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GAUSSIAN FLUCTUATIONS FOR LINEAR SPECTRAL STATISTICS OF

LARGE RANDOM COVARIANCE MATRICES

JAMAL NAJIM

Abstract. Consider a N ×n matrix Σn = 1√
n
R

1/2
n Xn, where Rn is a nonnegative defi-

nite Hermitian matrix and Xn is a random matrix with i.i.d. real or complex standardized
entries. The fluctuations of the linear statistics of the eigenvalues:

Trace f(ΣnΣ
∗
n) =

N
∑

i=1

f(λi), (λi) eigenvalues of ΣnΣ
∗
n,

are shown to be gaussian, in the regime where both dimensions of matrix Σn go to infinity
at the same pace and in the case where f is an analytic function. The main improvement
with respect to Bai and Silverstein’s CLT [3] lies in the fact that we consider general
entries with finite fourth moment, but whose fourth cumulant is non-null, i.e. whose
fourth moment may differ from the moment of a (real or complex) Gaussian random
variable. As a consequence, extra terms proportional to

|V|2 = |E(Xn
11
)2|2 and κ = E

∣

∣Xn
ij

∣

∣

4
− |V|2 − 2

appear in the limiting variance and in the limiting bias, which not only depend on the
spectrum of matrix Rn but also on its eigenvectors.

The CLT is expressed in terms of vanishing Lévy-Prohorov distance between the linear
statistics’ distribution and a Gaussian probability distribution, the mean and the variance
of which depend upon N and n and may not converge.

AMS 2000 subject classification: Primary 15A52, Secondary 15A18, 60F15.
Key words and phrases: large random matrix, fluctuations, linear statistics of the eigen-
values, central limit theorem.

1. Introduction

Consider a N × n random matrix Σn = (ξnij) given by:

Σn =
1√
n
R1/2

n Xn , (1.1)

where N = N(n) and Rn is a N × N nonnegative definite hermitian matrix with spectral
norm uniformily bounded in N . The entries (Xn

ij ; i ≤ N, j ≤ n, n ≥ 1) of matrices (Xn) are
real or complex, independent and identically distributed (i.i.d.) with mean 0 and variance
1. Matrix ΣnΣ

∗
n models a sample covariance matrix, formed from n samples of the random

vector R
1/2
n X·1, with the population covariance matrix Rn.
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Since the seminal work of Marčenko and Pastur [24] in 1967, the study of the spectrum
of large covariance matrices of the type XnX

∗
n under the asymptotic regime where:

N,n → ∞ and 0 < lim inf
N

n
≤ lim sup

N

n
< ∞ , (1.2)

(a condition that will be simply referred as N,n → ∞ in the sequel) has drawn a considerable
interest.

In this article, we study the fluctuations of linear spectral statistics of the form:

tr f(ΣnΣ
∗
n) =

N∑

i=1

f(λi) , as N,n → ∞ (1.3)

where tr (A) refers to the trace of A and the λi’s are the eigenvalues of ΣnΣ
∗
n. This subject

has a rich history with contributions by Arharov [2], Girko (see [12, 13] and the references
therein), Jonsson [19], Khorunzhiy et al. [22], Johansson [18], Sinai and Soshnikov [27, 28],
Cabanal-Duvillard [8], Guionnet [14], Bai and Silverstein [3], Anderson and Zeitouni [1], Pan
and Zhou [25], Chatterjee [9], Lytova and Pastur [23], Bai et al. [5], etc. There are also more
recent contributions for heavytailed entries (see for instance Benaych-Georges et al. [6]).

In their ’04 article [3], Bai and Silverstein established a CLT for the linear spectral statis-
tics (1.3) as the dimensions N and n grow to infinity at the same pace (N/n → c ∈ (0,∞))
and under two important assumptions:

(1) The entries (Xn
ij) are centered with unit variance and a finite fourth moment equal

to the fourth moment of a (real or complex) gaussian standard variable.
(2) Function f in (1.3) is analytic in a neighbourhood of the asymptotic spectrum of

ΣnΣ
∗
n.

Such a highly cited result proved to be useful in probability theory, statistics and various
other fields; and as a consequence, many attempts have been done to relax both assumptions.

It is well known since the paper by Khorunzhiy et al. [22] that if the fourth moment of the
entries differs from the fourth moment of a Gaussian random variable, then a term appears
in the variance of the trace of the resolvent, which is proportional to the fourth cumulant of
the entries. This term does not appear if Assumption (1) holds true, because in this case,
the fourth cumulant is zero.

In Pan and Zhou [25], Assumption (1) has been relaxed under an additional assumption
on matrix Rn, which somehow enforces structural conditions on Rn (in particular, these
conditions are satisfied if matrix Rn is diagonal). In Hachem et al. [21, 15], CLTs have been
established for specific linear statistics of interest in information theory, with general entries
and (possibly non-centered) covariance random matrices with a variance profile. In Lytova
and Pastur [23], both assumptions have been relaxed for the ”white” model, when Rn is equal
to the identity matrix. In this case, it has been proved that a mild integrability condition
over the Fourier transform of f was enough to establish the CLT. In Bai, Wang and Zhou
[5], fluctuations for the white model are addressed as well; Assumption (2) is relaxed and
functions with continuous fourth order derivatives are considered. An important feature of
these works [15, 21, 22, 23, 25] is the presence of a term proportional to the fourth cumulant
in the variance.

The purpose of this article is to establish a CLT for linear spectral statistics (1.3) for
general entries Xn

ij with fourth moment finite, and hence to fully relax Assumption (1) in
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[3], while keeping f analytic . In order to address this question, we take full advantage of
Bai and Silverstein’s CLT; we closely follow and extend their computations.

Interesting phenomena appear when considering entries with non-Gaussian fourth mo-
ment. As was previously mentioned, a term proportional to the fourth cumulant appears in
the variance of the linear statistics; another term, proportional to |E(Xn

11)
2|2, also appears

(as already noticed in [15]). The presence of these terms whose convergence is not granted
under usual assumptions (see for instance the condition (2.14) hereafter) will modify the
nature of the fluctuations of the linear statistics.

Denote by Ln(f) the (approximately) centered version of the linear statistics (1.3), to be
properly defined below. In Bai and Silverstein’s setup (see also Pan and Zhou [25]), the CLT

is expressed in the usual way, i.e. (
D−→ stands for the convergence in distribution):

Ln(f)
D−−−−−→

N,n→∞
N (B∞,Θ∞) ,

for some well-defined parameters B∞,Θ∞ depending on function f and on the limiting
spectrum of Rn and ΣnΣ

∗
n.

If Assumption (1) is relaxed, such a convergence may not hold. We prove in this case
that the distribution of the linear statistics Ln(f) becomes close to a family of Gaussian
distributions, whose parameters (mean and variance) may not converge. More precisely, we
establish in the sequel that there exists a family of Gaussian random variables N (Bn,Θn),
such that

dLP (Ln(f),N (Bn,Θn)) −−−−−→
N,n→∞

0 , (1.4)

where dLP denotes the Lévy-Prohorov distance (and in particular metrizes the convergence
of laws).

The difference here with respect to [3, 25] lies in the fact that the Gaussian parameters
Bn and Θn not only depend on the limiting spectrum of Rn and ΣnΣ

∗
n but also on the

behaviour of the eigenvectors1 of Rn; a fact that is due to the presence of terms proportional
to both |E(Xn

11)
2|2 and the fourth cumulant. As a consequence, these parameters may not

converge unless some very strong structural assumption over Rn (such as Rn diagonal) is
made, which would ensure a joint convergence of Rn’s spectrum and eigenvectors. Notice
that this absence of convergence is not observed in [23] because in the case where Rn is equal
to the identity IN , there are no issues with its eigenvectors.

Expressing the CLT as in (1.4) makes it possible to circumvent this joint convergence issue
and related cumbersome assumptions. This framework may also prove to be useful for other
interesting models such as large dimensional information-plus-noise type matrices [10, 16]
and more generally mixed models combining deterministic and random large dimensional
matrices.

Outline of the article. The general framework of the paper together with the main formu-
las (canonical equations, deterministic equivalents, variance and bias formulas) are presented
in Section 2. The central limit theorem (Theorem 3.1) is stated in Section 3. Section 4 is
devoted to the proof of Theorem 3.1; in particular, the cumulant term in the variance is iden-
tified in subsection 4.3.3 and both the existence and the tightness of the Gaussian limiting
process are established in subsection 4.4.

1In a slightly different context, such a phenomenon has been noticed in Hachem et al. [17].
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2. Background and presentation of the results

2.1. Resolvent, canonical equation and deterministic equivalents. Denote by Qn(z)
the resolvent of matrix ΣnΣ

∗
n:

Qn(z) = (ΣnΣ
∗
n − zIN )−1 , (2.1)

and by fn(z) its normalized trace which is the Stieltjes transform of the empirical distribution
of ΣnΣ

∗
n’s eigenvalues:

fn(z) =
1

N
trQn(z) . (2.2)

The following canonical equation2 admits a unique solution tn in the class of Stieltjes trans-
forms of probability measures (see for instance [3]):

tn(z) =
1

N
tr (−zIN + (1− cn)Rn − zcntn(z)Rn)

−1
, z ∈ C \R+ , (2.3)

where cn stands for the ratio N/n. The function tn being introduced, we can define the
following N ×N matrix

Tn(z) = (−zIN + (1− cn)Rn − zcntn(z)Rn)
−1

. (2.4)

Matrix Tn(z) can be thought of as a deterministic equivalent of the resolvent Qn(z) in the
sense that it is a deterministic quantity, easily computable, which does not depend on the
distribution of the entries and which approximates the resolvent in various senses. For
instance,

1

N
trTn(z)−

1

N
trQn(z) −−−−−→

N,n→∞
0

(in probability or almost surely). Otherwise stated, tn(z) = N−1trTn(z) is the deterministic
equivalent of fn(z). As we shall see later in this paper,

u∗
nQnvn − u∗

nTnvn −−−−−→
N,n→∞

0 (2.5)

where (un) and (vn) are deterministic N×1 vectors with uniformily bounded euclidian norms
in N . As a consequence of (2.5), not only Tn conveys information on the limiting spectrum
of the resolvent Qn but also on the eigenvectors of Qn.

