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In this work, two-phase parallel fiber-reinforced periodic piezoelectric composites are considered
wherein the constituents exhibit transverse isotropy and the cells have different configurations.
Mechanical imperfect contact at the interface of the composites is studied via linear spring model. The
statement of the problem for two phase piezoelectric composites with mechanical imperfect contact is
given. The local problems are formulated by means of the asymptotic homogenization method (AHM)
and their solutions are found using complex variable theory. Analytical formulae are obtained for the
effective properties of the composites with spring imperfect type of contact and different parallelogram
cells. Some numerical examples and comparisons with other theoretical results illustrate that the model
is efficient for the analysis of composites with presence of parallelogram cells and the aforementioned

imperfect contact.

1. Introduction

Nowadays, piezoelectric materials have a key role in manufac-
turing of sensors and actuators, which may be used for active
control of elastic deformations and vibrations of the structures.
These materials have a wide range of applications in science and
technology such as in ultrasonic transducers, sonar projects, and
under water acoustic.

In order to successfully integrate piezoelectric actuators into
structures, the physical nature of the interface condition between
the actuators and the base structure, and its effect on the induced
electro-mechanical field must be fully understood.

Some years ago, Hashin [1] using the generalized self-consistent
scheme studied the thermoelastic properties of unidirectional fiber
composites with imperfect interface conditions defined in terms of
linear relations between interface tractions and displacement
jumps. Besides, the asymptotic scheme for the analysis of dilute
elastic composites, which includes circular inclusions with imper-
fect bonding at the interface, is presented by Bigoni et al. [2]. The
interface, in this work, is characterized by a discontinuous displace-
ment field across it, linearly related to the tractions. Recently, an
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asymptotic approach for simulation of the imperfect interfacial
bonding in composite materials is proposed by Andrianov et al
[3] where a problem of the axial shear of elastic fibre-reinforced
composites with square and hexagonal arrays of cylindrical inclu-
sions is considered. The performed analysis is based on the
asymptotic homogenization method and the cell problem is solved
using the underlying principles of the boundary shape perturbation
technique. Moreover, the effective elastic moduli of composite
materials are investigated by Yanase and Ju [4] in the presence of
imperfect interfaces between the inclusions and the matrix. The
primary focus is on the spherical particle reinforced composites. By
admitting the displacement jumps at the particle-matrix interface,
the modified Eshelby inclusion problem is studied. Besides, Chen
et al. [5] studied a micromechanical method based on generalized
method of cells for investigating elastic and plastic response of
composites subjected to off-axis loading. To date, to the best of the
author’s knowledge, the problems associated with piezoelectric
materials and inhomogeneities with imperfect interface conditions
have not been reported intensively in the literature. For instance,
piezothermoelastic constitutive laws at a weak interface is analyzed
by Shu [6]; Shodja et al. [7] examine the electro-mechanical fields
for a circular anisotropic piezoelectric fiber sensor inside an
anisotropic piezoelectric or non-piezoelectric elastic matrix with
imperfect interface under remote in-plane uniform tension, among
other works.



Different authors are investigating the behavior of composites
with non-perfect bonding contact. Recently, an asymptotic study
of different types of imperfect interfaces arising in the problem of
conduction through a granular composite material was presented
in [8]. In Andrianov et al. [3], imperfection is considered by means
of a discontinuity of the displacement (spring model). However, it
may look natural that the mechanical weakening of the interface
(due to delamination, decohesion, etc.) should also induce the
decrease of the electric contact. For instance, in piezoelectric
material, due to their electro-mechanical coupling, there exist
induced electric charges when a mechanical loading is applied [9].
Although the electro-mechanical coupling exists, the mechanical
contribution is remarkable in the behavior of the composites. In
this sense, as a first approximation in the study of piezoelectric
composites under imperfect contact (mechanic and electric) we
assume only mechanical imperfect adherence.

