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Abstract. In wireless networks, the physical medium is the cause of
most of the errors and performance drops. Thus, an efficient predictive
estimation of wireless networks performance w.r.t. medium status by the
communication peers would be a leap ahead in the improvement of wire-
less communication. For that purpose, we designed a measurement bench
that allows us to accurately control the noise level on an unidirectional
WIFI communication link in the protected environment of an anechoic
room. This way, we generated different medium conditions and collected
several measurements for various PHY layer parameters on that link. Us-
ing the collected data we analyzed the ability to predictively estimate the
throughput performance of a noisy wireless link from measured physical
medium parameters, using SVR (Support Vector Regression). Finally,
we ranked the pertinence of the most common physical parameters for
estimating or predicting the throughput that can be expected by users
on top of the IP layer over a WIFI link.

1 Introduction

Wireless networks are of essential importance nowadays. Users are more and
more mobile, and access the Internet thanks to mobile devices as laptops, smart
phones or tablets. Even when staying at home, users want to get rid of wires.
However, the wireless medium does not provide the same capabilities as wired
networks on copper or fiber. In wireless networks, the physical medium is lim-
ited in terms of capacity, and the cause of most of the errors and performance
drops. From a user or administrator point of view, the quality of wireless com-
munication can appear as very versatile and unpredictable. This makes wireless
networks very complex to manage, and users often experience communication
quality drops that are completely unexpected.

Monitoring wireless networks is then very difficult. Monitoring such networks
at the IP layer is very inefficient (whereas it is the way it is done in wired
networks with extremely good results). Some previous work tried to include the
MAC level in the monitoring of wireless networks [1], but none integrates the full



monitoring of the network from physical to network layers. We nevertheless argue
that this is the direction to follow, and propose our preliminary study to estimate
the relations between the physical signal parameters and the performance at the
network level. Physicians are doing very strong studies on the signal level, but do
not study the impact on upper layers [2]. In this paper, it is proposed to bridge
the gap between the signal and the digital world in wireless communication
networks.
This paper then presents a double contribution:

— First, we designed and built a platform for benchmarking wireless communi-
cations. It is built in an anechoic chamber to fully control the experimental
environment, and avoid external signals to disturb the behavior of the com-
municating devices and the quality of the measurements. We used on this
platform the common digital communications devices that are widely used
(laptops, tablets, smart phones), as well as dedicated signal measurement
tools specifically designed for physicians. Anyway, because of space limit,
this paper concentrates on the study of a WIFI link.

— Second, the paper presents the analysis of the relations between the PHY
parameters of the WIFI connection, and the performance parameters on top
of the IP layer. It aims at demonstrating that, at the opposite of wired net-
works, the monitoring of wireless network has to be done at the physical level.
It is shown that using a very limited number of signal parameters (one or
two), it is possible to very accurately estimate communication performance
and quality parameters as network level throughput, delay or loss ratio. It
is even possible to predict performance drops at the scale of one second. For
this purpose, we rely on the SVR algorithms. SVR are supervised learning
algorithms that are known to have good prediction capabilities and that suc-
ceed in many domains as long as these domains can provide accurate time
series [3,4]. Some other techniques have been tested as decision trees, KNN
(k-Nearest Neighbor), etc. and exhibited the same results. Again, because
of space limit, the paper only presents the results with the most common
physical signal parameters as SNR or RSS for estimating the throughput
obtained on top of the IP layer.

Finally, section 4 concludes this paper.

2 Experimental platform and dataset

2.1 Experimental conditions and measurement equipments

The implementation of a dedicated wireless testbed is a major requirement for
our work. First of all, experimentations must be reproducible, allowing compar-
ison between different sets of measurements and algorithms. This point is not
trivial when using wireless networks as the environment factors have a hight
impact on the network performances. Secondly, part of the originality of this
work comes from the combination of measurements made at multiple network



layers, using electronics instruments and software tools. This was also a strong
requirement to be able to monitor the physical layer (the wireless transmission),
and compare it to the higher layers, from the mac layer information given by the
network cards to the end-to-end layers as transport throughput for instance. The
hardware introspection requirement have an impact on the components choice
as explained below. Thirdly, the synchronization of all of these datasets was a
sticky point, but absolutely required to ensure a good behavior of the learning
algorithms.