2.2. Entries with non-null fourth cumulant and the limiting covariance for the

trace of the resolvent. In [3], an important preliminary step to establish the CLT for
linear statistics is to compute the CLT for the trace of the resolvent. Let V be the second
moment of the random variable Xij and κ its fourth cumulant:

V = E(Xn
ij)

2 and κ = E
∣∣Xn

ij

∣∣4 − |V|2 − 2 .

2We borrow the name ”canonical equation” from V.L. Girko who established in [12, 13] canonical equations
associated to various models of large random matrices.
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If the entries are real or complex standard Gaussian, then κ = 0 and V = 0 or 1. Otherwise
the fourth cumulant is a priori no longer equal to zero. This induces extra-terms in the
computation of the limiting variance, mainly due to the following (V , κ)-dependent identity:

E(X∗
·1AX·1 − trA)(X∗

·1BX·1 − trB) = trAB + |V|2 trABT + κ

N∑

i=1

AiiBii , (2.6)

where X·1 stands for the first column (of dimension N×1) of matrix Xn and where A,B are
deterministic N ×N matrices. As a consequence, there will be three terms in the limiting
covariance of the quantity (1.3); one will raise from the first term of the right hand side (r.h.s.)
of (2.6), a second one will be proportional to |V|2, and a third one will be proportional to κ.
As will be described in the sequel, the two last terms behave differently than the first one.
In order to describe these terms, we first need to introduce more notations. Let

t̃n(z) = −1− cn
z

+ cntn(z) . (2.7)

The quantity t̃n(z) is the deterministic equivalent associated to n−1tr (Σ∗
nΣn − zIn)

−1. De-
note by R̄n the (entry-wise) conjugate matrix of Rn, and by T̄n, the matrix3:

T̄n(z) =
(
−zIN + (1− cn)R̄n − zcntn(z)R̄n

)−1
; (2.8)

notice that the definition of tn(z) in (2.3) does not change if Rn is replaced by R̄n since
the spectrum of both matrices Rn and R̄n is the same. We can now describe the limiting
covariance of the trace of the resolvent, which is a key step in Bai and Silverstein’s approach:

cov (trQn(z1), trQn(z2)) = Θ0,n(z1, z2) + |V|2Θ1,n(z1, z2) + κΘ2,n(z1, z2) + o(1)

△
= Θn(z1, z2) + o(1) , (2.9)

where o(1) is a term that converges to zero as N,n → ∞ and

Θ0,n(z1, z2)
△
=

{
t̃′n(z1)t̃

′
n(z2)

(t̃n(z1)− t̃n(z2))2
− 1

(z1 − z2)2

}
(2.10)

Θ1,n(z1, z2)
△
=

∂

∂z2

{
∂An(z1, z2)

∂z1

1

1− |V|2An(z1, z2)

}
(2.11)

Θ2,n(z1, z2)
△
=

z21z
2
2 t̃

′
n(z1)t̃

′
n(z2)

n

N∑

i=1

(
R1/2

n T 2
n(z1)R

1/2
n

)
ii

(
R1/2

n T 2
n(z2)R

1/2
n

)
ii
(2.12)

with

An(z1, z2) =
z1z2
n

t̃n(z1)t̃n(z2)tr
{
R1/2

n Tn(z1)R
1/2
n R̄1/2

n T̄n(z2)R̄
1/2
n

}
. (2.13)

At first sight, these formulas (established in Section 4) may seem complicated; however,
much information can be inferred from them.

The term Θ0,n. This term is familiar as it already appears in Bai and Silverstein’s CLT [3].
Notice that the quantities t̃n and t̃′n only depend on the spectrum of matrix Rn. Hence,
under the additional assumption that:

cn −−−−−→
N,n→∞

c ∈ (0,∞) and FRn
L−−−−−→

N,n→∞
FR , (2.14)

3Beware that T̄n is not the entry-wise conjugate of Tn, due to the presence of z.
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where FRn denotes the empirical distribution of Rn’s eigenvalues and FR is a probability
measure, it can easily be proved that

Θ0,n(z1, z2) −−−−−→
N,n→∞

Θ0(z1, z2) =

{
t̃′(z1)t̃′(z2)

(t̃(z1)− t̃(z2))2
− 1

(z1 − z2)2

}
, (2.15)

where t̃, t̃′ are the limits of t̃n, t̃
′
n under (2.14).

The term Θ1,n. The interesting phenomenon lies in the fact that this term involves prod-

ucts of matrices R
1/2
n and its conjugate R̄

1/2
n . These matrices have the same spectrum but

conjugate eigenvectors. If Rn is not real, the convergence of Θ1,n is not granted, even under
(2.14). If however Rn and Xn’s entries are real, i.e. V = 1, then it can be easily proved that
Θ0,n = Θ1,n hence the factor 2 in [3] between the complex and the real covariance.

The term Θ2,n. This term involves quantities of the type (R
1/2
n TnR

1/2
n )ii which not only

depend on the spectrum of matrix Rn but also on its eigenvectors. As a consequence, the
convergence of such terms does not follow from an assumption such as (2.14), except in
some particular cases (for instance if Rn is diagonal) and any assumption which enforces
the convergence of such terms (as for instance in [25, Theorem 1.4]) implicitely implies an
asymptotic joint behaviour between Rn’s eigenvectors and eigenvalues. We shall adopt a
different point of view here and will not assume the convergence of these quantities.

2.3. Representation of the linear statistics and limiting bias. Recall that tn(z) is
the Stieltjes transform of a probability measure Fn:

tn(z) =

∫
Fn(dλ)

λ− z
. (2.16)

The purpose of this article is to describe the fluctuations of the linear statistics

Ln(f) =

N∑

i=1

f(λi)−N

∫
f(λ)Fn(dλ) (2.17)

as N,n → ∞, in the case where the function f is analytic in a neighborhood of the limiting
support (to be properly defined) of the spectrum of ΣnΣ

∗
n and C is a contour surrounding

this limiting spectrum. The function f being analytic, one can rely on the following version
of Cauchy representation formula:

Ln(f) = tr f(ΣnΣ
∗
n)−N

∫
f(λ)Fn(dλ)

= − 1

2iπ

∮

C

f(z) {trQn(z)−Ntn(z)} d z . (2.18)

where the last equality follows from the fact that
∫

f(λ)Fn(dλ) = − 1

2iπ

∮
f(z)tn(z)dz ,

an immediate consequence of (2.16), Cauchy’s representation formula and Fubini’s theorem.
Based on (2.18), we shall first study the fluctuations of:

trQn(z)−Ntn(z)

= trQn(z)− EtrQn(z) + EtrQn(z)−Ntn(z)
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for z ∈ C. The first difference in the r.h.s. will yield the fluctuations with a covariance
Θn(z1, z2) described in (2.9) while the second difference, deterministic, will yield the bias:

EtrQn(z)−Ntn(z) = |V|2B1,n(z) + κB2,n(z) + o(1)

△
= Bn(z) + o(1) (2.19)

where

B1,n(z)
△
= −z3t̃3n

1
n trR

1/2
n T 2

n(z)R
1/2
n R̄

1/2
n T̄n(z)R̄

1/2
n

(
1− z2t̃2n

1
nTrR

2
nT

2
n

) (
1− |V|2z2t̃2n 1

nTrR
1/2
n Tn(z)R

1/2
n R̄

1/2
n T̄n(z)R̄

1/2
n

)

(2.20)

B2,n(z)
△
= −z3t̃3n

1
n

∑N
i=1

(
R

1/2
n TnR

1/2
n

)
ii

(
R

1/2
n T 2

nR
1/2
n

)
ii

1− z2t̃2n
1
n trR

2
nT

2
n

(2.21)

The discussions on the terms Θ1,n and Θ2,n also apply to the terms B1,n and B2,n (whose
expressions are established in Section 4) which are likely not to converge for similar reasons.

2.4. Gaussian processes and the central limit theorem. A priori, the mean Bn and
covariance Θn of (trQn −Ntn) do not converge. Hence, we shall express the Gaussian
fluctuations of the linear statistics (2.17) in the following way: we first prove the existence
of a family (Nn(z), z ∈ C)n∈N of tight Gaussian processes with mean and covariance:

ENn(z) = Bn(z) ,

cov(Nn(z1), Nn(z2)) = Θn(z1, z2) .

If X is a R or Rd-valued random variable, denote by L(X) its distribution. If P and Q are
probability measures over Rd, the Lévy-Prohorov distance between P and Q is defined as:

dLP (P,Q) = inf
{
ε > 0, P (A) ≤ Q(Aε) + ε for all Borel sets A ⊂ R

d
}

, (2.22)

where Aε is an ε-blow up of A (cf. [11, Section 11.3] for more details). If X and Y are random

variables, we denote (with a slight abuse of notation) by dLP (X,Y )
△
= dLP (L(X),L(Y )).

The fluctuations of the centralized trace will be described as:

dLP ((trQn(z)−Ntn(z)) , Nn(z)) −−−−−→
N,n→∞

0 .

A multi-dimensional version of the previous convergence together with a tightness argument
will yield:

dLP

(
Ln(f),−

1

2iπ

∮

C
f(z)Nn(z) dz

)
−−−−−→
N,n→∞

0 ,

where − 1
2iπ

∮
C f(z)Nn(z) dz is a Gaussian random variable with well-identified parameters.