The present work is motivated by the interest to study the
influence of imperfect contact over the effective piezoelectric
response when the composites have oblique fibrous orientation.
Composites with rhombus periodic cell are important since they
could describe monoclinic behavior of certain physical and biolo-
gical structures. This is an extension of previous results reported
by Bravo-Castillero et al. [10] and Sabina et al. [11] where perfect
contact for piezoelectric composites was considered. Moreover, in
this contribution other recent researches related to composites
with perfect contact conditions and parallelogram cells studied by
Guinovart-Diaz et al. [12,13] and Rodriguez-Ramos et al. [14] are
extended to composites with the same distribution of the periodic
cells but now with no-well bonding contact. The interface imper-
fection is posed on the mechanical fields only. The mechanical
behavior of imperfect interface is modeled via an idealization of a
layer of mechanical springs of zero thickness. The vanishing value
of K, and K;, K; corresponds to pure debonding (normal perfect
debonding), in-plane pure sliding, and out-of-plane pure sliding,
respectively. The status of the mechanical bonding is completely
determined by appropriate values of these constants. For large
enough values of the constants, the perfect bonding interface is
achieved. The spring approach is used for the calculation of the
piezoelectric effective coefficients in a composite with different
angular distribution of fibers. Using the two scale asymptotic
homogenization method the formulation of the local problems
for linear two phase piezoelectric composites with parallelogram
cell and mechanical imperfect contact conditions is given and the
solution of each plane local problems is found using the potential
methods of a complex variable and the properties of doubly
periodic Weierstrass elliptic functions. Besides, the complete set
of analytical expressions for the piezoelectric coefficients of a fiber
reinforced composite with circular cylindrical shape periodically
distributed in the matrix under linear spring imperfect contact
conditions are obtained via AHM. The study of such composites
with mechanic and electric coupled effect is an extension of
previous works considered by Molkov and Pobedria [15],
Rodriguez-Ramos et al. [16] and Lopez-Realpozo et al. [17] where
only the elastic properties of the composite with mechanical
imperfect contact were analyzed. In particular, the last two works
are referred only to antiplane elastic properties.

The heterogeneous problem formulation is presented in
Section 1 where the basic equations and the general statement
of the imperfect conditions are written. In Section 2 the two scale
asymptotic homogenization algorithm is developed and the state-
ment of the plane and antiplane local problems with mechanical
(spring) imperfect conditions are written. Solutions of each local
problem are given in Sections 3 and 4. Moreover, Section 5 is
devoted to present some important parameters used for evaluat-
ing the performance of 1-3 piezoelectric composites. In Section 6
validations of the present model and comparisons with other

theoretical and experimental approaches are shown as well as the
effect of the imperfect adherence in the ultrasonic transducers
applications. Finally, some conclusions are written.

2. Heterogeneous problem formulation

Consider piezoelectric materials that respond linearly to changes
in the mechanic and electric fields. A two-phase uniaxial reinforced
material is considered here in which fibers and matrix have homo-
geneous and transversely isotropic properties; the axis of transverse
symmetry coincides with the fiber direction, which is taken as the
Oxs-axis. The fiber cross-section is circular. Moreover, the fibers are
periodically distributed without overlapping in directions parallel to
the Owq- and Ow,-axis, where w1#0 and w,#0 (W,#iw;, 1€R) are
two complex numbers which define the parallelogram periodic cell
of the two-phase composite. Therefore the composite £ consists of a
parallelogram array of identical circular cylinders embedded in a
homogeneous medium (Fig. 1). The cylinders are infinitely long.

The response of the material at the microscale level is analyzed
using representative material elements (RME) or Representative Cell.
The fiber-reinforced material is assumed to have a periodic arrange-
ment of fine scale fibers embedded in a matrix. A sample RME is
shown in Fig. 2 where the appropriate periodic unit cell Y is taken as
a regular parallelogram in the y;y,-plane so that Y =Y;uY, with
YinY, =¢, the domain Y; is occupied by the matrix and its
complement Y5 a circle of radius R, is filled up with the fiber for a
piezoelectric composite with rectangle, rhombic and parallelogram
arrangements of unidirectional fibers. A local Cartesian coordinate
system y is introduced at the microscale and oriented such that the
ys-axis is aligned parallel to the axis of the fibers. The microscale
coordinates y of a point in the RME are related to the macroscale
coordinates X by y =x/e, where e<1. Beside the use of subscript,
matrix and fiber associated quantities are also referred below by
means of superscripts in brackets (1) and (2), respectively. Two-
phase composite is considered which comprises a matrix with
homogeneous properties given by the following moduli tensors:
elastic C{;), piezoelectric e{j) and dielectric permittivity «{’, in which
are embedded parallel circular cylindrical fibers with corresponding

homogeneous properties Cj), e and «{”.

To denote the dependence of a field variable on the macroscale
and microscale coordinates, the superscript ¢ is used, i.e.
F¢=F(X,y) where F¢ represents a scalar, vector or tensor field.
All field variables are assumed to depend on the coordinates of
both scales. For an arbitrary microstructure, material phases, and

therefore material properties such as elastic constants, are

Fig. 1. The heterogeneous medium and extracted the parallelogram periodic cell.
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Fig. 2. Different unit cells - rectangle, rhombic and parallelogram.

functions of the microscale coordinates y. In the following for-
mulation, indicial and direct notation will be used interchangeably.

