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Parallelizing RRT
on Large-Scale Distributed-Memory Architectures

Didier Devaurs, Thierry Siméon, and Juan Cortés

Abstract—This paper addresses the problem of parallelizing the
Rapidly-exploring Random Tree (RRT) algorithm on large-scale
distributed-memory architectures, using the message passing interface. We
compare three parallel versions of RRT based on classical parallelization
schemes. We evaluate them on different motion-planning problems and
analyze the various factors influencing their performance.

Index Terms—Distributed memory, message passing, parallel algo-
rithms, path planning, rapidly-exploring random tree (RRT).

I. INTRODUCTION

Due to a wide range of applications, sampling-based path planning

has benefited from considerable research effort. It has proven to be

an effective framework for various problems in domains as diverse as

autonomous robotics, aerospace, manufacturing, virtual prototyping,

computer animation, structural biology, and medicine. These appli-

cation fields yield increasingly difficult, highly-dimensional problems

with complex geometric and differential constraints.

The Rapidly-exploring Random Tree (RRT) is a popular sampling-

based algorithm applied to single-query path-planning problems [2]. It

is suited to solve robot motion-planning problems that involve holo-

nomic, nonholonomic, kinodynamic, or kinematic loop-closure con-

straints [2]–[4]. It is also applied to planning in discrete spaces or for

hybrid systems [5]. In computational biology, it is used to analyze

genetic network dynamics [6] or protein–ligand interactions [7]. How-

ever, when applied to complex problems, the growth of an RRT can
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become computationally expensive [8]–[11]. Some techniques have

been proposed to improve the efficiency of RRT by controlling the

sampling domain [8], reducing the complexity of the nearest neighbor

search [9], or using gap reduction techniques [10].

Our objective is to further investigate improvements to RRT by ex-

ploiting speedup from parallel computation. Some results have been

obtained in that direction (see Section II). Nevertheless, the existing

study considers mainly shared-memory architectures and small-scale

parallelism, up to 16 processors [12]–[14]. In this study, we are inter-

ested in what can be achieved by larger scale parallelism. We focus on

parallelizing RRT on distributed-memory architectures, which requires

the use of the message passing interface (MPI).

In this paper, we compare three parallel versions of RRT based on

classical parallelization schemes: OR parallel RRT, distributed RRT,

and manager–worker RRT. Besides the algorithms themselves, we

also present the main technicalities involved in their development (see

Section III). Our contribution focuses on evaluating these algorithms

on several motion-planning problems and showing their differences in

behavior (see Section IV). We also analyze their performance in or-

der to understand the impact of several characteristics of the studied

problems (see Section V). Our evaluation shows that parallelizing RRT

with MPI can provide substantial performance improvement in two

cases: 1) problems for which the variability in sequential runtime is

high can benefit from the OR parallel RRT and 2) problems for which

the computational cost of an RRT expansion is high can benefit from

the distributed RRT and the manager–worker RRT. Even though this is

not true for most academic motion-planning benchmarks, many robotic

examples yield computationally expensive RRT expansions and can,

thus, benefit from these parallel algorithms (see Section IV-F).

II. RELATEDWORK

A. Parallel Motion-Planning

The idea of improving motion-planning performance using parallel

computation is not new. A survey of some early work proposes a

classification scheme to review various motion-planning approaches

and related parallel processing methods [15]. A more recent trend

is to exploit the multicore technology available on many of today’s

PCs, which allows having multiple threads collaboratively solving a

problem [16]. Another recent trend consists of using shared-memory

models on many-core graphics processing units (GPUs) [17].

Among classical approaches, the embarrassingly parallel paradigm

exploits the fact that some randomized algorithms, such as the prob-

abilistic road map (PRM), are what is termed “embarrassingly paral-

lel” [18]. The massive inherent parallelism of the basic PRM algorithm

enables to reach a significant speedup, even with simple parallelization

strategies, especially on shared-memory architectures. In this approach,

computation time is minimized by having several processes coopera-

tively building the road map.

Another simple approach is known as the or parallel paradigm. It

was first applied to theorem proving, before providing a parallel for-

mulation for the randomized path planner (RPP) [19]. Its principle is to

have several processes running the same sequential randomized algo-

rithm, where each one tries to build its own solution. The first process

to reach a solution reports it and broadcasts a termination message. The

idea is to minimize computing time by finding a small-sized solution.

Despite its simplicity, this paradigm has been successfully applied to

other randomized algorithms [20].

A more sophisticated approach is the scheduler–processor scheme

that was developed to distribute the computation of the sampling-based

roadmap of trees (SRT) algorithm [21]. In this scheme, the scheduler

coordinates the processors constructing the milestones, which can be



RRTs or expansive space trees (ESTs), and the edges linking them.

