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Abstract — Electrical impedance measurements provide useful information about the characteristics of 

a Li-ion battery. The classical method of measurement consists in performing an impedance spectroscopy 

relying on offline records of the response of the battery to a controlled current or voltage test signal. This 

method is robust but presents an important drawback: it is very time consuming, especially for low 

frequency measurements. In order to overcome this problem and to address embedded applications, we 

propose to apply broadband excitation signals to perform such impedance measurements. Spectral 

coherence is an advanced parameter estimated in order to define the frequency bands where the transfer 

function of a system is accurately identified. The calculation of this parameter can also assess the 

normalized random errors on both magnitude and phase of the identified impedance since they are 

related by an explicit mathematical expression. After a brief review of some signal processing tools for 

identification with broadband excitation signals, we apply this method to identify the impedance of a Li-

ion battery and compare performances of various identification patterns on noisy simulated and 

experimental data.    

Keywords— battery impedance, spectroscopy, broadband signals, Li-ion battery, spectral coherence, 

confidence limits, identification. 

I. INTRODUCTION 

Thanks to its higher power and energy densities, its long cycle life, low cost of raw 

materials and superior safety characteristics [1][2], Li-ion battery technology is considered the 

most attractive for EV and HEV applications, and especially since batteries are their essential 

component. For reliable operation in these applications, predicting battery performance and 

service life is thus a significant value to manufacturers as to consumers. Therefore, a Battery 

Management System (BMS) is always present [3] to measure main battery characteristics like 

its power fade, and accurately estimate its state of charge (SOC) and state of health (SOH).  

Modeling is an essential tool to understand and predict battery behavior. It leads to develop 

theoretical and practical tools to characterize batteries submitted to different complex 

electrochemical phenomena. In the literature, various battery models varying from very 



detailed electrochemical to high-level stochastic ones have been developed and studied within 

the framework of a battery state estimator. 

Electrochemical models consist of several coupled, non-linear differential equations 

traducing chemical processes that take place in batteries. [4][5][6] developed an 

electrochemical model for Li-ion cells. This highly detailed description makes these models 

the most accurate battery models but at the same time, this approach is complex and difficult 

to use. Indeed, it requires measurement of many battery internal parameters such as diffusion 

coefficients, concentration of species in electrolyte, electrode geometry and porosity, transfer 

coefficient, reaction constant, ... Furthermore, the corresponding measurement experiments 

can be destructive to the cell. 

In analytical models, major properties of batteries are modeled using only few equations. 

Explicit equations are established to compute battery states. However, such equations are not 

easy to solve. Peukert’s law [7] is an example of such models: it captures the non-linear 

relationship between battery lifetime and its rate of discharge, but without modeling recovery 

effect. 

Stochastic models have also been used for battery applications. Between 1999 and 2001, 

Chiasserini and Rao published a series of papers on battery modeling based on discrete-time 

Markov chains [8][9][10][11]. However, this model is very limited. It focuses only on a 

specific phenomenon (the recovery effect) and is designed for a specific current profile 

(pulsed discharge current). 

Recently, models based on equivalent electrical circuits became more and more involved in 

battery applications. It consists of modeling batteries behavior through electrical components. 

Various physical and chemical processes occurring in a battery are represented by means of 

passive (resistors, capacitors, inductors) and active (electromotive forces, current sources) 

electrical elements. Depending on the complexity of the model, this approach describes 

physical phenomena in batteries but also their overall behavior, and finally highlights the 

notion of battery electrical impedance. Several studies [12][13][14][15] point out the 

usefulness of this former quantity as a technique to enhance battery states estimation. 

Current embedded methods only estimate the internal resistance of batteries by computing 

for example the ratio between battery voltage and current during a specific current step 

[3][16]. In [17], values of equivalent electrical circuit parameters were extracted using 

impedance measurements made at only three discrete frequencies (2 Hz, 25.18 Hz and 158.9 



Hz) based on a mathematical equation system. G. Plett [18] [19] [20] proposed several 

equivalent electrical circuits more or less complex regarding the precision level required. The 

principle is to track electrical circuit parameters with different filters depending on the degree 

of non-linearity of the model to follow. [21] [22] also deals with the use of an extended 

Kalman filter (EKF) for the observation of parameters of a Li-ion battery lumped model. 