The local governing mechanical and charge equilibrium equa-
tions in the absence of body forces and free charges are

=0, Diizo inQ (1)

Tiij
where the subscript comma denotes partial differentiation, of; are
the components of the Cauchy stress tensor and Dj are the
components of the electric displacement vector.

Using the conventional indicial notation in which repeated
subscripts are summed over the range of i,j,k,l=1,2,3, the con-
stitutive equations are
G'Z = Cijklngl_ekijEiv D: = eiklgil"_’(ikEi' (2)
where &, is the infinitesimal strain tensor and Ej, is the electric
field vector. The quantities Cy, ey, xj are components of the
elastic stiffness tensor, the piezoelectric tensor, and the dielectric
permittivity tensor, respectively.

The gradient equations, which involve the strain-displacement
equations and electric field-potential, are

.1 fouy  ouj X
£ _ , € _pE , 3
€kl 2 (ax, + an k ¢’k ( )

where uj, and ¢ are the mechanical displacement and the electric
potential, respectively.

The material constants are assumed to satisfy the symmetries
Cijkl = Cjikl = Cklijv €kij = Ckji,» Kik = Ki- In addition, the elasticity ten-
sor and the dielectric permittivity tensor are assumed to be
positive definite.

Substituting (2) and (3) into (1) we obtain a coupled system of
partial differential equations with coefficients rapidly oscillating

(CijaWty e j =0, WUy —xix(Y)d),i =0 in Q. 4

Eq. (4) represents a system of equations for finding u; and ¢. For
a complete solution, it is necessary to assign suitable boundary
conditions, for instance

° = do;

where I;, $; and ¢, are the prescribed displacement, force and
electric potential on the boundary of the composite, respectively.

The interface conditions are specified as follows. The inclusion
problems associated with piezocomposite materials, which have
been presented in the literature, are mainly concerned with
perfect interface condition; see for example, the works of Avella-
neda and Swart [18] and Gibiansky and Torquato [19]. In the case
of perfect bonding, the continuities of displacement, traction,
electric potential, and normal electric displacement are concerned.
Often, the above electro-mechanical interface conditions are not
realistic assumptions in modeling the actual physical problems. In
this section it is intended to analyze the behavior of a piezo-
composite under only mechanical imperfect contact. The mechan-
ical behavior of imperfect interface is modeled via an idealization
of a layer of mechanical springs of zero thickness. The spring

uf = fli; G'ijlj = Si; foll‘ =0 on 0%, (5)

constants are the measures for the magnitude of the associated
continuities. The vanishing value of K, and K;, K corresponds to
pure debonding (normal perfect debonding), in-plane pure sliding,
and out-of-plane pure sliding, respectively. The status of the
mechanical bonding is completely determined by appropriate
values of these constants. For large enough values of the constants,
the perfect bonding interface is achieved.

The spring stiffness matrix, the mechanic displacement and the
traction vectors using the vector notation are written as

Un Tn K. 0 O
u=|u |, T=(T |, K=| 0 K 0 |. (6)
U Ts 0 0 K

The effect of mechanical imperfection is incorporated through
the mechanical displacements jumps across the interface, while
the corresponding tractions, electric potential and normal electric
displacement remain continuous. Several examples addressing the
effect of electro-mechanical imperfections on the induced electro-
mechanical fields are thoroughly examined by Shodja et al. [9].
There are seven types of imperfections considered in Table 1 of the
work of Shodja et al. [9]. Mechanical partial debonding (type of
imperfection VII) listed in Table 1 is focused in the present work.
Hence, the mechanical imperfect condition considered in Shodja
et al. [7] and Hashin [1] may be expressed as

TO TP =0, TV =(-1y " 'K[u], [¢]=0, [Djn=0 on I. 7

In these relations [e] indicates the jump in the quantity at the
common interface I between the fiber and the matrix; n is the
outward unit normal on I'; uy, u, us are the normal and the two
tangential components of the mechanic displacement vector,
respectively; T,, T;, Ts are the normal and tangential components
of the traction vector T (T;=o;n;). The superscripts (y), y=1,2
denote the matrix and fiber respectively.