3. Statement of the CLT

3.1. Assumptions and further notations. Recall the asymptotic regime where N,n →
∞, cf. (1.2), and denote by

cn =
N

n
, ℓ

− △
= lim inf

N

n
and ℓ

+ △
= lim sup

N

n
.
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Assumption A-1. The random variables (Xn
ij ; 1 ≤ i ≤ N(n), 1 ≤ j ≤ n , n ≥ 1) are

independent and identically distributed. They satisfy EXn
ij = 0, E|Xn

ij |2 = 1 and E|Xn
ij |4 <

∞.

Assumption A-2. Consider a sequence (Rn) of deterministic, nonnegative definite hermit-
ian N ×N matrices, with N = N(n). The sequence (Rn, n ≥ 1) is bounded for the spectral
norm as N → ∞:

sup
n≥1

‖Rn‖ < ∞ .

In particular, we will have:

0 ≤ λ
−
R

△
= lim inf

N,n→∞
‖Rn‖ ≤ λ

+
R

△
= lim sup

N,n→∞
‖Rn‖ < ∞ .

Assumption A-3. Let f be a function on R, analytic on an open interval containing
[
λ
−
R

(
1−

√
ℓ
±
)2

,λ+
R

(
1 +

√
ℓ
+
)2]

, (3.1)

where
(
1−

√
ℓ
±
)2

= min

((
1−

√
ℓ
−
)2

;
(
1−

√
ℓ
+
)2)

.

If A is a N ×N matrix with real eigenvalues, denote by FA the empirical distribution of
the eigenvalues (δi(A), i = 1 : N) of A, that is:

FA(dx) =
1

n

N∑

i=1

δλi(A)(dx) .

Recall the definitions of Qn, tn, Tn and t̃n (cf. (2.1), (2.3), (2.4) and (2.7)). The following
relations hold true (see for instance [3]):

Tn(z) = −1

z

(
IN + t̃n(z)Rn

)−1
and t̃n(z) = − 1

z
(
1 + 1

n trRnTn(z)
) (3.2)

Recall that Fn is the probability distribution whose Stieltjes transform is tn(z) and let F̃n

be the probability distribution associated to t̃n(z). The central object of study is the signed
measure:

Gn = N
(
FΣnΣ

∗
n − Fn

)
= n

(
FΣ∗

nΣn − F̃n

)
. (3.3)

3.2. The Central Limit Theorem.

Theorem 3.1. Assume that (A-1) and (A-2) hold true, and let f1, · · · , fk satisfy (A-3).
Consider the random vector

Ln(f)
△
= (Ln(f1), · · · , Ln(fk))

=

(∫
f1(x)dGn(x), · · · ,

∫
fk(x)dGn(x)

)

and the Gaussian random vector Zn(f)
△
= (Zn(f1), · · · , Zn(fk)) with means

EZn(f) =
1

2iπ

∮
f(z)Bn(z)dz where Bn = |V|2B1,n + κB2,n (3.4)
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these quantities being defined in (2.19), (2.20) and (2.21), and covariance

cov (Zn(f), Zn(g)) = − 1

4π2

∮ ∮
f(z1)g(z2)Θn(z1, z2)dz1dz2 (3.5)

where Θn = Θ0,n + |V|2Θ1,n + κΘ2,n, these quantities being defined in (2.9), (2.10)-(2.12).
The contours in (3.4) and (3.5) (two in (3.5) which are assumed to be nonoverlapping) are
closed, taken in the positive direction in the complex plane and enclosing the interval (3.1).

Then, the sequence of Rk-valued random vectors Zn(f) is tight and the following conver-
gence holds true:

dLP (Ln(f), Zn(f)) −−−−−→
N,n→∞

0 ,

or equivalently for every continuous bounded function h : Rk → C,

Eh(Ln(f))− Eh(Zn(f)) −−−−−→
N,n→∞

0 .

The proof of Theorem 3.1 heavily relies on Lemma 4.1 in Section 4, which extends [3,
Lemma 1.1].

3.3. The special case of diagonal matrices (Rn). This case partially falls into the frame-
work developed in Pan and Zhou [25] (note that the case V 6= 0 and 1 is not handled there).
Matrix Rn being nonnegative definite hermitian, its entries are real positive if Rn is as-
sumed to be diagonal. In this case, matrix Tn is diagonal as well (cf. (2.4)), Tn = T̄n and
simplifications occur for the following terms:

An =
z1z2
n

t̃n(z1)t̃n(z2)trRnTn(z1)RnTn(z2) ,

Θ2,n(z1, z2) =
z21z

2
2 t̃

′
n(z1)t̃

′
n(z2)

n
tr
(
R2

nT
2
n(z1)T

2
n(z2)

)
,

B1,n(z)
△
= −z3t̃3n

1
n trR

2
nT

3
n(z)(

1− z2t̃2n
1
nTrR

2
nT

2
n

) (
1− |V|2z2t̃2n 1

nTrR
2
nT

2
n(z)

) ,

B2,n(z)
△
= −z3t̃3n

1
n trR

2
nT

3
n

1− z2t̃2n
1
n trR

2
nT

2
n

.

As one may notice, all the terms in the variance and the bias now only depend on the
spectrum of Rn. Hence, the following convergence holds true under the extra assumption
(2.14):

An(z1, z2) −−−−−→
N,n→∞

A(z1, z2) = c t̃(z1)t̃(z2)

∫
λ2FR(dλ)

(1 + λt̃(z1))(1 + λt̃(z2))
,

Θ1,n(z1, z2) −−−−−→
N,n→∞

Θ1(z1, z2) =
∂

∂z2

{
∂A(z1, z2)

∂z1

1

1− |V|2A(z1, z2)

}
,

Θ2,n(z1, z2) −−−−−→
N,n→∞

Θ2(z1, z2) = c t̃′(z1)t̃
′(z2)

∫
λ2FR(dλ)

(1 + λt̃(z1))2(1 + λt̃(z2))2
,

B1,n(z) −−−−−→
N,n→∞

B1(z) = − cz3t̃3(z)

(1−A(z, z))(1− |V|2A(z, z))

∫
λ2FR(dλ)

(1 + λt̃(z))3
,

B2,n(z) −−−−−→
N,n→∞

B2(z) = − cz3t̃3(z)

1−A(z, z)

∫
λ2FR(dλ)

(1 + λt̃(z))3
.
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where t̃, t̃′ are the limits of t̃n, t̃
′
n under (2.14). This can be packaged into the following result:

Corollary 3.2. Assume that (A-1) and (A-2) hold true. Assume moreover that Rn is
diagonal, that the convergence assumption (2.14) holds true and let f1, · · · , fk satisfy (A-3).
Consider the Gaussian random vector Z(f) = (Z(f1), · · · , Z(fk)) with means

EZ(f) =
1

2iπ

∮
f(z)B(z)dz where B = |V|2B1 + κB2

and B1 and B2 are defined above and covariance

cov (Z(f), Z(g)) = − 1

4π2

∮ ∮
f(z1)g(z2)Θ(z1, z2)dz1dz2 where Θ = Θ0+ |V|2Θ1+κΘ2

and Θ0 defined in (2.15) and Θ1,Θ2 defined above. The contours in (3.4) and (3.5) (two in
(3.5) which are assumed to be nonoverlapping) are closed, taken in the positive direction in
the complex plane and enclosing the interval (3.1). Then,

Ln(f)
D−−−−−→

N,n→∞
Z(f) .

3.4. Additional computations in the case where Rn is the identity. In this section,
we assume that Rn = IN .

The term proportional to |V2|. In this case, the quantity A(z1, z2) takes the simplified form

A(z1, z2) =
c t̃1t̃2

(1 + t̃1)(1 + t̃2)
.

where we denote t̃i = t̃(zi), i = 1, 2. Straightforward computations yield:

∂

∂zi
A(z1, z2) =

t̃′i
(1 + t̃i)t̃i

A(z1, z2) , i = 1, 2 .

and

Θ1(z1, z2) =
c t̃′1t̃

′
2

(1 + t̃1)2(1 + t̃2)2 (1− |V|2A(z1, z2))
2 =

c t̃′1t̃
′
2(

(1 + t̃1)(1 + t̃2)− |V|2c t̃1t̃2
)2 .

If needed, one can then use the explicit expression of the Stieltjes transform of Marčenko-
Pastur distribution (see below).

The cumulant term. In the particular case where Rn = IN , Lytova and Pastur [23] (see
also [26]) provided an explicit formula for the cumulant term of the covariance based on the
Stieltjes transform of Marčenko-Pastur distribution. We recover this formula hereafter and
prove that

− κ

4π2

∮ ∮
ϕ(z1)ϕ(z2)Θ2(z1, z2)dz1dz2 =

κ

4cπ2

(∫ λ+

λ−

ϕ(λ)
λ− (1 + c)√

(λ+ − λ)(λ − λ−)
dλ

)2

,

(3.6)
which is in accordance4 with Lytova and Pastur’s result [23, Eq. (4.65)].

4Denote by the superscript LP the quantities in [23] and use the correspondance cLP ↔ 1/c, aLP ↔ c and
κLP
4

↔ (aLP)4κ = c2κ to check that the r.h.s. of (3.6) equates the formula provided in [23].
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Specifying Θ2 in the case Rn = IN , we obtain:

− κ

4π2

∮ ∮
ϕ(z1)ϕ(z2)Θ2(z1, z2)dz1dz2 (3.7)

= − κc

4π2

(∮
ϕ(z)

t̃′(z)

(1 + t̃(z))2
dz

)2

= − κc

4π2

(∮
ϕ′(z)

1

1 + t̃(z)
dz

)2

= − κc

4π2

(∮
ϕ′(z)zt(z)dz

)2

.