More generally, an approach based on the growth of several indepen-

dent trees, such as the rapidly exploring random forest of trees [6] or

RRTLocTrees [22], can lead to a straightforward parallelization. How-

ever, the focus of this paper lies elsewhere: Our objective is to provide a

parallel version of the basic (single-tree) RRT algorithm. Furthermore,

this study is not about parallelizing subroutines of RRT, as is done

for collision detection in [17], nor about parallelizing specific variants

of RRT, as is done for the any-time RRT in [23]. Finally, we aim to

reduce the runtime of RRT and not to improve the quality of the paths

it returns.

B. Parallel RRT

Only little work relates to parallelizing RRT [12]–[14]. The first

approach applies the simple or parallel and embarrassingly parallel

paradigms, and a combination of both [12]. To benefit from the simplic-

ity of the shared-memory model, the embarrassingly parallel algorithm

is run on a single symmetrical multiprocessor node of a multinodes

parallel computer. The only communication involved is a termination

message that is broadcast when a solution is reached, and some co-

ordination is required to avoid concurrent modifications of the tree.

This scheme does not make use of the full computational power of the

parallel platform, contrary to the OR parallel algorithm, which is run

on all processors of all nodes. The same paradigms are also applied

on a dual-core central processing unit in [13], where they are renamed

or and and implementations. In the Open Motion-Planning Library

(OMPL), the AND paradigm is implemented via multithreading, and

thus, for shared memory [24].

To the best of our knowledge, there has been only one attempt to

develop a parallel version of RRT on a distributed-memory architec-

ture. In [14], the construction of the tree is distributed among several

autonomous agents, using a message passing model. However, no ex-

planation is given on how the computation is distributed, or how the

tree is reconstructed from the parts built by the agents.

III. PARALLELIZATION OF THE RAPIDLY-EXPLORING RANDOM TREE

For scalability purposes, we have parallelized RRT on distributed-

memory architectures, using the message passing paradigm, one of

the most widespread approaches in parallel programming. Since this

paradigm imposes no requirement on the underlying hardware and

requires us to explicitly parallelize algorithms, it enables a wide porta-

bility: any algorithm developed following this approach can also run

on shared memory. Besides, scalable distributed-memory architectures

are rather commonly available, in the form of networks of personal

computers, clustered workstations, or grid computers. To develop our

parallel algorithms, we have chosen to comply to the standard and

widely used MPI. Its logical view of the hardware architecture con-

sists of p processes, each with its own exclusive address space. Our
message-passing programs are based on the single program multiple

data (SPMD) paradigm and follow a loosely synchronous approach:

All processes execute the same code, containing mainly asynchronous

tasks, but a few tasks synchronize to perform interactions as well.

A. OR Parallel RRT

The simplest way to parallelize RRT is to apply the OR paral-

lel paradigm. Algorithm 1 shows the or parallel RRT, as defined

in [12]. Each process computes its own RRT (lines 1–7) and the

first to reach a stopping condition broadcasts a termination message

(lines 8–9). This broadcast operation cannot actually be implemented

as a regular MPI_Broadcast routine, as this collective operation would

require all processes to synchronize. Rather, the first process to finish

sends a termination message to all others, using MPI_Send routines

matched with MPI_Receive routines. As it is not known beforehand

when these interactions should happen, a nonblocking receiving op-

eration that will “catch” the termination message is initiated before

entering the while loop. The received(endMsg) operation is im-

plemented as an MPI_Test routine checking the status (completed or

pending) of the request generated by the nonblocking receiving opera-

tion. Finally, in the case of several processes reaching a solution at the

same time, the program ends with a collective operation for them to

synchronize and agree on which one should report its solution. Note

that communications are negligible in the total runtime.

B. Collaborative Building of a Single RRT

Instead of constructing several RRTs concurrently, another possibil-

ity is to have all processes collaborating to build a single RRT. Paral-

lelization is then achieved by partitioning the building task into subtasks

assigned to the various processes. We propose two ways of doing so,

based on classical decomposition techniques. 1) Since the construc-

tion of an RRT consists of exploring a search space, we can use an

exploratory decomposition [25]. Each process performs its own

sampling of the search space—but without any space partitioning

involved—and maintains its own copy of the tree, exchanging with

the others the newly constructed nodes. This leads to a distributed (or

decentralized) scheme where no task scheduling is required, aside from

a termination detection mechanism. 2) Another classical approach is to

perform a functional decomposition of the task [26]. In the RRT algo-

rithm, two kinds of subtasks can be distinguished: the ones that require

to access the tree (initializing it, adding new nodes and edges, finding

the best neighbor of qr an d , and evaluating the stopping conditions) and

those that do not (sampling a random configuration and performing

the extension step). This leads to the choice of a manager–worker (or



master–slave) scheme as the dynamic and centralized task-scheduling

strategy: themanagermaintains the tree, and theworkers have no access

to it.