In order to study the imperfect contact conditions, the relations
between the displacement and traction vectors (6) are related to
their Cartesian representations by the following expressions:

Un cosp sing 0\ /U Tn cosp sing 0\ /T1
u | =| —sing cosp O u |, | Tc | =| —sing cosp O Ty |.
Us 0 0 1 us Ts 0 0 1 T3
3
Thus, the expression (7) on I', can be rewritten in the following
indicial form:
TV4+T® =0 on I, TY =(-1y*"RKu[ua], TV =(-17+"K[uf],
T = (=1Y*'K,[us] on I, [¢]=0, [Dn=0 on I. )

3. Two scales asymptotic formulation

The overall properties of the above periodic medium are sought
by means of the AHM in the same way as it is developed by
Bakhvalov and Panasenko [20] and Bensoussan et al. [21]. In this



section, the application of the general AHM method using the two
scale formulation for the electroelastic heterogeneous problem is
presented. As discussed earlier, field variables are assumed to
depend on both the macroscale coordinates x and microscale
coordinates y, and therefore, spatial derivatives of the field
variables are obtained by use of the chain rule and the relation
y=X/e as

0F _ 0F(xy) | 10F(xy)

o0X; o0X; e 0Y; (10

The AHM method assumes a two-scale asymptotic expansion
for the mechanical displacement and electric potential analogous
to Bravo-Castillero et al. [10] and Sabina et al. [11]:

w(x) =Xy +eu' Xy) + -,
#*X) =" XY +ed! (X Y)+ -, amn

where the superscripts on the field variables denote the different
orders in the asymptotic expansion and do not imply exponentia-
tion. Although v and ¢° depend on coordinates x and y, it has
been previously demonstrated that the lowest order terms u® and
#° depend only on the macroscale coordinates x and correspond to
the average macroscale values as ¢— 0. In other words,

limu = w’(xy) =Ux), lim ¢° =¢°xy) = Hx),

where U(x) and ¢(Xx) denote the average macroscale displacement
and electric potential, respectively. The average is considered in
the sense that any field variable ¢, which is a function of both the
macroscale and microscale coordinates, is integrated over the cell
domain to obtain the corresponding averaged field variable &
which is dependent only on the macroscale coordinates, i.e.
F=1/IY]) [, FdY.

As such, the first order terms eu'(x,y) and e¢!(x,y) represent
the microscale fluctuations in the mechanical displacement and
electric potential, respectively. The infinitesimal strains and elec-
tric field, which are obtained from (3) and (11) using (10), are
substituted into the constitutive equation (2) to obtain the
following expansions for the stress and electric displacement:

o =0J(xy)+0(e), Df=D{xy)+0(), (12)

where the zero order terms for the stress and electric displace-
ment are

o, ou) op o’
oJx.y) = Cijua *1( + *’: + €y +—

ax oy 0Xi ' Oyk
Oxv)— e Bk O\ 0  op!
Di (x,y) = ejx o + ay, ) Tk anJr e ) (13)

Since e<1, the microscale stress and electric displacement
correspond to the first order term in (12). Inserting (12) into the
mechanical and charge equilibrium equation (1), multiplying by e,
and taking the limit as e — 0 yields the following local equilibrium
equations:
da) aD?

, =0, 3, =0. (14)

To proceed with the asymptotic formulation, due to the
linearity of this problem and assuming regularity of both the
inclusions shapes and the smoothness of the coefficients, the
following decompositions are used for u'! and ¢!:

; B oup a¢°
u(xy)=,,M(y) E(X)ﬂ,l’(y) 07‘1()()v

oud 0
Py = qu(y>§Z<x>+pQ<y>‘;"7’q(x>, (15)

where the sets of pg-functions, ,;M(y) and ,,N(y), and p-functions,

*pq

»P(¥) and ,Q(y), depend only on y.They are microscale character-
istic functions that relate the macroscale strain and electric field to
the microscale fluctuations in the mechanical displacement and
electric potential. They are the unique periodic solution of the so-
called p,-local and ,-local problems, denoted by ,,L and I,
respectively, over the periodic unit cell Y, defined below.

The L problem seeks displacements ,,M,(y) and potential
paNep¥), In Yy, y=1.2, which are periodic functions of periods
wi =1, wy =be'®, b>0 is the modulus of this complex number
and are the solution of the following equations

a0ty =0 in Y,,
DYy =0inY, (16)

under imperfect mechanical and perfect electrical conditions

TV 45 TP =0, [(N1=0on I, T7 =(=17""Ka[,qM, ],
T =K pgM,], g T = (=17 7K [,M] on T,

[quﬁ]n(; = —[ef{p)q]ng on I. a7

To assure the solution of the ,,L problems is unique, the
functions also satisfy condition that {,;M) = (,,N)=0, where the
angular brackets define the volume average per unit length over
the unit periodic cell (Fy=1/|Y| [, F(y)dy.