Nonetheless, the existing EKF algorithm does not account for variations in battery parameters 

due to electrochemical characteristics modifications caused by aging effect. Therefore, [23] 

combined the EKF with the per unit system principle to accurately identify battery model 

parameters and so enhance the SOC and SOH estimation. 

Such estimations are strongly limited because they do not represent the wealth of 

information inherently present in complex and broadband battery electrical impedances. That 

is the main reason why electrochemical impedance spectroscopy (EIS) is frequently used to 

better investigate battery states. Its general concept consists in the application of an electrical 

stimulus to the working electrode, and the monitoring of its corresponding response. Many 

EIS experiments are performed by a stepwise change of frequency in an applied sinusoidal 

current, measuring the corresponding sinusoidal voltage and calculating at each frequency the 

electrochemical impedance (galvanostatic operating mode) [24][25][26]. 

Concerning the methods mentioned above, each one has its own drawbacks in terms of 

accuracy, computational complexity, computation time, or compatibility with embedded 

systems. 

The aim of this work is to search for a new technique for measuring battery electrical 

impedances, that can be easily implemented on BMS for HEV and EV and tends to reduce 

measurement time. In this paper, we propose to apply broadband excitations. The concept is 

to measure the system response at multiple frequencies at the same time. Since the 

measurement time to get a specified accuracy depends on the measurement signal-to-noise 

ratio (SNR), it is important to select excitations with a high SNR on a wide frequency band. 

To the author’s knowledge, broadband excitation approaches were applied to measure 

electrochemical impedances in a rather limited number of investigations [27][28][29]. Indeed, 

advantages of such methods over the conventional single sine excitation methods are not so 

obvious in the EV community. However, if implemented following a recursive form, they not 

only allow the reduction of necessary computation time, but also the tracking of battery 

impedance variations without the need of carrying a new whole measurement. More 

particularly, [30] explains that the use of broadband signals satisfying specific conditions of 



energy transmission in the band of interest can reduce the measurement time, especially in the 

case of good signal to noise ratio. Undoubtedly, this consideration alone is of significant 

importance in the context of embedded BMS. 

This paper focuses on the test and comparison of broadband excitation signals concerning 

their performance for battery electrical impedance estimation. Section II recaps non-

parametric broadband identification basics for linear and time-invariant systems. The 

corresponding frequency algorithms are also presented, and their estimation performance is 

evaluated thanks to advanced spectral quantities such as the spectral coherence. Next, these 

algorithms are applied to simulated data in section III, where the results obtained with 

different broadband excitation signals are also compared to each other. Finally, section IV 

gives experimental results that validate the relevance of this approach. 

II. NON PARAMETRIC IDENTIFICATION METHOD 

A. LTI Systems 

A single input single output (SI/SO) system  is represented in Figure 1, where  and 

 are discrete signals verifying Shannon's sampling theorem. 

 

Figure 1. A single input single output system. 

If  is linear and time invariant (LTI), it is completely characterized by its impulse 

response  or its frequency response function , which are related by a Fourier 

transform: 

. (1) 

In this equation,  and  is the normalized frequency, leading to the 

frequency  in Hertz when multiplied by the sampling frequency. 

Indeed, for periodic deterministic and stationary random signals, input-output relationships 

in the time and frequency domains are: 



, (2) 

, (3) 

where  is the power spectral density (PSD) of  and  is the cross power 

spectral density (CPSD) between  and . Eq. (3) gives the frequency domain input-

output relationship for a LTI system, and is the foundation of non-parametric identification of 

such systems in the frequency domain. 

B. Non-parametric identification principle 

The goal of frequency domain non-parametric identification of LTI systems is to estimate 

the frequency response function  from input and output measurements without the use of 

any model. 

 

Figure 3. Non-parametric identification of a LTI system  in the frequency domain. 

The general principle of this method is illustrated in Figure 3. A known input signal  is 

applied to the unknown system , and a noisy version  of the corresponding output 

 is measured at the same time. The unknown additive measurement noise  is 

supposed uncorrelated with  and therefore with . Thanks to this last assumption, 

Eq. (3) then becomes: 

. (4) 

Therefore, on the frequency bands where the input PSD , the unknown frequency 

response function  can be calculated through: 



 if . (5) 

This finally leads to the frequency domain identification of the unknown system . Eq. (5) 

clearly shows that it is advantageous to use broadband input signals  since they allow the 

computation of  on a wide frequency band as a whole. 