1) Distributed RRT: Algorithm 2 presents our distributed RRT. In

each iteration of the tree construction loop (lines 2–10), each process

first checks whether it has received new nodes from other processes

(line 3) and, if so, adds them to its local copy of the tree (line 4).

Then, it performs an expansion attempt (lines 5–7). If it succeeds

(line 8), the process adds the new node to its local tree (line 9) and

broadcasts the node (line 10). The addition of all the received nodes

before attempting an expansion ensures that every process works with

the most up-to-date state of the tree. Note that processes never wait

for messages; they simply process them as they arrive. At the end,

the first process to reach a stopping condition broadcasts a termination

message (lines 11–12). This broadcast operation is implemented in

the same way as for the OR parallel RRT. Similarly, the broadcast of

new nodes (line 10) is not implemented as a regular MPI_Broadcast

routine, which would cause all processes to wait for each other. As a

classical way to overlap computation with interactions, we again use

MPI_Send routines matched with nonblocking MPI_Receive routines.

That way, the received(nodeData) test (line 3) is performed

by checking the status of the request associated with a nonblocking

receiving operation initiated beforehand, the first one being triggered

before entering thewhile loop, and the subsequent ones being triggered

each time a new node is received and processed. Again, we have to deal

with the case of several processes reaching a solution at the same time.

Finally, a universally unique identifier (UUID) is associated with each

node to provide processes with a homogeneous way of referring to the

nodes.

2) Manager–Worker RRT: Algorithm 3 introduces our manager–

worker RRT. It contains the code of the manager (lines 2–10) and

of the workers (lines 12–16). The manager is the only process ac-

cessing the tree. It delegates the expansion attempts to workers. The

expansion is generally the most computationally expensive stage in the

RRT construction because it involvesmotion simulation and validation.

The manager could also delegate the sampling step, but this would be

worthless because of the low computational cost of this operation in

our settings (i.e., in the standard case of a uniform random sampling

in the whole search space): the additional communication cost would

outweigh any potential benefit.

At each iteration of the construction loop (lines 3–9) the manager

first checks whether it has received new nodes from workers (line

4). If so, it adds them to the tree (line 5). Then, it samples a ran-

dom configuration (line 6) and identifies its best neighbor in the tree

(line 7). Next, it looks for an idle worker (line 8), which means po-

tentially going through a waiting phase, and sends to the worker the

data needed to perform an expansion attempt (line 9). Finally, when a

stopping condition is reached, it broadcasts a termination message (line

10). Workers remain active until they receive this message (line 12),

but they can go through waiting phases. During each computing phase,

a worker receives some data from the manager (line 13) and performs

an expansion attempt (line 14). If it succeeds (line 15), it sends the new

node to the manager (line 16).

Contrary to the previous ones, this algorithm does not require

nonblocking receiving operations to broadcast the termination mes-

sage. Workers being idle if they receive no data, there is no need

to overlap computation with interactions. Before entering a comput-

ing phase, a worker waits on a blocking MPI_Receive routine imple-

menting both the receive(expansionData) operation and the

received(endMsg) test. The type of received message determines

its next action: stop or attempt an expansion. On the manager side,

blocking MPI_Send routines implement the broadcast(endMsg)

and send(expansionData) operations. The remaining question

about the latter is to which worker should the data be sent. An impor-

tant task of the manager is to perform load-balancing among workers

through the chooseWorker() function. For that, it keeps track of

the status (busy or idle) of all workers and sends one subtask at a

time to an idle worker, choosing it in a round robin fashion. If all

workers are busy, the manager waits until it receives a message from

one of them, which then becomes idle. This has two consequences.

First, on the worker side, the send(nodeData) operation covers

two MPI_Send routines: one invoked to send new nodes when the ex-

pansion attempt succeeds and the other containing no data used other-

wise. Second, on the manager side, two matching receiving operations

are implemented via nonblocking MPI_Receive routines, allowing us

to use MPI_Wait routines if necessary. This also enables us to im-

plement the received(nodeData) test with an MPI_Test routine.

These nonblocking receiving operations are initiated before entering

the while loop, and reinitiated each time the manager receives and

processes a message. Finally, to reduce the communication costs of the

send(nodeData) operation, workers do not send back the config-

uration qn ear . Rather, the manager keeps track of the data it sends to

workers, thus avoiding the need for UUIDs.

