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Abstract
Motion editing requires the preservation of

spatial and temporal information of the motion.

During editing, this information should be pre-

served at best. We propose a new representation

of the motion based on the Laplacian expression

of a 3D+t graph: the set of connected graphs

given by the skeleton over time. Through this

Laplacian representation of the motion, we

propose an application which allows an easy

and interactive editing, correction or retargeting

of a motion. The new created motion is the

result of the combination of two minimizations,

linear and non-linear: the first penalizes the

difference of energy between the Laplacian

coordinates from an animation to the desired

one. The other one preserves the length of seg-

ments. Using several examples, we demonstrate

the benefits of our method and in particularly

the preservation of the spatiotemporal proper-

ties of the motion in an interactive context.

Keywords: Character Animation, Spatial

Relationship, Motion Editing, Motion Retarget-

ing

1 Introduction

Human motion editing is compelling in char-

acter animation, because manipulating directly

motion data requires a detailed knowledge of

the quality and essential features of these data.

One key issue in the edition process is to create

new animations driven by user-defined objec-

tives and constraints, while preserving as much

as possible spatiotemporal properties, expressiv-

ity, and consistency of the original motion.

Over the past decade, much effort has ad-

dressed the problem of adapting, deforming,

and editing interactively movement from ex-

isting motion data. Among promising ap-

proaches, some have highlighted the effective-

ness of Laplacian coordinates to encode implic-

itly the spatial relationships between the bod-

ies of single or multiple characters. These spa-

tial relationships are indeed intuitive and suit-

able to describe the semantics of the interaction.

The technique has been successfully applied to

editing or retargeting captured motion, by pre-

serving deformation energy over a sequence of

frames [1]. However, if these Laplacian editing

methods satisfy smooth, continuous spacetime

deformation, they do not implicitly incorporate

the temporal dynamics of the motion within the

Laplacian operator.

We propose a novel Laplacian-based motion

editing method that couples spatial and tempo-

ral information through a unique optimization

framework, thus preserving automatically the

geometrical motion deformation and the tempo-

ral dimension of the motion.

We thus extend the classical expression of the

Laplacian operator for skeleton animation by in-

corporating the time t into the 3D Laplacian co-

ordinates x, y and z. Applied to a function f ,

the Laplacian operator becomes:

∆f = ∂2f
∂t2

+ ∂2f
∂x2 + ∂2f

∂y2
+ ∂2f

∂z2
.



In this expression, the second partial deriva-

tive evaluates the motion acceleration in the

temporal neighborhood of the current frame.

The goal of the time component during the edi-

tion process is to locally preserve acceleration

and deceleration, that is to say motion dynam-

ics.

In this paper, the motion is represented by

a global geometrical structure - a so-called

3D+t graph - encoding both spatial information

through the connected links between the joints

of the skeleton, and temporal information rep-

resenting the trajectories of joints over time.

The edition process is achieved through a Lapla-

cian representation of this 3D+t graph. Thus,

fixing some points of the graph and preserv-

ing the lengths of the body segments allow us

through the Laplacian operator to significantly

edit the motion while maintaining spatiotempo-

ral features of the original motion. The new

created movement results from the combination

of two respectively linear and non-linear mini-

mizations: the first one penalizes the difference

of energy between the Laplacian coordinates of

the original animation to the desired one. The

second one, applied subsequently to the first pre-

conditioning minimization, uses a gradient de-

cent algorithm in order to preserve the length

of the segments. Our method is similar to the

approach developed by [2] for mesh animation

processing. In contrast, our approach aims to

implicitly incorporate i) spatial relationships, in

terms of skeleton connections and distances to

objects of the environment, and ii) temporal re-

lationships in terms of joint connections along

motion trajectories.

Our contributions can be stated as:

• We propose an unified way of han-

dling both temporal and spatial variations

through a 3D+t graph. Associated to the

Laplacian operator, our system is able to

preserve during the edition process spatial

and temporal properties of the original mo-

tion;

• Instead of using uniform weights associ-

ated to edges of the graph, we introduce a

parameterization of the Laplacian coordi-

nates in terms of Gaussian kernel weights

that enhance the influence of the temporal

dynamics;

• A control of the rotations is directly ex-

tracted from the control points and used

within the minimization function to effi-

ciently modify the animation sequence of

skeletons through an interpolation process;

• We propose an original numerical solving

principle by decoupling in an iterative pro-

cess the linear and non linear minimization

parts.

