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TOPOLOGICAL SENSITIVITY ANALYSIS OF PIEZOELECTRIC ACTUATOR

A.A. NOVOTNY AND J. SOKO LOWSKI

Abstract. The coupled model of a piezoelectric actuator is considered in the paper. For the specific
shape optimization problem the shape-topological sensitivity analysis is performed. The obtained
result can be used within the optimum design procedure of a micromechanism which transforms the
electrical energy supplemented via its piezoceramic part into elastic energy of an actuator. The domain
decomposition technique is applied in order to obtain the topological derivatives of the tracking-type
functional defined on a part of the boundary of the elastic body under consideration. The proposed
method is general and can be used for the purposes of the shape-topological sensitivity analysis for a
broad class of multiphysics models.

1. Introduction

Applications of the asymptotic analysis in singularly perturbed geometrical domains combined with
the domain decomposition technique for the shape-topological sensitivity analysis of coupled partial
differential equations is proposed in the paper. The geometrical domain Ω for the model under
consideration is decomposed into subdomains with the different physical properties. The influence of
the subdomains each on the another is effected by the transmission conditions on the interfaces. In
other words, the fields of mechanical and electric natures are coupled by the transmission conditions
as well as by the mathematical models in the interior of each subdomain. The resulting model is
complex, and its topological sensitivity analysis should be performed in such a way that the obtained
formula can be directly used in numerical methods of shape optimization. To this end the fictitious
domain decomposition is employed for the purposes of the shape-topological analysis. This means that
in the elastic material of the body the fictitious ring domain C(R, ε) := {ε < |x| < R} is introduced
for the purposes of the asymptotic analysis with respect to ε → 0, and the result of the analysis is
expressed on the boundary of the ball BR = {|x| < R}. From the asymptotic expansions of elastic
energy in the interior of BR or of C(R, ε) the expansion of the Dirichlet-to-Neumann map associated
with the ball or with the ring is obtained.

Remark 1. In the paper the nonlocal boundary operator is considered on the fictitious boundary
∂BR. The operator is defined in the ball BR as the Dirichlet-to-Neumann map for the linear elasticity
boundary value problem. Its asymptotic analysis is performed in BR with respect to small parameter
ε → 0 wich governs the material properties of the elastic body. Having the asymptotic expansion in
hand, the operator is employed as the Steklov-Poincaré operator in the truncated domain ΩR := Ω\BR.
In this way, the influence of singularity associated with the limit passage ε → 0 is modeled in the
truncated domain via nonlocal boundary conditions, and the subdomain BR is eliminated from the
shape-topological analysis of the shape functional under considerations. This approach simplifies the
asymptotic analysis performed in the paper. Therefore, there is a double notation for the same boundary
pseudodifferential operator on ∂BR depending on the fact if ∂BR is considered as the exterior boundary
of the fictitious subdomain BR or the interior boundary of truncated domain ΩR. First, the Dirichlet-
to-Neumann map is considered for BR or for C(R, ε), see the details below, and its expansion is
obtained with respect to the small parameter which governs the size of a inclusion or a hole in BR.
Then, the same expansion is used in the nonlocal boundary conditions for the truncated domain. More
precisely, the nonlocal boundary operator stands for the Steklov-Poincaré operator when acting on the
interior boundary ∂BR of the truncated domain ΩR := Ω \ BR. Thus, the elasticity boundary value
problem in BR is called the interior problem of fictitious domain decomposition, and the coupled model

Key words and phrases. Asymptotic analysis, Steklov-Poincaré operator, Dirichlet-to-Neumann map, domain decom-
position, topological derivative, piezoelectric actuator, topology design.
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in ΩR is called the exterior problem of fictitious domain decomposition in the notation employed in
the paper. The boundary ∂BR is used as an interface of the fictitious domain decomposition introduced
exclusively for the purposes of asymptotic analysis in the singularly perturbed domain Ω.

In the ball BR the contrast parameter 0 < γ <∞ is considered for inclusions and the hole is obtained
by the limit passage γ → 0. The domain decomposition method combined with the asymptotic
expansions in the ring associated with the small parameter ε → 0 allows us to find the topological
derivative of the shape functional defined in the truncated domain Ω\BR for all R > ε→ 0. Otherwise,
the asymptotic analysis of the coupled model in singularly perturbed geometrical domain Ω should be
performed which would not be the best idea because of the complexity of such an approach.

In particular, we are interested in design of piezoelectric actuators, which consist of multi-flexible
structures actuated by piezoceramic devices that generate an output displacement in a specified direc-
tion on the boundary of the actuated part. The multi-flexible structure transforms the piezoceramic
output displacement by amplifying and changing its direction. This kind of mechanism can be man-
ufactured in a very small scale. Therefore, the spectrum of applications of such microtools becomes
broader in recent years including microsurgery, nanotechnology processing, cell manipulation, among
others. Yet, the development of microtools requires the design of actuated multi-flexible structures
which are able to produce complex movements originated from simple expansion/contraction of the
piezoceramic actuator. The performance of microtools can be strongly enhanced by optimizing the
actuated multi-flexible structures with respect to their shape and their topology. The shape sensi-
tivity analysis of such coupled models has been fully developed in [10] and [9] for quasi-electrostatic
layered piezoelectric devices and for non-stationary elastic, piezoelectric and acoustic coupled system,
respectively. However, a more general approach to deal with shape and topology optimization design
is based on the topological derivative. In fact, this relatively new concept represents the first term
of the asymptotic expansion of a given shape functional with respect to the small parameter which
measures the size of singular domain perturbations, such as holes, inclusions, source-terms and cracks.
The topological asymptotic analysis was introduced in the fundamental paper [13] and has been suc-
cessfully applied in the treatment of problems such as topology optimization [3], inverse analysis [7],
image processing [6], multi-scale constitutive modeling [2], fracture mechanics sensitivity analysis [4]
and damage evolution modeling [1]. For an account of new developments in this branch of shape
optimization we refer to [12].