C. Implementation Framework

Since the sequential implementation of RRT we wanted to paral-

lelize was written in C++ and since MPI is targeted at C and Fortran,

we had to use a C++ binding ofMPI.Wewere also confrontedwith the
low-level way in which MPI deals with communications, requiring the

programmer to explicitly specify the size of each message. In our appli-

cation, messages were to contain instances of high-level classes, whose

attributes could be pointers or STL containers. Thus, we decided to ex-

ploit the higher level abstraction provided by the Boost.MPI library.

Coupled with the Boost.Serialization library, it enables processes to

easily exchange class instances, making the tasks of gathering, packing

and unpacking the underlying data transparent to the programmer. We

also used the implementation of UUIDs provided by the Boost library.

IV. EXPERIMENTAL SETUP

Before presenting the results of the experiments, we introduce the

metrics used to evaluate the parallel algorithms. We also present the

parallel platform we have worked on, and the motion-planning prob-

lems we have studied. We then explain the two experiments we have



Fig. 1. Schematic representation of the configuration spaces of the planning
problems and results obtained with the sequential RRT including molecular
energy computation (cf. Section IV-D). Average values over 100 runs (and
standard deviation) are given for the sequential runtime, TS (in seconds), the
number of nodes in the tree NS , and the number of expansion attempts, XS .

performed and report general results. A detailed analysis of the perfor-

mance of the algorithms will be the focus of Section V.

A. Performance Metrics

Aimed at assessing the performance gain achieved by a parallel algo-

rithm run on p processors, the speedup S is defined as the ratio of the se-
quential runtime to the parallel runtime:S(p) = TS / TP (p) [25], [26].
The parallel runtime TP (p) is measured on a parallel computer, using p
processors, and the sequential runtime TS is measured on a single pro-

cessor of this computer. We define TP (p) (resp. TS ) as the mean time

needed to reach a solution, by averaging the runtimes obtained over

100 executions of a parallel (resp. sequential) algorithm. Another com-

mon metric we use is the efficiency E of a parallel algorithm, which

is defined as the ratio of the speedup to the number of processors:

E(p) = S(p) / p [25], [26].

B. Parallel Computer Architecture

The numerical results presented in this paper have been obtained

by running the algorithms on MareNostrum, the parallel platform of

the Barcelona Supercomputing Center. It is an IBM cluster platform

composed of 2560 IBM BladeCenter JS21 blade servers connected

by a Myrinet local area network warranting 2 Gbit/s of bandwidth.

Each server includes two 64-bit dual-core PowerPC 970MP processors

at 2.3 GHz, sharing 8 GB of memory. The implementation of MPI

installed on this platform is MPICH2.

C. Motion-Planning Problems

We have evaluated the parallel algorithms on three motion-planning

problems involving molecular models, using the molecular motion-

planning toolkit we are currently developing [7]. However, note that

these algorithms are not application specific and can be applied to any

kind of motion-planning problem. The studied problems involve free-

flying objects (i.e., six degrees of freedom).1 They are characterized

by different configuration-space topologies (cf. Fig. 1). Passage is a

protein-ligand exit problem: A ligand exits the active site of a protein

through a relatively short and large pathway locally constrained by

several side-chains. Corridor is a similar problem, but with a longer

and narrower exit pathway, i.e., more geometrically constrained than

Passage. In Roundabout, a protein goes around another one in an

1Having a common dimensionality across examples facilitates the evaluation
of the algorithms. Increasing dimensionality would mainly raise the computa-
tional cost of the nearest neighbor search. Note that, however, this cost becomes
almost dimension independent when using projections on a lower dimensional
space, without a significant loss in accuracy [27].

empty space, thus involving the weakest geometrical constraints but

the longest distance to cover. For more details on these examples,

see [7] and [28].

D. First Experiment—High Expansion Cost

Our first experiment aims at assessing the speedup achieved by

the parallel variants of RRT. The tests are carried out while consider-

ing a computational cost for the RRT expansion that is significantly

greater than the communication cost. This is a favorable situation for

an MPI-based parallelization (as the results reported in Section IV-E

will illustrate) because the communication overhead is outweighed by

the sharing of high-cost workload units between processes [26]. Such a

situation happens when planning motions of complex systems (robots

or molecules), as discussed in Section IV-F. In the present context,

the expansion cost is dominated by the energy evaluation of molecular

motions, which replaces simple collision detection. This exemplifies

the case of high-cost expansions.