Now, in this case, t(z) is the Stieltjes transform of Marčenko-Pastur distribution and has an
explicit form (see for instance [26, Chapter 7]):

t(z) =
1

2cz

{√
(z − (1 + c))2 − 4c− (z − (1 − c))

}

where the branch of the square root is fixed by its asymptotics: z− (1+ c)+ o(1) as z → ∞.
We have:

(3.7) = − κc

4π2

(∮
ϕ(z)(zt(z))′dz

)2

= − κc

4π2

(∮
ϕ(z)

z − (1 + c)

2c
√
(z − (1 + c))2 − 4c

dz

)2

It remains to deform the contour into the cuts [λ−, λ+] where λ− = (1 − √
c)2 and λ+ =

(1 +
√
c)2 and to use the relations

√
(z − (1 + c))2 − 4c

∣∣
z=λ±i0

= ±i
√
(λ+ − λ)(λ − λ−)

for λ ∈ [(1−√
c)2, (1 +

√
c)2] to obtain

(3.7) = − κc

4π2

(∮
ϕ(z)

z − (1 + c)

2c
√
(z − (1 + c))2 − 4c

dz

)2

= − κc

4π2

(∫ λ+

λ−

ϕ(λ)
λ− (1 + c)

ic
√

(λ+ − λ)(λ − λ−)
dλ

)2

=
κ

4cπ2

(∫ λ+

λ−

ϕ(λ)
λ− (1 + c)√

(λ+ − λ)(λ− λ−)
dλ

)2

,

which yields (3.6).

4. Proof of Theorem 3.1

Denote by
P−→ convergence in probability and by oP (1) any random variable which con-

verges to zero in probability.

4.1. Truncation. In this section, we closely follow Bai and Silverstein [3]. We recall the
framework developed there and introduce some additional notations.

4.1.1. Truncation of random variables. Consider a sequence of positive numbers (δn) which
satisfies:

δn → 0, δnn
1/4 → ∞ and δ−4

n

∫

{|X11|≥δn
√
N}

|X11|4 → 0

as N,n → ∞. Let Σ̂n = n−1/2R
1/2
n X̂n where X̂n is a N × n matrix having (i, j)th entry

Xij1{|Xij |<δn
√
N}. This truncation step yields:

P

(
ΣnΣ

∗
n 6= Σ̂nΣ̂

∗
n

)
−−−−−→
N,n→∞

0 . (4.1)
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Define Σ̃n = n−1/2R
1/2
n X̃n where X̃n is a N×n matrix having (i, j)th entry (X̂ij−EX̂ij)/σn,

where σ2
n = E|X̂ij − EX̂ij |2. Let Ĝn = N(F Σ̂nΣ̂

∗
n − Fn) and G̃n = N(F Σ̃nΣ̃

∗
n − Fn), then

whenever f fulfills (A-3), the following holds true (cf. [3]):

∀η > 0, P

{∣∣∣∣
∫

fdĜn −
∫

fdG̃n

∣∣∣∣ > η

}
−−−−−→
N,n→∞

0 . (4.2)

Combining (4.1) and (4.2), we obtain
∫
fdGn −

∫
fdG̃n → 0 in probability. Moreover, the

moments are asymptotically not affected by these different steps:

max
(∣∣∣EX̃2

ij − EX2
ij

∣∣∣ ;
(
E|X̃ij |2 − 1

)
;
(
E|X̃ij |4 − E|Xij |4

))
−−−−−→
N,n→∞

0 . (4.3)

Note in particular that the fourth cumulant of X̃ij converges to that of Xij . Hence, it is
sufficient to consider variables truncated at δn

√
n, centralized and renormalized. This will

be assumed in the sequel with no superscript (we shall simply write Xij and all related
quantities with Xij ’s truncated, centralized, renormalized with no superscript any more).

4.1.2. Truncation of process. Let xr be any number greater than the right endpoint of in-
terval (3.1). Let xℓ be any negative number if the left endpoint of (3.1) is zero. Otherwise,
let xℓ ∈ (0, λ−

R(1−
√
ℓ±)

2). Let y0 > 0 and consider:

C = {xℓ + iy : y ∈ [0, y0]} ∪ {x+ iy0 : x ∈ [xℓ, xr]} ∪ {xr + iy : y ∈ [0, y0]} (4.4)

We also denote by C = {z : z̄ ∈ C} and by Γ = C ∪ C.
We now introduce the Stieltjes transform of Gn. Let Mn(z) be defined as

Mn(z) = trQn(z)−Ntn(z) = tr (Σ∗
nΣn − zIn)

−1 − nt̃n(z) (4.5)

and Mn(z̄) = Mn(z).

Let (εn) be a real sequence decreasing to zero and satisfying for some α ∈ (0, 1), εn ≥ n−α.
Let

Cℓ =

{
{xℓ + iv : v ∈ [n−1εn, v0]} if xℓ ≥ 0
{xℓ + iv : v ∈ [0, v0]} if xℓ < 0

,

Cr = {xr + iv : [n−1εn, v0]} .

Denote by Cn = Cℓ ∪ {x + iy0 : x ∈ [xℓ, xr]} ∪ Cr. We can now define M̂n(·), a truncated
version of Mn(·):

M̂n(z) =





Mn(z), for z ∈ Cn,
Mn(xr + in−1εn), for x = xr, v ∈ [0, n−1εn],

and if xℓ > 0,
Mn(xℓ + in−1εn), for x = xr, v ∈ [0, n−1εn],

(4.6)

If f satisfies (A-3), it has been proved in [3] that
∣∣∣∣
∮

Γ

f(z)
(
Mn(z)− M̂n(z)

)
dz

∣∣∣∣

≤ 4 sup
z∈Γ

|f(z)|εn
( ∣∣max(λmax(Rn)(1 +

√
cn)

2, λmax(ΣnΣ
∗
n))− xr

∣∣−1

+
∣∣min(λmin(Rn)1(0,1)(cn)(1 −

√
cn)

2, λmin(ΣnΣ
∗
n))− xℓ

∣∣−1
)

(4.7)

which almost surely converges to zero as N,n → ∞.
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It is therefore sufficient to study M̂n instead of Mn; we hence replace Mn by M̂n with no
loss in the sequel.

4.2. Extension of Bai and Silverstein’s master lemma. We state below the counterpart
of [3, Lemma 1.1].

Lemma 4.1. Assume that (A-1) and (A-2) hold true , then

(1) The process {M̂n(·)} forms a tight sequence on C ∪ C, more precisely:

sup
z1,z2∈C,n≥1

E

∣∣∣M̂n(z1)− M̂n(z2)
∣∣∣
2

|z1 − z2|2
< ∞

(2) There exists a tight sequence (Nn(z), z ∈ C ∪ C) of two-dimensional Gaussian pro-
cesses with mean

ENn(z) = |V|2B1,n(z) + κB2,n(z) (4.8)

where B1,n(z) and B2,n(z) are defined in (2.20) and (2.21), and covariance:

cov (Nn(z1), Nn(z2)) = E (Nn(z1)− ENn(z1)) (Nn(z2)− ENn(z2))

= Θ0,n(z1, z2) + |V|2 Θ1,n(z1, z2) + κΘ2,n(z1, z2)

where Θ0,n, Θ1,n and Θ2,n are defined in (2.9), (2.10)-(2.12).

(3) For any functional F from C
(
C ∪ C;C

)
to C, then

EF (M̂n)− EF (Nn) −−−−−→
N,n→∞

0

Remark 4.1. (1) The tightness of the process {M̂n} immediatly follows from Bai and Sil-
verstein’s lemma as this result has been proved in [3, Lemma 1.1] under Assumption
(A-1) with no extra conditions on the moments of the entries.

(2) Differences between Lemma 4.1 and [3, Lemma 1.1] appear in the bias and in the
covariance where there are respectively two terms instead of one and three terms
instead of one in [3, Lemma 1.1].

(3) Since the extra terms do not converge, we need to consider a sequence of Gaussian
processes instead of a single Gaussian process as in [3, Lemma 1.1].

(4) In order to prove that the sequence of Gaussian processes is tight, we introduce

a meta-matrix model to transfer the tightness of {M̂n} to {Nn} (see for instance
Section 4.4.1).

It will be convenient to decompose Mn(z) as:

Mn(z) = M1
n(z) +M2

n(z) where

{
M1

n(z) = trQn(z)− trEQn(z)
M2

n(z) = N (Efn(z)− tn(z))
(4.9)

We shall naturally extend this decomposition to M̂n(z) = M̂ 1
n (z) + M̂ 2

n (z).

Denote by ξj theN×1 vector ξj = Σ·j =
1√
n
R1/2X·j and by Ej the conditional expectation

with respect to the σ-field generated by ξ1, · · · , ξj ; by convention, E0 = E.

We split Lemma 4.1 into intermediate results.
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Proposition 4.2. Assume that (A-1) and (A-2) hold true; let z1, z2 ∈ Γ = C ∪ C̄, then:

M̂ 1
n (z1) =

n∑

j=1

Zn
j (z1) + oP (1) ,

where the Zn
j ’s are martingale increments and

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2)−Θn(z1, z2)

P−−−−−→
N,n→∞

0 , (4.10)

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2)−Θn(z1, z2)

P−−−−−→
N,n→∞

0 , (4.11)

where Θn is defined in (2.9) and

M̂ 2
n (z1)− Bn(z1) −−−−−→

N,n→∞
0 ,

where Bn is defined in (2.19).

Proposition 4.3. There exists a tight sequence (Nn(z), z ∈ Γ) of two-dimensional Gaussian
processes with mean ENn(z) = Bn(z) and covariance

cov (Nn(z1), Nn(z2)) = E (Nn(z1)− ENn(z1)) (Nn(z2)− ENn(z2))

= Θn(z1, z2) .

The proofs of both propositions follow hereafter.

4.3. Proof for Proposition 4.2. The fact that (M̂n) is a tight sequence has already been
established in [3] (regardless of the assumption κ = 0 and |V| = 0/1). In order to proceed,
we shall heavily rely on the proof of [3, Lemma 1.1] which is the crux of Bai and Silverstein’s
paper. In Section 4.3.1 we review the main steps of Bai and Silverstein’s computations of the
variance/covariance. In Section 4.3.3, we compute the limiting variance. In Section 4.3.4,
we compute the limiting bias (some details are postponed to Appendix A). In Section 4.5,
we finally conclude the proof of Lemma 4.1 and address various subtleties which appear due
to the existence of a sequence of Gaussian limiting processes.