An essential quantity in such a method is the spectral coherence between measured signals 

 and  [31][32]: 

. (6) 

This statistical quantity is bounded by 0 and 1, and measures the linear dependency or 

correlation between  and  at each frequency  [31][32]. Moreover, it also can be 

interpreted as a LTI system detector between  and  [33]. In case of Figure 3,  

becomes: 

, (7) 

where  is the output signal to noise ratio quantifying the additive noise  

relative to . Eq. (6) and (7) can be interpreted as follows: 

! when ,  and  are strongly correlated and  at . In that 

case,  is negligible compared to  and the LTI model for the unknown system  

is totally justified around this frequency; 

! when ,  and  are uncorrelated and  at . This corresponds 

to an important measurement noise  dominating the system output . In that case, 

the LTI model of  cannot be justified as easily around this frequency. 

Another interesting property of the spectral coherence is that it is closely related to estimation 

errors obtained when identifying . This is used in the following to compute confidence 

limits for different spectral estimators. 



C. Non-parametric identification algorithm 

Eq. (5) and (6) show that PSD and CPSD are necessary to compute the desired frequency 

response function and spectral coherence. Such quantities can easily be estimated through the 

well-known Welch modified periodogram [32]. Measured signals are first split-up into  data 

segments of length . All these segments are then windowed by a window function  of 

length , and the Fourier transform of each windowed segment is computed by the use of the 

discrete Fourier transform and fast Fourier transform algorithm. Finally, products of these 

Fourier transforms are averaged in order to estimate the desired spectral quantities. As an 

example, the corresponding estimator of the CPSD between  and  is given by: 

, (8) 

where: 

!  is a normalization factor, 

!  (resp. ) is the Fourier transform of the k
th

 windowed segment of  (resp. 

), 

! 
*
 denotes the complex conjugate. 

Similarly, the estimator of the PSD of   is obtained by replacing  by  

in Eq. (8). 

Simple estimators can now be obtained to estimate the spectral coherence  and the 

frequency response function  by using Eq. (8) in Eq. (5) and (6): 

, (9) 

  if  . (10) 

The last relation also allows estimation of the gain  and phase 

 of the frequency response function . Moreover, it has been shown in 

[32], [34] and [35] that under general conditions, the variance of these two estimates is 

directly related to the spectral coherence by the following expressions: 



. (11) 

This interesting result shows two important things. First, estimation errors of the frequency 

response function are inversely proportional to the number of data segments  used in the 

Welch estimator of Eq. (8). Second, estimation errors are closely related to the spectral 

coherence and more precisely, the higher the spectral coherence, the smaller the estimation 

errors. Eq. (11) has been used in [34] to compute upper and lower 95% confidence limits for 

the gain and phase estimates  and  by replacing the true spectral coherence  

by its estimated value : 

 (12) 

 (13) 

 Finally, Eq. (8) and (10) constitute the "identification algorithm" appearing in Figure 3 

and used to estimate the frequency response function  of an unknown LTI system 

through its input  and noisy output . Eq. (9), (12) and (13) are used to evaluate the 

algorithm performance by computing 95% confidence limits of the previous estimators. 

In what follows, batteries are modeled as electrical LTI systems whose input is their 

current and whose output is their voltage. This choice is based on practical considerations, 

since control of current and measurement of voltage stages of a battery are already present in 

currently developed BMS The corresponding frequency response function is then the 

electrical impedance of the battery, and this quantity is estimated thanks to the previous set of 

equations. 

III. BROADBAND IDENTIFICATION OF ELECTRICAL IMPEDANCE FOR LI-ION 

BATTERIES 

A. Battery modeling 

In this study, modeling a battery aims to reproduce its electrical behavior through an 

equivalent electrical circuit (EEC) [36]. These models, the so-called gray box models, 



reproduce the dynamic behavior of batteries basing oneself on an analogy between 

physicochemical phenomena and common electrical or nonelectrical elements. For electrical 

engineers, such a model is common to characterize electrochemical phenomena, and leads to 

perform a quick analysis and prediction of the battery behavior in frequency as in time 

domains [37]. 