Fig. 1 presents the results obtained with the sequential RRT in its

Extend version [2] when molecular energy is computed. Fig. 2 shows

the speedup achieved by the parallel algorithms on each problem. The

OR parallel RRT always shows a poor speedup. On the other hand,

the speedup achieved by the distributed RRT and the manager–worker

RRT can be really high. Differences between problems are significant,

the best speedup being achieved on the most constrained problem,

Corridor, then Passage, and then Roundabout. These results are further

explained in the analysis presented in Section V.

E. Second Experiment—Variable Expansion Cost

In our second experiment, we study how the speedup achieved by the

parallel algorithms evolves in relation to the computational cost of an

RRT expansion. In parallel programming, speedup generally improves

as the computational cost of a process workload unit increases w.r.t. the

communication overhead [26]. To test that, we run a controlled exper-

iment in which we artificially increase the cost of the RRT expansion.

We start with a low-cost expansion setting (where motion validation

is reduced to collision detection, i.e., without energy evaluation). To

increase the expansion cost c, we repeat t times the collision detection
test in the extend() function. Note that we estimate c by dividing the
sequential runtime by the number of expansion attempts. Finally, c is
varied by varying t.
Fig. 3 shows how the speedup and efficiency achieved by the parallel

algorithms vary with respect to the expansion cost c, when run on 32
processors. As the number of processors is fixed, efficiency is propor-

tional to speedup. The speedup of the OR parallel RRT does not change

with c. In other words, it is not influenced by the ratio between compu-
tation and communication costs. On the other hand, this ratio strongly

impacts the speedup of the distributed RRT and manager–worker RRT.

They both achieve a very low speedup when c is low: The first point
of each curve, obtained with t = 1, shows that in this case the parallel
version is even slower than the sequential one (i.e., S < 1). When c
increases, both algorithms show a similar and important increase in

speedup. The magnitude of this increase is strongly influenced by the

problem: It is the greatest on the most constrained problem, Corridor

(for which almost optimal efficiency is achieved), then Passage, then

Roundabout. When c is high, making communication load insignificant
compared with computation load, the speedup reaches a plateau.

F. Robotic Examples

Our results show that the distributed and manager–worker RRT are

beneficial on problems for which the computational cost of an RRT ex-



Fig. 2. Speedup (averaged over 100 runs) achieved by the parallel algorithms
in relation to the number of processors on the Passage, Corridor, and Round-
about problems (first experiment). Both the observed speedup and the speedup
estimated by the models presented in Section V are reported.

pansion c is significantly greater than the cost of a communication. The
communication cost being about 1 ms on MareNostrum, we obtain a

good speedup when c is greater than 25 ms (cf. Fig. 3). This means that
most academicmotion-planning benchmarks, such as theAlpha puzzle,

cannot benefit from anMPI-based parallelization of RRT. Indeed, these

examples often reduce motion validation to collision detection in ge-

ometrically simple scenes, leading to a fast RRT expansion. However,

in the context of robot path planning, high-cost expansions may occur

in various situations. The first one is the case of high-geometric com-

plexity, when objects of the world are represented by large numbers of

polyhedral faces. For example, c is about 27 ms on the flange bench-

mark [29] and about 28 ms on the exhaust disassembly problem [30],

despite efficient collision detection. High-cost expansions may also

occur on problems under kinodynamic constraints requiring to use a

dynamic simulator [16]. Another case is when planning on constraint

Fig. 3. Speedup and efficiency (averaged over 100 runs) of the parallel algo-
rithms in relation to the computational cost of the RRT expansion (in millisec-
onds) when solving the Passage, Corridor, and Roundabout problems on 32
processors (second experiment). As a reference, the dashed vertical line shows
the expansion cost value as estimated in the first experiment.

manifolds embedded in higher dimensional ambient spaces [31], es-

pecially with complex systems such as closed-chain mechanisms. For

example, c is about 120 ms on a problem where the Justin robot trans-

ports a tray in a cluttered environment [32]. An evenmore complex case

is task-based path planning involving humanoid robots with dynamic

constraints [33], [34]. For example, c is greater than 1 s on a problem
where two HRP-2 robots collaboratively transport a table [34]. Due to

their high expansion costs, all these examples would yield a similar or

even higher speedup than those we have studied. This illustrates that a

large class of practical problems involving complex environments and



Fig. 4. Number of nodes (averaged over 100 runs) in the trees produced by
the parallel algorithms in relation to the number of processors, on the Passage,
Corridor, and Roundabout problems (first experiment). The dashed horizontal
line shows the number of nodes in the trees generated by the sequential RRT.

complex robot systems can benefit from an MPI-based parallelization

of RRT.

