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Turbulent velocity profiles in a tilted heat pipe

J. Salort, X. Riedinger,∗ E. Rusaouen, J.-C. Tisserand, F. Seychelles, B. Castaing, and

F. Chillà†

Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon
UMR5672 - 46 allée d’Italie, 69364 Lyon Cedex 07, France

(Dated: September 13, 2013)

In this paper, we analyze the mean velocity profile and the Reynolds shear stress in a turbulent,
inclined, heat pipe. We show that the simplest version of a mixing length model is unable to
reproduce the evolution of the velocity profile shape with the inclination angle ψ. An improvement
of this model, taking into account some buoyancy effects, gives nice qualitative agreement with the
observations. The agreement implies surprisingly a low value for the gradient Richardson number
Ric above which the flow is laminar. The comparison with previous works shows however good
agreement when some care is taken in the evaluation of the Richardson number Ri.

PACS numbers: 47.27 47.55

I. INTRODUCTION

In a recent paper [1], we carefully analyzed the ther-
mal behavior of a square heat pipe, depending on its
inclination angle and the applied heat flux. From the
four regimes we could distinguish, two of them, we called
Hard and Soft Turbulence, suggested an interesting in-
terplay between turbulence and stratification. The goal
of the present paper is to compare the mean flow and
mean Reynolds stress, obtained from Particle Image Ve-
locimetry (PIV) measurements, with the conclusions of
a mixing length model. With this model, we aim at clar-
ifying the relation between the mean flow and Reynolds
stresses.

The Prandtl mixing length model [2, 3] is the first at-
tempt to close the Reynolds averaged equations of tur-
bulent flows. Despite the development of more elaborate
models, this Prandtl mixing length model (ML) keeps
some advantages, in terms of physical interpretation, and
possibility of analytical solutions. Moreover, the develop-
ment of Particle Image Velocimetry (PIV), for the anal-
ysis of experimental flows, and of Direct Numerical Sim-
ulations (DNS) of high resolution, allow to directly test
the founding hypotheses of ML.

There has been other similar attempts [4–7] to get in-
sight in the physics of convection through a mixing length
model. Indeed, free convection is responsible of most of
natural flows. While its driving mechanism is conceptu-
ally simple, it can result in very complex flows, due to
the interplay between mixing, buoyancy and transport
for the active scalar. There is a need to clarify the re-
lations between the large scale flow and transport, both
scalar and momentum transport (stresses).

Heat pipes, or gravital flows in vertical or inclined

∗Also at College of Engineering, Mathematics and Physical Sci-
ences, University of Exeter, North Park Road, Exeter, UK, EX4
4QF.
†Electronic address: Francesca.Chilla@ens-lyon.fr

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

z

x

cm

20 ψ

d=

5 cm

FIG. 1: Sketch of the experimental cell with the definition of
coordinates.

tubes allow to study these relations with simple, homoge-
neous large scale flows. In the past decade, several works
have aimed at characterizing the different flow regimes in
such a geometry [1, 8–14]. This paper is one of a series
of five papers, each concentrating on one aspect of the
same system, schematized in figure 1 and described in
section II. In the first one [9], we focused on the vertical
case. In our previous paper [1], we concentrated on the
thermal aspect with various inclination angles ψ, which
allowed to evidence several regimes, from turbulent to
laminar. Two papers are in preparation, one interested
in the Laminar regime, and its destabilization through
intermittent bursts, the other detailling all the statistical
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aspects of the turbulent regimes, like structure functions
and probability density functions.

The present paper is thus devoted to clarify the phe-
nomenological relations between the mean shear flow, the
mean temperature profile, the Reynolds stresses and the
transverse heat flux in the turbulent regimes, and to in-
terpret them through a Mixing Length model. The pa-
per is organized as follows. In section II, we recall the
main characteristics of our experimental set-up. In sec-
tion III, we summarize the experimental results obtained
in the two turbulent regimes. In section IV, we deter-
mine the Reynolds equations governing this turbulent
flow. In section V we discuss the consequences of the
mixing length [2, 3] closure for these equations (equiva-
lent to the Smagorinsky [15] sub-grid model). We show
that its simplest version cannot take into account the evo-
lution of the velocity profile with the inclination angle ψ
experimentally observed. In section VI, we examine a
modified version of this closure, proposed in [16, 17] for
taking into account the stratification due to the gravity.
Finally, in section VII, we compare with experimental
results, before to conclude, section VIII.

II. EXPERIMENTAL SET-UP

All the details about the experimental set-up can be
found in references [1, 9] where we refer. We simply recall
here the most important points, relative to the subject
of this paper. The definition of coordinates is shown
in the sketch of the cell, figure 1. This cell, filled with
water, consists in two conical chambers, of height 10cm,
based by circular copper plates, 20cm in diameter. The
two chambers are connected through a square channel
d × d = 5 × 5cm2 of inner dimensions, 20cm long. The
hot plate is Joule heated by a spiral resistor. The cold
plate is temperature regulated by a water bath.