In this paper, we develop a complete, robust

and interactive system of motion capture edit-

ing, which is capable to edit all types of mo-

tion (walking, jumping, boxing, swimming,etc),

while allowing an intuitive control by the user.

Moreover, as our system preserves nearby con-

tacts by maintaining the distance between 3D

points, it is also appropriate for motion retarget-

ing.

2 Background

Motion editing There exists a lot of work ded-

icated to the production of new animation form

existing ones. Most of the times, the existing

motion is edited to fit new kinematic constraints

using inverse kinematics techniques (e.g. [3–5])

or build a statistical model of the motion to

constraint the synthesis [6–8]. Those statistical

methods need generally an important quantity

of motions to learn a good motion model. This

is not the case with inverse kinematics, which

major drawbacks lie on the fact that the qual-

ity of the original motion is usually lost when

the new task is different from the reference one.

Physically based motion retargeting [9] is an in-

teresting alternative in its possibility to modify

an original motion submitted to physical con-

straints, but requires a filtering step (based on

unscented Kalmann filtering) which may fail

when the new constraints is too different from

the reference motion. In our work, the charac-

teristics of the original motions are preserved

by changing the representational space of the

motion to a differential representation based on

Laplacian coordinates.

The Laplacian operator in computer graph-

ics In last years, the use of Laplacian operator



has been addressed in many studies. In the con-

text of computer graphics, many authors use it

to deform geometric structures (e..g image edit-

ing [10] or mesh editing [11, 12]). A good sur-

vey proposed by Sorkine [13] is specifically ad-

dressed to mesh editing. Generally, this geo-

metric deformation operates in space and does

not consider changes in time. Rencently Het-

roy [2] used a discrete Laplacian operator ap-

plied to mesh sequence or 3D videos. Its ap-

proach is similar to our method since we charac-

terize the motion with the Cartesian coordinates

associated to the time dimension.

In the context of computer animation, the

Laplacian operator has been used in the context

of crowd simulation [14–16], where it is gen-

erally used to encode the spatial relationships

among pedestrians, and eventually their rela-

tions with the environment. In the more spe-

cific case of articulated human figures, Kim et

al. [17] used the Laplacian to edit the interaction

among multiple characters. More precisely, they

associate inverse kinematic on end effectors and

ground contacts with the Laplacian representa-

tion of motion path (time series of body pelvis

positions projected onto the ground). Note that

in this work, the authors use also the Lapla-

cian to combine temporal information with spa-

tial trajectory of the root of the skeleton in 2D.

Ho’s approach [1] is particularly related to our

work since the discrete Laplacian operator is

used to edit poses and take into account the in-

teraction between characters or with the envi-

ronment. The constructed Laplacian makes ref-

erence to ”an interaction mesh” which is built

upon a convex hull of a pose. In this work,

each pose is edited independently in time, while

a temporal smoothing term is added to the op-

timized energy function. Our method is simi-

lar in that we also employ the Laplacian to edit

motion but we use an expression of the Lapla-

cian operator applied on a graph built upon the

whole sequence, thus taking explicitly into ac-

count the motion dynamics. Also, our work con-

siders the notion of rotations induced by control

points, and encompasses a wider range of mo-

tions involving large translations and rotations

of the whole body.

3 3D+t Laplacian motion

representation

The main goal of this paper is to provide a mo-

tion editing system that preserves both tempo-

ral and spatial variations of the motion. For this

purpose, we use the Laplacian operator which

computes the differential coordinates of each

vertex of the graph, discretized in space and time

with its neighbors, thus minimizing locally both

the spatial deformation and acceleration energy.

3.1 Discrete Laplace operator

In the spatial context, we consider the graph

G = (V ,E), where E is the connectivity and

V = v1, ..., vn describes the geometry by Eu-

clidian coordinates of each points of the graph

in R
3. From absolute coordinates of V , we can

determine the graph by the set of differential co-

ordinates ∆ = δi. More precisely, the coordi-

nate i is represented by:

δi = L(vi) =
∑

j∈N (i)

wij(vi − vj). (1)

where L represents the discrete Laplacian oper-

ator, and δi = L(vi) is the differential coordi-

nate for the point i. N (i) is the set of points

connected to point vi, also called the one-ring

neighbors, and wij is the weight associated to

the edge eij . The Equation (1) can be written

in the matrix form ∆ = LV , where L is deter-

mined by:

Lij =



















∑

j∈N (i)

wij if i = j

−wij ∀(i, j) ∈ E

0 otherwise

3.2 3D+t Discrete Laplace operator

Let a sequence of skeletons S = (S1, ..., Sm),
each skeleton Sk (1 ≤ k ≤ m) being defined by

Sk = (Vk,Ek), with Vk a set of vertices, and

Ek a set of edges. We note vi,k, the vertex of

index i contained into Vk. As described in [2],

we define the 3D+t Laplacian coordinates of the

vertex vi,k, as the sum of the spatial coordinates

corresponding to the skeleton k and the tempo-

ral coordinates corresponding to the ”temporal”



edges (vi,k−1,vi,k) and (vi,k,vi,k+1), all these

Laplacian coordinates being associated to spe-

cific weights:

L(vi) = (w−(vi,k − vi,k−1) + w
+(vi,k − vi,k+1))+

∑

j∈Nk(i)

wij,k(vi,k − vj,k),

(2)

where w− and w
+ are the weights of each ”tem-

poral” edge linking vi,k, and Nk(i) is the set of

neighbours of vi,k. To simplify notations, we

won’t distinguish in the remainder of the paper

the weights characterizing temporal or spatial

edges, as specified in section 4.1.

3.3 From the motion to the 3D+t graph

Our method initially converts the sequence of

skeletons over time into a geometrical structure,

the so-called 3D+t graph, encoding both spa-

tial data (joints of skeletons) and temporal data

(links between adjacent skeletons). As shown in

Figure 1, we create a 3d+t dimensional graph by

extracting from a given motion the chunk that

we want to edit. It is not necessary to retrieve

the entire motion, as the editing time computa-

tion is directly linked to the size of the motion.

The geometrical information is given by the set

of positions of the joints of all skeletons. As

mentioned before, the topological information

of the graph is determined by the connectivity

of each skeleton, associated with links between

skeletons. Thus, as illustrated in Figure 1, the

vertex vi,k of joint i of the skeleton at time k

is linked to the vertices vi,k−1 and vi,k+1 cor-

responding to joint i of the skeletons at times

k − 1 and k + 1. More precisely we define the

3D+t graph G = (V ,E) = (V ,ES ∪ ET ),
with V = {Vk} the set of points, E the set of

edges, ES the set of edges within a skeleton, and

ET the set of temporal edges between adjacent

skeletons in time. Note that ET corresponds to

the first term of Equation (2) and ES to the sec-

ond term. In addition, we will note in the re-

mainder e(i, j) the edge connecting the points

with indexes i and j.

4 Application to motion editing

Assuming that the motion edition is performed

by moving some control points of the graph both

Figure 1: Illustration of the extraction and construction

of G. Postures of reference motion are repre-

sented in grey. Blue points represent the geo-

metrical information. The connectivity of the

graph is represented in dashed and yellow. The

yellow edges are extracted from the segments

of skeletons and in dashed green the new edges

created from joints (blue points) from a posture

to another.

in space and time, our goal is to solve an op-

timization problem involving the concepts pre-

sented in the above Section. Recalling V be-

ing the set of vertices from the graph G, let

U = u1, ...,um be a set of m control points

(m << n). Our objective is to compute a new

spatial configuration of V ′ = v′

1, ...,v
′

n that

minimizes the classical quadratic function [11]:

E(V ) = El(V , G) + Ep(V ,U). (3)

The first term El(V , G) =
n
∑

i=1
‖δi − L(vi)‖

2

penalizes the differences between the differen-

tial coordinates after reconstruction, and the sec-

ond one Ep(V ,U) =
m
∑

i=1
‖vi − ui‖

2 penalizes

the change of positions of control points. The

new graph respects the constraints of the control

points that maintains as much as possible Lapla-

cian properties of the graph, thus resulting into

a natural deformation of the graph. However,

following this line has major drawbacks in our

case:

• The weight wij defined introduced by

Equations (1) and (2) strongly influences

the optimization result and may lead to in-

consistent dynamic behaviors,

• The deforming graph looks coherent as

long as the rotations, induced by the con-

trol points, have low amplitudes,

• the bones length of the underlying skeleton

are not preserved in this minimization.

We propose to consider this three problems in

the following paragraphs.