V. ANALYSIS OF THE PARALLEL ALGORITHMS

The experiments we have presented provide the first clues on the

differences in behavior between the parallel versions of RRT. Never-

theless, the resulting speedup curves are not sufficient to understand

performance variations due to the problem type, the number of proces-

sors involved or the computational cost of the RRT expansion. This is

what we analyze now for each parallel algorithm.

A. OR Parallel RRT

The OR parallel RRT does not rely on sharing the computation load

among processes but on finding small-sized solutions that are faster to

compute. The more processes involved, the greater is the chance to find

a solution quickly. On average, the number of expansions attempted by

the OR parallel RRT on p processorsXP (p) decreases with p. Similarly,
the number of tree nodes NP (p) decreases with p (cf. Fig. 4). If we
express the parallel runtime as TP (p) = XP (p) · c, where c is the
expansion cost, we get that TP (p) decreases with p. If the sequential
runtime is similarly expressed asTS = XS · c, whereXS is the number

of expansions attempted by the sequential RRT, we have

S(p) =
XS

XP (p)
. (1)

Fig. 2 illustrates the evolution w.r.t. p of both the observed speedup
(computed using runtimes averaged over 100 runs) and the speedup

estimated by (1) (computed using values of XS and XP (p) averaged
over 100 runs). The graphs show that the estimated speedup values

fit well the observed data. Important features of the behavior of the

OR parallel RRT are reflected in (1). First, S is independent from the
expansion cost c because X is independent from it. This confirms

what we could deduce from the fact that the efficiency curves of the

OR parallel RRT are almost flat (cf. Fig. 3). Second, the only factor

influencing the evolution of S(p) is XP (p), which decreases with p
and is lower bounded by the minimum number of expansion attempts

required to reach a solution. This explains why S(p) increases with p
toward an asymptotic value Smax (equal to 2, 8, and 2.7 on Passage,

Corridor, and Roundabout, respectively, as shown in Fig. 2). If we

define the variability in sequential runtime by the ratio of the standard

deviation to the mean of the runtime TS reported in Fig. 1, we get

the values 0.4, 0.8, and 0.5 for Passage, Corridor, and Roundabout,

respectively. Table I shows that Smax is strongly positively correlated

with this sequential runtime variability.

B. Distributed RRT

In the distributed RRT, the computation load is shared among pro-

cesses. It can again be expressed as XP (p) · c, where XP (p) de-
creases with p thanks to work sharing. A significant communication
load is added to the global workload, but communications happen

only after a new node is built. If we assume the tree construction is

equally shared among processes, from the NP (p) tree nodes, each
process will have contributed NP (p) / p. Furthermore, each process
sends this amount of nodes to, and receives this amount of nodes

from, each of the p − 1 other processes. The communication load
can thus be estimated by 2 (p − 1) · (NP (p) / p) · m, where m is

the cost of sending one node between two processes. Therefore, we

have TP (p) = XP (p) · c + 2 (p−1)
p

· NP (p) · m. This highlights the
fact that the workload repartition between computation and communi-

cation mainly depends on the ratio c
m
. Finally, we get

S(p) =
XS · c

XP (p) · c + 2 (p−1)
p

· NP (p) · m
(2)

Fig. 2 illustrates the evolution w.r.t. p of both the observed speedup
and the speedup estimated by (2) (computed using numbers of

nodes and expansion attempts averaged over 100 runs). Knowing that
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TP (2) = XP (2) · c + NP (2) · m, we estimatem by running the dis-

tributed RRT on two processors. The graphs show that the estimated

speedup provides a good fit to the observed speedup. The main factor

allowing S(p) to increase with p is work sharing, i.e., the decrease
of XP (p). Another beneficial factor is what we call the “OR paral-
lel effect”: as each process performs its own sampling of the search

space, when few processes are involved, the distributed RRT reaches

smaller solutions than the sequential RRT. Fig. 4 shows that this hap-

pens mainly on problems whose sequential runtime variability is high,

such as Corridor: in the middle graph, the curve representing NP (p)
for the distributed RRT is below the horizontal line representing NS

when p is low. On the other hand, an important factor hampers the in-
crease in speedup. When collaboratively building an RRT, a side effect

of adding more processes is to change the balance between exploration

and refinement (these terms being used as in [8]) in favor of refinement.