The velocity field is measured by Particle Image Ve-
locimetry (PIV) technique. We use a one watt green con-
tinuous Melles Griot laser (DPSS-Laser System, 532nm,
Melles Griot), and cylindrical lens for creating a laser
sheet. Our water is sown with hollow glass particles
(Sphericel 110P8, LaVision, GmbH), 10 micrometers in
average diameter. Both the recording and the batch pro-
cessing are done with the Davis Lavision software.

We worked by series of 3 images, with 40ms between
these images (2 velocity fields for each series). The series
are separated by 10 s. A record consists in 1000 series
(which corresponds to 2 hours and 50 minutes). All the
records are made at an average temperature of 25◦C,
close to the room temperature, to minimize possible heat
leaks. The Prandtl number of water at this temperature
is Pr = ν/κ = 6, where ν is the kinematic viscosity, and
κ the heat diffusivity.

In the vertical case, treated in previous papers [8, 9],
the flow underwent reversals, oscillating between two
main modes, the hot rising fluid being either at the right
or at the left side of the channel. In this case, these two
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FIG. 2: Map of the time averaged transverse Reynolds stress
ςxz = 〈v′zv′x〉 (in m2s−2). The inclination angle is ψ = 10◦,
and the applied heat power is 77W (Ut ' 1cm/s)

modes are equivalent, being symmetric versus the verti-
cal zy plane. It required us to artificially rectify the flow,
applying the above symmetry to the data when neces-
sary. Without this rectification, the mean flow and the
transverse Reynolds stress would appear as zero every-
where [14]. These reversals disappear rapidly when ψ is
increased. With ψ = 5◦, the flow is 90% of the time in the
most frequent mood, the hot fluid rising along the upper
face, and the cold one diving along the lower. However,
in this ψ = 5◦ case, we found necessary to exclude from
the statistics the velocity fields where a reversal occured.
As in the vertical case, once averaged in time, the var-
ious statistical quantities are reasonably independent of
z (see for example the transverse Reynolds stress shown
in figure 2). We thus increase the statistics by averaging
on z in the most central 10cm of the channel: 〈.〉 means
averaged on time and z, while .̄ means averaged only
on time. We define the fluctuations as v′z = vz − 〈vz〉.
The averaged transverse velocity 〈vx〉 is negligible, thus
v′x = vx. For the purpose of this paper, we further
increased artificially the statistics by symmetrizing the
profiles. Indeed, the longitudinal velocity profile, its
even x−derivatives, and the odd x−derivatives of the
Reynolds stresses are anti-symmetric through the sym-
metry x → −x. In the same way, the Reynolds stresses
and their even x−derivatives, and the odd x−derivatives
of the longitudinal velocity profile, are invariant in the
same symmetry.
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FIG. 3: Symmetrized velocity profiles normalized to their
maximum. From the largest to the smallest middle slope:
ψ = 5◦ (black), ψ = 10◦ (red on line), ψ = 20◦ (blue on line).
The applied heat power is 77W (Ut ' 1cm/s)

III. SUMMARY OF EXPERIMENTAL
OBSERVATIONS

In our previous paper [1], the Soft and Hard turbulent
regimes distinguished themselves through the heat trans-
port along the tube. They present different power law
relations between the longitudinal temperature gradient,
we call β, and the longitudinal heat flux cpQz, where cp
the isobaric heat capacity per unit volume (for simplicity,
from now on, we shall speak of longitudinal heat flux for
Qz). For the Hard Turbulence regime, which is found at
small inclination angles ψ, and high heat fluxes Qz, we

find β ∝ Q
2/3
z . For larger ψ, or smaller heat fluxes, we

find the Soft Turbulence, where β ∝ Q1/3
z . The interpre-

tation is that Hard Turbulence exhibits a range of inertial
scales between the correlation length and the dissipative
scale (see [1]). In the Soft Turbulence, the Reynolds num-
ber is not sufficient for an inertial range to develop. For
inclination angles ψ > 20◦, Riedinger et al. [1] could only
observe intermittent or laminar flows. It is why we limit
ourselves to ψ ≤ 20◦.

In previous papers [1, 9], a heat power dependent char-
acteristic velocity Ut was defined:

Ut = (−gzαQzd)1/3 , Qz =
P

cpd2
, (1)

where d = 5cm is the size of the channel, ~g is the grav-
ity acceleration, α is the isobaric thermal expansion, and
P is the power applied to the hot plate. Once normal-
ized to this velocity, the longitudinal velocity profile is
independent of the heat power applied, both in the Hard
and the Soft Turbulence. However, both the amplitude
and the shape of this normalized profile depend on the
inclination angle ψ.