Many electrochemical studies focus on fine association between impedance spectrum parts 

and fundamentals physicochemical processes. Some authors [38][39][40][41] consider that 

the anode effects appear in high frequencies more than in low ones, while the cathode reacts 

more in low frequencies. Randles [42] proposed an electrical equivalent circuit based on 

physicochemical processes. It includes the modeling of connectors and electrolyte (R,L), 

charge transfer (Rtc) and double layer (Cdl) phenomena [43]. The open circuit voltage (OCV) 

depends on current intensity and battery SOC, and can be tabulated thanks to a look-up table. 

Finally, the diffusion phenomenon is modeled by Warburg impedances [43]. Usually, 

constant phase elements (CPE) are introduced to accurately reflect the behavior of the battery 

observed through impedance spectroscopy measurements [44][45]. For Li-ion batteries, an 

additional electrochemical process is observed: the passivation film [46][47]. [48][49][50][51] 

suggest to model this latter process by a Rf // CPEf cell. Buller [48] and Moss [51] consider 

that the first semi circle associated to passivation film does not depend on the current intensity 

and slightly varies with the SOC. Based on those ascertainments, K. Dong [37] proposed to 

use an adapted Randles circuit (Figure 4) that we adopt in our study. In his work, he 

demonstrates an excellent fitting between measured impedance spectra of a graphite/LiFePO4 

battery and this model under specific operating conditions, like limited temperature range and 

frequency band allowing disregard of voltage-contribution associated to diffusion processes.  

Finally, a non-linear optimization method is used to estimate the value of each EEC 

parameter from the measured electrical impedance. In [52], we address uniqueness issue of 

this inverse problem and propose an efficient two steps optimization approach to improve 

convergence rate and accuracy. A statistical study was performed and has revealed that this 

new algorithm presents a very good convergence rate, and leads to unbiased estimates of 

model parameters. Experimental data has also been used to validate this new approach. The 

corresponding EEC parameters obtained thanks to this algorithm for a SOC of 60% and a 

polarization discharge current of 1A are given in Erreur ! Source du renvoi introuvable.. 

  



 

Figure 4. Equivalent electrical circuit (adapted Randles model) of a graphite/LiFePO4 battery. 

R  (Ohm) 0.0128 

L  (H) 4x10-8 

Rf (Ohm) 0.0047 

CPEf: (Tf,Pf) (5.7, 0.5) 

Rtc (Ohm) 0.0244 

CPEdl: (Tdl, Pdl)  (740, 0.65) 

Table 1: EEC parameters numeric values for a SOC of 60% and a polarization discharge current of 1 A. 

B. Spectroscopy 

Electrochemical spectroscopy [48] commonly used in laboratory consists of exciting the 

battery with a small sinusoidal current  of frequency , , superimposed to 

a DC current, and measuring its voltage response  [53]. Therefore, the 

voltage/current ratio in the frequency domain is expressed as a complex impedance: 

 
(14) 

Though robustness and precision of the results, electrochemical spectroscopy is not suitable 

for EV and HEV applications due to several reasons. Firstly, an expensive complex electronic 

is needed to generate sine waves. Secondly, a large frequency band scan with fine frequency 

resolution takes a long time to be completed, especially when systems with large time 

constants are studied since it is necessary to wait until transients disappeared after each 

frequency step. Finally, for embedded system (particularly for EV and HEV applications in 

this work) where the battery impedance evolves and the BMS should track the impedance 

evolutions: the use of the EIS technique impose a new whole measurement to get an online 

estimation. An alternative solution based on broadband identification techniques presented in 

section II is proposed in what follows.  



C. Broadband excitation signals 

The selection of optimal excitation signals is an important step in the design of the 

embedded system. Section II. has shown that in order to estimate the whole electrical 

impedance at once, they should be able to excite the system with an almost flat power 

spectrum in the frequency band of interest. This is the main reason why sine waves should be 

avoided for this application. In this section, broadband signals are introduced as identification 

patterns that can be used to overcome the spectroscopy drawbacks noticed above. We 

consider five broadband signals frequently used in system identification applications: white 

noise, pseudo random binary sequences (PRBS), swept sine, swept square and a square wave 

[30]. The fifth signal is not on itself a broadband signal but can be considered so if its 

harmonics are in the frequency band of interest. Such signals allow the estimation of the 

frequency response function of LTI systems, in particular battery impedances, over a large 

bandwidth from a single set of measures. Thus operating conditions with broadband signals to 

assume that the battery follow LTI hypotheses are less tough that those imposed by EIS. 