2.2 Reproducibility requirement

Our wireless testbed was designed inside an anechoic room. An anechoic room is a
protected RF room which simulates free space conditions. Our model of chamber
is 4,10 meters long for 2,50 meters wide. Inside, walls are covered of microwave
absorbers materials that break and scatter any wireless signal that would come
from an inside source. The chamber is then free of any multi-path propagation.
There are different types of absorbers, each of them is defined for a specific
frequency range that allows us to use the anechoic chamber for different purposes
and frequencies. The absorbers protect also the inner environment of the room
from outside perturbations. This protected context minimizes the uncontrolled
parameters of our communication.

2.3 Introspection requirement and components choice

Inside the anechoic chamber we placed two WIFI nodes. The nodes are controlled
through a wired network to avoid interference with the wireless communication.
The nodes are Avila-GW2348-4 gateway platforms and run a Linux OpenWrt
OS. The boxes have an Intel Xscale processor, 64 MB of SDRAM and 16MBytes
of Flash memory. The WIFI network controllers are based on the AR5414 chip-
set from Atheros which uses the athb5k driver and are attached to an omni-
directional antenna. The choice of the wifi chipset and its driver was crucial
because they define the amount of metrics and the accuracy that it will be
possible to obtain. The ath5k driver is open-source and well documented thanks
to an active online community support. It has also a good integration within the
OpenWrt OS. The OpenWrt OS is flexible enough to allow the implementation
of new functionalities so that it accelerates the upgrade of the bench.

In addition and because we were unable to capture the noise strength of the
received signal with the Atheros hardware, we used an oscilloscope connected
to the receiver antenna. It records the amplitude of the received signal. The
oscilloscope chosen was a fast Lecroy WaveRunner which allows us to capture a
maximum number of frame signal with little loss and record them on internal
memory. The precision of this instrument gives us the ground truth required by
the training methods used. It also embeds a large library of filters, and operators
which can be applied on the input signals. The oscilloscope is also synchronized
by NTP.
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Fig. 1. Disposition of the different equipments in the wireless testbed. The cable from
the receiver antenna is connected to a power splitter which enables the signal from the
antenna to be dispensed similarly to the WIFI sink and to the Lecroy oscilloscope with
neglictable signal alteration.

Synchronization requirement. As we used several equipments to get mea-
surements, it is needed to have their clock very accurately synchronized. This
was done with NTP by using a dedicated wired connection to a remote NTP
server (accuracy with a shared network bus is not sufficient).

Software glues. The command and control of the nodes is done using dis-
tributed software deployed on the boxes and written in RUBY. The application
allows the configuration of wireless networks settings and permits launching
commands to control the measurement process. The system is based on Remote
Method Invocation which gives access to a set of operational methods on each
boxes and then permits the network to be controlled and configured transpar-
ently from a single node in the network.

The configuration of the network interfaces is done in promiscuous mode to
capture any packets sensed by their antenna. The packets are captured at the
MAC layer using the PCAP library and tools when they arrive at the kernel
interface. The packets contain data from link to application layers, such as the
802.11 channel number, the type of frame at the MAC layer, or packet size at the
network layer. Additionally, a packet also contains a RADIOTAP header which
gives radio level information such as the received signal strength (RSS) reported
by the athbk driver.

We modified the ath5k drivers of the OpenWrt OS to permit, when possible,
the propagation of packets with frame check sequence (FCS) errors to the upper
layers, while on the original kernel they were discarded. The propagation is only
possible if the error corrupted the data but not the header fields. Following this



modification the RADIOTAP header now contains a flag specifying whether a
FCS error was detected when decoding the packet.