In this paper the topological derivative is applied in the context of topology optimization of piezo-
electric actuated multi-flexible structures. The basic idea consists in maximizing the performance of
the microtool by introducing of small inclusions in the multi-flexible elastic part. Since this problem is
modeled by a coupled electro-mechanical system, the domain decomposition technique combined with
the Steklov-Poincaré pseudo-differential boundary operator is used to derive the first order term of the
asymptotic expansion of the shape functional with respect to the small parameter measuring the size
of the inclusions. In particular, the closed form of the topological derivative is obtained, which can be
used e.g., as a steepest descent direction in the microtools design by topology optimization method.

The paper is organized as follows. In Section 2 the Steklov-Poincaré pseudo-differential boundary
operator is introduced. The electro-mechanical coupled system modeling the piezoelectric actuators
as well as the adopted shape functional are presented in Section 3. Finally, in Section 4 the associated
topological asymptotic expansion is rigorously derived. The closed form of topological derivatives for
inclusion and holes are obtained for two and three spatial dimensions [12]. Some concluding remarks
and perspectives are given in Section 5.

2. The Steklov-Poincaré and Dirichlet-to-Neumann Boundary Operators

In order to perform the shape-topological sensitivity analysis of a coupled model defined in Ω,
in the presence of singular domain perturbations resulting from the insertion of cavities, holes or
inclusions in the elastic subdomain, the fictitious domain decomposition Ω := ΩR ∪BR is introduced
into the model. The small region BR which includes the singular domain perturbation Bε is selected
for the asymptotic analysis performed e.g., by the method of compound asymptotic expansions for
the singularity depending on the small parameter ε → 0. The remaining part ΩR of Ω is called
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the truncated domain. The result of asymptotic analysis in BR is specified on the fictitious boundary
ΓR := ∂BR for the Dirichlet-to-Neumann operator associated with BR. The same operator is called the
Steklov-Poincaré operator for the boundary value problem defined in ΩR. In this way the asymptotic
analysis is performed in a simple geometry with radial symmetry of the ball BR, and it is separated
from the shape-topological sensitivity analysis of the functional which is performed in ΩR with the
nonlocal boundary conditions defined by the Steklov-Poincaré operator on ΓR, and in the absence of
the singularity Bε inside of the domain.

The asymptotic expansion of Dirichlet-to-Neumann boundary operators with respect to ε → 0 is
performed for the nonhomogeneous Dirichlet boundary value problem of linear elasticity defined in
the ring C(R, ε). The case of an inclusion Bε in BR can be considered as a regular perturbation of the
bilinear form associated with the boundary value problem in ΩR, depending on the contrast parameter
0 < γ < ∞. The limit case obtained for γ → 0 with the inclusion which is replaced by a hole or a
cavity of the radius ε→ 0 is considered in C(R, ε) as the singular perturbation of BR.

Thus we present the detailed asymptotic analysis following [15] of the representative singular domain
perturbation by the insertion of a hole in two spatial dimensions. The case of an inclusion can be
analysed in the same manner by using the Kolosov complex potentials in two spatial dimensions. The
asymptotic analysis in three spatial dimensions can be performed by an application of the method of
compound asymptotic expansions.

Thus, we introduce the Steklov-Poincaré pseudo-differential boundary operator obtained explicitely
from the closed solutions of the two dimensional linear elasticity boundary value problems.

2.1. Dirichlet-to-Neumann map on ΓR. Let us consider an open bounded domain Ω ⊂ Rd, d = 2, 3
and let ΩR = Ω \BR represent an elastic body, where BR = {|x| < R} is a ball of radius R and center
at the origin O. We define the Dirichlet-to Neumann map in BR.

The nonhomogeneous Dirichlet boundary value problem of linear elasticity is considered in BR,
namely

u = ϕ on ΓR := ∂BR, u ∈ H1(BR;R
d) : a(u, v) = 0 ∀v ∈ H1

0 (BR;R
d) , (2.1)

where σ(u) = C∇su, with C the Hooke’s tensor of elastic constants, and

a(u, v) =

∫

BR

σ(u) · ∇sv . (2.2)

With the solution of the nonhomogeneous Dirichlet boundary value problem is associated its Neumann
trace T (u) such that the Green’s formula is valid

a(u, v) = (Lu, v) − (T (u), v)ΓR
. (2.3)

Since there is no source in BR, and taking into account the Dirichlet condition, the Green’s formula
becomes

a(u, v) = −(T (ϕ), v)ΓR
. (2.4)

The Dirichlet-to-Neumann map A : H1/2(ΓR;R
d) → H−1/2(ΓR;R

d) is defined and it takes the form

(A(ϕ), v)ΓR
:= −(T (ϕ), v)ΓR

≡ a(u, ϕ) . (2.5)

Thus

(A(ϕ), ϕ)ΓR
≡ a(u, u) , (2.6)

where (ϕ,ϕ) → (A(ϕ), ϕ)ΓR
is a symmetric and coercive bilinear form on the space of tracesH1/2(ΓR;R

d).