Moreover,
» _ c» (r) (r) ()
pq%is _Ciﬁk/l qul<,z+eAi5 qu,/l ’
@) _ o) ) _ ) ()
qu§ =€, qum—Km qu,A- (18)

the comma notation denotes a partial derivative relative to the y,
component, i.e. Us=0U/dy,; the summation convention is also
understood for Greek indices, which run from 1 to 2; no summa-
tion is carried out over upper case indices, whether Latin on Greek.
The functions ,,M,, ,,M_, ,,M, are the two tangential and normal
components of the vector M whereas qut, quS, qun, are the two
tangential and normal components of the traction vector
pal; = (pq0ij+Cippg)nj associated to the local problem ,.L. The
symmetry between the indices p and q shows right away that at
most six problems needs to be considered.

In similar manner the ,I problem is stated as follows: the
displacements ,P,(y) and potential ,Q,(y) are sought in Y,
y=1,2, which are periodic functions of periods w;=1,
wy =be® b is the modulus of this complex number and that
satisfy following equations:

pdgg?ﬁ =0 in Y;,,
oD =0 inY,, (19)

and the above mentioned interface conditions adapted to this
problem

1 2 (7) 1
MU+, TP =0, [,Q1=0, on 1, T =(=1y""Ka[,P, ],

pT = RP L T = (1RGP, on I, [,D,In; =[xIns, on T,

(20)

b

where the functions oPp pPy pP, are the two tangential and
normal components of the vector ,P whereas T, ,Ts, pTy, are
the tangential and normal components of the traction vector
pl; = (oij+epyn; associated to the local problem ,I and
(P)=(,Q) = 0,for the uniqueness of the solution. Furthermore,
0 =

(7) (r) )
pis iska PPk,/1+e/1i5 pQ. ’
@) _ o) ) _ ) (2]
pDs” = €5 pPra—rs pQJ - @h
Also the non-homogeneous ,I problems will cooperate towards
the homogenized moduli.

The local equilibrium equation (14) are multiplied by test
functions v;(y) and w(y), respectively, and integrated over the



RME domain Y to obtain the weak forms of the mechanical and
charge equilibrium equations:

/ ggv‘dy 0, /DO—dY 0. 22)

Inserting (15) into (13) and the result into (22), and requiring
that the equation hold for arbitrary oub/ax, and a¢° /ox, results in
the following weak form equations for the characteristic functions,
the sets of pg-functions ,,M(y) and ,,N(y), and p-functions, ,P(y)
and ,Q(y),

0. 1\/1 0 N ov;: ov;
Ciy P9k _ ) td / Ciing —-dY,
/y< gy ok ay ; pd gy,
0 Q appk aVl' 6v1
/(eky Wi —Cj; ) >a—yde / qii %, —dyY,
ad,,M a N ow
P9 Tk . Y = 27 dy
/y<e"" YRR ) ayld /ye"“’ av, 2

9,Q 9P, ow
/Y(K”‘ oy, Mgy, ) 9= /yK""a_y.'dY' @3)

Eq. (23) represents a system of partial differential equations
that must be solved to obtain the microscale characteristic func-
tions , M(y), ,(N(¥), ,P(¥) and ,Q(y). The characteristic functions
are subject to periodic boundary conditions over the RME domain
Y in analogous form to Pobedria [22].

The constitutive relations of the linear piezoelectric theory for a
heterogeneous and periodic medium, £, is characterized by the
Y-periodic functions C(y), e(y), x(y). The original constitutive
relations with rapidly oscillating material coefficients are trans-
formed in new physical relations with constant coefficients C*, e*,
x* which represent the elastic, piezoelectric and permittivity
properties, respectively of an equivalent homogeneous medium
and are called the effective coefficients of 2. Therefore, the system
(4) can be transformed into equivalent system with constant
coefficients which represent the overall properties of the
composite.

The main problem to obtain such average formulae is to find
the Y-periodic solutions of nine ,,L, I (p,q=1,2,3) local problems
on Y in terms of the fast variable y as it was reported by Bravo-
Castillero et al. [10] and Sabina et al. [11] based on the mathema-
tical statement of both problems.