Recall that Qn(z) = (−zIN +ΣnΣ
∗
n)

−1
, that ξj = Σ·j =

1√
n
R1/2X·j and denote by Qj(z)

the resolvent of matrix ΣΣ∗ − ξjξ
∗
j , i.e.

Qj(z) =
(
−zI +ΣΣ∗ − ξjξ

∗
j

)−1
.
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The following quantities will be needed:

fn(z) =
1

N
trQn(z) ,

βj(z) =
1

1 + ξ∗jQj(z)ξj
,

β̄j(z) =
1

1 + 1
n trRnQj(z)

,

bn(z) =
1

1 + 1
nEtrRnQ1(z)

,

εj(z) = ξ∗jQj(z)ξj −
1

n
trRnQj(z) ,

δj(z) = ξ∗jQ
2
j(z)ξj −

1

N
trRnQ

2
j(z) =

d

dz
εj(z) .

We shall frequently drop subscript n and write Q and R instead of Qn and Rn in the
sequel.

4.3.1. Preliminary variance computations. We briefly review in this section the main steps
related to the computation of the variance/covariance as presented in [3]. These standard
steps will finally lead to Eq. (4.15) which will be the starting point of the computations
associated to the |V|2- and κ-terms of the variance.

Let z ∈ Cn.

N (fn(z)− Efn(z)) = −
n∑

j=1

(Ej − Ej−1) βj(z)ξ
∗
jQ

2
j(z)ξj

= −
n∑

j=1

Ej

(
β̄j(z)δj(z)− β̄2

j (z)εj(z)
1

n
trRQ2

j

)
+ oP (1) .

Denote by

Zn
j (z) = −Ej

(
β̄j(z)δj(z)− β̄2

j (z)εj(z)
1

n
trRQ2

j(z)

)
= −Ej

d

dz

(
β̄j(z)εj(z)

)
.

Hence,

∀z ∈ Cn , N (fn(z)− Efn(z)) =

n∑

j=1

Zn
j (z) + oP (1)

or equivalently

∀z ∈ C , M̂n(z) =

n∑

j=1

Zn
j (z) + oP (1) .

The r.h.s. appears as a sum of martingale increments. Such a decomposition is important
since it will enable us to rely on powerful CLTs for martingales (see [7, Theorem 35.12], and
the variations below in Lemmas 4.7 and 4.8). These CLTs rely on the study of the terms:

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) and

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) .
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Notice that since Zn
j (z) = Zn

j (z̄), we have Ej−1Z
n
j (z1)Z

n
j (z2) = Ej−1Z

n
j (z1)Z

n
j (z2) with

z2 ∈ Γ for z2 ∈ Γ; it is thus sufficient to study the limiting behavior of:

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) , z1, z2 ∈ Γ

in order to prove (4.10) and (4.11). Now,

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) =

∂2

∂z1∂z2





n∑

j=1

Ej−1

[
Ej

(
β̄j(z1)εj(z1)

)
Ej

(
β̄j(z2)εj(z2)

)]


 .

(4.12)
Following the same arguments as in [3, pp. 571], one can prove that it is sufficient to study
the convergence in probability of

n∑

j=1

Ej−1

[
Ej

(
β̄j(z1)εj(z1)

)
Ej

(
β̄j(z2)εj(z2)

)]
.

Moreover,

n∑

j=1

Ej−1

[
Ej

(
β̄j(z1)εj(z1)

)
Ej

(
β̄j(z2)εj(z2)

)]

=

n∑

j=1

bn(z1)bn(z2)Ej−1 [Ejεj(z1)Ejεj(z2)] + oP (1) ,

=

n∑

j=1

z1t̃n(z1)z2t̃n(z2)Ej−1 [Ejεj(z1)Ejεj(z2)] + oP (1) . (4.13)

Hence, it is finally sufficient to study the limiting behaviour (in terms of convergence in
probability) of the quantity:

n∑

j=1

Ej−1 (Ej εj(z1)Ej εj(z2)) , z1, z2 ∈ Γ . (4.14)

Denote by AT the transpose matrix of A. Applying (2.6) yields :

n∑

j=1

Ej−1 (Ej εj(z1)Ej εj(z2)) =
1

n2

n∑

j=1

tr
(
R1/2

EjQj(z1)REjQj(z2)R
1/2
)

+
|V|2
n2

n∑

j=1

tr

(
R1/2

EjQj(z1)R
1/2
(
R1/2

EjQj(z2)R
1/2
)T)

+
κ

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii

.

(4.15)
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The limiting behaviour of the first term of the r.h.s. has been completely described in [3]
where it has been shown that:

∂2

∂z1∂z2



z1z2t̃n(z1)t̃n(z2)

1

n2

n∑

j=1

tr
(
R1/2

EjQj(z1)REjQj(z2)R
1/2
)


 = Θ0,n(z1, z2)+oP (1) ,

(4.16)
with Θ0,n(z1, z2) is defined in (2.10).

We shall focus on the second and third terms.

4.3.2. The term proportional to |V|2 in the variance. Notice first that the value of tn and t̃n
is the same wether R is replaced by R̄ in (2.3) and (3.2) since tn and t̃n only depend on the
spectrum of R (which is the same as the spectrum of R̄). Notice also that (R1/2)T = R̄1/2,
hence: (

R1/2
EjQj(z2)R

1/2
)T

= R̄1/2
EjQ

T
j (z2)R̄

1/2 .

Recall the definition of T̄n(z) given by (2.8). Taking into account the fact that for a deter-
ministic matrix A,

EξTj Aξj =
V
n
tr (R̄1/2AR1/2) and Eξ∗jA ξ̄j =

V̄
n
tr (R1/2AR̄1/2) , (4.17)

and following closely [3, Section 2], it is a matter of bookkeeping5 to establish that:

|V|2z1z2
n2

t̃n(z1)t̃n(z2)
n∑

j=1

tr

(
R1/2

EjQj(z1)R
1/2
(
R1/2

EjQj(z2)R
1/2
)T)

(4.18)

= |V|2An(z1, z2)×
1

n

n∑

j=1

1

1−
(
j−1
n

)
|V|2An(z1, z2)

+ oP (1)

=

∫ |V|2An(z1,z2)

0

dz

1− z
+ oP (1)

where

An(z1, z2) =
z1z2
n

t̃n(z1)t̃n(z2)tr
{
R1/2Tn(z1)R

1/2R̄1/2T̄n(z2)R̄
1/2
}

.

Finally,

∂2

∂z1∂z2
(4.18) = |V|2Θ1,n(z1, z2) + oP (1) = |V|2 ∂

∂z2

{
∂An(z1, z2)/∂z1
1− |V|2An(z1, z2)

}
+ oP (1) .

(4.19)

4.3.3. The cumulant term in the variance. We now handle the term proportional to κ in
(4.15):

1

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii

. (4.20)

The objective is to prove that EjQj(z) can be replaced by Tn(z) in the formula above, which
boils down to prove a convergence of quadratic forms of the type (2.5). Such a convergence
has already been established in [17] for large covariance matrices based on a non-centered
matrix model with separable variance profile.

5Similar computations for the term proportional to |V|2 in the bias are outlined in Appendix A.
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By interpolating between the quantity (4.20) and its counterpart when the entries are
complex i.i.d. standard Gaussian, we will be able to rely on the results in [17] by using the
unitary invariance of a Gaussian matrix (see Proposition 4.5 and Eq. (4.26) below).

Let δz be the distance between the point z ∈ C and the real nonnegative axis R+:

δz = dist(z,R+) . (4.21)

Proposition 4.4. Assume that (A-1) and (A-2) hold true and let un be a deterministic
N × 1 vector, then:

E |u∗
nQ(z)un − u∗

n EQ(z)un|2 ≤ 1

n
Φ(|z|)Ψ

(
1

δz

)
‖un‖2 ,

where Φ and Ψ are fixed polynomials with coefficients independent from N,n, z and (un).

Proof of Proposition 4.4 is an easy adaptation6 of [17, Prop. 2.7].

Denote by X̃n a N × n matrix whose entries are independent standard complex circular
Gaussian r.v. (i.e. X̃ij = U + iV where U, V are independent N (0, 2−1) random variables);

denote accordingly Σ̃n = n−1/2R1/2X̃n, ξ̃j =
(
Σ̃n

)
·j and Q̃n(z) = (−zIN + Σ̃nΣ̃

∗
n)

−1. We

now drop subscripts N and n.

Proposition 4.5. Assume that (A-1) and (A-2) hold true and let un be a deterministic
N × 1 vector, then:

∣∣∣u∗
nEQ(z)un − u∗

n EQ̃(z)un

∣∣∣ ≤ 1√
n
Φ(|z|)Ψ

(
1

δz

)
‖un‖2 ,

where Φ and Ψ are fixed polynomials with coefficients independent from N,n, z and (un).

Proof. Consider the resolvent

Q(i)(z) =

(
i∑

ℓ=1

ξ̃iξ̃
∗
i +

n∑

ℓ=i+1

ξiξ
∗
i − zIN

)−1

defined for 1 ≤ i ≤ n− 1. Denote by Q(0) = Q and by Q(n) = Q̃ and write

u∗
E(Q− Q̃)u =

n∑

i=1

u∗
E(Q(i−1) −Q(i))u . (4.22)

We shall evaluate the difference u∗E(Q(0) −Q(1))u, the other ones being handled similarly.

Denote by Q̌(z) = (
∑n

i=2 ξiξ
∗
i − zIN )

−1
, then:

Q(0) = Q̌− Q̌ξ1ξ
∗
1Q̌

1 + ξ∗1Q̌ξ1
and Q(1) = Q̌ − Q̌ξ̃1ξ̃

∗
1 Q̌

1 + ξ̃∗1 Q̌ξ̃1
.