2.2. Dirichlet-to-Neumann map on ΓR for BR with an inclusion ωε. Let ε → 0 be a small
parameter and assume that ωε, of the characteristic function x → χε(x) ∈ {0, 1}, is a small inclusion
of radius ε and centre at the origin. In particular, ωε := Bε is considered here.

Define in the perturbed domain, denoted by the same symbol BR, with the variable Hooke’s tensor
of elastic constants

x→ Cε(x) = (1− χε(x))C + γχε(x)C (2.7)



4

with the contrast parameter γ. Hence the constitutive relation of linear elasticity σε(u) = Cε∇
su is

now dependent on the small parameter ε. The boundary value problem of linear elasticity is considered
in BR

uε = ϕ onΓR := ∂BR, uε ∈ H1(BR;R
d) : aε(uε, v) = 0 ∀v ∈ H1

0 (BR;R
d) , (2.8)

where

aε(uε, v) =

∫

BR

σε(uε) · ∇
sv . (2.9)

With the solution uε of the nonhomogeneous Dirichlet boundary value problem is associated its Neu-
mann trace Tε(uε) such that the Green’s formula is valid

aε(uε, v) = (Lεuε, v) − (Tε(uε), v)ΓR
. (2.10)

Thus, the Dirichlet-to-Neumann map takes the form

(Aε(ϕ), ϕ)ΓR
≡ aε(uε, uε) , (2.11)

since there is no source in BR.
Now we are going to recall some results of [15] on the asymptotic expansion of the Steklov-Poincaré

operator for the singular perturbations of a ring, i.e. in the limit case of γ → 0 and for the interior
radius of the ring which tends to zero. This means that in such a case of singular perturbations
the inclusion ωε becomes a hole, the case of an inclusion for 0 < γ < ∞ is considered as a regular
perturbation in coefficients of the elliptic operators and it can be analysed from the point of view of
asymptotic analysis in the similar way.

2.3. Singular perturbations of solutions in the ring. Let us consider a ring C(R, ε) := BR\Bε =
{ε < |x| < R}. In order to establish the exact formula for the Steklov-Poincaré operator in plane
elasticity we derive the analytic form of the solution for the elasticity system in the ring, with general
displacement condition on the outer boundary and traction free inner boundary, parameterized by the
(small) inner radius ε.

Let us assume for simplicity that the center of the ring lies at origin of the coordinate system, and
take polar coordinates (r, θ) with er pointing outwards and eθ perpendicularly in the counter-clockwise
direction. Then the displacement on the outer boundary r = R is given in the form of the Fourier
series

2µ(ur + iuθ) =
k=+∞∑

k=−∞

Uke
ikθ (2.12)

The required regularity condition for the boundary data translates into some inequalities for coefficients
Uk, as it will be made precise later.

The solution in the ring must be compared with the solution in the full circle, so we will have to
construct it as well. Probably the best tool for obtaining both exact solutions is the complex variable
method, described in [11].

Proposition 2. For plane domains with one hole solutions of elasticity boundary value problems take
the form

σrr − iσrθ = 2ℜφ′ − e2iθ(z̄φ′′ + ψ′)

σrr + iσθθ = 4ℜφ′

2µ(ur + iuθ) = e−iθ(κφ− zφ̄′ − ψ̄)

(2.13)

where φ, ψ are given by complex series

φ = A log(z) +
k=+∞∑

k=−∞

akz
k

ψ = −κĀ log(z) +

k=+∞∑

k=−∞

bkz
k

(2.14)
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Here µ is the Lame constant, ν the Poisson ratio, κ = 3 − 4ν in the plane strain case, and κ =
(3− ν)/(1 + ν) for plane stress. In addition, ℜϕ is used to denote the real part of a complex function
ϕ, while ℑϕ is going to be used to denote its imaginary counterpart.

Now we can substitute displacement condition for r = R into

2µ(ur + iuθ) = 2κAr log(r)
1

z
− Ā

1

r
z+

+

p=+∞∑

p=−∞

[κrap+1 − (1− p)ā1−pr
−2p+1 − b̄−(p+1)r

−2p−1]zp

and obtain the infinite system of linear equations.

p = −1: 2κAr log(r) + (κa0 − b̄0)− 2ā2r
2 = U−1

p = 1: − Ā+ κr2a2 − b̄−2
1

r2
= U1

p /∈ {−1, 1}:

κrp+1ap+1 − (1− p)ā1−pr
−p+1 − b̄−(p+1)r

−(p+1) = Up

(2.15)

The traction-free condition

σer = [σrr, σrθ]
⊤

on some circle means σrr = σrθ = 0. Hence, assuming r := ε, we have another infinite system.

p = −1: 2A+ 2ā2r
2 + 2

1

r2
b−2 = 0

p = 1: (κ+ 1)
1

r2
Ā = 0

p /∈ {−1, 1}: (1 + p)ap+1 + ā1−pr
−2p +

1

r2
bp−1 = 0

(2.16)

Denote d0 = κa0 − b̄0 since a0, b0 appear only in this combination. Using (2.15) we may recover the
solution for the full circle. Because in this case the singularities must vanish, we have b−k = a−k =
A = 0 for k = 1, 2, . . . and comparing the same powers of r:

d00 = U−1 +
2

κ
Ū1, ℜa01 =

1

(κ− 1)R
ℜU0, ℑa01 =

1

(κ+ 1)R
ℑU0

a0k =
1

κRk
Uk−1, b0k = −

1

Rk
[(k + 2)

1

κ
Uk+1 + Ū−(k+1)], k > 1

(2.17)