Once the local problems are solved, the homogenized moduli
€fij» Ki May be determined by using the following formulae:

sk

Ciipg»
—(Cs ) B *

Ciipg = (Ciipg+Cijta pgMi1+exj pgNi)r €y

€5 = {epij+ Cijkt pPri+ewj pQi),

= (eipq +€ikl quk.I_Kik qu,k>-
K3y = (kip=e€ikt pPrei+xik pQ )
(24)

Finally, the homogenized boundary value problem associated
with (4)-(5) has the form

0 on 09,
(25)

where the corresponding macroscale constitutive equations are

—0 — . 0 <. —0 . =0
a,jro D ;=01in Q, u; =u; o-,-jnj:S,-, ¢ =¢o; Dini=

=0 % 2,0 #x 40
7y = Ciup  +etid%  Di = efup —<5d5% (26)

Here u?(x) = (u;(x,y)) is the averaged displacement vector and
¢ (X) = {p(X,y)) the averaged electric potential.

Each local problem (16) and (17) and (19) and (20) (p,q=1,2,3)
uncouples into two sets of equations. The plane and antiplane-
strain systems of equations which correspond to five plane-strain
local problems L, ;,L, 3/ and fourth antiplane-strain one
13L, 23L, 11, ,1. Table 1 shows the correspondence between the
effective properties and the local problems. The global behavior of
the piezoelectric composite is related to the class symmetry
monoclinic 2, see details in Royer and Dieulesaint [23], which

Table 1
Effective properties related to the local problems.

nl »L 33l sl 13l 12l 1l ol 3l
3 i i sk Sk
G Gz Ciiss 0 0 Chiz 0 0 e
3 d i d ok
Con Com Coo33 0 0 Coonz 0 0 €32
o e i oy
Gsn Gz G333 0 0 Ci312 0 0 [
£ ok
o323 a3 0 €132 €32 0
0 0 0 Clzs Clais 0 el €33 0
3 e i e
Chant Cian Cias3 0 0 Chiz 0 0 €%
0 0 €23 i3 0 KT K12 0
o ke £ S
0 0 0 €323 €13 0 K12 K22 0
ko £ o o
€311 €32 €333 0 0 €312 0 0 K33

contain 13 elastic, 8 piezoelectric and 4 dielectric independent
coefficients.

The local-value problems set up in (16) and (17), (19) and (20)
have been solved in the present work using the methods of a
complex variable and the properties of doubly periodic elliptic and
related functions with periods w; and w, as it is reported by
Bravo-Castillero et al. [10] and Sabina et al. [11]. Taking into
account that the rate of debonding would depend not only upon
the debonding parameters, but also upon the elastic moduli of the
components and the fiber volume fraction [1] in the solution of
these problems the following relations are used K[_K[CEQ/R
Kn=KaC)/R, Ks = KsC'}) /R where KK, and K, are dimensionless
parameters.

4. Solution of antiplane problems

Now, the problem ;L is explained in detail from the set of
antiplane problems (5L, 5L, {I, ,I. From now on, the preindices
are not used and the effective properties are denoted with the
short notation. The determination of the shear piezoelectric
effective properties, denoted by Cj,, Cjs, Cis, (shear moduli),
e¥s, ei,, e3,, (shear stress piezoelectric coefficient) and «%,,
K%, k3,, (transverse permittivity constant) is the main aim of this
part where the constituents of each phase of the composite are of
class 6 mm and the short indicial notation is used. In this case the
relevant constitutive relations are

023 = 2Caae23—€15E7, 013 =2Cy4e13—€15E7,
D1 =2ei5e23 +x11E1, D2 =2e1513+k11E>. (27)

The displacement M=,;M and potential N=,3N, which appear
in (24), are the unique solution of the above mentioned local
problem ;L. In this case Eq. (16) yields

AM? =0, ANP =0 inY, (28)

where A is the two-dimensional Laplacian and the contact condi-
tions (17) on I" are written in the form

TO+T®=0o0n I, [N|I=0, l(e;sMs—x11Ns)nsll=—lletsling on I,
(COMD +eINDns+Chny = (=17 'K CRIMIIR™ on T
(29

Eq. (24) are transformed to area integrals applying Green’s
theorem. The doubly periodic boundary conditions on Y and the
continuity of displacement and potential on I" leads to

Chs—iChs = (Cs5)+(=1) =33 < /M‘V‘dy2+lM(/’dy1+( 1y == at /N(”dy2+1N'”dy1

ef5—iel, = <815>+(—1)’%5 /r MYdy, +iMPdy, +(—1)’% /r N©dy, +iN"dy,
(30)

where summation convention is understood for y, which run from
1to 2.