The change of shape of the mean longitudinal velocity
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FIG. 4: Transverse Reynolds stresses, normalized to their
maximum absolute value, for the same angles and the same
applied power than in figure 3. We also show the quadratic
fit 1− 4x2/d2eff , which allows to determine deff .

profiles (figure 3):

Uz(x) = 〈vz〉 , (2)

is one of the most striking effects of the tilting of the
channel.

In the vertical case, treated in previous papers [8, 9],
the profile was found close to a sine function. In the in-
clined case, the profile is more linear. To stress this differ-
ence, we normalize in figure 3 the profile to its maximum
value. The various curves correspond to ψ = 5◦, 10◦, and
20◦. The evolution is clear, the profiles being more and
more linear, when going from ψ = 5◦ to ψ = 20◦.

On the other hand, the profiles of the Reynolds shear
stresses show no qualitative difference between them. In
figure 4, we present the shear turbulent stress ςxz =
〈v′xv′z〉, normalized to its maximum. The curves corre-
spond to the same angles ψ = 5◦, 10◦, and 20◦, with
the same color code as figure 3. It can be pointed out,
as in the vertical case [8, 9], that the longitudinal (z)
fluctuations are more uniform than the transverse (x)
ones. This will be discussed in a next paper. All the pre-
sented curves have been realized with an applied power of
P = 77W, corresponding to Ut ' 1cm/s (cos(20◦) ' 0.94
is close to 1).

Also shown in figure 4 is the fit of the normalized stress
(ψ = 20◦, P = 77W) by a quadratic function:

1− 4x2

d2eff
. (3)

Such a fit allows to define deff for each angle and
power. We can see that deff is the same in all the three
presented cases, and, in general, remains close to 44mm.

To be explicit, the slope of the velocity profile Uz(x) =
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〈vz〉 at the origin scales with Ut:

∂xUz(0) =
2

d
CvUt , (4)

where Cv only depends on the inclination angle ψ. The
shape of the velocity profile also depends on ψ, evoluting
from a sine shape at small ψ to a linear shape at larger
ψ. The shear stress profile has a parabolic shape:

ςxz ' CσU2
t

(
1− 4x2

d2eff

)
, (5)

where, again Cσ only depends on ψ. The coefficient Cσ
and the length deff are determined by fiting the experi-
mental Reynolds stress profile with this parabolic profile,
and x = ±deff/2 can be interpreted as the points where
the Reynolds shear stress vanishes.

IV. REYNOLDS EQUATIONS

We shall interpret our observations within a two di-
mensional model, assuming invariance in the y direction,
perpendicular to x and z. Taking into account the in-
compressibility, within the Boussinesq approximation:

∂tvx + ∂z(vxvz) = −∂x(
p

ρ
+ v2x)− gxαθ+ ν∆vx , (6)

∂tvz + ∂x(vxvz) = −∂z(
p

ρ
+ v2z)− gzαθ + ν∆vz. (7)

ρ is the density, p is the pressure, corrected from the
hydrostatic one at the average density, and α the isobaric
thermal expansion coefficient of our fluid. We note θ
the temperature, with the origin such that the average
temperature is zero for x = z = 0.

These equations 6 and 7 are invariant within the si-
multaneous transformations x → −x, z → −z, θ → −θ,
and ~g → −~g. The time average θ̄ of θ is z and x de-
pendent: θ̄ = −βz + Θ(x). The above symmetry im-
poses Θ(x) = −Θ(−x). By time averaging Eq. 6, taking
into account the z independence of velocity and Reynolds
stresses profiles:

∂x(
p̄

ρ
+
〈
v′2x
〉
) = −gxα(−βz + Θ(x)). (8)

We took into account the independence of the time
average v̄′2x on z, so v̄′2x =

〈
v′2x
〉
, and v̄x = 〈vx〉 = 0.

Integrating in x, and differenciating in z gives:

gxαβx− ∂z
p̄

ρ
= ϕ(z) , (9)

where ϕ only depends on z, and appeared due to the
integration on x..

By time averaging Eq. 7:

∂x 〈v′xv′z〉 = −∂z
p̄

ρ
− gzα(−βz+ Θ(x)) + ν∂2xx 〈vz〉 . (10)

FIG. 5: Comparison between the measured temperature pro-
file (circles) and the slope deduced from the measure of
the transverse Reynolds stress, through equation 12, where
we neglect the term proportional to β. The applied power
P = 62.7W and ψ = 20◦.