Now let us repeat the same procedure for the ring. Here the singularities may be present, because 0
does not belong to the domain. Hence, from (2.15) for r = R and (2.16) for r = ε we obtain A = 0
and the formulas

d0 = A−1 +
2R4

κR4 + ε4
Ū1, a2 =

R2

κR4 + ε4
U1

ℜa1 =
R

(κ− 1)R2 + 2ε2
ℜU0, ℑa1 =

1

κ+ 1
ℑA0

b−1 = −
2ε2R

(κ− 1)R2 + 2ε2
ℜU0, b−2 = −

ε4R2

κR4 + ε4
Ū1

The rest of the coefficients will be computed later. However, we may at this stage compare the results
with known solutions for the uniformly stretched circle or ring obtained in another way. In such a
case U0 = 2µur(R) does not vanish and, for the full circle, ψ = 0, φ = a01z with

a01 =
2µ

(κ− 1)R
ur(R).
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For the ring we have φ = a1z, ψ = b−1
1
z where

a1 =
1

(κ− 1) + 2ε2
2µuR(1), b−1 = −

2ε2

(κ− 1) + 2ε2
2µuR(1).

After substitutions we obtain, in both cases, the same results as given in [8]. Similarly the comparison
with the solution for the ring with displacement conditions on both boundaries, obtained in [5] also
using complex method, confirms the correctness of the formulas.

There remains to compute the rest of the coefficients ak, bk for the case of the ring. Taking p =
−k, k = 2, 3, . . . in conditions on both boundaries gives the system

κa−(k−1)R
−(k−1) − (k + 1)āk+1R

k+1 − b̄k−1R
k−1 = U−k

−(k − 1)a−(k−1)ε
2 + āk+1ε

2(k+1) + b−(k+1) = 0,
(2.18)

while p = +k, k = 2, 3, . . . results in

κak+1R
k+1 + (k − 1)ā−(k−1)R

−(k−1) − b̄−(k+1)R
−(k+1) = Uk

(k + 1)ak+1ε
2(k+1) + ā−(k−1)ε

2 + bk−1ε
2k = 0

(2.19)

These systems may be represented in a recursive form, convenient for numerical computations and
further analysis. Namely,

[
Sk(ε)11 , Sk(ε)12
Sk(ε)21 , Sk(ε)22

] [
ak+1

bk−1

]
=

[
Uk

Ū−k

]
(2.20)

where the entries Sk(ε)ij are given by

Sk(ε)11 = κRk+1 − (k2 − 1)R1−kε2k + k2R−(k+1)ε2(k+1)

Sk(ε)12 = −(k − 1)(R1−kε2(k−1) −R−(k+1)ε2k)

Sk(ε)21 = −(k + 1)(Rk+1 + κR1−kε2k)

Sk(ε)22 = −Rk−1 − κR1−kε2(k−1)

as well as [
a−(k−1)

b−(k+1)

]
=

[
−(k + 1)ε2k , −ε2(k−1)

−k2ε2(k+1) , −(k − 1)ε2k

] [
āk+1

b̄k−1

]
, (2.21)

In fact the formulas (2.21), (2.20) are correct also for k = 0, 1 and in the limit ε −→ 0+, but the
derivation must separate these cases. Thus for, given k > 1 and using some initial ak, bk obtained
earlier, we may first compute ak+1, bk−1 using (2.20) and then a−(k−1), b−(k+1) from (2.21).

We may now use the above results for the asymptotic analysis of the solution. To simplify the
formulas, we assume R = 1, which means only re-scaling and does not diminish generality (in general
case ε would be replaced by ε/R). Then by direct computation we get the following bounds for the
differences between the coefficients on the full circle and the ring. For the initial values of k they read

d0 − d00 = −ε4
2

κ(κR4 + ε4)
Ū1

a1 − a01 = −ε2
2

(κ− 1)R((κ − 1)R2 + 2ε2)
ℜU0

a2 − a02 = −ε4
1

κR2(κR4 + ε4)
U1

(2.22)

and for higher values
|a3 − a03| ≤ Λ

(
|U2|ε

4 + |U−2|ε
2
)

(2.23)

and for k = 4, 5, . . .

|ak − a0k| ≤ Λ
(
|Uk−1|ε

3(k−1)/2 + |U1−k|ε
3(k−2)/2

)
(2.24)

where the exponent k/2 has been used to counteract the growth of k2 in terms like k2εk/2. Similarly

|b1 − b01| ≤ Λ
(
|U2|ε

4 + |U−2|ε
2
)

(2.25)



7

and for k = 2, 3, . . .

|bk − b0k| ≤ Λ
(
|Uk+1|ε

3(k+1)/2 + |U−(k+1)|ε
3k/2

)
(2.26)

From relation (2.21) we get another estimates

|a−k| ≤ Λε2k
(
|Uk+1|+ |U−(k+1)|

)
, k = 1, 2, . . .

|b−k| ≤ Λε2(k−1) (|Uk−1|+ |U1−k|) , k = 3, 4, . . .
(2.27)

Here Λ is a constant independent of ε and Ui. Observe that the corrections proportional to ε2 are
present only in a1, b1, a3, b−1, a−1. The rest is of the order at least O(ε3) (in fact O(ε4)).

The obtained estimates are now translated into the following theorem concerning the solution of
the elasticity system in the ring.

Theorem 3. If the nonhomogeneous Dirichlet boundary condition ϕ satisfies

‖ϕ‖H1/2(∂BR;R2) ≤ Λ0 ,

which in terms of the Fourier coefficients Ui means

k=+∞∑

k=−∞

√
1 + k2 |Uk|

2 ≤ Λ0 ,

then the elastic energy concentrated in the ring C(R, ε) = BR \ Bε splits into the energy of the disk,
the first correction term of order ε2 and the remainder, which is uniformly of the order Λ0ε

3.

