrQn(z)− ETrQC

n(z)− Bn(z)
}
ℓ2(dz) . (7.5)

In view of (7.5), we need a dominated convergence argument in order to prove (7.1); such
an argument follows from Proposition 6.2, (7.3) and (7.4) as long as f is of class C8 with
large but bounded support. This concludes the proof of (7.1).

7.1.2. Proof of (7.2). The gist of the proof lies in the following proposition whose proof is
postponed to Appendix A.4:

Proposition 7.1. Denote by Pℓ(X) a polynomial in X with degree ℓ and positive coefficients,
then: ∣∣∣∣ETr

(
ΣC

n

(
ΣC

n

)∗ − zIN

)−1

−Ntn(z)

∣∣∣∣ ≤ 1

n
P12(|z|)P17(|Im(z)|−1) .

Using Helffer-Sjöstrand’s formula, Proposition 7.1 together with Proposition 6.2 immedi-
ately yield (7.2) for any f of class C18 with large but bounded support.

7.2. Proof of Proposition 4.4. One can easily prove that Z2
n is a distribution on C18

c (R)
following the lines of proof of Proposition 4.1. Similarly, one can establish the boundary value
representation (4.12). It remains to prove that the singular points of Bn(z) are included in
Sn. Following the definitions of B1,n and B2,n cf. (2.20) and (2.21), we simply need to prove
that the quantities

(
1− z2t̃2n

1

n
TrR2

nT
2
n

)
and

(
1− |V|2z2t̃2n

1

n
TrR1/2

n Tn(z)R
1/2
n R̄1/2

n T T
n (z)R̄1/2

n

)

are invertible for z /∈ Sn. We focus on the first one. Assume first that z ∈ C \ R. Using the
inequality |tr (AB)| ≤ (tr (AA∗)tr (BB∗))1/2 yields:

∣∣∣∣z
2t̃2n(z)

1

n
TrR2

nT
2
n(z)

∣∣∣∣ ≤ |z|2|t̃n(z)|2
n

trRnTn(z)RnT
∗
n(z) .
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Since T ∗
n(z) = Tn(z̄), we can assume without loss of generality that z1, z2 ∈ C+.

∣∣∣∣1− z2t̃2n(z)
1

n
TrR2

nT
2
n(z)

∣∣∣∣ ≥ 1− |z|2|t̃n(z)|2
n

trRnTn(z)RnT
∗
n(z) = |t̃n(z)|2

Im(z)

Im(t̃n(z))
(7.6)

where the last identity follows from (A.15). In order to extend the previous estimate to
z ∈ R \ Sn, let z = x+ iy with x ∈ R \ Sn; then a direct computation yields:

Im(t̃n(z))

Im(z)
=

∫
F̃n(dλ)

|λ− z|2 −−−→
yց0

∫
F̃n(dλ)

|λ− x|2 6= 0 .

Therefore, by continuity (z) 7→ 1 − z2t̃2n(z)
1
nTrR

2
nT

2
n(z) does not vanish on C \ Sn and

B1,n is analytic on this set. We can similarly prove that B2,n is also analytic on the same
set. Consider now a function f ∈ C18

c (R) whose support is disjoint from Sn, then it is
straightforward to check that Z2

n(f) = 0 and the proof of the proposition is completed.

Appendix A. Remaining proofs

A.1. Proof of Proposition 5.1: remaining computations for the bias. In this section,
we outline the proof of identity (5.37) which we recall below:

− |V|2 b
2
n

n
EtrR1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n R̄1/2

n QT
1 R̄

1/2
n

= |V|2
z3 t̃2n
n trR

1/2
n T 2

n(z)R
1/2
n R̄

1/2
n T T

n (z)R̄
1/2
n

1− |V|2z2 t̃2n
n trR

1/2
n Tn(z)R

1/2
n R̄

1/2
n T T

n (z)R̄
1/2
n

+ o(1) . (A.1)

The proof closely follows computations in [5, Section 4] and is essentially a matter of book-
keeping; in particular, all the estimates established there remain valid in the context where
Rn and Xn are not real. We shall focus here on the algebraic identities.