The Lecroy oscilloscope was set to capture and flush the data as soon as a
frame is detected on the input cable. This happens when the amplitude of the
sensed signal is above a specific threshold, set to be in between the current noise
floor and the minimal amplitude value of a frame. This threshold has to be set in
a way to prevent exceptional high noise values that could be incorrectly detected
as a frame.

2.4 Experimental protocol

Noise generation. One of the objectives of our environment is to minimize
the presence of these uncontrolled parameters on the communication. Another
objective is to generate and control selected parameters that will impact our
communications.

The noise and the interferences significantly impact the communication. In
the set-up described in figure 1, we inject noise in the environment using a signal
generator to perturb the communication. The signal generator is a device which
emits RF signals. It can be configured to generate very realistic noise. Among the
parameters of the generated noise, two important elements have a crucial impact:
on a first hand the modulation used characterizes the main characteristics of the
noise signal in the time and frequency domains (i.e. it characterizes the spectral
occupancy of the generated signal, its fading or narrowness). On a second hand,
the amplitude of the signal also affects the measured level of noise on the receiver
side.

We found that the AWGN (Adaptive White Gaussian Noise) noise modula-
tion was a good choice because it is a common model of noise. Moreover it can
be used to impact the entire bandwidth of a 802.11g channel contrary to most
other modulation schemes which produce narrow band noise. The noise level was
determined empirically by testing the effects on the communication.

Finally, a major element that affects the noise generated in the anechoic
chamber is the antenna. It characterizes the waveform, the direction and the
amplitude of the noise wave. In order to perturb only one side of the communi-
cation we used a very directional antenna pointed to the receiving station.

We use IPERF to generate traffic between the two peers. The traffic is a
TCP flow with a constant throughput of 24 Mb/s. The size of the packets is set
to 1470 bytes.

Training and datasets. We generated different samples with different noise
levels and different transmission powers. All the samples have the same duration
of 5 minutes and will be used to constitute our training datasets. Table 1 sums
up the characteristics of the different samples. The same experimental settings
(transmission power and noise) are used for training and testing. Therefore a
training dataset which contains all these samples will be considered as having
full knowledge about the possible use cases met in the test dataset. Hence, to



test the generalization capacity of our algorithm, we built three different training
datasets as described in table 1. These datasets differ by the quantities of samples
they are made of, and consequently by the level of knowledge they represent.

Table 1. Constitutions and characteristics of our training sets. Each vector represents
1 second of measurements

Training set|Dataset definition
notation  |{Tx Power (dBm); Noise Power (dBm)}; {sample 2};...
Datasetl |{10;-20};{10;-17};{10;-15};{10;-13};{10;-10};{10;-7};{10;-5};
5323 vectors [{20;-20};{20;-17};{20;-15};{20;-13};{20;-10};{20;-7};{20;-5}
Dataset2 |{10;-20};{10;-17};{10;-15};{10;-13};{20;-20};{20;-17};{20;-15};{20;-13}
2661 vectors
Dataset3 |{10;-20};{10;-17};{10;-15};{10;-7};{10;-5};{20;-20};
1330 vectors

2.5 SVM features definitions

Atheros Received Throughput. This is the performance metric of the com-
munication that we are considering in this paper. It is computed from the
PCAP captured at the receiver side of the transmission. It is defined by BW; =

k
3> L(PF) with k € N. BW; is the computed throughput at second i, L(PF) is
k=1

the length of the payload at the network layer for the k" packet without FCS
error captured during second 1.

Atheros RSS. The Atheros RSS is extracted from the RSS field in the RADIO-
TAP headers of the packets included in the PCAP files. Given that RSS(P?)
is the RSS of the k" packets without FCS error captured during second 4, and
R; is the set of packets captured during second 1, it is defined as ATH_RSS; =
R; with R; = {RSS(PZ»O),RSS(P})), ...,RSS(PZ“))}.