6Notice in particular all the cancellations that appear when adapting the proof of [17, Prop. 2.7], due to
the fact that Σn is centered here; notice also the fact that R not being diagonal has virtually no impact.
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Dropping the subscript 1 to lighten the notations, we get:

u∗
E

(
Q(0) −Q(1)

)
u = u∗

E

(
Q̌ξ̃ξ̃∗Q̌

1 + ξ̃∗Q̌ξ̃
− Q̌ξξ∗Q̌

1 + ξ∗Q̌ξ

)
u

= u∗
E

(
Q̌ξ̃ξ̃∗Q̌

1 + ξ̃∗Q̌ξ̃
− Q̌ξ̃ξ̃∗Q̌

1 + 1
n trRQ̌

)
u

+u∗
E

(
Q̌ξ̃ξ̃∗Q̌

1 + 1
n trRQ̌

− Q̌ξξ∗Q̌

1 + 1
n trRQ̌

)
u

+u∗
E

(
Q̌ξξ∗Q̌

1 + 1
n trRQ̌

− Q̌ξξ∗Q̌

1 + ξ∗Q̌ξ

)
u .

The second term in the r.h.s. above is zero (simply compute the conditional expectation
with respect to Q̌), the first and third term are of a similar nature; we therefore only estimate
the third one denoted by ∆3 below.

|∆3| =

∣∣∣∣∣u
∗
E

(
Q̌ξξ∗Q̌

1 + 1
n trRQ̌

− Q̌ξξ∗Q̌

1 + ξ∗Q̌ξ

)
u

∣∣∣∣∣

=

∣∣∣∣∣E
ξ∗Q̌uu∗Q̌ξ

(1 + ξ∗Q̌ξ)(1 + 1
n trRQ̌)

(
ξ∗Q̌ξ − 1

n
trRQ̌

)∣∣∣∣∣

≤ |z|2
|Im(z)|2

{
E

∣∣∣∣ξ∗Q̌ξ − 1

n
trRQ̌

∣∣∣∣
2

E
∣∣ξ∗Q̌uu∗Q̌ξ

∣∣2
}1/2

,

where the last inequality follows from Cauchy-Schwarz inequality plus the fact that both(
−z(1 + ξ∗Q̌ξ)

)−1
and

(
−z(1 + n−1trRQ̌)

)−1
are Stieltjes transforms and hence upper-

bounded in module by |Im(z)|−1. A control for the first expectation in the above inequality
directly follows from classical estimates (see for instance [4, Lemma B.26]):

E

∣∣∣∣ξ∗Q̌ξ − 1

n
trRQ̌

∣∣∣∣
2

≤ K

n2
E|X11|4E

(
trRQ̌RQ̌∗) ≤ K

n

‖R‖2
|Im(z)|2 cnE|X11|4 , (4.23)

where K is a constant whose value may change from line to line but which remains indepen-
dent from N,n. The second expectation can be handled in the following way:

E
∣∣ξ∗Q̌uu∗Q̌ξ

∣∣2 = E

∣∣∣∣ξ∗Q̌uu∗Q̌ξ − 1

n
trRQ̌uu∗Q̌+

1

n
trRQ̌uu∗Q̌

∣∣∣∣
2

≤ 2E

∣∣∣∣ξ∗Q̌uu∗Q̌ξ − 1

n
trRQ̌uu∗Q̌

∣∣∣∣
2

+ 2E

∣∣∣∣
1

n
trRQ̌uu∗Q̌

∣∣∣∣
2

≤ K

n2
E|X11|4Etr (R1/2Q̌uu∗Q̌R1/2)(R1/2Q̌uu∗Q̌R1/2)∗

+
2

n2
E
∣∣u∗Q̌RQ̌u

∣∣2

≤ K

n2

‖R‖2‖u‖4
|Im(z)|4 . (4.24)
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It now remains to gather (4.23) and (4.24) to get:
∣∣∣u∗

E

(
Q(0) −Q(1)

)
u
∣∣∣ ≤ 1

n
√
n
Φ(|z|)Ψ

(
1

δz

)
‖u‖2.

Finally, the result follows by upper-bounding each term of the sum in (4.22).

�

Corollary 4.6. Assume that (A-1) and (A-2) hold true, then the following convergence
holds true:

1

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii

− 1

n

N∑

i=1

(
R1/2T (z1)R

1/2
)
ii

(
R1/2T (z2)R

1/2
)
ii

P−−−−−→
n,N→∞

0 .

Proof. We first transform the sum to be calculated:

1

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii

. (4.25)

Using Proposition 4.4 enables us to replace the conditional expectation Ei by the true ex-
pectation in every term

(
R1/2EjQj(z)R

1/2
)
ii
. Now using the fact that

Q = Qj −
Qjξjξ

∗
jQj

1 + ξ∗jQjξj

and computations similar to those made in Proposition 4.5, one can replace EQj(z) by EQ(z).

Finally, by Proposition 4.5, EQ(z) can be replaced by EQ̃(z). We are led to study the sum:

1

n

N∑

i=1

(
R1/2

EQ̃(z1)R
1/2
)
ii

(
R1/2

EQ̃(z2)R
1/2
)
ii

.

Denote by Rn = Un∆U∗
n the spectral decomposition of covariance matrix Rn. Since matrix

Un is unitary, then Yn = U∗
nX̃n has i.i.d. standard complex Gaussian entries and the resolvent

writes:

Q̃(z) =
(
R1/2

n X̃nX̃
∗
nR

1/2
n − zIN

)−1

= Un

(
∆1/2YnY

∗
n∆

1/2 − zIN

)−1

U∗
n

△
= UnQ∆(z)U

∗
n . (4.26)

Denote by T∆(z) the matrix

T∆(z) = (−zIN + (1− cn)∆− zcntn(z)∆)
−1

,

where tn(z) is defined in (2.3); notice that the definition of tn(z) only depends on the
spectrum of Rn (or equivalently ∆); notice also that

Tn(z) = Un T∆(z)U
∗
n . (4.27)

It has been proved in [17, Theorem 1.1] that for every deterministic N × 1 vector vn:

E |v∗n (Q∆(z)− T∆(z)) vn|2 ≤ 1

n
Φ2(|z|)Ψ2

(
1

δz

)
‖vn‖4 .
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Hence,

|v∗nEQ∆(z)vn − v∗nT∆(z)vn| ≤
(
E |v∗n (Q∆(z)− T∆(z)) vn|2

)1/2

≤ ‖vn‖2√
n

√
Φ2(|z|)Ψ2

(
δ
−1
z

)
≤ ‖vn‖2√

n

(
1 + Φ2(|z|)

2

)(
1 + Ψ2

(
δ
−1
z

)

2

)

In particular, let ei be the ith coordinate vector, then
∣∣∣
(
R1/2

EQ(z)R1/2
)
ii
−
(
R1/2T (z)R1/2

)
ii

∣∣∣

=
∣∣∣
(
R1/2UEQ∆(z)U

∗R1/2
)
ii
−
(
R1/2UT∆(z)U

∗R1/2
)
ii

∣∣∣

≤ ‖R1/2U∗ei‖2√
n

(
1 + Φ2(|z|)

2

)(
1 + Ψ2

(
δ
−1
z

)

2

)
,

which completes the proof. �

Combining the result in Corollary 4.6 together with (4.13) and (4.15), we have proved so
far that:

∂2

∂z1∂z2





z1z2t̃n(z1)t̃n(z2)

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii





=
1

n

N∑

i=1

∂2

∂z1∂z2

{
z1z2t̃n(z1)t̃n(z2)

(
R1/2

n Tn(z1)R
1/2
n

)
ii

(
R1/2

n Tn(z2)R
1/2
n

)
ii

}
+ oP (1) .

Taking into account (3.2) and the matrix identity U(I + V U)−1V = 1 − (I + UV )−1, we
obtain:

∂2

∂z1∂z2





z1z2t̃n(z1)t̃n(z2)

n2

n∑

j=1

N∑

i=1

(
R1/2

EjQj(z1)R
1/2
)
ii

(
R1/2

EjQj(z2)R
1/2
)
ii





=
1

n

N∑

i=1

∂2

∂z1∂z2

(
IN − (IN + t̃n(z1)Rn)

−1
)
ii

(
IN − (IN + t̃n(z2)Rn)

−1
)
ii
+ oP (1) ,

=
z21z

2
2 t̃

′
n(z1)t̃

′
n(z2)

n

N∑

i=1

(
R1/2

n T 2
n(z1)R

1/2
n

)
ii

(
R1/2

n T 2
n(z2)R

1/2
n

)
ii
+ oP (1) ,

= Θ2,n(z1, z2) + oP (1) , (4.28)

where Θ2,n is given by formula (2.12).