4.1 Laplacian weights

Figure 2: Example of weight in the construction of the

Laplacian matrix for a walking motion: at the

top the movement without deformation; in the

middle with uniform weights, and at the bot-

tom with an exponential parameterization. The

blue and the red points represent the control

points of the graph and the green ones rep-

resent the positions of the joints. In yellow,

the skeleton of the original animation, and in

green the resulting animation skeletons after

deformation.

In the mesh editing problem, the Lapla-

cian operator is generally tuned by uniform

weights [18] or cotangent weights [19]. In our

method, the dual space/time nature of the graph

makes it mandatory to consider differently the

edges related to time and space. Setting of the

Laplacian operator with uniform weights is not

suitable, since it results in smoothing the out-

put graph. We therefore introduce an exponen-

tial parameterization of the Laplacian matrix in

order to give more importance to some edges of

the graph than others. Thus, wij are then defined

by:

wij =



















1 (i, j) ∈ ES

1 + αe
(−β

d2ij

d2max
)

(i, j) ∈ ET

0 otherwise

where α and β are the coefficients given by

the user. α is used to define the importance of

”time” edges by comparison with the edges of

rest of the graph, and β is used to set the inten-

sity of the exponential. dij is the Euclidian dis-

tance corresponding to the edge connecting ver-

tex i and j, and dmax is the maximum length of

edges in ET . Figure 2 shows the interest of in-

troducing such a weight. By comparing the ref-

erence movement (at the top of the figure) and

the one which is defined by the new weight wij ,

we observe a best preservation of the dynamics

around the feet, and in particular a strong limi-

tation of the sliding effect.

4.2 Rotational constraints

Laplacian coordinates are invariant to transla-

tions, but sensitive to linear transformations.

The graph structure can be translated, but it can

not be rotated. As shown in Figure 3, it is essen-

tial to introduce a control of the rotations, since

the absence of rotations completely distorts the

motion. We suggest that a rotation induced by

control points directly impacts groups of points

within the skeletons. We therefore propose to in-

troduce a new rotation term Tk, which is applied

to δi. Index k corresponds to the kth posture of

the animated sequence:

El(V , G) =
n
∑

i=1

‖Tkδi − L(vi)‖
2. (4)

Rotations are induced by control points that

are directly applied on various skeletons of the

graph. In order to calculate Tk, we use a lin-

ear spherical interpolation (with quaternion) be-

tween skeletons.

Figure 3: Example of graph editing on a walking mo-

tion with rotations (right), and without (left).

In green the animation of the resulting skele-

ton, in grey the graph, and in blue and red the

control points.

4.3 Bone lengths preserving constraints

The vector V ′ which minimizes E does not pre-

serve distances between vertices of the graph.

However, many distances between adjacent

joints of skeletons are invariant over time and

should be preserved through the edition of G.



The following energy term is therefore added:

Eb(V , G) =
∑

e(a,b)∈ES

(‖va−vb‖
2−d2ab)

2, (5)

with dab the desired distance of the bone be-

tween the vertices a and b.

Finally, we can rewrite equation 3 with the

new added set of constraints:

E = wlEl + wuEp + wdEb. (6)

where wl , wu and wd are respectively the asso-

ciated weights at Laplacian, positional and dis-

tance constraints. The choice of these weights is

discussed in the experiments Section. Yet, it is

noticeable that the last distance constraints adds

severe non-linearities to the energy function E,

which renders its minimization dependent to lo-

cal minima, and eventually hard to achieve. We

propose in the next Section an original and effi-

cient way to solve this problem.

5 An efficient algorithm to

minimize E

Most of the studies that associate the Lapla-

cian properties with distance constraints [1, 10],

combine in an iterative and unique system lin-

ear and non-linear constraints. Here we present

an annealing-based alternation algorithm which

decouples the resolution of the linear and non-

linear part of E.

Relaxing the distance constraints We first

relax the constraint distance by expressing

Equation( 5) with an equivalent linear problem.

This problem considers the differential vector

between vertex a and b γab = −γba = va −
vb. Indeed, let us note that its norm ‖γab‖ =
‖γba‖ = dab. From ES the set of adjacent

edges of G with fixed lengths, we define the con-

straints of invariant distances associated to these

edges by the quadratic function Ed:

Ed(V
′,Γ) =

∑

e(i,j)∈ES

‖γij −Dij(V
′)‖2, (7)

where Dij(V
′) = vi − vj , and Γ is a vector

stacking all possible values of γij . Minimizing

this energy function amounts to match in terms

of norm and alignment the vectors vi − vj and

γij . It is equivalent to solving the following lin-

ear system in the least square sense:

DV ′ = Γ (8)

where D is a matrix of size card(ES)×n which

role is to compute all the differential coordinates

of each segment ∈ ES . We see now how to de-

termine the differential vector Γ which will be

the target of our minimization.