Separating the x and z dependent parts, we obtain:

gzαΘ(x) + gxαβx− ν∂2xx 〈vz〉+ ∂x 〈v′xv′z〉
= ϕ(z) + gzαβz. (11)

As they depend on independent variables, quantities
on both sides must be constant. This constant is zero, as
the left hand side of the equation is an odd function of
x. Thus:

∂xσ = −gzα(Θ(x) + tan(ψ)βx) , (12)

where we use the notation:

σ = 〈v′xv′z〉 − ν∂x 〈vz〉 . (13)

In the following, we shall neglect the viscous term in
σ. The ratio between 〈v′xv′z〉 and the viscous term is be-
tween 15 and 30 for the applied powers we consider here.
This equation 12 relates Θ(x) and 〈v′xv′z〉, and consti-
tutes our main access to Θ(x). However, we checked it
by measuring the temperature profile, and comparing it
with −∂xσ/gzα. For this comparison, shown in figure
5, we approximated σ with a quadratic function of x,
and we neglected the term tan(ψ)βx, which is generally
negligible, as remarked in [1].

Defining Qx = 〈vxθ〉, and neglecting heat conduction,
the energy conservation gives:

βUz = ∂xQx. (14)

This equation relates the transverse diffusive heat flux
Qx and the longitudinal velocity Uz. It is our only access
toQx, and thus to the effective transverse heat diffusivity.

These two equations 12 and 14 must be completed by
two phenomenological equations [3]:

σ ' 〈v′xv′z〉 = −νturb∂xUz , (15)
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and:

Qx = −κturb∂xΘ , (16)

where νturb is the kinematic eddy viscosity, and κturb is
the eddy heat diffusivity.

The turbulent Prandtl number Prturb = νturb/κturb
will be a crucial quantity. We can estimate it in the
following way. Let us assume a parabolic shape for Qx,
similar to the σ one:

Qx =
βd2eff

8
(∂xUz(0))

(
1− 4x2

d2eff

)
, (17)

where we used equation 14. The turbulent Prandtl num-
ber is defined as:

Prturb =
σ∂xΘ

Qx∂xUz

=
16U2

t d
2

−gzαβd4eff
C2σ
C2v

= 16
C2σ
C2v

d4

d4eff

(
Qz
κβ

)2/3(
κ2

−gzαβd4

)1/3

= 16
C2σ
C2v

d4

d4eff

(
Nu2

RaPr

)1/3

, (18)

where we used the definition of Ut (equation 1), Cv (equa-
tion 4) and Cσ (equation 5).

Nu =
Qz
κβ

, Ra =
−gzαβd4

νκ
, (19)

are the Nusselt and the Rayleigh numbers, and Pr =
ν/κ, where κ is the heat diffusivity. In this expression
of Prturb, Cσ, Cv, and deff are constant for a given in-
clination angle ψ, as the renormalized profiles of the
velocity and the Reynolds shear stress merge, both for
Soft and Hard Turbulence. In the Hard Turbulence,
Γ = Nu/

√
RaPr is also constant, so Prturb should be

constant. In the Soft Turbulence, however, Γ varies
rapidly, increasing with increasing P (thus Ut).

In figure 6, we show the turbulent Prandtl number ver-
sus Ut for the three inclination angles ψ = 5◦, 10◦, and
20◦. The large uncertainty is consistent with the cumu-
lated uncertainties on Cσ, Cv and Γ. Within this uncer-
tainty, Prturb can be considered as constant in the Hard
Turbulence (full symbols). As expected, it varies rapidly
in the Soft Turbulence (open symbols). However, it acci-
dentally remains close to the Hard Turbulence value. De-
spite the large uncertainty, the data are consistent with
a smooth tendency in the Hard Turbulence regime (full
symbols), giving larger Prturb when the inclination angle
is larger. Gibert et al. [8] found Prturb ' 0.4 for the ver-
tical case (ψ = 0◦). This tendency is in agreement with
previous works [5, 18].

In the two next sections, V and VI, we examine the
consequences of mixing length models for νturb. The eddy
heat diffusivity κturb will be deduced from the experimen-
tal value of Prturb.
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FIG. 6: The turbulent Prandtl number versus Ut for the three
inclination angles ψ = 5◦ (circles), ψ = 10◦ (stars), ψ = 20◦

(triangles). Open symbols are for the Soft Turbulence regime,
full symbols correspond to the Hard Turbulence one.

V. MIXING LENGTH APPROXIMATION

The eddy viscosity νturb can be seen as the product of a
squared mixing length `2, and a characteristic frequency
ωo:

νturb = ωo`
2. (20)

Without stratification, the only characteristic fre-
quency is given by the velocity gradient:

ωo = |∂xUz| , (21)

which gives the following expression for the transverse
Reynolds stress:

σ = 〈v′xv′z〉 = −`2|∂xUz|∂xUz , (22)

which corresponds to the well known mixing length [2, 3]
approximation. Let us for a time take it as valid. In the
same spirit, we shall take for the heat flux:

Qx = − `2

Prturb
|∂xUz|∂xΘ , (23)

where Prturb is the turbulent Prandtl number, we shall
assume independent of coordinates.