Now gathering (4.16), (4.19) and (4.28), we have established so far:

n∑

j=1

Ej−1Z
n
j (z1)Z

n
j (z2) = Θn(z1, z2) + oP (1)

which is the first part of Proposition 4.2.
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4.3.4. Computations for the bias. In this section, we are interested in the computation of
N(Efn(z)− tn(z)). As

f̃n(z) = − (1− cn)

z
+ cnfn(z) and t̃n(z) = − (1− cn)

z
+ cntn(z) ,

we immediatly obtain N(Efn(z) − tn(z)) = n(Ef̃n(z) − t̃n(z)). Combining (2.7) and (3.2)
yields:

− z − 1

t̃n(z)
+

1

n
trRn

(
IN + t̃n(z)Rn

)−1
= 0 . (4.29)

Following Bai and Silverstein [3, Section 4], we introduce the quantity An(z) defined as:

An(z) = zEf̃n(z) + 1 +
1

n
tr
(
IN + Ef̃n(z)Rn

)−1

− cn

= zEf̃n(z) + 1 +
1

n
tr
(
IN + Ef̃n(z)Rn

)−1

− 1

n
tr I−1

N

= −Ef̃n(z)

(
−z − 1

Ef̃n(z)
+

1

n
trRn(IN + Ef̃n(z)Rn)

−1

)
,

hence

− An(z)

Ef̃n(z)
= −z − 1

Ef̃n(z)
+

1

n
trRn(IN + Ef̃n(z)Rn)

−1 . (4.30)

Substracting (4.29) to (4.30) finally yields:

Ef̃n(z)−t̃n(z) = −An(z)t̃n(z)

[
1− t̃n(z)Ef̃n(z)

n
trR2

n

(
IN + Ef̃n(z)Rn

)−1 (
IN + t̃n(z)Rn

)−1

]−1

,

which is the counterpart of [3, Eq. (4.12)]. The same arguments as in [3] now yields:

n
(
Ef̃n(z)− t̃n(z)

)
= −nAn(z)t̃n(z)

[
1− t̃2n(z)

n
trR2

n

(
IN + t̃n(z)Rn

)−2
]−1

+ o(1) . (4.31)

It remains to study the behaviour of nAn(z). Following [3, Eq. (4.10)], we obtain:

nAn(z) =

b2n
n
EtrQ1

(
Ef̃nRn + IN

)−1

RnQ1Rn − b2n nE

[(
ξ∗1Q1ξ1 −

1

n
trQ1Rn

)

×
(
ξ∗1Q1

(
Ef̃nRn + IN

)−1

ξ1 −
1

n
trQ1

(
Ef̃nRn + IN

)−1

Rn

)]
+ o(1) .

Applying (2.6) to the right term to the r.h.s. of the previous equation (recall thatRT = R̄),
we obtain:

nAn(z) = −|V|2 b
2
n

n
EtrR1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n R̄1/2

n QT
1 R̄

1/2
n

− κ
b2n
n

N∑

i=1

(
R1/2

n Q1R
1/2
n

)
ii

(
R1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n

)

ii

+ o(1) . (4.32)

The first term of the r.h.s. has been fully analyzed in [3] in the case where Rn and Xn are
real matrices. We adapt these computations to the general case and outline in Appendix A
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the proof of the identity:

− |V|2 b
2
n

n
EtrR1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n R̄1/2

n QT
1 R̄

1/2
n

= |V|2
z3 t̃2n
n trR

1/2
n T 2

n(z)R
1/2
n R̄

1/2
n T̄n(z)R̄

1/2
n

1− |V|2z2 t̃2n
n trR

1/2
n Tn(z)R

1/2
n R̄

1/2
n T̄n(z)R̄

1/2
n

+ o(1) , (4.33)

where T̄n(z) is defined in (2.8). The term proportional to the cumulant in (4.32) can be
analyzed as in Section 4.3.3, and one can prove that:

− κ
b2n
n

N∑

i=1

(
R1/2

n Q1R
1/2
n

)
ii

(
R1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n

)

ii

= −κ
z2t̃2n
n

N∑

i=1

(
R1/2

n TnR
1/2
n

)
ii

(
R1/2

n Tn

(
t̃nRn + IN

)−1
R1/2

n

)
ii
+ o(1) . (4.34)

We now plug (4.33) and (4.34) into (4.31) to conclude.

n
(
Ef̃n(z)− t̃n(z)

)
= −|V|2 z

3t̃3n
n

trR
1/2
n T 2

n(z)R
1/2
n R̄

1/2
n T̄n(z)R̄

1/2
n(

1− |V|2z2 t̃2n
n trR

1/2
n Tn(z)R

1/2
n R̄

1/2
n T̄n(z)R̄

1/2
n

)(
1− t̃2n

n trR2
nT

2
n

)

−κ
z3t̃3n
n

N∑

i=1

(
R

1/2
n TnR

1/2
n

)
ii

(
R

1/2
n T 2

nR
1/2
n

)
ii

1− z2 t̃2n
n trR2

nT
2
n

+ o(1) .

Proof of Proposition 4.2 is completed.

4.4. Proof of Proposition 4.3.

4.4.1. The Gaussian process Nn. In order to get some insight on properties related to deter-
ministic equivalents, it is sometimes useful to consider matrix models which actually converge
toward these deterministic equivalents. For instance, instead of having fn(z) − tn(z) → 0,
one may construct a matrix model for which the normalized resolvent would satisfy

fM
n (z) −−−−→

M→∞
tn(z)

for some extra parameter M . We proceed along these lines hereafter.

Let N , n and Rn be fixed and consider the NM ×NM matrix

Rn(M) =




Rn 0 · · ·
. . .

· · · 0 Rn


 . (4.35)

Matrix Rn(M) is a block matrix with N ×N diagonal blocks equal to Rn, and zero blocks
elsewhere; for all M ≥ 1 the spectral norm of Rn(M) is equal to the spectral norm of
Rn (which is fixed). In particular the sequence (Rn(M);M ≥ 1) with N,n fixed satisfies
assumption (A-2) with (Rn(M);M ≥ 1) instead of (Rn). Consider now the random matrix
model:

Σn(M) =
1√
Mn

Rn(M)1/2Xn(M) (4.36)

where Xn(M) is a MN ×Mn matrix with i.i.d. random entries with the same distribution
as the Xij ’s and satisfying (A-1). The interest of introducing the random matrix Σn(M)
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lies in the fact that matrices Σn(M)Σn(M)∗ and ΣnΣ
∗
n have loosely speaking the same

deterministic equivalents. Denote by tn, Tn and t̃n the deterministic equivalents of ΣnΣ
∗
n as

defined in (2.3), (2.4) and (3.2), and by tn(M), Tn(M) and t̃n(M) their counterparts for the
model Σn(M)Σn(M)∗. Taking advantage of the block nature of Rn(M), a straightforward
computation yields (N,n fixed):

∀M ≥ 1, tn(M) = tn, t̃n(M) = t̃n and Tn(M) =




Tn 0 · · ·
. . .

· · · 0 Tn


 .

Similarly, denote by Bn,M(, z) and Θn,M (z1, z2) the quantities given by formulas (2.19) and
(2.9) when replacing N , tn, Tn and t̃n by NM , tn(M), Tn(M) and t̃n(M). Straightforward
computation yields:

∀M ≥ 1 , Bn,M (z) = Bn(z) and Θn,M (z1, z2) = Θn(z1, z2) .

Denote by M̂n,M (z) the truncated process7 associated to

Mn,M (z) = tr (Σn(M)Σn(M)∗ − zINM )−1 −MNtn(z) .

Applying Proposition 4.2 to the matrix model Σn(M)Σn(M)∗ yields: For z ∈ Γ:

M̂ 1
n,M (z) =

nM∑

j=1

ZM
j (z) + oP (1) ,

where the ZM
j ’s are martingale increments and

nM∑

j=1

Ej−1Z
M
j (z1)Z

M
j (z2)

P−−−−−−−−−−−−→
N,n fixed , M→∞

Θn(z1, z2) ,

M̂ 2
n,M (z) −−−−−−−−−−−→

N,n fixed ,M→∞
Bn(z) .

Notice that there is a genuine limit in the previous convergence. Applying the central limit

theorem for martingales [7, Theorem 35.12] plus the tightness argument for (M̂n,M (z), z ∈ Γ)

provided by Proposition 4.2 immediatly yields the fact that M̂n,M converges in distribution
to a Gaussian process (Nn(z), z ∈ Γ) with mean Bn(z) and covariance function Θn(z1, z2).

4.4.2. Tightness of the sequence of Gaussian processes (Nn). In order to prove that the se-
quence of Gaussian processes (Nn) is tight, we shall prove, according to Prohorov’s theorem,
that it is relatively compact in distribution. Consider the set of matrices:

{(Rn(M),M ≥ 1) ; Rn is a N × n matrix, N = N(n);n ≥ 1}
where Rn(M) is defined in (4.35). Since ‖Rn(M)‖ = ‖Rn‖ for all M ≥ 1, we have

sup
M≥1,N,n→∞

‖Rn(M)‖ = sup
N,n→∞

‖Rn‖ < ∞

by Assumption (A-2). Hence, by Proposition 4.2, the family {M̂n,M ;M ≥ 1}N,n→∞ is tight,
hence relatively compact in distribution. As the distribution L(Nn) of the Gaussian process

7In order to fully define the truncated process, one may specify the thereshold εn(M) as εn(1) = εn,
εn(M) →M 0 and εn(M) ≥ (NM)−α - the contour Cn(M) where both processes coincide can be defined
accordingly.
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Nn is the limit (in M) of the distribution L(M̂n,M ) of M̂n,M , L(Nn) belongs to the closure

of {L(M̂n,M )}, which is compact. Finally, {L(Nn)} is included in a compact set, hence is
relatively compact. In particular, the family of Gaussian processes (Nn) is tight.

4.5. Proof of Lemma 4.1. The two propositions below are minor variations of known
results. They will be helpful to conclude the proof of Lemma 4.1.

Lemma 4.7 (CLT for martingales I). Suppose that for each n Yn1, Yn2, · · · , Ynrn is a real
martingale difference sequence with respect to the increasing σ-field {Fn,j} having second
moments. Assume moreover that (Θ2

n) is a sequence of nonnegative real numbers, uniformly
bounded. If

rn∑

j=1

E
(
Y 2
nj | Fn,j−1

)
−Θ2

n
P−−−−→

n→∞
0 ,

and for each ε > 0,
rn∑

j=1

E
(
Y 2
nj1|Ynj|>ε

) P−−−−→
n→∞

0 ,

then, for every bounded continuous function f : R → R

Ef




rn∑

j=1

Ynj


− Ef(Zn)

P−−−−→
n→∞

0 , (4.37)

where Zn is a centered Gaussian random variable with variance Θ2
n.

Hereafter is the multidimensional and complex extension of Lemma 4.7 we shall rely on
in the sequel:

Lemma 4.8 (CLT for martingales II). Suppose that for each n (Ynj ; 1 ≤ j ≤ rn) is a Cd-
valued martingale difference sequence with respect to the increasing σ-field {Fn,j; 1 ≤ j ≤ rn}
having second moments. Write:

Y T
nj = (Y 1

nj , · · · , Y d
nj) .