Determining Γ Γ is in fact the solution of the

minimization of the equation considered alone,

but which initialization is provided by a first

guess solution of the problem without consid-

ering the distance constraint. The solution is

obtained through a gradient descent approach

which simply tries to modify V to fit the dis-

tance constraints.

Putting all together The energy function E

is now:

E = wlEl + wuEp + wdEd. (9)

The last term Ed is now linear but depends on

the Γ term which has to be found. After build-

ing the 3D+t graph of the motion, one can oper-

ate the minimization of El+Ef efficiently. This

first solution gives a good estimate for the reso-

lution of Γ, thanks to a simple gradient descent

conducted on Eb(V , G) (equation 5). We then

solve for the entire system





L

wuU

wdD



V ′ =





∆R

wuu

wdΓ



 (10)

for which we can not assure that the bone length

constraints will be preserved, but thanks to the

term Ed(V
′,Γ) will not be orthogonal to the

previous solution. We can now solve again for a

new Γ, and for a new solution, until convergence

(no significant changes in the solution V ′). The

addition of constraints implies that our linear

system is over-determined, so there is no exact

solution. These are the weights wu and wd de-

fined by the user which allow us to give more or

less importance to the constraints. In our case,

distance constraints are more important than the

others so to guarantee it we use wd > wu. The



system is full rank and therefore has a unique

solution in the least squares sense. The solution

vector is calculated through a Cholesky factor-

ization. In addition, the matrix of the first mem-

ber of the Equation (10) being strongly sparse,

efficient sparse Cholesky matrix decomposition

can be readily used for optimized performances.

In practice, only a few iterations of this loop is

required to solve for the system. The algorithm

is given in the following synopsis:

Algorithm 1: MOTION EDITING PRO-

CESS

Data: V : Vector of vertices of original motion

V
′: Vector of new position after editing

U : A set of position constraints

G: the original motion graph

1 V
′ = argmin

V
El(V ) + Ep(V )

2 //Laplacian and positionnal constraints;

3 while not convergence do

4 form Γ̂ from argmin
V
Eb(V , G)

(equation 5), preconditionned withV ′;

5 V
′ = argmin

V





wlL

wuU

wdD



V =





∆R

wuu

wdΓ̂





6 Results

Our goal here is to provide a complete and flex-

ible system, easy to use, while being able to re-

spond to the issues raised by motion editing or

retargeting. Our system is interactive, and there-

fore in real time. The only time consuming pro-

cess is the pre-computing of the Cholesky sys-

tem, performed off line. In the different ex-

periments, the user can choose and edit one or

several control points of the graph, and spec-

ify distance constraints between several points

of the skeleton or environmental objects. The

code has been written in C++ and our applica-

tion has been tested on a computer with 2.7 Ghz

for 3GB of RAM.

6.1 Motion editing

The first application tackles the general prob-

lem of motion editing. From the specification of

fixed points of the graph and other moving con-

trol points, our Laplacian-based solver allows us

to significantly edit the movement while main-

taining spatio-temporal features. Our method is
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Fig 2 254 2910 12.48 0.15 0.031 0

Fig 3 254 2910 12.06 0.16 0.01 0

Fig 4(a) 115 1323 3.2 0.064 0.031 0

Fig 4(b) 115 1323 3.17 0.068 0.04 0

Fig 4(c) 115 1323 3.2 0.063 0.01 0

Table 1: Table of results for different motions.

adapted to any type of motion involving high

amplitude rotation, such as walking, running,

boxing, etc., and several kinds of editing such

as translations and rotations. One of our experi-

ments consists of rotating or translating a walk-

ing motion (see attached video).

In another experiment 4, we have edited a mo-

tion provided by the CMU database which con-

tains many information including body move-

ment, accelerations, decelerations and highly

dynamic movements of the feet. The objective

of this demonstration is to spatially edit the po-

sition of the right foot during contacts.