1) Random white noise 

A white noise presents a flat power spectrum over all frequencies. Moreover, we filter it in 

order to inject power only in the frequency band of interest [30]. 

2) Pseudo random binary sequence 

PRBS is a deterministic periodic sequence of length N that switches between two levels +A 

and –A. Using  registers, a sequence of length  can be generated. And by 

choosing the time for a bit , the highest frequency that will be excited is  while the 

lowest one is . PRBS presents an almost flat power spectrum over the frequency band 

 [30].  

3) Swept sine 

Also called periodic chirp, it is a sine whose frequency is swept up and/or down from one 

period to another. A logarithmic variation of frequency (from  to ) with respect to time 

is chosen. An almost flat spectrum is also provided over the frequency band   [30]. 



4) Swept square 

Similarly to the swept sine, this is a square with a logarithmic sweep of its fundamental 

frequency in the band . 

5) Square 

Though a square is not precisely a broadband signal, by a correct choice of its fundamental 

frequency, one can use the frequencies that correspond to its odd harmonics to excite several 

discrete frequencies in the band of interest. 

In order to get a better understanding of the nature of the former signals, we compare each 

other using their PSD, estimated through Eq. (8). As an example, we focus on the frequency 

band from 136 Hz to 819 Hz. All the signals have a total time duration of approximately 

160 seconds, and the sampling frequency  is 8190 Hz. These signals are split-up into 

L=2059 disjoint segments of length N=630 samples. Consequently, each segment has a time 

duration of =0.0769 seconds, which results in a frequency resolution of =13 Hz. 

This former quantity should be chosen so that it is possible to distinguish two consecutive 

harmonics of the square wave. Moreover, Eq. (11) indicates that the number of data segments 

L should be chosen as large as possible in order to minimize the estimation error of the 

electrical impedance. The five resulting PSDs are shown in Figure 6. Under assumption of 

constant power for the excitation signals, we note that the spectral information is different 

concerning levels and frequency bandwidths. 

 

Figure 6. PSD of the five excitation signals. 

D. Simulink simulator 

The analytical expression of the impedance can be computed from the EEC of Figure 4 and is 

taken as the theoretical value to estimate. This quantity is a function of the SOC and the 



intensity of the DC current. The implementation in Simulink of this model simulates the 

behavior of a graphite/LiFePO4 battery supplied with a given input current composed, in our 

case, of a DC current added with one of the broadband signals previously described.  

In the context of the non-parametric identification method presented in section II., the 

system must be LTI during the whole measurement time. Therefore, this condition should also 

be respected during simulations. It forces to limit the time duration of the excitation signals so 

that according to the DC current level, there is only a little variation of the battery state of 

charge. Consequently, we chose a time duration that does not load or unload the battery from 

over 2% (value usually considered for EIS). This time constraint has two consequences on the 

proposed method: firstly it is difficult to excite the battery with very low frequencies under 

high DC currents since in that case, the whole measurement time has to be very short; 

secondly, it limits the number L of data segments and can increase eventual estimation errors. 

The simulations are undertaken under the same operating conditions of SOC (60%) and DC 

current (1A), and the same values as those given in section III.C are chosen (L=2059, N=630, 

=8190Hz, T=0.0769s). To simulate an additive measurement noise, a white Gaussian noise 

with zero mean and several levels of variance is added on the output voltage signal. Spectral 

coherences and electrical impedances are then estimated from this noisy voltage and the 

excitation signals through Eq. (9) and (10). Estimated electrical impedances are finally 

compared to the theoretical impedance value in order to evaluate the quality of the 

identification process. 

E. Coherence results 

We first consider a reasonable measurement noise of SNR=0 dB in the next two sections. 

Figure 8 shows the coherences estimated with the five excitation signals previously defined, 

and it can be clearly noticed that the results are different even though excitation signals are 

designed to excite the same frequency band.  



 

Figure 8. Coherence plots for the five excitation signals with a measurement SNR=0 dB. 

Though the white noise preserves a high coherence value over the excited frequency band, 

it is difficult to generate with a simple electronic and thus cannot be used in our application. 