We first replace Q1 by Q and approximate Q by (cf. [5, Eq. 4.13]):

Q(z) = −(zIN − bn(z)Rn)
−1 + bn(z)A(z) +B(z) + C(z) (A.2)

where

A(z) =

n∑

j=1

(zIN − bn(z)Rn)
−1(ξjξ

∗
j − n−1Rn)Qj(z) .

The terms B(z) and C(z) will not contribute in the sequel. Denote by

M = (Ef̃nRn + IN )−1R1/2
n R̄1/2

n ,

T =
1

n
EtrR1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n R̄1/2

n QT
1 R̄

1/2
n .

We have:

T =
1

n
EtrR1/2

n Q1MQT
1 R̄

1/2
n

=
1

n
EtrR1/2

n QMQT R̄1/2
n + o(1)

= − 1

n
EtrR1/2

n (zIN − bn(z)Rn)
−1MQTR1/2

n +
bn(z)

n
EtrR1/2

n A(z)MQT R̄1/2 + o(1)

△
= T1 + T2 + o(1) (A.3)
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In order to compute T1, we approximateQT in the same way as in (A.2); we take into account
the fact that for some deterministic matrix Γ, E tr (ΓA) = 0; we also use the approximation
bn(z) = −zt̃n(z) + o(1) and equation (3.1). The computation of T1 then easily follows:

T1 = − 1

n
EtrR1/2

n (zIN − bn(z)Rn)
−1MQT R̄1/2

n

=
1

n
trR1/2

n (zIN − bn(z)Rn)
−1M(zIN − bn(z)R̄n)

−1R̄1/2
n + o(1)

= − z

n
trR1/2

n T 2
n(z)R

1/2
n R̄1/2

n T T
n (z)R̄1/2

n + o(1) .

We now focus on the term

T2 =
bn(z)

n
EtrR1/2

n A(z)MQT R̄1/2

=
bn(z)

n
EtrR1/2

n

n∑

j=1

(zIN − bn(z)Rn)
−1(ξjξ

∗
j − n−1Rn)Qj(z)MQT R̄1/2

=
bn(z)

n
EtrR1/2

n

n∑

j=1

(zIN − bn(z)Rn)
−1
{
ξjξ

∗
jQj(z)M(QT −QT

j ) +D(z) + E(z)
}
R̄1/2

where

D(z) = ξjξ
∗
jQjMQT

j − n−1RnMQjMQT
j

E(z) = n−1RnM(QT
j −QT )

will not contribute. Using the rank-one perturbation identity for QT −QT
j , we obtain:

T2 =
bn(z)

n
EtrR1/2

n

n∑

j=1

(zIN − bn(z)Rn)
−1ξjξ

∗
jQj(z)M(QT −QT

j )R̄
1/2 + o(1)

= −bn(z)
n

EtrR1/2
n

n∑

i=1

(zIN − bn(z)Rn)
−1ξjξ

∗
jQj(z)M

QT
j ξ̄j ξ̄

∗
jQ

T
j

1 + ξ̄∗jQ
T
j ξ̄j

R̄1/2 + o(1)

= −bn(z)
n

n∑

j=1

E
1

1 + ξ̄∗jQ
T
j ξ̄j

(
ξ̄∗jQ

T
j R̄

1/2R1/2
n (zIN − bn(z)Rn)

−1ξj

) (
ξ∗jQj(z)MQT

j ξ̄j
)
+ o(1) .

In order to pursue the computation of T2, we shall perform the following approximations:
The quantity (1 + ξ̄∗jQ

T
j ξ̄j)

−1 can be replaced by bn and the two remaining quadratic forms
in the expectation can be decorrelated. Now, using formulas (5.9), we obtain:

T2 = −b
2
n(z)

n

n∑

j=1

E

(
ξ̄∗jQ

T
j R̄

1/2R1/2
n (zIN − bn(z)Rn)

−1ξj

)
E
(
ξ∗jQj(z)MQT

j ξ̄j
)
+ o(1) ,

= −|V|2b2n(z)
n

n∑

j=1

Etr
(
R̄1/2QT

j R̄
1/2R1/2

n (zIN − bn(z)Rn)
−1R1/2

)
Etr

(
R1/2Qj(z)MQT

j R̄
1/2
)
+ o(1) .