In our flow, the transverse stress, which is also the
momentum flux, is zero at the limit of the boundary layer,
where its sign changes. Within the boundary layer, the
momentum flux is oriented towards the wall. Out of the
boundary layer, it is oriented towards the other side of
the channel. As for the heat flux, it is zero at the walls. It
is indeed almost zero at the limit of the boundary layer.

In order to obtain undimensional equations, we shall
define σ = U2

o s, x = `ξ, Uz = Uou, Θ = Θoτ , and
Qx = Qoq, with:

U2
o =−gzαΘo` , Qo=Uoβ` , Θo=β`Prturb , (24)
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The equations 12, 14, 15, 16 now become:

s′ = τ , q′ = u , (25)

s = −u′2 , q = −u′τ ′ , (26)

valid as long as u′ > 0. We note at this stage that all
the ψ dependent parameters have disappeared from the
equations. Thus, we shall not be able to interpret the
evolution of the velocity profile shape with the inclina-
tion angle ψ. However, equations 25 and 26 allow an
analytical solution, which can act as a reference.

If ξ is small, we can write u = u′(0)ξ et τ = τ ′(0)ξ. We
then obtain s = s(0) + τ ′(0)ξ2/2 et q = q(0) + u′(0)ξ2/2,
with s(0) = −u′2(0) and q(0) = −u′(0)τ ′(0). As s and q
must vanish together at the boundary, it is tempting to
try as boundary condition: u′(0) = τ ′(0). It gives u = τ
and s = q everywhere.

Thanks to the hypothesis τ = u, we can write (u′ > 0):

s′ = −2u′u′′ = u. (27)

Following a well known method, we define u′ = φ(u),
which gives u′′ = φφ′, and:

−2φ2φ′ = −2

3
(φ3)′ = u , φ3 = φ3o −

3

4
u2. (28)

We then have:

du

dξ
=

(
3

4

)1/3 (
u2m − u2

)1/3
, (29)

and:

ξ =

(
4

3

)1/3 ∫ u

0

dv

(u2m − v2)1/3

=

(
4um

3

)1/3 ∫ u/um

0

dv

(1− v2)1/3
. (30)

We thus have an universal velocity profile shape, whose
amplitude um is related to the initial slope u′(0) by:

u′(0) = (
3

4
)1/3u2/3m . (31)

This shape is not very far, but different, from a sine
shape. Indeed, if the exponent of the denominator in
the integral, equation 30, were 1/2 instead of 1/3, we
should have a sine. But it simply would correspond to
a constant νturb, independent of ∂xUz. On the other
hand, we are now able to evaluate the error made on
dΘ/dx when approximating σ with a quadratic function,
as we made in previous papers [1, 9]. It is equivalent to
approximating s with:

sq = s(0)(1− ξ2

ξ2m
) , (32)

where

ξm =

(
4um

3

)1/3 ∫ 1

0

dv

(1− v2)1/3
. (33)

We thus take s′′q (0) = −2s(0)/ξ2m as the slope of τ ,
instead of s′′(0) = u′(0). The ratio is:

K =
s′′q (0)

s′′(0)
= − 2s(0)

u′(0)ξ2m

=
2(3/4)1/3u

2/3
m

(4um/3)2/3(
∫ 1

0
dv

(1−v2)1/3 )2
' 0.896. (34)

The error is thus about 10%, which justifies this ap-
proximation for interpreting experimental data and eval-
uating dΘ/dx, as we made in figure 5.

To resume, while qualitatively interesting, the stan-
dard mixing length [2, 3] approximation is unable not
only to reproduce the evolution of the experimental pro-
file when ψ is increased, but disagrees with the experi-
mental profile for small ψ. Strikingly, for small ψ, the
profile better corresponds to a constant νturb.

VI. INFLUENCE OF STRATIFICATION

A. Correction to mixing length

As remarked above, the standard mixing length [2, 3,
5] approximation, equation 22, is unable to explain the
evolution of the velocity profile shape as the inclination
angle ψ is increased. Indeed, this approximation does not
take into account the stratification due to the transverse
temperature gradient and the transverse component of
the gravity. A fluid element goes upward or downward,
vertically, depending if it is hotter or colder than the
surrounding. It results in a correlation between axial (z)
and transverse (x) components of the velocity, which has
the opposite sign compared to the turbulent momentum
transfer. But this physical mechanism seems unable to
explain the failure of the equation 22 in the small ψ case.