Assume moreover that (Θn(k, ℓ))n and (Θ̃n(k, ℓ))n are uniformly bounded sequences of
complex numbers, for 1 ≤ k, ℓ ≤ d. If

rn∑

j=1

E
(
Y k
nj Ȳ

d
nj | Fn,j−1

)
−Θn(k, ℓ)

P−−−−→
n→∞

0 , (4.38)

rn∑

j=1

E
(
Y k
njY

ℓ
nj | Fn,j−1

)
− Θ̃n(k, ℓ)

P−−−−→
n→∞

0 , (4.39)

and for each ε > 0,
rn∑

j=1

E
(
|Ynj |21|Ynj|>ε

) P−−−−→
n→∞

0 , (4.40)

then, for every bounded continuous function f : Cd → R

Ef




rn∑

j=1

Ynj


− Ef(Zn)

P−−−−→
n→∞

0 , (4.41)
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where Zn is a Cd-valued centered Gaussian random vector with parameters

EZnZ
∗
n = (Θn(k, ℓ))k,ℓ and EZnZ

T
n = (Θ̃n(k, ℓ))k,ℓ .

Lemmas 4.7 and 4.8 are variations around the Central Limit Theorem for martingales
(see Billingsley [7, Theorem 35.12]) which enables us to prove (in the real case):

∀t ∈ R , Eeit
∑rn

j=1
Ynj − e−

t2Θ2
n

2 → 0

and Lévy theorem for the weak convergence criterion via characteristic functions (see Kallen-
berg [20, Theorem 5.3 and Theorem 5.5]) which yields (4.41) from the above convergence.
Details of the proof are omitted.

Lemma 4.9 (Tightness and weak convergence). Let K be a compact set in C; let X1, X2, · · ·
and Y1, Y2, · · · be random elements in C(K,C). Assume that for all d ≥ 1, for all z1, · · · , zd ∈
K, for all f ∈ C(Cd,C) we have:

Ef(Xn(z1), · · · , Xn(zd))− Ef(Yn(z1), · · · , Yn(zd)) −−−−→
n→∞

0 .

Assume moreover that (Xn) and (Yn) are tight, then for every continuous and bounded
functional F : C(K,C) → C, we have:

EF (Xn)− EF (Yn) −−−−→
n→∞

0 .

Lemma 4.9 can be proved as [20, Lemma 16.2]; the proof is therefore omitted.

We are now in position to conclude.

In order to apply Lemma 4.8, it remains to check that Θn as defined in (2.9) is uniformly
bounded for z1, z2 ∈ Γ fixed but this is an easy byproduct of Proposition 4.3.

Proposition 4.2 together with Lemma 4.8 (notice that condition (4.40) can be proved as
in [3]) yield the fact that for every z1, · · · , zd ∈ C ∪ C̄ and for every bounded continuous

function f :
(
C ∪ C̄

)d → C:

Ef(M̂n(z1), · · · , M̂n(zd))− Ef(Nn(z1), · · · , Nn(zd)) −−−−−→
N,n→∞

0 ,

where Nn is well-defined by Proposition 4.3. Now the tightness of M̂n and Nn together with
Lemma 4.9 yield the last statement of Lemma 4.1.

4.6. Proof of Theorem 3.1. Theorem 3.1 is now almost completely proved. It remains to
prove that Ln(f) and Zn(f) being tight, the following equivalence holds true:

dLP (Ln(f), Zn(f)) −−−−−→
N,n→∞

0 ⇐⇒ Eh(Ln(f)) − Eh(Zn(f)) −−−−−→
N,n→∞

0

but this can be proved easily by contradiction using the fact that dLP metrizes the conver-
gence of laws.
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Appendix A. Proof of Proposition 4.2: remaining computations for the bias

In this section, we outline the proof of identity (4.33) which we recall below:

− |V|2 b
2
n

n
EtrR1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n R̄1/2

n QT
1 R̄

1/2
n

= |V|2
z3 t̃2n
n trR

1/2
n T 2

n(z)R
1/2
n R̄

1/2
n T̄n(z)R̄

1/2
n

1− |V|2z2 t̃2n
n trR

1/2
n Tn(z)R

1/2
n R̄

1/2
n T̄n(z)R̄

1/2
n

+ o(1) . (A.1)

The proof closely follows computations in [3, Section 4] and is essentially a matter of book-
keeping; in particular, all the estimates established there remain valid in the context where
Rn and Xn are not real. We shall focus here on the algebraic identities.

We first replace Q1 by Q and approximate Q by (cf. [3, Eq. 4.13]):

Q(z) = −(zIN − bn(z)Rn)
−1 + bn(z)A(z) +B(z) + C(z) (A.2)

where

A(z) =
n∑

j=1

(zIN − bn(z)Rn)
−1(ξjξ

∗
j − n−1Rn)Qj(z) .

The terms B(z) and C(z) will not contribute in the sequel. Denote by

M = (Ef̃nRn + IN )−1R1/2
n R̄1/2

n ,

T =
1

n
EtrR1/2

n Q1

(
Ef̃nRn + IN

)−1

R1/2
n R̄1/2

n QT
1 R̄

1/2
n .

We have:

T =
1

n
EtrR1/2

n Q1MQT
1 R̄

1/2
n

=
1

n
EtrR1/2

n QMQT R̄1/2
n + o(1)

= − 1

n
EtrR1/2

n (zIN − bn(z)Rn)
−1MQTR1/2

n +
bn(z)

n
EtrR1/2

n A(z)MQT R̄1/2 + o(1)

△
= T1 + T2 + o(1) (A.3)

In order to compute T1, we approximateQT in the same way as in (A.2); we take into account
the fact that for some deterministic matrix Γ, E tr (ΓA) = 0; we also use the approximation
bn(z) = −zt̃n(z) + o(1) and equation (3.2). The computation of T1 then easily follows:

T1 = − 1

n
EtrR1/2

n (zIN − bn(z)Rn)
−1MQT R̄1/2

n

=
1

n
trR1/2

n (zIN − bn(z)Rn)
−1M(zIN − bn(z)R̄n)

−1R̄1/2
n + o(1)

= − z

n
trR1/2

n T 2
n(z)R

1/2
n R̄1/2

n T̄n(z)R̄
1/2
n + o(1) .
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We now focus on the term

T2 =
bn(z)

n
EtrR1/2

n A(z)MQT R̄1/2

=
bn(z)

n
EtrR1/2

n

n∑

j=1

(zIN − bn(z)Rn)
−1(ξjξ

∗
j − n−1Rn)Qj(z)MQT R̄1/2

=
bn(z)

n
EtrR1/2

n

n∑

j=1

(zIN − bn(z)Rn)
−1
{
ξjξ

∗
jQj(z)M(QT −QT

j ) +D(z) + E(z)
}
R̄1/2

where

D(z) = ξjξ
∗
jQjMQT

j − n−1RnMQjMQT
j

E(z) = n−1RnM(QT
j −QT )

will not contribute. Using the rank-one perturbation identity for QT −QT
j , we obtain:

T2 =
bn(z)

n
EtrR1/2

n

n∑

j=1

(zIN − bn(z)Rn)
−1ξjξ

∗
jQj(z)M(QT −QT

j )R̄
1/2 + o(1)

= −bn(z)

n
EtrR1/2

n

n∑

i=1

(zIN − bn(z)Rn)
−1ξjξ

∗
jQj(z)M

QT
j ξ̄j ξ̄

∗
jQ

T
j

1 + ξ̄∗jQ
T
j ξ̄j

R̄1/2 + o(1)

= −bn(z)

n

n∑

j=1

E
1

1 + ξ̄∗jQ
T
j ξ̄j

(
ξ̄∗jQ

T
j R̄

1/2R1/2
n (zIN − bn(z)Rn)

−1ξj

) (
ξ∗jQj(z)MQT

j ξ̄j
)
+ o(1) .

In order to pursue the computation of T2, we shall perform the following approximations:
The quantity (1 + ξ̄∗jQ

T
j ξ̄j)

−1 can be replaced by bn and the two remaining quadratic forms
in the expectation can be decorrelated. Now, using formulas (4.17), we obtain:

T2 = −b2n(z)

n

n∑

j=1

E

(
ξ̄∗jQ

T
j R̄

1/2R1/2
n (zIN − bn(z)Rn)

−1ξj

)
E
(
ξ∗jQj(z)MQT

j ξ̄j
)
+ o(1)

= −|V|2b2n(z)
n

n∑

j=1

Etr
(
R̄1/2QT

j R̄
1/2R1/2

n (zIN − bn(z)Rn)
−1R1/2

)
Etr

(
R1/2Qj(z)MQT

j R̄
1/2
)
+ o(1)

We can now replace Qj by Q with no loss and use equation (A.2) to obtain:

T2 = −|V|2b2n(z)
n2

Etr
(
R̄1/2QT (z)R̄1/2R1/2

n (zIN − bn(z)Rn)
−1R1/2

)

×Etr
(
R1/2

(
−(zIN + bn(z)Rn)

−1 + bn(z)A(z)
)
MQT R̄1/2

)
+ o(1)

= |V|2b2n(z)
1

n
trR1/2T (z)R1/2R̄1/2T̄ (z)R̄1/2 (T1 + T2) + o(1) (A.4)

Denote by

T3 =
1

n
trR1/2T (z)R1/2R̄1/2T̄ (z)R̄1/2 .

We now extract T2 from (A.4) and plug it into (A.3). We finally obtain:

T = T1 + |V|2b2n(z)
T1T3

1− |V|2b2n(z)T3
+ o(1) =

T1
1− |V|2b2n(z)T3

+ o(1) .

Multiplying T by −|V|2b2n(z) = −|V|2z2t̃2n(z) finally yields (A.1).
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