We can now replace Qj by Q with no loss and use equation (A.2) to obtain:

T2 = −|V|2b2n(z)
n2

Etr
(
R̄1/2QT (z)R̄1/2R1/2

n (zIN − bn(z)Rn)
−1R1/2

)

×Etr
(
R1/2

(
−(zIN + bn(z)Rn)

−1 + bn(z)A(z)
)
MQT R̄1/2

)
+ o(1) ,

= |V|2b2n(z)
1

n
trR1/2T (z)R1/2R̄1/2T T (z)R̄1/2 (T1 + T2) + o(1) . (A.4)
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Denote by

T3 =
1

n
trR1/2T (z)R1/2R̄1/2T T (z)R̄1/2 .

We now extract T2 from (A.4) and plug it into (A.3). We finally obtain:

T = T1 + |V|2b2n(z)
T1T3

1− |V|2b2n(z)T3
+ o(1) =

T1
1− |V|2b2n(z)T3

+ o(1) .

Multiplying T by −|V|2b2n(z) = −|V|2z2t̃2n(z) finally yields (A.1).

A.2. Proof of Lemma 6.3. By Proposition 6.2,

E

∣∣∣∣
∫

D

∂Φ(g)(z)ϕn(z) ℓ2(dz)

∣∣∣∣ ≤
∫

D

|∂Φ(g)(z)|E|ϕn(z)|ℓ2(dz)

≤ ‖g‖k+1,∞

∫

D

Im(z)k {varϕn(z)}1/2 ℓ2(dz) < ∞ ,

by (iii) and (iv). Hence 1
πRe

∫
D
∂Φ(g)(z)ϕn(z)ℓ2(dz) is a well-defined a.s. finite random

variable. This estimate, uniform in n, readily implies the tightness of
(
1

π
Re

∫

D

∂Φ(g)(z)ϕn(z)ℓ2(dz) ; n ∈ N

)
.

Notice that the integrals with ψn instead of ϕn are similarly well-defined and tight.

By conditions (i) and (ii), we obtain:

dLP

(
1

π
Re

∫

Dε

∂Φ(g)(z)ϕn(z)ℓ2(dz) ,
1

π
Re

∫

Dε

∂Φ(g)(z)ψn(z)ℓ2(dz)

)
−−−−−→
N,n→∞

0 (A.5)

(apply Lemma 5.8).

Let g = (gℓ ; 1 ≤ ℓ ≤ L) and f : CL → C be bounded and continuous. Consider the
following notations:

ξn =
1

π
Re

∫

D

∂Φ(g)(z)ϕn(z)ℓ2(dz) , ξεn =
1

π
Re

∫

Dε

∂Φ(g)(z)ϕn(z)ℓ2(dz) ,

ηn =
1

π
Re

∫

D

∂Φ(g)(z)ψn(z)ℓ2(dz) , ηεn =
1

π
Re

∫

Dε

∂Φ(g)(z)ψn(z)ℓ2(dz) .

We have

|Ef (ξn)− Ef (ηn)|
≤ |Ef (ξn)− Ef (ξεn)|+ |Ef (ξεn)− Ef (ηεn)|+ |Ef (ηεn)− Ef (ηn)| . (A.6)

Given ρ > 0, we first prove that for all n ≥ 1,

|Ef (ξn)− Ef (ξεn)| ≤ (4‖f‖∞ + 1)ρ (A.7)

for ε small enough.

We have

P{|ξn − ξεn| > δ} ≤ 1

δ

(∫

[0,A]+i[0,ε]

|∂Φ(g)(z)|E|ϕn(z)|ℓ2(dz)
)

(A.8)
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which can be made arbitrarily small if ε is small enough, independently from n. Now,

|Ef (ξn)− Ef (ξεn)| ≤ |Ef (ξn)− Ef (ξεn)| 1{|ξn−ξεn|>η}

+ |Ef (ξn)− Ef (ξεn)| 1{|ξn−ξεn|≤η , |ξn|∨|ξεn|>K}

+ |Ef (ξn)− Ef (ξεn)| 1{|ξn−ξεn|≤η , |ξn|∨|ξεn|≤K} .

First invoke the tightness of |ξn|∨ |ξεn| and choose K large enough so that the second term of
the r.h.s. is lower than 2‖f‖∞ρ; then choose η > 0 small enough so that f being absolutely
continuous over {z ∈ C+, |z| ≤ K}, the third term of the r.h.s. is lower that ρ; finally for
such K and η, take advantage of (A.8) and choose ε small enough so that the first term of
the r.h.s. is lower than 2‖f‖∞ρ. Eq. (A.7) is proved.