Methods of potential theory are used to solve (29). Doubly
periodic harmonic functions are to be found in terms of the
following Laurent and Taylor expansions of harmonic functions:

z ) R p o ) Z\P
M(1)(Z)=R9{Rao+ > 0<—> w+ X’ Y O(E) "Ikpak}v
p=1 k=1 p=1

z

a _ E 0 5 p X0 E D .
N (z)_Re{Rboqugj1 <z> b+ ¥ 21 (R) b ¢, Yy

k=1 p=
X Z\P ® P | .
M‘z)(z)zRe{p§1°cp (§> } N‘Z)(z)zRe{p§1 Odp (§> },m Y,
(31)
where
k=D & 1 s o
Nkl = WR m;_wn:_wm, m-+n“#0, k+I1>2

and a,,by,cn,d, are real undetermined coefficients; wq, w,, are the
periods of the parallelogram array, respectively (see Fig. 2). The
superscript “o” next to the summation symbol means that “p” runs
only over odd integers so that each term in (31) has the same anti-
symmetry property as M” and N, namely, M?(-z) = -M?(z),
N®(=z) = —N"(z) (see more details in the works Bravo-Castillero
et al. [10] and Sabina et al. [11]).

The line integrals in (30) and the assumed expansions (31)
produce a very simple result as a consequence of the orthogonality
of the trigonometric functions, namely

/M(]’dX2+l'M(“dX1=ﬂR a1 +ao+ ¥ M |,
Jr k=1

/ NOdx, +iNVdx; = 2R [ By +bo+ S mie b |
r k=1

/ M@ dx, +iM®dx; = zRe;, / N@dx, +iIN@dx; = zRd;.  (32)
Jr JI

Replacing (32) into Eq. (30) and taking into consideration the
imperfect contact condition (29) we obtain the final expression of
the effective coefficients,

Cis—iChs = CS0(1-2Vo0T1y), ets—iety =/ CSor N (ED -2V, 1T51),
(33)

where

My =0 +Eby, I3y =Ea-by, EV =e{l/\/CLKY],

the overbar denotes complex conjugate numbers, the fiber volume
fraction is V, = zR?/V, V = |w;||w,|sind denotes the area of peri-
odic cell. The unknown constants a;, by are solutions of the infinite
systems related to the local problems 3L, in which only the
residue of M® and N contributes towards Cis, Cis and
e%s, ef,. Thus, expressions for a;, by are now sought from the
system of infinite equations

M xD=U, (39

where the vector DT = (x1,X3,X3,X4) contains the real and imaginary
parts of the unknowns a; = x; +ix,, by =x3+ix4 and the vector
is given by UT = R(f51,0,841,0). The super index T denotes trans-
pose and the 4 x 4-order matrix m(my) is defined by the following
matrix form,

M:IC—%—Rzg—n]P’lnz, 35)

fn 0 ann O
0 fn1 0 an

K=
Pzi 0 a3 O
0 f31 0 a3
P hi14-h1z ha1—-ha; a hi14+hiz  hy—ha
2 —(hy1+h) hi—hya 21 (ha1+h2) hi—hp
I= P hi14hqz ha1—-ha; " hi14+hq2 ha1-ha;
41 —(hy1+hy) hii—hy 4 _(hy1+ha) hip—hya
with

51 Wy —35,W S WHr =5 W
hyy = me{i} hi :me{f}
WiWr—=Wrwq WiWr—-Wrwq

51 Wy —6,W 51Wy—6,W
h21:Sm % ,h22:5m % )
WiWy—WoWq WiWr—WrWq

8, =2{(w,/2), {(2)

is the Zeta quasi-periodic Weierstrass function defined as

1 ® 1 1 z
Z)=—+ + + =1, T, = MmMwq +nw:
{2 z mz:,q Z—Tmn Ton T;ﬂ) mn 1 2

and the prime over the summation symbol means that the pair (m,
n)=(0, 0) is excluded. The Legendre’s relationship links §;, 5, and
the periods wy, w; : §;w,—8,w; = zi. The Laurent series expansion
of ¢ is ((2)=(1/2)-X_,c(z*1/2k-1), where ¢;=0, ;=3
Sa, €3 =>5Sg and ¢, = (3/k+1)(k-3))YK2 ,cmCr_m, k>4. The lat-
tice S is defined by Sy= Yma(mw;+nwy)™*, m2+n2£0, k> 2,
S, =0. In particular S4 and Sg used in the numerical implementa-
tion are reported in Table 1 of Chih-Bing [24] for parallelogram and

rhombic cells respectively.
The matrices n;, P and n, are of infinite order and for the
numerical implementation it is necessary to truncate to certain
P11 ... Pm

order neN. The matrix P = ( : : ) is composed of sub-
Pmi o Pun /) gnsan

matrices (Pis) 4.4, defined by Prs = 6¢sK + 25,

P12 0 a1 241 0
0 P12e41 0
B3at+1 0 a3 241
0 P3ae41 0

a1 2t+1
O ’

a3 2t+1

K=

5 Wi2t4125+1  “W22t4125+1 Wi2e+125+1  "W22t4125+1
22641 a2 2t+1
U Waoritas01 Wiaes1 2541 “Wa2t12s41 “W12t412541
2ts =
s Wi2t4125+41  “W22t41 2541 Wi2e+125+1  "W22e4125+1
42641 as a1
“Waarr12s+1 "Wi2t4125+1 “Wa2rr12s41 "Wi12t4125+1