Therefore, more expansions are attempted globally (i.e. p · XP (p) in-
creases with p), and larger trees are produced (i.e., NP (p) increases
with p, as shown in Fig. 4). As a result, the overall computation load
increases with p.
The denominator of (2) represents the workload of a single pro-

cess. Even though the global computation load for all processes in-

creases with p, the computation load for one process XP (p) · c de-
creases with p. However, the communication load for one process
2 (p−1)

p
· NP (p) · m increases with p because NP (p) increases with p

and
2 (p−1)

p
increases with p in [1, 2[. The decrease in computation load

seems to dominate, since Fig. 2 mainly shows an increase in speedup

for the distributed RRT. However, it appears from the least constrained

problem, Roundabout, that when p becomes too high the speedup de-
creases slightly. The optimal observed speedup Smax is 8.3 and 3.4 for

Passage and Roundabout, and seems to be greater than 50 for Corridor

(cf. Fig. 2). It is achieved for an optimal value of p, denoted by p̄,
equal to 36 and 25 for Passage and Roundabout, and greater than 160

for Corridor (cf. Fig. 2). Table I shows that p̄ and Smax are strongly

positively correlated: The more processes that can collaborate without

increasing refinement too much, the higher Smax will be. The increase

in refinement is observed through the increase in the number of nodes

(cf. Fig. 4). It appears that problems characterized by weak geometri-

cal constraints, such as Roundabout, are more sensitive to this issue,

leading to poor speedup. For problems characterized by strong geo-

metrical constraints, such as Corridor, the speedup scales better w.r.t.

the expansion cost c (cf. Fig. 3).

C. Manager–Worker RRT

In the manager–worker RRT, each expansion attempt is preceded

by a communication from the manager to a worker, and each suc-

cessful expansion is followed by a communication from a worker

to the manager. Being empty, the message sent after a failed expan-

sion can be ignored. In the trivial case of the manager using a single

worker, communication and computation cannot overlap, and thus,

TP (2) = XP (2) · c + (XP (2) + NP (2)) · m, where m is the cost

of sending a message. We estimate m by running tests on two pro-

cessors and using this formula. If more workers are available, two

cases should be considered. First, if communication is more costly

than computation (i.e., m > c), the manager can use at most two
workers at a time: While it sends some data to a worker, the other

worker has already finished its computation. In that case, we have

TP (p) = (XP (p) + NP (p)) · m > TS , and parallelization is useless.

Second, if c > m, more than two workers can be used, but the man-
ager is still a potential bottleneck depending on the ratio c

m
: the less

significant the communication cost compared with the expansion cost,

the more workers can be used. For given values of c and m, at most
p̄ processors can be used, and thus, the number of workers effectively
used is min(p − 1, p̄ − 1). Assuming the computation load is equally
shared among workers, we have

S(p) =
XS · c

X P (p )
m in(p−1 , p̄−1)

· c + (XP (p) + NP (p)) · m
(3)

The speedup estimated by (3) shows a good fit to the observed

speedup of the manager–worker RRT (cf. Fig. 2). Equation (3) ex-

plains how the speedup evolves w.r.t. p and c. When p ≤ p̄, S(p) in-
creases with p thanks to work sharing among workers. However, when
p > p̄, increasing p becomes useless. Therefore,S(p) reaches a plateau
around a value Smax equal to 7.8, 21.4, and 3.5 for Passage, Corridor,

and Roundabout, respectively (cf. Fig. 2). In fact, p̄ is the value of p
for which S(p) reaches Smax : It is equal to 22, 36, and 18 for Passage,

Corridor, and Roundabout (cf. Fig. 2). Obviously, Smax is strongly

positively correlated with p̄ (cf. Table I). Moreover, the second exper-
iment shows that p̄ increases with c. This explains why we observe in
Fig. 3 that S increases with c at first, and then reaches a plateau: When
p̄ reaches 32 (the number of processors used in the experiment), S can
no longer be increased. Contrary to the distributed RRT, the manager–

worker RRT does not benefit from the “OR parallel effect”: in Fig. 4,

the curve ofNP (p) is never below the horizontal line representingNS .

As a consequence, the manager–worker RRT shows a lower speedup

than the distributed RRT on problems with a high variability in se-

quential runtime, such as Corridor (cf. Fig. 2). Besides, it suffers from

the increase in refinement, which translates into XP (p) and NP (p)
increasing with p, when p ≤ p̄ (cf. Fig. 4). Problems characterized by
weak geometrical constraints, such as Roundabout, are more sensitive

to the issue.

D. Discussion

To evaluate the influence of the architecture, we have performed the

two previous experiments on another parallel platform, Cacao, avail-

able in our laboratory. Cacao is a small cluster composed of 24 HP

servers including two 64-bit quad-core processors at 2.66 GHz, con-

nected by a 10 Gbit/s InfiniBand switch, using OpenMPI. We aimed

to assess i) the consistency of the performance of the parallel algo-

rithms and ii) the goodness-of-fit of the models provided by (1)–(3).