One can similarly prove that |Ef (ηn)− Ef (ηεn)| ≤ (4‖f‖∞ + 1)ρ for ε > 0 small enough.
Such ε being fixed, it remains to control the second term of the r.h.s. of (A.6), but this
immediately follows from (A.5).

In order to prove that ηn is multivariate gaussian with prescribed covariance (6.2), we
first consider ηεn. Approximating the integral in ηεn by Riemann sums and using the fact that
weak limits of gaussian vectors are gaussian immediately yields that ηεn is a gaussian vector
with covariance matrix:

[cov(ηεn)]kℓ =
1

π2
E

{
Re

∫

Dε

∂Φ(gk)(z)ψn(z)ℓ2(dz)Re

∫

Dε

∂Φ(gℓ)(z)ψn(z)ℓ2(dz)

}

for 1 ≤ k, ℓ ≤ L. Using the elementary identity:

Re(z)Re(z′) =
Re(zz′) + Re(zz′)

2
,

we obtain:

[cov(ηεn)]kℓ =
1

2π2
Re

∫

(Dε)2
∂Φ(gk)(z1)∂Φ(gℓ)(z2)Eψn(z1)ψn(z2)ℓ2( dz1)ℓ2( dz2)

+
1

2π2
Re

∫

(Dε)2
∂Φ(gk)(z1)∂Φ(gℓ)(z2)Eψn(z1)ψn(z2)ℓ2( dz1)ℓ2( dz2) .

Using the fact that ψn(z2) = ψn(z2) yields:

[cov(ηεn)]kℓ =
1

2π2
Re

∫

(Dε)2
∂Φ(gk)(z1)∂Φ(gℓ)(z2)κn(z1, z2)ℓ2( dz1)ℓ2( dz2)

+
1

2π2
Re

∫

(Dε)2
∂Φ(gk)(z1)∂Φ(gℓ)(z2)κn(z1, z2)ℓ2( dz1)ℓ2( dz2) .

In order to lift the gaussianity from ηεn to ηn and to extend the covariance formula from the
one above to formula (6.2), we rely on the approximation theorem [38, Theorem 4.28] and on
assumptions (iv) and (v) on the variance estimates and on the regularity of functions gk, gℓ
in Lemma 6.3.

Proof of Lemma 6.3 is completed.

A.3. Proof of Proposition 6.4. Recall the notations ξi, Qi introduced in Section 5. Denote
by Σ{i} = (ξ1, · · · , ξi−1, ξ̌i, ξi+1, · · · , xn) , where ξ̌i is an independent copy of ξi. Let Q{i}

be the associated resolvent:

Q{i} =
(
Σ{i}(Σ{i})−1 − zIN

)−1

.
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Rank-one perturbation formulas yield:

Q = Qi −
Qiξiξ

∗
iQi

1 + ξ∗iQiξi
and Q{i} = Qi −

Qiξ̌iξ̌
∗
iQi

1 + ξ̌∗iQiξ̌i
.

We are now in position to apply Efron-Stein’s inequality (cf. [14, Theorem 3.1]):

varTrQ(z) ≤ 1

2

n∑

i=1

E

∣∣∣TrQ(z)− TrQ{i}(z)
∣∣∣
2

=
1

2

n∑

i=1

E

∣∣∣∣
ξ∗iQ

2
i ξi

1 + ξ∗iQiξi
− ξ̌∗iQ

2
i ξ̌i

1 + ξ̌∗iQiξ̌i

∣∣∣∣
2

=
n∑

i=1

E

[
vari

(
ξ∗iQ

2
i ξi

1 + ξ∗iQiξi

)]
(a)

≤
n∑

i=1

E

[
E{i}

∣∣∣∣
ξ∗iQ

2
i ξi

1 + ξ∗iQiξi
− E{i}ξ

∗
iQ

2
i ξi

1 + E{i}ξ∗iQiξi

∣∣∣∣
2
]

where vari is the variance under the expectation E{i} with respect to ξi, and (a) follows from

the fact that var (X) = infa E|X − a|2. Denote by

◦
X = X − E{i}X , B = ξ∗iQ

2
i ξi , A = 1 + ξ∗iQiξi .