Figure 5 shows the convergence of our

method, both for the distance energy and the

global system energy, after 10 iterations of the

minimization process. This shows that the

global energy E of the system decreases, while

enforcing the bone length constraints in a few

iterations. This illustrates the success of our al-

ternating minimization scheme.

Our editing method is then compared to an-

other method based on conditional stochastic

simulation proposed by [8] for similar goals.

Visually our system meets our objectives: the

right foot is able to reach the targets while the

rest of the animation is preserved. The extracted

curve illustrated in Figure 4 shows that the ac-

celeration (revealing the dynamics of the move-

ment) is properly respected. The curve of the

retargeted sequence has indeed the same charac-

teristics than the one of the ground truth motion

and the reference motion. We can also observe

that our method keeps the contact of the left foot

with the ground when compared to other meth-



Figure 4: Comparison of three cases of right feet target with reference motion and ground truth motion.

ods where there is a sliding foot effect. The re-

sulting animations can be visualized in the asso-

ciated movie.

Figure 5: Convergence of the system and distance ener-

gies for example 4.

We have compared various sequences of mo-

tion editing whose results concerning comput-

ing time or constrainst errors are presented in

table 1. Our framework presents a reasonable

display, considering the frame-rate per second,

for a graph up to 3000 vertices. As for the con-

straints, we have used the coefficient wu = 1
and wd = 2. These weights have been chosen in

order to preserve, in priority, the lengths of the

skeleton segments. We define RDE by:

RDE =

∑

e(i,j)∈ES

‖vli−vlj‖

dij

|ES |
(11)

with vli and vlj being the vertices to determine,

from the edge e(i, j) and the original length dij .

We observe that the results are satisfactory since

the error RDE after 10 iterations is null.

6.2 Motion retargeting

Our method is also appropriate for motion re-

targeting, when the goal consists in adapting an

animated motion from one character to another.

As Gleicher [3], we focus here on morphologi-

cal adaptation, the articulated figures having an

identical structure but different segment lengths.

It is easy indeed with our method to add in the

reference graph new constraints of distances ex-

tracted from another skeleton. Before launch-

ing the minimization, specific motion features

are identified as constraints that have to be main-

tained during the animation. The nature of these

constraints are naturally positions or distances.

During the minimization, the Laplacian operator

preserves the space-time properties of the mo-

tion. In this section, we demonstrate the capac-

ity of our approach to apply motion capture ex-



tracted from a same reference motion on various

mesh animations with different morphologies.

In order to test our method, we firstly build

two target skeletons manually. We then align the

two skeletons at the same scale factor and select

some vertices as position constraints, before per-

forming the minimization. This step is done to

preserve some close contacts. The results are

illustrated in Figure 6. We can observe visu-

ally that our system is robust to strong morpho-

logical differences, and this visual interpretation

is confirmed by measuring RDE (difference of

rate between the lengths of the segments). Here

also, the Laplacian operator associated with dis-

tance constraints maintains the dynamical nature

of the movement. The method is also applied

successfully to the interaction of retargeted char-

acters, as illustrated in the accompanying video.

In this experiment, some edges have been added

in the graph in order to preserve the interaction.

Moreover the applications on the mesh deforma-

tion show that the results are coherent. Finally,

this experiment shows the possibility to combine

motion editing with motion retargeting.

7 Discussion and perspectives

We have proposed a new representation of the

motion by a so-called 3D+t graph, gathering

the geometrical structure of skeletons over time.

With this new motion representation, we pre-

sented a motion editing method which is able

to preserve the essential features of the move-

ment and in particular its dynamics as well as

its spatiotemporal properties. Our method runs

at interactive frame rates and can handle a broad

range of motions, with the benefits of an easy

and intuitive control for the user. Yet, one major

drawback our system is that it only produces the

positions of the skeletons’ joints over time (and

not rotations). That being said, and as stated in

[1], it is quite possible to use inverse kinematic

to find the rotations of joints, or we can use re-

cent techniques [20, 21] to deform the mesh us-

ing only the positions.

Perspectives work will consider the preserva-

tion of dynamic properties of the motions (like

zero moment point or projection of the center of

mass) by tuning the weights of the graph. Also,

the 3D+t Laplacian, as it encodes the structural

information of the motion, seems adapted to

build low dimensional spaces for motions that

could be used efficiently in a motion retrieval

contest, or in more complicated retargeting op-

erations, involving interactions with the environ-

ment or other characters.
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