Lecroy RSS, SNR and noise. In addition to the Atheros values, we extract
different metrics from the Lecroy datasets. These values are computed from the
Root Mean Square (RMS) values of the raw data. These RMS values can be split
into three parts, which are the data that are before, during and after the frame.
The part of the data before and after the frame are the noise values and therefore
can be used to extract the noise floor during the reception of that frame. We
consider A and C, the sets of these points. Therefore we compute the average
noise floor of the data during the reception of frame P with Np = AU C.




With M; the set of noise levels extracted from the frames captured by the
Lecroy oscilloscope during second i, we compute the feature for the noise floor at

second i LECR_NOISE; as LECR_NOISE; = M; with M; = {NPZ_O, Npi, o Np,c} .
The RSS of the received frame is computed on the first 8 symbols to comply

with 802.11 standard. These points constitute the set D. Thus, similarly to pre-
vious equations, the RSS for a frame P is given by Rp = D and LECR_RSS; =

{RPPa Rpy, ..., RP_k}, where LECR_RSS; is the feature of the Lecroy RSS at

second 1i.
Finally we compute the SNR Sp for frame P as the difference between the
noise floor and the RSS of the frame P and therefore, similarly to previous for-

mulas: Sp = Rp— Np and LECR_SNR; = W, with W; = {Spio, Spisn SP,C} .

3 Estimation of the relations between physical and
performance parameters in WIFI communications

3.1 SVR based methodology

The 2" contribution of this paper is the analysis of the relations linking the
PHY layer parameters and the upper layers performance.

To that aim, we used the SVR algorithm which is commonly used in many
patter recognition applications. It has been successfully applied before in various
fields as a predictive method (see [5] and references therein). As noticed in the
introduction, the choice of SVR can be seen as secondary and it could be replaced
by any other machine learning algorithm like decision trees or KNN that perform
similarly.

In a nutshell, SVR is a supervised learning algorithm able to find relationships
in non-linear data. For that, SVR uses a trick which consists in mapping the input
data into a higher dimensional feature space where linear relationship exist. It
is made possible by using a non-linear function called a kernel. In our case, the
selected kernel is a Gaussian Radial Basis Function (RBF). An important detail
about the operational usage of SVR is that, in our configuration, three SVR
parameters are required (C, v and €). They will impact the performance of the
estimations as well as the generalization capability. Moreover, these settings will
differ for each dataset, and therefore need to be carefully selected in each case.
For our estimations, we used a grid search to select these SVM parameters. It
is a common method which consists in an exhaustive test run of SVR training
using generated settings combinations. We then select the best combination of
C, v and € among the results.

To evaluate the estimations, two methods are used. First, we use the MSE.
Given that Y, are estimations and Y; are the real values, the MSE is defined as
MSE=+Y", (Y;—Y;)%. Secondly we use the percentage of correct estimations
noted P(e < 1Mb). In this notation e represents the absolute error between the
real value and the estimation. An estimation is judged correct if it differs from
the real throughput value by less than 1Mbps.



3.2 Estimation results

Tables 2(a), 2(b), and 2(c) contain the results of the throughput estimation based
on 6 different PHY or combinations of PHY parameters for respectively Dataset]1,
Dataset2, and Dataset3. The first column quotes the PHY parameters that have
been used for the SVR estimation of the IP throughput. Columns 2 and 3 show
the figures obtained respectively for the MSE and the probability P(e < 1Mb).
The two last columns give the ranking for the PHY parameters according to
their ability to allow good estimations of the throughput. 1 corresponds to the
best result among the 6 PHY parameters considered.

For Datasetl, i.e. the full one, the best result is obtained LECR_RSS +
LECR_NOISE. Estimations are plotted on figure 2. This figure exhibits im-
pressive matching between the real and estimated values of the throughput,
with just very few outliers appearing (75% matchings). We got as impressive
results for Dataset2, and Dataset3, but this time, the best results have been
obtained with the LECR_SNR parameter (60% matchings). The difference of
the results when using a full trace for the training compared to a sampled one
exhibits the non empty intersection between PHY parameters as SNR, RSS and
NOISE. These 3 parameters are closely related.