Corollary 4. In the case of the regular perturbations of the disk by an elastic inclusion ωε of the size
ε → 0, and with the contrast parameter 0 < γ < ∞, the elastic energy splits into the energy of the
unperturbed disk, the first correction term of order ε2 and the remainder, which is uniformly of the
order Λ0ε

3. This means that the associated Steklov-Poincaré operator admits the asymptotic expansion

Aε = A+ ε2B + o(ε2) (2.28)

in the operator norm L(H1/2(∂BR;R
2);H−1/2(∂BR;R

2)), where ∂BR ≡ ΓR.

3. Problem Formulation

Now, we assume that Ω = ΩM ∪ Γ ∪ ΩP , where the mutually disjoints open domains ΩP and ΩM

have the common interface Γ, as shown in fig. 1. In our notation, ΩM and ΩP represent the regions
where mechanical and piezoelectric devices are located, respectively.

Figure 1. Piezo-elastic coupled problem.
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3.1. The mechanical model . We are interested in the following system



divσ(u) = 0 in ΩM

divS(w, q)
divφ(w, q)

=
=

0
0

}
in ΩP (3.1)

where the first equation describes the linear elasticity system and the second one is the coupled system
representing the electromechanical interaction phenomenon. The equations are coupled at interface
Γ. In particular, σ(u) is the mechanical stress tensor, S(w, q) is the electromechanical stress tensor
and φ(w, q) is the electric displacement. The constitutive laws describing the elastic behavior and
piezoelectric effects, both in the linearized case of small mechanical deformations and electric fields,
are 




σ(u) = C∇su ,
S(w, q) = A∇sw + P∇q ,
φ(w, q) = P T∇sw −K∇q ,

(3.2)

where u and w are the mechanical and electromechanical displacements, respectively, and q is the
electric potential. In addition, C and A are the elasticity fourth-order tensors respectively associated
to the elastic and electromechanical parts, P the piezoelectric coupling third-order tensor and K the
dielectric second-order tensor. As usual C, A and K satisfy the symmetry conditions Cijkl = Cjikl =
Cklij, Aijkl = Ajikl = Aklij, andKij = Kji, whereas P satisfies Pijk = Pjik. It is assumed for simplicity

that all constitutive tensors are piecewise constant, i.e., constant in each sub-domain ΩM and ΩP . In
the case of isotropic elasticity, the tensor C has the form

C = 2µII + λ(I ⊗ I) , (3.3)

where µ and λ are the Lame’s coefficients, I and II are the second and fourth orders identity tensors,
respectively. We complement the system (3.1) with the following boundary conditions

u = 0 on ΓD , σ(u)n = ku on Γ⋆ and

{
q = 0 on Γ0

q = q on Γ
, (3.4)

where Γ⋆, ΓD and Γ0 are parts of the boundary ∂Ω and n is the outward unit normal vector pointing
toward the exterior of Ω. If it is not specified, we consider homogeneous natural (Neumann) boundary
conditions of the form σ(u)n = 0, S(w, q)n = 0 and φ(w, q) · n = 0 on a part of ∂Ω. Finally, we
consider the following transmission conditions

{
u = w

σ(u)n = S(w, q)n
on Γ , (3.5)

where n is the unit normal vector pointing toward the exterior of ΩM . The variational formulation of
the above coupled system reads:

Problem 5. Find u ∈ V and q ∈ Q such that




∫

ΩM

σ(u) · ∇sη −

∫

Γ⋆

ku · η +

∫

ΩP

S(w, q) · ∇sη = 0 ∀η ∈ V ,
∫

ΩP

φ(w, q) · ∇ξ = 0 ∀ξ ∈ Q0 .
(3.6)

where u = u in ΩM and u = w in ΩP . The space V of displacements fields is defined as

V =
{
v ∈ H1(Ω;Rd) : v|ΓD

= 0
}
, (3.7)

while the electric potentials sets Q and Q0 are respectively defined as

Q =
{
q ∈ H1(ΩP ) : q|Γ = q, q|Γ0

= 0
}
, Q0 =

{
q ∈ H1(ΩP ) : q|∂ΩP = 0

}
. (3.8)

3.2. The shape functional . We are interested in minimization of the tracking-type shape functional

J(u) = −

∫

Γ⋆

u · e . (3.9)

where e is used to denote a given direction on the boundary Γ⋆ (see fig. 1).
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3.3. The adjoint state. We are going to evaluate the shape gradient of functional (3.9). For further
simplifications, we introduce an adjoint system of the form




divσ(ua) = 0 in ΩM

divSa(wa, qa)
divφa(wa, qa)

=
=

0
0

}
in ΩP , (3.10)

where σ(ua), Sa(wa, qa) and φa(wa, qa) respectively are the adjoints mechanical stress tensor, elec-
tromechanical stress tensor and electrical displacement, given by




σ(ua) = C∇sua ,
Sa(wa, qa) = A∇swa − P∇qa ,
φa(wa, qa) = −P T∇swa −K∇qa ,

(3.11)

where ua, wa and qa are the adjoint mechanical displacement, electromechanical displacement and
electric potential, respectively. The system (3.10) has the following boundary conditions

ua = 0 on ΓD and qa = 0 on ∂ΩP (3.12)

and the transmission conditions {
ua = wa

σ(ua)n = Sa(wa, qa)n
on Γ . (3.13)

Finally,
σ(ua)n = kua + e on Γ⋆ . (3.14)

The variational formulation of the coupled system for adjoint state equations reads:

Problem 6. Find ua ∈ V and qa ∈ Q0 such that




∫

ΩM

σ(ua) · ∇sη −

∫

Γ⋆

kua · η +

∫

ΩP

Sa(wa, qa) · ∇sη =

∫

Γ⋆

e · η ∀η ∈ V ,
∫

ΩP

φa(wa, qa) · ∇ξ = 0 ∀ξ ∈ Q0 ,
(3.15)

where ua = ua in ΩM and ua = wa in ΩP .