The PRBS is able to excite frequencies lower than the low-limit of the selected band , and 

injects less power in the frequencies near the upper limit . This could be useful when the 

aim of the measurement is to estimate the electrical impedance around the lowest frequencies 

of the selected band. Although other signals can be designed to excite low frequencies, by the 

use of a PRBS, a better estimate is obtained near  with the same time duration. Swept 

square and swept sine roughly present the same behavior upon the frequency band of interest. 

For these two excitation signals, the coherence slightly decreases with the frequency, but they 

still inject more power than the PRBS in the frequencies close to . It can also be noted 

that due to its harmonics, swept square weakly excites frequencies beyond the selected band. 

This could be useful to find information localized at high frequency. As expected, the 

coherence obtained with the square wave is only significant at its fundamental frequency and 

its odd harmonics. 

To touch upon some applications where these signals are useful, one can remind that 

literature assumes that SOC is estimated using information contained in lower frequencies, 

while the SOH is tied to higher frequencies. Hence, PRBS could be suitable for SOC 

estimation while swept square is more dedicated to SOH estimation. Besides, another 

approach can be proposed: to identify impedance only on several discrete frequencies and to 

fit a model to build the whole frequency response. This approach can be addressed with a 

square signal, providing that the fundamental frequency and its first harmonics tie to the 

selected frequencies of interest. 

F. Confidence limits results 



Confidence limits upon gain and phase factors quantify the estimation performance reached 

by this identification method and can be easily computed by using Eq. (12) and (13). In this 

section, the results concerning the gain factor are given as an illustrative example, and they 

are exclusively represented in the selected frequency band. Results concerning the phase 

factor are very similar. 

 

 

 

(c) 

(a) 

(b) 



 

 

Figure 10. 95% confidence limits results using: (a) PRBS, (b) white noise, (c) swept square , (d) square, (e) 

swept sine as excitation signals with a measurement SNR=0 dB. 

The different subfigures of Figure 10 show that the PRBS (Figure 10(a)) has large 

confidence limits near the upper limit of the band , which confirms the coherence results 

of Figure 8. Moreover, tight confidence limits are observed upon the whole selected 

frequency band using a white noise (Figure 10(b)), a swept square (Figure 10(c)) or a swept 

sine (Figure 10(e)). The square wave (Figure 10(d)) provides, as expected, tight confidence 

limits only around its odd harmonics frequencies. 

We infer from those results that broadband impedance can be identified with signals 

composed of square patterns (PRBS, swept squares and square waves) with as good quality as 

classical signals (white noise and swept sine). Such signals are easy to apply to a battery from 

simple electronic components, for example by using electronic switches. Therefore, we only 

consider in the next sections square waves, swept squares and PRBS. 

G. Noise effect 

The above results were presented with a simulated voltage measurement noise such that 

SNR=0 dB. In this section, we study the effect of this noise by varying the level of its 

variance. 

(d) 

(e) 



It is obvious that the measurement noise affects the coherence function: the higher the noise 

variance, the lower the coherence value. Besides, as the coherence decreases with the noise 

variance, the confidence limits become larger and the identification performance finally 

decreases. These effects could be removed by increasing the number of averaging blocks L. 

However, such an operation will increase the time duration of the measurements, and may 

modify the system state by loading or unloading the battery of more than 2%. The hypothesis 

of a LTI system may thus be wrong. Therefore, in the present study, the length of the different 

signals remains the same whatever the noise quantity. 

To study the noise influence, a statistical study is performed. For each SNR level, we 

simulate  realizations of the output additive noise, and we plot the mean squared 

estimation error in % (Figure 11) defined by Eq. (15). This error quantifies the averaged 

normalized difference between the estimated impedance  and its theoretical value  over 

the selected frequency band and for a specific excitation signal. 

, 
(15) 

where  is the estimated electrical impedance with the k
th

 noise realization. 

We first note that the identification performance obtained with the three chosen input 

signals presents the same behavior as the SNR varies. Indeed, each error decreases when the 

measurement noise decreases. Moreover, estimation error obtained with a PBRS is always 

higher than error obtained with swept squares and square signals. This is coherent with the 

results previously obtained on confidence limits. Finally, this identification method reaches 

very good estimation performance as soon as the output SNR is higher than or equal to 0 dB, 

since whatever the excitation signal, the estimation error is then lower than 1%.   