The competition between turbulence and stratification
can be expressed in another way. Let us come back to
the previous expression of the eddy viscosity:

νturb = ωo`
2. (35)

As noted before, without stratification, the character-
istic frequency ωo can only come from the velocity gra-
dient:

ωo = |∂xUz|. (36)

With a thermal stratification, however, a Brunt-
Väisälä frequency N [18] appears:

N2 = −α~g · ~grad(θ̄). (37)
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The competition between turbulence and stratification
can be taken into account with the following expression
for ωo [16, 17]:

ωo =
(

(∂xUz)
2 + ε′α~g · ~grad(θ̄)

)1/2
=
(
(∂xUz)

2−ε′gzαβ+ε′gxα∂xΘ
)1/2

, (38)

where ε′ is an ajustable parameter. It gives:

σ= −̀ 2
(
(∂xUz)

2−ε′gzαβ+ε′gxα∂xΘ
)1/2

∂xUz. (39)

In the same way, we shall take:

Qx= − `2

Prturb

(
(∂xUz)

2−ε′gzαβ+ε′gxα∂xΘ
)1/2

∂xΘ.

(40)
Let us recall the two other equations:

∂xσ = −gzαΘ , ∂xQx = βUz , (41)

where, again we neglect tan(ψ)βx compared to Θ, as
it is effectively negligible in our experiments. The two
supplementary terms we introduce in ωo, equation 38,
have not the same role. The first one is positive, thus
destabilizing, and increases the Reynolds stress. It does
not depend on x. When it dominates on (∂xUz)

2, it gives
a constant turbulent viscosity, which can explain why, in
the small ψ case, the profile is close to a sine. The second
term is stabilizing, and lowers the stress, thus damping
the turbulence. It is ψ dependent which can explain the
evolution of the profile.
ε′ appears as an adjustable parameter. Note that

the Richardson number, Ri, can be defined as (gradient
Richardson number [18]):

Ri = −α~g ·
~grad(θ̄)

(∂xUz(0))2
. (42)

Then, ε′ appears as the inverse of a critical Richardson
number, Ric = 1/ε′. Indeed, for Ri > Ric, the frequency
ωo is not real. It then must be taken as zero, and both
the Reynolds stress and the turbulent heat flux are zero:
the flow is laminar.

In figure 7 we show all our measurements of the
Richardson number within the Hard or Soft Turbulence
regime. In the same figure, we show the critical Richard-
son number Ric for ε′ = 20, which will be justified in
section VII.

B. Non dimensional equations

Equations 25 and 26 then become:

s′ = τ , q′ = u , (43)

s = −$1/2u′ , q = −$1/2τ ′ , (44)

0.4 0.6 0.8 1

−0.04

−0.02

0

0.02

0.04

0.06

R
i

U
t
 (cm/s)

FIG. 7: The Richardson number within the Hard (full sym-
bols) or Soft (open symbols) Turbulence regime, for ψ = 5◦

(circles), ψ = 10◦ (stars), and ψ = 20◦ (triangles) versus Ut.
The dashed line indicates Ric = 1/ε′.

valid as long as $ = u′2 + ε′/Prturb − ε′ tan(ψ)τ ′ > 0.
Again, there exists a solution where u = τ and s = q

everywhere, which makes s and q to vanish together at
the boundary.

The shape of the velocity profile depends now on ψ
both through the tan(ψ) term and through the ψ de-
pendence of Prturb. As previously (section V), we can
estimate the range of variations of the quantity:

K = − 2s(0)

u′(0)ξ2m
. (45)

As noted above, the velocity profile shape can go from
a sine to a linear one. The linear profile corresponds to
a quadratic one for q (equation 43) thus for s:

u = u′(0)ξ =⇒ q = s = −ξ
2
mu
′(0)

2

(
1− ξ2

ξ2m

)
, (46)

and K = 1. The sine profile corresponds to q being a
cosine:

u =
2ξm
π
u′(0) sin(

πξ

2ξm
)

=⇒ q = s = −u′(0)

(
2ξm
π

)2

cos(
πξ

2ξm
) , (47)

and K = 8/π2 ' 0.81.
Thus, whatever the possible variations of u′(0), ξm, ε′,

and Prturb, the quantity K remains in a range of vari-
ations of ±10%. We shall use this property to estimate
the value of u′(0).

C. Evaluation of u′(0)

Indeed, an almost constant value for K in equation
45 is not sufficient to determine u′(0). Although we can
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FIG. 8: Comparison of the theoretical profiles with the ex-
perimental ones. For determining the initial condition u′(0),
we use equation 50, with ε′ = 20 and Ao = 74. The char-
acteristic velocity Uo = `

√
−gzαβPrturb. The mixing length

` = deff/2ξm and β and Prturb are the experimental ones.
The curves are shifted by 0.01m/s for clarity.

identify ξm with the point where the Reynolds stress van-
ishes x = deff/2:

ξm =
deff
2`

, (48)

the problem remains to evaluate `.