We have

B

A
− E{i}B

E{i}A
=

◦
B

E{i}A
− B

A

◦
A

E{i}A
.

Notice that Im(A) = Im(z) (ξ∗iQiQ
∗
i ξi), hence∣∣∣∣

B

A

∣∣∣∣ ≤
|ξ∗iQ2

i ξi|
Im(A)

≤ ξ∗iQiQ
∗
i ξi

Im(A)
≤ 1

Im(z)
.

Now

E{i}

(
ξ∗iQ

2
i ξi

1 + ξ∗iQiξi
− E{i}ξ

∗
iQ

2
i ξi

1 + E{i}ξ
∗
iQiξi

)2

≤ KE{i}

∣∣∣∣∣∣

◦
B

E{i}A

∣∣∣∣∣∣

2

+KE{i}

∣∣∣∣∣∣
B

A

◦
A

E{i}A

∣∣∣∣∣∣

2

,

≤ KE{i}

∣∣∣∣∣∣

◦
B

E{i}A

∣∣∣∣∣∣

2

+
K

Im(z)2
E{i}

∣∣∣∣∣∣

◦
A

E{i}A

∣∣∣∣∣∣

2

.

We first focus on the estimation of E{i}
∣∣ ◦A
∣∣2; we have:

E{i}
∣∣ ◦A
∣∣2 ≤ K

n2
Tr(QiRQ

∗
iR) ≤ K

n2
‖R‖Tr (QiRQ

∗
i ) .

Before dividing by
∣∣E{i}A

∣∣2, notice that Im(E{i}(A)) = Im(z) 1nTr(QiRQ
∗
i ) and that (−zE{i}A)

−1

is the Stieltjes transform of a probability measure and hence that

1∣∣E{i}A
∣∣ ≤

|z|
Im(z)

.

We now divide and get:

E{i}
∣∣ ◦A
∣∣2

∣∣E{i}A
∣∣2 ≤ K

n

[ 1
nTr(QiRQ

∗
i )

Im(E{i}A)

]
1

|E{i}(A)|
≤ K

n

1

Im(z)

|z|
Im(z)

=
K

n

1

Im(z)2
.
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Similarly, one can prove that

E{i}
∣∣ ◦B
∣∣2

∣∣E{i}A
∣∣2 ≤ K

n

1

Im(z)4
.

From this we get the desired estimate:

var trQ(z) ≤ K

Im(z)4
.

In order to prove the second part of condition (iii), we rely on a meta-model argument
(cf. Section 2.6). Denote by

M1
n,M (z) = Tr (Σn(M)Σ∗

n(M)− zIN )
−1 − ETr (Σn(M)Σ∗

n(M)− zIN )
−1

,

then

var
{
tr (Σn(M)Σ∗

n(M)− zIN)
−1
}
≤ C

Im(z)4
,

moreover M1
n,M (z) converges in distribution to ψn(z) as M → ∞, N and n being fixed

(see for instance the details in Section 5.2). Consider the continuous bounded function
hK(x) = |x|2 ∧K, then

EhK(ψn(z)) = lim
M→∞

EhK(M1
n,M (z)) ≤ lim sup

M→∞
E|M1

n,M (z)|2 ≤ C

Im(z)4
.

Now letting K → ∞ yields the desired bound by monotone convergence theorem:

var(ψn(z)) ≤
C

Im(z)4
.

A.4. Proof of Proposition 7.1. In the whole section, we consider the matrix model
ΣC

n(Σ
C
n)

∗; we however simply write fn, f̃n, Qn while the underlying random variables are
NC(0, 1).

Recall that f̃n(z) = − 1−cn
z + cnfn(z), where fn(z) =

1
nTrQn(z). Denote by

Sn(z) =
(
−z
(
IN + Ef̃n(z)Rn

))−1

and τ̃n(z) = − 1

z
(
1 + 1

nETrRnQn(z)
) .