4. Topological Derivative

The topological derivative of functional (3.9) is evaluated for the insertion of a small inclusion in
ΩM with the material properties depending on the contrast. To describe the topological perturbation
of ΩM we introduce a piecewise constant function γε of the form

γε = γε(x) :=

{
1 if x ∈ ΩM \Bε

γ if x ∈ Bε
, (4.1)

where 0 < γ < ∞ is the contrast parameter of the material properties in matrix and inclusion, and
Bε(x̂) := {|x− x̂| < ε} for x̂ ∈ ΩM .

Figure 2. topologically perturbed domain by the nucleation of a small circular inclusion.

Note that in this case the topologies of the original and perturbed domains are preserved. However,
we are introducing a non-smooth perturbation in the coefficients of the differential operator through



10

the contrast γε, by changing the material property of the background in a small region Bε ⊂ ΩM .
Therefore, the sensitivity of the shape functional with respect to the nucleation of an inclusion can
also be studied through the topological asymptotic analysis concept.

The variational formulation associated to the perturbed coupled system reads:

Problem 7. Find uε ∈ V and qε ∈ Q such that




∫

ΩM

σε(uε) · ∇
sη −

∫

Γ⋆

kuε · η +

∫

ΩP

S(wε, qε) · ∇
sη = 0 ∀η ∈ V ,

∫

ΩP

φ(wε, qε) · ∇ξ = 0 ∀ξ ∈ Q0 ,
(4.2)

where σε(uε) = γεC∇suε. In addition, uε = uε in ΩM and uε = wε in ΩP .

4.1. Preliminaries. In the paper a coupled model is considered in the domain Ω := ΩM ∪ Γ ∪ ΩP ,
where ΩM , ΩP are the elastic and piezoelectric subdomains, and Γ stands for an interface, as shown
in fig. 1. The coupled system is well-posed, and can be written in the strong form as an abstract
equation for the unknown functions U := (u,w, q),

LU = F (4.3)

in the appropriate function spaces over the domain Ω. The weak form reads

L(U,Φ) = (F,Φ) , (4.4)

with the test functions Φ. The bilinear form associated with the elastic component of the coupled
model in the subdomain ΩM is simply given by standard expression of linear elasticity

(u, η) → a(ΩM ;u, η) :=

∫

ΩM

σ(u) · ∇sη (4.5)

in the unperturbed subdomain ΩM , as well as by

(u, η) → aε(Ω
M ;u, η) :=

∫

ΩM

σε(u) · ∇
sη (4.6)

in the perturbed subdomain by an inclusion or a cavity. Here ε → 0 is the parameter which governs
the size of the topological perturbation. In the latter case, the weak formulation of the coupled model
also depends on the parameter, and can be rewritten as follows

Lε(Uε,Φ) = (F,Φ) , (4.7)

or written in the strong form LεUε = F . The perturbed system is also well-posed for ε ∈ [0, ε0), with
ε0 > 0, i.e., the inverse operator is uniformly bounded: ‖Uε‖ ≤ C‖F‖ in appropriate norms. However,
in the case of a cavity the associated function spaces are obviously dependent on the perturbation, the
case of an inclusion is therefore the regular perturbation of the problem in the fixed function spaces
setting.

We proceed further with the domain decomposition technique in the subdomain ΩM := BR ∪ ΓR ∪
ΩM
R , where BR is the ball of radius R which contains the topological perturbation denoted by Bε,

ΓR ≡ ∂BR stands for the boundary of BR, and the remaining subdomain ΩM
R := ΩM \BR is far from

the singular topological domain perturbation.
Let uε denote the solution of coupled equations in the perturbed domain Ω i.e., including the

inclusion Bε. We are going to show, that the restriction of uε to the truncated domain solves a
boundary value problem with the nonlocal boundary conditions on ΓR defined by the Steklov-Poincaré
operator.

Since for all ε ∈ [0, ε0),

aε(Ω
M ;uε, η) = a(ΩM

R ;uε, η) + aε(BR;uε, η) (4.8)

and the last term is equivalent to the Steklov-Poincaré component by construction

aε(BR;uε, η) ≡ (Aε(uε), η)ΓR
. (4.9)
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Henceforth the bilinear form in the topologically perturbed domain ΩM can be replaced by the bilinear
form in the unperturbed domain ΩM

R , however with a nonlocal pseudo-differential operator

aε(Ω
M ;uε, η) = a(ΩM

R ;uε, η) + (Aε(uε), η)ΓR
. (4.10)

This replacement is in fact crucial for the proofs of topological differentiability for the shape functionals
defined for the coupled system. Actually, the asymptotic expansion of the solutions to the coupled
model in the truncated domain can be easily deduced from the well-posedness of the model. It means
that for the linear model, and the regular perturbations of the differential operator, the asymptotic
expansion of the Steklov-Poincaré operator

Aε = A+ f(ε)A′ +Rε(f(ε)) (4.11)

implies the asymptotic expansion of the solutions to the coupled model in the truncated domain
ΩM
R ∪ ΓR ∪ ΩP of the same form

Uε = U + f(ε)U ′ + Ũε , (4.12)

where Ũε is the remainder, namely ||Ũε|| = o(f(ε)) in appropriated norms.