In fact, ` probably depends on the inclination angle ψ,
but ψ = 0 certainly corresponds to an extremum by sym-
metry ψ → −ψ. As our range of ψ is limited (ψ ≤ 20◦),
considering ` as constant is a reasonable approximation.
Then ξm is also approximately constant, and the quasi
constant value of K allows to write:

u′2(0)− ε′ tan(ψ)u′(0) +
ε′

Prturb
= Ao = cste. (49)

As u′(0) must be positive:

u′(0) =
ε′ tan(ψ) +

√
ε′2 tan(ψ)2 + 4A

2
, (50)

where A = Ao − ε′/Prturb.
Thus, we remain with two adjustable parameters for

fiting all our velocity and Reynolds shear stress profiles,
their shapes and their amplitudes, for every angle and
applied power. We found that ε′ = 20 and Ao = 74 were
the best choice. They are correlated. The uncertainty on
each one when the other is fixed, is small: of order 1 for
ε′ and 2 for Ao. However, for ε′ above 25 or under 15, we
found no agreement, whatever Ao is. In the next section
VII, we discuss the agreement between experiment and
theory for this best choice.

−20 −10 0 10 20
−0.8

−0.4

0

0.4
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 (

∂
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U
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 (

a
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.)
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FIG. 9: Comparison of −σ (circles and black continuous line)
and (∂xUz)2 (triangles and red dashed line), both with their
maximum normalized to 1, in experiments (symbols) and the-
ory (lines). The three groups are for ψ = 5◦ (upper curves,
black symbols), ψ = 10◦ (middle curves, red symbols), and
ψ = 20◦ (lower curves, blue symbols). The groups are shifted
by 0.4 for clarity.

VII. COMPARISON TO EXPERIMENTS AND
DISCUSSION

The figure 8 compares the experimental Uz(x) and
theoretical Uou(x/`) profiles for ψ = 5◦, 10◦, and 20◦

(applied power P = 77W). The normalizing velocity is
Uo = `

√
−gzαβPrturb (equation 24). The mixing length

` is obtained from the identification deff = 2ξm`, where
ξm is the non dimensional abscissa where s vanishes. For
β we take the experimental value measured in [1], as well
as for Prturb (see section IV). The initial condition u′(0)
is given by the formula 50 with ε′ = 20 and Ao = 74.
The agreement can be considered as fair. Not only the
slope at the origin is correct, but the profile shape has a
similar evolution than the experimental one, being more
and more linear as ψ increases.

The ψ dependence of u′(0) comes as well from the tanψ
terms than from the ψ dependence of Prturb. Its am-
plitude is thus entirely governed by ε′, which is impor-
tant to note, as the ε′ value obtained here is rather high,
compared to other proposals [18]. A lower value would
have made us unable to reproduce the ψ dependence of
∂xUz(0).

The high value of ε′ also reflects in the comparison of
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−σ with (∂xUz)
2. We show both quantities in figure 9,

with their maximum value normalized to 1. The exper-
imental shape of −σ is represented by circles and that
of (∂xUz)

2 by triangles. The theoretical profile of −σ
is shown as a continuous line and that of (∂xUz)

2 by a
dashed one. One can see that for ψ = 5◦ (upper curves),
the (∂xUz)

2 profile is inside the −σ one. For ψ = 20◦

(lower curves), it is slightly outside. The theoretical
curves qualitatively reproduce this evolution. Again, a
large value of ε′ is necessary for this evolution.

This large value of ε′ is surprising as it implies a low
value of the critical Richardson number Ric = 1/ε′ '
0.05, above which the flow must be laminar. However, we
can see in figure 7 that all our measured Ri in turbulent
situation are smaller than Ric. The Richardson number
Ri increases when the inclination angle increases, and, for
the higher inclination angles we explored, we found lami-
nar or intermittent regimes. Comparing more precisely to
previous works, we note that [19] found complete damp-
ing of turbulence for Ri = 0.3, and pointed some visible
effect of stratification for Ri = 0.05. Znaien et al. [12]
found intermittent or laminar regimes for Ri > 0.05 [20].
Odier et al. [5] observed a turbulent flow for Ri = 0.08,
but their situation was more inhomogeneous than ours.
Moreover, in all these experimental examples, account
is only taken of the density gradient and gravity com-
ponents transverse to the flow, not of the longitudinal
components. This increases the value of Ri. Thus, all
these observations are in fair agreement with ours.