Let

εn(z) = n(Ef̃n(z)− τ̃n(z)) , (A.9)

ε̃n(z) = ETrRnQn(z)− TrRnSn(z) . (A.10)

Taking into account the definition of τ̃n and t̃n, we get:

n
(
Ef̃n − t̃n

)
= n

(
τ̃n − t̃n

)
+ εn

=
1

z

TrRnTn − TrRnEQn(
1 + 1

nETrRnQn

) (
1 + 1

nTrRnTn
) + εn .
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Similarly,

ETrRnQn − TrRnTn = TrRnSn − TrRnTn + ε̃n

= −1

z
TrRn

[
(IN + Ef̃nRn)

−1 − (IN + t̃nRn)
−1
]
+ ε̃n

=
1

z
TrRn(IN + Ef̃nRn)

−1Rn(IN + t̃nRn)
−1
(
Ef̃n − t̃n

)
+ ε̃n .

Gathering the two previous equations, we finally end up with the 2× 2 linear system:

(
n(Ef̃n − t̃n)

ETrRnQn − TrRnTn

)
= D0(z)

(
n(Ef̃n − t̃n)

ETrRnQn − TrRnTn

)
+

(
εn
ε̃n

)

where

D0(z) =

(
0 zτ̃nt̃n

z
nTrRnSnRnTn 0

)
,

from which we extract

n
(
Ef̃n − t̃n

)
=

1

det(I2 −D0(z))

(
εn(z) + zτ̃nt̃nε̃n(z)

)
. (A.11)

It remains to bound εn and ε̃n and to lowerbound | det(I2 − D0)|. The first task relies on
standard gaussian calculus for random matrices (Poincaré-Nash inequality, integration by
part formula, etc. - see for instance [47]) and yields:

|εn(z)| ≤ 1

n
P2(|z|)P5(|Im(z)|−1) , (A.12)

|ε̃n(z)| ≤ 1

n
P3(|z|)P7(Im(z)|−1) . (A.13)

Details are omitted and can be found in [58, Chapter 3].

The second task is more involved and goes along the lines developed in [27] and [56]; it
relies on the following proposition:

Proposition A.1. There exist η > 0, polynomials P †
12 and P †

16 and an integer N0 such that
for every z in the set

En =

{
z ∈ C

+ , 1− 1

n2
P †
12(|z|)P †

16(|Im(z)|−1) > 0

}

and for N ≥ N0

|det(I2 −D0(z))| >
K|Im(z)|4
(η2 + |z|2)2 ,

where K is some constant independent from N,n.

Assume for a while that Proposition A.1 holds true, and let z ∈ En; then taking into
account (A.12)-(A.13) and the fact that |zt̃nτ̃n| ≤ |z| |Im(z)|−2, (A.11) yields:

|n(Ef̃n(z)− t̃n(z))| ≤ P8(|z|)P13(|Im(z)|−1) .
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If z /∈ En, then 1 ≤ 1
n2P

†
12(|z|)P †

16(|Im(z)|−1) and

|n(Ef̃n(z)− t̃n(z))| ≤ n
(
|Ef̃n(z)|+ |t̃n(z)|

)
≤ 2n

|Im(z)|−1
× 1

≤ 2n

|Im(z)|−1
× 1

n2
P †
12(|z|)P †

16(|Im(z)|−1)

≤ 1

n
P †
12(|z|)P17(|Im(z)|−1) .

Proof of Proposition 7.1 is completed as long as Proposition A.1 holds true.

Proof of Proposition A.1. In order to lowerbound det(I2−D0(z)), we introduce two auxiliary
systems.

Consider matrix

D(z) =

(
0 |t̃n(z)|2

|z|2
n TrRnTnRnT

∗
n 0

)
,

In order to evaluate the determinant of matrix I2 −D, we need to find an equation where
such a matrix appears. One can easily prove that:

(
Im(t̃n)

Im
(
z
nTrRnTn

)
)

= D(z)

(
Im(t̃n)

Im
(
z
nTrRnTn

)
)
+

(
|t̃n|2
0

)
Im(z) , (A.14)

from which we extract the determinant:

det (I2 −D(z)) = 1− |z|2|t̃n|2
1

n
TrRnTnRnT

∗
n =

∣∣t̃
∣∣2 Im(z)

Im(t̃n)
. (A.15)

Recall that |t̃n(z)| ≤ (Im(z))−1; in order to lowerbound Im(t̃n(z)), recall that the associated

probability measures F̃n form a tight family and in particular there exists η > 0 such that
F̃n([0, η]) > 1/2 for every n ≥ 1. Write:

Im
(
t̃n(z)

)
= Im(z)

∫

R+

F̃n( dλ)

|λ− z|2 ≥
∫ η

0

F̃n( dλ)

|λ− z|2 ≥ 1

4(η2 + |z|2) . (A.16)

Plugging these estimates into (A.15) yields the bound:

det(I2 −D(z)) = 1− |z|2|t̃n|2
1

n
TrRnTnRnT

∗
n ≥ Im(z)4

16(η2 + |z|2)2 . (A.17)

Consider now matrix

D′(z) =

(
0 |τ̃n(z)|2

|z|2
n TrRnSnRnS

∗
n 0

)
.