It nevertheless clearly appear with these figures that SNR, RSS and NOISE
can help to perfectly estimate and predict (on a one second scale) the perfor-
mance of the network at layers 3 and 4. Nevertheless, a deeper analysis on larger
datasets that still need to be produced would allow a more accurate characteri-
zation of the link between PHY parameters and network performance. Actually,
it appears that while the combined features metrics performance decrease, the
overall performance of the RSS metrics 1 and 2 increases or stays more or less
the same. This seems to suggest that the full training set was not adapted to
these metrics. The difference between the full and the reduced sets is that the
samples obtained with high noise are not present in the reduced datasets. This
could be caused by incoherent values existing in Datasetl because of the bad
and noisy conditions. One possibility is that these values could deteriorate the
model issued from the training process. This aspect needs to be considered for
improving our platform and experiment protocol.

4 Conclusions and future work

The main contribution presented in this paper deals with the design of a generic
platform for monitoring and analyzing wireless networks. This wireless testbed is
set in the RF protected environment of an anechoic room, allowing us to control
the perturbation on the physical medium by generating noise. It also has the
originality to integrate pure physical signal measurement tools as Lecroy oscil-
loscopes for very accurate measurements serving as ground truth. Based on the
collected data, the second contribution of the paper deals with exhibiting the
importance of PHY parameters on network communication performance. The
correlation between the physical environment and the communication perfor-
mance is so strong that it is possible by only monitoring the SNR and the RSS



Table 2. Scores and pertinence of the estimations using physical layer metrics.

(a) Results with Datasetl as training set.

Physical layer parameter(s) MSE P(e < 1Mbps) | Pertinence ranking
n° (Mbps?)|(% of estimations)| MSE|P(e < 1Mbps)
1|ATH_RSS 11.24 35 6 6
2|LECR_RSS 4.42 51 5 5
3|LECR.NOISE 2.28 69 4 3
4|LECR.SNR 1.69 64 3 4
5|ATH_RSS + LECR_NOISE 1.02 70 2 2
6 |LECR.RSS+ LECR_-NOISE| 0.88 75 1 1

(b) Results with Dataset2 as training set.

Physical layer parameter(s) MSE P(e < 1Mbps) | Pertinence ranking
n° (Mbps?)|(% of estimations)|MSE|P(e < 1Mbps)
1|ATH_RSS 11 33 6 6
2 |LECR_RSS 3.9 59 4 2
3|LECR.-NOISE 5.4 55 5 4
4|LECR.SNR 1.6 66 1 1
5|ATH_RSS + LECR_NOISE 2.3 49 3 5
6 |LECR.RSS+ LECR_NOISE| 2.0 57 2 3

(c) Results with Dataset3 as training set.

Physical layer parameter(s) MSE P(e < 1Mbps) | Pertinence ranking
n° (Mbps?)|(% of estimations)| MSE|P(e < 1Mbps)
1|ATH_RSS 10.17 34 6 5
2|LECR_RSS 4.5 32 4 6
3|LECR.NOISE 5.8 44 5 3
4|LECR.SNR 1.6 62 1 1
5|ATH_RSS+ LECR_-NOISE 3.3 41 3 4
6 |LECR_.RSS + LECR_NOISE| 2.53 49 2 2
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Fig.2. Throughput estimation results obtained with the LECR_-RSS +
LECR_NOISE metric compared to the real throughput.

of the signal to predict the performance level at the TCP/IP level. This result
has been demonstrated using different kinds of models, in particular the SVR
model.

Future work includes a large exploitation of our platform. We planned to
generate large datasets for different kinds of wireless networks, including WIFT,
UMTS, LTE, etc. and to open it to our research community, which is lacking such
kinds of public datasets (to the best of our knowledge). We will also exploit this
datasets by deeply analyzing them, understand how wireless networks behave,
and then trying to improve the way we use and manage them.
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