In the following section, the proposed identification method is experimentally applied to a 

battery cell in order to validate the proposed method and the previous simulation results. 



 

Figure 11. Mean squared estimation error in % for different output  SNR - average value taken over 100 noise 

realizations. 

IV. EXPERIMENTAL RESULTS 

A. Hardware and implementation 

The work was realized on a graphite/LiFePO4 cell with a nominal capacity of 2.3 Ah 

(ANR26650m1 battery from A123 Systems Company Ltd). To evaluate the performance of 

broadband signals for the identification of this battery impedance, experiments have been 

carried out at room temperature under the same operating conditions as those taken during 

simulations (SOC of 60% and DC current of 1A, number of blocks L=2059, T=0.0769s). A 

sampling frequency of 10240 Hz was used because of experimental device constraints so that 

the block size in samples was set to N=787 in order to obtain the same time duration T as in 

simulations. An electronic circuit was designed to perform the experiments and to allow 

application of input current with squared patterns, particularly swept square and PRBS. The 

acquisition of the input current and the corresponding output voltage response has been 

performed with an important SNR level thanks to an OR-36, a high performance acquisition 

device (24 bits). 

During each experiment, three consecutive realizations of a single excitation signal (3*2059 

blocks) are applied to study the variability of the estimation. It should be noted that such 

solicitation with a polarization current of 1A affects the SOC during the test (in the order of 

6%) and may thus disrupt the conditions under which the battery can be approximated by a 

LTI system. However referring to the experiments in [37], within the SOC interval [50% , 



60%] we can assume that the impedance is quite constant. Coherence information will be 

studied to verify this last assumption.  

B. Experimental results 

1) PRBS 

During the first experiment, a PRBS is used as the input current. The corresponding 

estimated coherence is plotted in Figure 13, while Figure 15 shows the estimated electrical 

impedance. The coherence is clearly close to 1 all over the specified frequency band. This 

shows that the battery can be considered as a LTI system under these operating conditions, 

and that its electrical impedance will be correctly estimated. It can also be noticed that as 

shown by simulations of section III., the use of a PRBS current induces a decrease in the 

coherence near the upper limit frequency . This is also visible in Figure 15, where the 

variability of the estimated impedance with the different realizations is very small all over the 

frequency band, unless near the upper frequency. 

 

Figure 13. PRBS experimental results: coherence estimated for three measurements. 

 



 

Figure 15. PRBS experimental results: complex-valued impedance estimated for three measurements. 

2) Swept square 

The input current during the second experiment is a swept square signal. Figure 17 and 

Figure 19 respectively show the corresponding estimated coherence and electrical impedance. 

As predicted in section III., this particular input signal leads to higher coherence values and 

better estimation performance all over the frequency band. 

 

 

Figure 17. Swept square experimental results: coherence estimated for three measurements. 

 



 

Figure 19. Swept square experimental results: complex-valued impedance estimated for three measurements. 

Based on the high coherence values obtained during experiments, this battery can be 

considered as a LTI system within the chosen frequency band and under the chosen operating 

conditions. Moreover, confidence limits of impedance estimators are sufficiently small to 

affirm that the electrical impedance is accurately identified all over the frequency band, and 

that the swept square input current leads to better results than the PRBS. 

V. CONCLUSION  

This paper focuses on the usefulness of broadband excitation signals for the identification 

of a Li-ion battery electrical impedance. A non-parametric identification method has been 

theoretically introduced together with advanced parameters, such as spectral coherence 

function and confidence limits, able to evaluate the identification performance reached by this 

method. Simulation results indicate that identification patterns on input currents can be 

selected on the basis of their frequency characteristics, like power in the lowest frequencies of 

a selected band or flatness of their power spectral density over the whole band. This choice 

can be made by each user regarding the final use of the impedance measurement. Signals 

based on square pattern like swept square and PRBS lead to correct broadband identification, 

and are particularly well suited for electronic implementation. Experimental results ascertain 

the possibility to apply such a method to real batteries. Future works will focus on a 

comparative study to quantify the performance of the method by comparing it with standard 

electrical impedance spectroscopy in terms of precision, robustness, and computation time. A 

passive technique whithout the need to inject any additionnal current is a future line of 

research. ()  may be useful based on broadband identification technique.  
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