4.2. Topological Asymptotic Expansion of the Steklov-Poincaré operator. The proposed
method of asymptotic analysis is employed now to the coupled system defined in ΩR. The dependence
of the model on the small parameter ε → 0 occurs in the nonlocal boundary conditions imposed on
ΓR. The variational form of (4.2) restricted to ΩR is obtained,





∫

ΩM\BR

σε(uε) · ∇
sη +

∫

∂BR

Aε(uε) · η −
∫

Γ⋆

kuε · η +

∫

ΩP

S(wε, qε) · ∇
sη = 0 ∀η ∈ V ,

∫

ΩP

φ(wε, qε) · ∇ξ = 0 ∀ξ ∈ Q0 ,

(4.13)

where BR = BR(x̂) is a ball of radius R and center at x̂ ∈ ΩM , as shown in fig 3.
The Steklov-Poincaré operator on the interior boundary ∂BR of the truncated domain ΩR

Aε : ϕ ∈ H1/2(∂BR;R
d) → σε(uε)n ∈ H−1/2(∂BR;R

d) , (4.14)

by construction coincides with the Dirichlet-to-Neumann map of the linear elasticity on the ball BR,




divσε(vε) = 0 in BR ,
σε(vε) = γεC∇svε ,

vε = ϕ on ∂BR ,
JvεK

Jσε(vε)Kn
=
=

0
0

}
on ∂Bε ,

(4.15)

with Aε(ϕ) = σε(vε)n, which assures the identity vε = uε|BR
in BR, where uε is the solution of the

perturbed problem in Ω.

Proposition 8. If the Steklov-Poincaré operator ϕ → Aε(ϕ) of problem (4.13) is the Dirichlet-to-
Neumann map defined by (4.15), then the solution to (4.13) coincides with the restriction to ΩR of
the solution to perturbed problem in Ω.

The identity for the energy functional of (4.15) holds

0 = −

∫

BR

divσε(vε) · vε =

∫

BR

σε(vε) · ∇
svε −

∫

∂BR

σε(vε)n · vε

=

∫

BR

σε(vε) · ∇
svε −

∫

∂BR

Aε(ϕ) · ϕ , (4.16)
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hence the elastic energy in BR equals to the energy of the Steklov-Poincaré operator on the boundary.
Thus we conclude that the asymptotic expansion of the Steklov-Poincaré operator on the common
boundary ∂BR equals to the asymptotic expansion of the elastic energy in the domain BR. Namely

∫

BR

σε(vε) · ∇
svε =

∫

∂BR

Aε(ϕ) · ϕ , (4.17)

for the mapping defined by (4.15)

ϕ ∈ H−1/2(∂BR;R
d) → σε(vε)n ∈ H−1/2(∂BR;R

d) . (4.18)

Since the operator Aε is symmetric, we can also write
∫

BR

σε(vε) · ∇
svε = 〈Aε(ϕ), ϕ〉(H−1/2×H1/2)(∂BR ;Rd) . (4.19)

It is well-know that the topological asymptotic expansion for the energy functional takes the following
form [12]: ∫

BR

σε(vε) · ∇
svε =

∫

BR

σ(v) · ∇sv + f(ε)Pγσ(v(x̂)) · ∇
sv(x̂) +R(f(ε)) , (4.20)

where v = u|BR
is the solution to the original (unperturbed) problem (3.6) and Pγ is the Pólya-

Szegö polarization tensor. According to [14] we have the following expansion of the Steklov-Poincaré
operator

Aε = A+ f(ε)B +Rε (4.21)

in the operator norm L(H1/2(∂BR;R
d);H−1/2(∂BR;R

d)). By symmetry of the operator, the expan-
sion of the energy functional can also be written as

〈Aε(ϕ), ϑ〉 = 〈A(ϕ), ϑ〉+ f(ε)〈B(ϕ), ϑ〉 + 〈Rε(ϕ), ϑ〉 , (4.22)

where 〈Rε(ϕ), ϑ〉 = R(f(ε)). Then, from the asymptotic expansion of the energy functional, we get

〈B(ϕ), ϑ〉 = Pγσ(ϕ(x̂)) · ∇
sϑ(x̂) ∀x̂ ∈ ΩM . (4.23)

Figure 3. Truncated domain.

4.3. Topological Asymptotic Expansion of the Solution. We consider the following ansätze for
the solutions uε, wε, qε to the topologically perturbed coupled system (4.2)

uε = u+ f(ε)g + ũε , (4.24)

wε = w + f(ε)h+ w̃ε , (4.25)

qε = q + f(ε)p+ q̃ε , (4.26)

where u,w, q are solutions to the original (unperturbed) coupled system (3.6), g, h, p are the first order
asymptotic correction terms and ũε, w̃ε, q̃ε are the remainders. Now, we plug these ansätze in (4.2)
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and collect the terms with the same powers of ε to obtain three boundary value problems. The first
problem for u, w and q





∫

ΩM\BR

σ(u) · ∇sη +

∫

∂BR

A(u) · η −
∫

Γ⋆

ku · η +

∫

ΩP

S(w, q) · ∇sη = 0 ∀η ∈ V ,
∫

ΩP

φ(w,q) · ∇ξ = 0 ∀ξ ∈ Q0 .