In our above comparison between experiment and the-
ory, we choose the highest applied power. It thus corre-
sponds to the Hard Turbulence regime. In this regime,
Prturb, thus u′(0) (equation 50), and the ratio Uo/Ut
(equation 57), only depend on ψ. This explains the per-
fect scaling of the velocity profile with Ut [1]. In the Soft
Turbulence regime, the rapid variation of Prturb with P
(or Ut, see figure 18), should influence both the shape
of the velocity profile, and the value of u′(0). Thus, the
extension of the above scaling to this regime, which lead
us to assimilate Soft and Hard Turbulence [1], could be
fortuitous.

We also can verify the hypothesis τ ′(0) = u′(0):

τ ′ = s′′ = `2
∂2xxσ

U2
o

, (51)

and

u′ = `
∂xUz
Uo

, (52)

thus:

τ ′(0)

u′(0)
=

`

Uo

∂2xxσ

∂xUz
=

4`

deff

d

deff

Cσ
Cv

Ut
Uo
. (53)

We must compare the two characteristic velocities, Ut

and Uo:

U3
t

U3
o

=
−gzαQzd

(−gzαβ`2Prturb)3/2

=
1

Pr
3/2
turb

Qz
κβ

(
κ2

−gzαβd4

)1/2
d3

`3
, (54)

which gives:

U3
t

U3
o

=
8ξ3m

Pr
3/2
turb

d3

d3eff

Nu

(RaPr)1/2
. (55)

Coming back to equation 53:

τ ′(0)

u′(0)
=

4

Pr
1/2
turb

d2

d2eff

Cσ
Cv

Γ1/3 , (56)

where Γ = Nu/
√
RaPr, Nu is the Nusselt number, Ra,

the Rayleigh number (equations 19), and Pr = ν/κ, the
Prandtl number. The value of the right hand side of
equation 56 is 1, using equation 18. All our hypothesis
are thus consistent. Equation 53 allows to give a simpler
expression for Ut/Uo:

Ut
Uo

=
d2eff
4d`

Cv
Cσ

= ξ2m
`

d

Cv
Cσ

(57)

It does not depend on Γ, which explains why it is con-
stant as well in the Soft Turbulence regime.

We finally can give an estimate of the mixing length
`. The value we obtain for ξm is ξm ' 4.4. The ef-
fective width deff is always close to 44mm. This gives
` = deff/2ξm ' 5mm. It would seem natural that this
value be affected close to the walls, when the distance
to the wall is less than `. This could explain the poor
agreement between experiment and theory in this range.
However, our experimental technique (PIV) is not precise
close to the walls, due to light reflexions.

VIII. CONCLUSION

The free convection flow in the square heat pipe we
study here is a model flow which allowed us to study sig-
nificant details, like the shape of the profiles, and a fine
comparison between shear stress and velocity gradients.
It shows, contrary to the conclusion of previous works
[5–7], that the most simple mixing length formula 22 is
unable to reproduce these features. Buoyancy, both its
driving and stratifying parts, compete with velocity gra-
dient in the expression of turbulent viscosity and heat
diffusivity.

The experimentally observed evolution of the velocity
profile toward a linear one when the inclination angle in-
creases clearly shows that, in a stratified situation, the
transverse stress σ does not only depend on the velocity
gradient. The reason can be traced to the correlation



10

the stratification creates between z and x velocity fluctu-
ations, which opposes to the “diffusive” correlation due
to the velocity gradient. Reciprocally, observing a ve-
locity profile closer to a sine than the one corresponding
to equation 22 shows that the Reynolds transverse stress
goes down less rapidly than (∂xUz)

2 when going from
the center to the walls. This is due to the driving role
of the longitudinal temperature gradient. The formula
proposed by Eidson [17] well takes this into account.

On the other hand, the parameter ε′ we find in the
Eidson formula, has a value (ε′ = 20) surprisingly large.
Values close to 5 are more usual [17]. Correlatively, the
critical value it gives for the critical Richardson number
(Ric = 0.05) is lower than expected [5]. However, it is
confirmed by the observation that, in none of the turbu-
lent flows we observed, the Richardson number was larger
than Ric. Larger Ri always resulted in a laminar flow.
It is also the case for the experimental measurements we
know, as far as we take all the components of the density
gradient into account, not only the transverse flow ones.

A generally accepted approximation is that turbu-
lent shear stress and turbulent heat transfer are related
through a constant turbulent Prandtl number Prturb.

Within this approximation, we could evaluate Prturb, at
least for the Hard Turbulence regime. Its evolution, go-
ing to larger values when the stratification increases, is
qualitatively in agreement with previous studies [5]. The
value obtained for small inclination angles ψ is also in
agreement with our study of the vertical case [8, 9], as
well as the profile shape. This justifies the procedure we
used in these papers, taking into account the reversals by
rectifying the flow.
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