In order to evaluate the determinant of matrix I2 −D′, we need to find an equation where
such a matrix appears. Recall the definition of εn and ε̃n in (A.9)-(A.10). Taking their
imaginary parts, we obtain:

(
Im(Ef̃n)

Im( znTrERnQn)

)
=

(
Im(τ̃n)

Im( znTrRnSn)

)
+

(
1
n Im(εn)
1
n Im(ε̃n)

)
.

Computing the imaginary part of τ̃n and n−1TrRnSn, we get:

Im(τ̃n) = |τ̃n|2Im(z) + |τ̃n|2Im
( z
n
TrERnQn

)
,

Im
( z
n
TrRnSn

)
=

|z|2
n

Tr (RnSnRnS
∗
n)Im(Ef̃n) .
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Hence the system:
(

Im(Ef̃n)
Im( znTrERnQn)

)
= D′(z)

(
Im(Ef̃n)

Im( znTrERnQn)

)
+

(
|τ̃n|2
0

)
Im(z)+

(
1
n Im(εn)
1
n Im(ε̃n)

)
.

(A.18)
This system is similar to (A.14) with two extra error terms 1

n Im(εn) and
1
n Im(ε̃n); but these

terms are controled by (A.12)-(A.13).

It is well-known that for all z ∈ C+, Ef̃n(z)− t̃n(z) → 0 as N,n→ ∞. The mere definition

of εn together with estimate (A.12) yields τ̃n − Ef̃n → 0; therefore τ̃n(z) − t̃n(z) → 0 for
z ∈ C+ as N,n→ 0. This, together with (A.16) yields:

Im(τ̃n(z)) ≥
Im(z)

8(η2 + |z|2)
for n large enough. Taking into account the fact that Im( znTr (ERnQn)) ≥ 0, the first
equation in (A.18) yields:

Im(Ef̃n(z)) ≥ |τ̃n|2Im(z) +
1

n
Im(εn(z)) ,

(a)

≥ |Im(z)|3
64(η2 + |z|2)2 − 1

n2
P2(|z|)P5(|Im(z)|−1) ,

≥ |Im(z)|3
64(η2 + |z|2)2

(
1− 1

n2
P6(|z|)P8(|Im(z)|−1)

)

for n large enough, where (a) follows from the previous estimate over τ̃n and (A.12). Poly-
nomials P6 and P8 being fixed as in the previous estimate, consider the set:

E1
n =

{
z ∈ C

+ ; 1− 1

n2
P6(|z|)P8(|Im(z)|−1) ≥ 1

2

}
.

Then for n large enough and z ∈ E1
n,

Im(Ef̃n(z)) ≥
|Im(z)|3

128(η2 + |z|2)2 .

From (A.18), we have:

det(I2 −D′(z)) = |τ̃n|2
Im(z)

Im(Ef̃n(z))
+ |τ̃n|2

Im( zn ε̃n(z))

Im(Ef̃n(z))
+

Im( 1nεn(z))

Im(Ef̃n(z))

≥ |τ̃n|2|Im(z)|2 − |τ̃n|2
|zε̃n(z)|

nIm(Ef̃n(z))
− |εn(z)|
nIm(Ef̃n(z))

Taking into account the various estimates previously established (recall that |τ̃n| ≤ |Im(z)|−1),
we obtain:

det(I2 −D′(z)) ≥ |Im(z)|4
64(η2 + |z|2)2 − 1

|Im(z)|2
|zε̃n(z)|

nIm(Ef̃n(z))
− |εn(z)|
nIm(Ef̃n(z))

≥ |Im(z)|4
64(η2 + |z|2)2 − 128|z|(η2 + |z|2)2P3(|z|)P7(|Im(z)|−1)

n2|Im(z)|5

−128(η2 + |z|2)2P2(|z|)P5(|Im(z)|−1)

n2|Im(z)|3

≥ |Im(z)|4
64(η2 + |z|2)2

(
1− 1

n2
P12(|z|)P16(|Im(z)|−1)

)
,
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valid for n large enough and z ∈ E1
n. Polynomials P12 and P16 being fixed as in the previous

estimates, consider the set:

En = E1
n ∩ E2

n where E2
n =

{
z ∈ C

+ ; 1− 1

n2
P12(|z|)P16(|Im(z)|−1 ≥ 1

2

}
.