(4.27)

The second problem for g, h and p





∫

ΩM\BR

σ(g) · ∇sη +

∫

∂BR

(A(g) + B(u)) · η −
∫

Γ⋆

kg · η +

∫

ΩP

S(h, p) · ∇sη = 0 ∀η ∈ V ,
∫

ΩP

φ(h, p) · ∇ξ = 0 ∀ξ ∈ Q0 ,

(4.28)

and the third problem for the remainders ũε, w̃ε and q̃ε




∫

ΩM\BR

σε(ũε) · ∇
sη +

∫

∂BR

Aε(ũε) · η −
∫

Γ⋆

kũε · η +

∫

ΩP

S(w̃ε, q̃ε) · ∇
sη =

∫

∂BR

Fε · η ∀η ∈ V ,
∫

ΩP

φ(w̃ε, q̃ε) · ∇ξ = 0 ∀ξ ∈ Q0 ,

(4.29)

where the source Fε is given by

Fε = −(Rε(u) + f(ε)Rε(g) + f(ε)2B(g)) . (4.30)

The estimations ||ũε||H1(ΩM\BR;Rd) = o(f(ε)), ||w̃ε||H1(ΩP ;Rd) = o(f(ε)) and ||q̃ε||H1(ΩP ) = o(f(ε))

hold true for the remainders.

4.4. Topological Asymptotic Expansion of the Shape Functional. Now we are in position to
establish the asymptotic expansion of the functional and obtain its topological derivative.

After introducing the first ansätz in the shape functional associated to the perturbed problem, we
have

J(uε) = −

∫

Γ∗

(u+ f(ε)g + ũε) · e

= −

∫

Γ∗

u · e− f(ε)

∫

Γ∗

g · e−

∫

Γ∗

ũε · e

= J(u)− f(ε)

∫

Γ∗

g · e+R(f(ε)) . (4.31)

Now, let us rewrite the adjoint system (3.15) as





∫

ΩM\BR

σ(ua) · ∇sη +

∫

BR

A(ua) · η −
∫

Γ⋆

kua · η +

∫

ΩP

Sa(wa, qa) · ∇sη =

∫

Γ⋆

e · η ∀η ∈ V ,
∫

ΩP

φa(wa, qa) · ∇ξ = 0 ∀ξ ∈ Q0 .

(4.32)
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By taking g, h and p as the test functions in (4.32) we have the following equalities
∫

ΩM\BR

σ(ua) · ∇sg +

∫

BR

A(ua) · g −

∫

Γ⋆

kua · g +

∫

ΩP

A∇swa · ∇sh−

∫

ΩP

P∇qa · ∇sh =

∫

Γ⋆

e · g , (4.33)

−

∫

ΩP

P⊤∇swa · ∇p−

∫

ΩP

K∇qa · ∇p = 0 . (4.34)

On the other hand, by taking ua, wa and qa as the test functions in (4.28) we obtain
∫

ΩM\BR

σ(g) · ∇sua +

∫

BR

(A(g) + B(u)) · ua −

∫

Γ⋆

kg · ua +

∫

ΩP

A∇sh · ∇swa +

∫

ΩP

P∇p · ∇swa = 0 , (4.35)

∫

ΩP

P⊤∇sh · ∇qa −

∫

ΩP

K∇p · ∇qa = 0 . (4.36)

Combining the above equalities yields the following important result
∫

Γ⋆

e · g = −

∫

BR

B(u) · ua

= −〈B(u), ua〉(H−1/2×H1/2)(∂BR;Rd)

= −Pγσ(u(x̂)) · ∇
sua(x̂) , (4.37)

where we have considered the symmetry of the bilinear forms. Finally, the topological asymptotic
expansion of the shape functional leads to

J(uε) = J(u) + f(ε)Pγσ(u(x̂)) · ∇
sua(x̂) +R(f(ε)) . (4.38)

By assuming that the inclusion is far from the piezoelectric part, the topological derivative is given
by the following closed formula

T (x̂) = Pγσ(u(x̂)) · ∇
sua(x̂) ∀x̂ ∈ ΩM . (4.39)

Corollary 9. In two spatial dimensions, the function f(ε) = ε2 and the polarization tensor for
inclusions (0 < γ <∞) reads [12]

Pγ = π
1− γ

1 + γβ

(
(1 + β)II +

1

2
(α− β)

1− γ

1 + γα
I ⊗ I

)
. (4.40)

with the constants α and β given by

α =
λ+ µ

µ
and β =

λ+ 3µ

λ+ µ
. (4.41)

In three spatial dimensions, the function f(ε) = ε3 and the polarization tensor for holes (γ = 0) yields
[12]

P0 = 2π
1− ν

7− 5ν

(
10II −

1− 5ν

1− 2ν
I ⊗ I

)
, (4.42)

where ν is the Poisson ratio.

5. Conclusions

In the paper the topological derivatives of the tracking-type shape functional for the coupled models
of elasto-piezoelectric type are derived in two and three spatial dimensions. The associated shape
optimization problems are already analyzed from the point of view of shape optimization in the former
papers. In this paper the preceding results are completed by the topological sensitivity analysis.
The remarkable simplicity of the closed form sensitivity given by (4.39) is to be noted. In fact,
once the solutions u,w, q to the original (unperturbed) coupled system (3.6) have been obtained, the
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topological derivative T (x̂) can be evaluated for all x̂ ∈ ΩM . The information provided by T (x̂) can
be potentially used in a number of practical applications such as, for example, the shape-topological
design of microtools. In the forthcoming paper the theoretical results already derived are used in
numerical results and some results of computations are reported. The applications include the design
of elasto-piezoelectric devices with the prescribed mechanical behavior on a part of the boundary of
elastic body.
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