First, we observe that the models are robust and provide good estima-

tions of the speedup achieved on Cacao. Second, the results obtained

on Cacao and reported in Table II are similar to those obtained on

MareNostrum (cf. Table I). The speedup of the OR parallel RRT is

the same on both architectures because no communication is involved.

The distributed RRT is more impacted than the manager–worker RRT

by the choice of the architecture because its “n to n” communication
scheme makes it more sensitive to the level of optimization of the

MPI communications. As a result, when communications are less effi-

cient (as observed on Cacao) the distributed RRT can be outperformed

by the manager–worker RRT on less-constrained problems (such as
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Passage and Roundabout) characterized by a low variability in sequen-

tial runtime.

One may wonder whether the manager–worker RRT could be im-

proved by assigning workers batches of multiple expansion attempts

instead of single ones. Even though it should reduce communications,

after evaluation this idea appears to yield mixed results. The drawback

of this variant is to further worsen the main hindrance affecting the

manager–worker RRT, namely the increase in refinement w.r.t. p. If k
is the size of a batch of expansion attempts, we observe that XP and

NP increase with k. On problems for which the success rate of an
RRT expansion is high (N/X = 1/3 for Passage and 1/2 for Round-

about), using this modification reduces speedup, even with low values

of k. Nevertheless, speedup increases slightly on theCorridor problem,

where this success rate is much lower (N/X = 1/50), except when k
becomes too high.

Algorithms building several RRTs can benefit from this work. For

example, in the bidirectional-RRTvariantwhere both trees are extended

toward the same random configuration [2], processes can be separated

into two groups applying our parallel algorithms, and getting random

configurations from an extra process. More sophisticated variants of

RRT, such as ML-RRT [11] or T-RRT [35], can be parallelized using

the proposed schemes as such. Similar sampling-based tree planners,

such as RRT* [36] or the one based on the idea of expansive space [37],

can also benefit from this work. The latter can be parallelized exactly

in the same way as RRT because the propagate function is the exact

counterpart of the extend function of RRT. On the other hand, paral-

lelizing RRT* would be much more involved, except for the OR parallel

version. Besides new vertices, messages exchanged between processes

should also include added and removed edges, which would increase

the communication load. This could be balanced in the distributed ver-

sion by the higher cost of the expansion in RRT* than in RRT. However,

as one RRT* expansion intertwines operations requiring or not access

to the tree, a manager–worker version would not be very efficient.

VI. CONCLUSION

We have evaluated three parallel versions of RRT designed for

distributed-memory architectures using MPI: OR parallel RRT, dis-

tributed RRT, and manager–worker RRT. The OR parallel RRT was

first introduced in [12] and reused on shared memory in [13]. The

distributed RRT and manager–worker RRT are the counterparts for

distributed memory of the AND (or embarrassingly parallel) RRT used

on shared memory [12], [13]. We have shown that parallelizing RRT

with MPI can provide substantial performance improvement in two

cases. First, problems whose variability in sequential runtime is high

can benefit from the OR parallel RRT. Second, problems for which the

computational cost of an RRT expansion is high can benefit from the

distributed RRT and manager–worker RRT.

The empirical results and the performance analysis reveal that the

best parallelization scheme depends on the studied problem, the com-

putational cost of an RRT expansion, and the parallel architecture. The

distributed RRT and manager–worker RRT provide a good speedup,

except on problems with weak geometrical constraints. In that case,

they suffer from an increase in refinement (versus exploration) trans-

lating into greater overall computation and communication loads. On

problems showing a low variability in sequential runtime, depending

on the architecture, the manager–worker RRT can outperform the dis-

tributed RRT. On the other hand, if the sequential runtime variability

is high, the distributed RRT outperforms the manager–worker RRT

thanks to its “OR parallel effect.”

Based on these results, and as future work, we plan to improve the

parallel schemes presented here. First, the distributed RRT can suffer

from memory-overhead issues because each process maintains its own

tree. To address this, we plan to better exploit the architecture of clus-

ter platforms by combining message passing with multithreading and

allowing the processes sharing the same memory to build a common

tree. Second, in the manager–worker RRT, to avoid seeing the man-

ager becoming a bottleneck, a hierarchical approach involving several

managers can be developed. Third, we plan to investigate approaches

combining several of the three paradigms. For example, integrating

the OR parallel RRT into the manager–worker RRT could allow it to

perform better on problems showing a high variability in sequential

runtime. Finally, instead of parallelizing RRT itself, we could also par-

allelize its most computationally expensive components, such as the

collision detection, as done in [17].
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