Then for n large enough and z ∈ En, we have:

det(I2 −D′(z)) ≥ |Im(z)|4
128(η2 + |z|2)2 . (A.19)

We are now in position to lowerbound det(I2 −D0(z)). Notice that

|det(I2 −D0(z))| =

∣∣∣∣1−
z2

n
τ̃n t̃nTrRnSnRnTn

∣∣∣∣ ,

≥ 1− |z|2
n

|τ̃nt̃n|(TrRnSnRnS
∗
n)

1/2(TrRnTnRnT
∗
n)

1/2 ,

≥ (det(I2 −D(z)))
1/2

(det(I2 −D′(z)))
1/2

by [32, Proposition 6.1]. Proof of Proposition A.1 is completed.

�

Jamal Najim,
Institut Gaspard Monge LabInfo, UMR 8049
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Télécom Paristech,
46, rue Barrault,
75634 Paris cedex, France
e-mail:jianfeng.yao.sh@gmail.com

References

[1] S. Albeverio, L. Pastur, and M. Shcherbina. On the 1/n expansion for some unitary invariant ensembles
of random matrices. Comm. Math. Phys., 224(1):271–305, 2001. Dedicated to Joel L. Lebowitz.

[2] G. W. Anderson and O. Zeitouni. A CLT for a band matrix model. Probab. Theory Related Fields,
134(2):283–338, 2006.

[3] L. V. Arharov. Limit theorems for the characteristic roots of a sample covariance matrix. Dokl. Akad.
Nauk SSSR, 199:994–997, 1971.

[4] Z. Bai, Y. Chen, and Y-C. Liang, editors. Random matrix theory and its applications, volume 18 of Lecture
Notes Series. Institute for Mathematical Sciences. National University of Singapore. World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, 2009. Multivariate statistics and wireless communications,
Papers from the workshop held at the National University of Singapore, Singapore, 2006.

[5] Z. D. Bai and J. W. Silverstein. CLT for linear spectral statistics of large-dimensional sample covariance
matrices. Ann. Probab., 32(1A):553–605, 2004.

[6] Z. D. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matrices. Springer Series
in Statistics. Springer, New York, second edition, 2010.

[7] Z.D. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matrices. Springer Series
in Statistics. Springer, New York, second edition, 2010.



GAUSSIAN FLUCTUATIONS FOR LARGE RANDOM COVARIANCE MATRICES 51

[8] Z.D. Bai, X. Wang, and W. Zhou. Functional CLT for sample covariance matrices. Bernoulli, 16(4):1086–
1113, 2010.

[9] Z. Bao, G. M. Pan, and W. Zhou. On the MIMO channel capacity for the general channels. preprint,
2013.

[10] F. Benaych-George, A. Guionnet, and C. Male. Central limit theorems for linear statistics of heavy
tailed random matrices. preprint, 2013.

[11] P. Billingsley. Probability and measure. Wiley Series in Probability and Mathematical Statistics. John
Wiley & Sons Inc., New York, third edition, 1995. A Wiley-Interscience Publication.

[12] C. Bordenave. Personal communication, nov. 2013.
[13] C. Bordenave. A short course on random matrices (preliminary draft). available on

http://www.math.univ-toulouse.fr/∼ bordenave/coursRMT.pdf, 2013.
[14] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory of

Independence. OUP Oxford, 2013.
[15] Hans Bremermann. Distributions, complex variables, and Fourier transforms. Addison-Wesley Publish-

ing Co., Inc., Reading, Mass.-London, 1965.
[16] T. Cabanal-Duvillard. Fluctuations de la loi empirique de grandes matrices aléatoires. Ann. Inst. H.
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