Wlkp = ?Re(wkp), W2kp = Sm(wkp)‘
are the real and imaginary parts of the complex number

_ (k+p-1)! R B B B
Wkp_mﬁSker' k=2t-1, p=2s-1, ts=1,2,3....

Ma
The matrices ny = (N4, - Nan)ana, and nz=< ; ) are
s/ anx4

composed of sub-matrices (ng)s and (Ng)s.s defined by
Nge=224+11, MNea=212041 Tespectively. The magnitudes
Pips Bap» Paps Bap» 1p, aop, azp, agp are given as follows,

EV— B (1K' p)

-1
ﬁ1p=1, /’)Zp:%- ﬂ3p:1, ﬂ4p:m,
arp = S G, oy = B P~

1+x,(1+K5 p) 1+4,(1+K5 p)
1+ pyrrEVEPK 1 14 prrEVEDKG 1y
a3p = agp =

E(1)+ ,——lpZtE(Z)(l_'_Ks—lp) ’
(36)

EV+ B +K;'p)



where
2) /(1 1
Xp :CEM)/CQA),)([ =K1 )/K( ).

The limit case of perfect contact condition for piezoelectric
antiplane problem is derived as a particular case of (34)-(36) as
Ks— co. In this case, the parameters a;, b; are the same that
formula (3.25) page 1475 reported by Bravo-Castillero et al. [10].
The infinite system (34)-(36) is used such that it is truncated for
obtaining an n x n order system. It is interesting to note that the
effective properties are monotonic function of order n of the
solution of the system. The numerical results converge well to
the exact solutions when an adequate order in the solution of the
system is chosen as n increase. The truncation order for solving the
system increases as the parameters K, y* and the fiber volume
fraction are high. In the numerical examples the solutions are
given for n=10, because this order of n achieves the require
accuracy for the parameters used.

The remaining antiplane problems »sL, ./ (a=1,2) can be solved
in analogous form to the aforementioned problem. As a summary,
all the effective coefficients derived from the antiplane set of local
problems can be listed as follows:

Ci5—iCls = C59(1-2V2Hn),
Chs—iChy = —CU(i+2VHi),

els—iely = 5315) "(111)(E 2VaHn),

el —ies, = —/ COkl VE+ 2V, Hyp),

K —ixt, = K(lll)(l +2V,Hzy),

Ky =iy = =) (i-2V,H31) 37)
where

Hla = a](af}) +Eb1(a3)v HZa = E_l(a3)_b1(a3)v
N 1 1 (1
Hi,=Etio~biw,  E=e€3//Ci3xi,

the over bar denotes complex conjugate numbers and ay,3), b1(43),
a1 and by, are solution of the infinite systems related to the
local problems 13L, 3L, 1I and >l

5. Solution of plane local problems

Now, the problem 44 is considered. We can obtain from (18)
the constitutive equations for the plane piezoelectric problem

o11=C11 pM11+Cr2 jMs 5,
012 = C66(/1/1M1,2 +/1/1M2,1 )

022 =C12 psM11+Cr1 5 My,
D3 =e15 ppMi1+€24 ppMa . (38)

The system of equations related to this plane problem is
decoupled into two pure elastic equations o111+0122=
0, 012,1+0222=0, and one electric equation D3;;+D3;,=0 with
the same unknown functions ;My, 5;M-. The g8 pre-subindices are
dropped from all relevant quantities. Therefore, we only need to
find the solution of the same problem derived from plane
elasticity equations with imperfect contact condition

ons=0inY, TP+T?=0 T"+T®=0onr,

aoa_
T = (=1 T CEKalMallR™", T = (=17 "' CK IMIR™ on 1.
(39)

Now, the idea consists to rewrite the mathematical formulation
of imperfect contact given by (39) in terms of the potential
functions ¢,, y,.

The methods of a complex variable z in terms of two harmonic
functions and the Kolosov-Muskhelishvili complex potentials are
applicable. The potentials are related to the displacement and

stress components by means of the formulae

200U? +iuf)) = 4 (/JV(Z)—ZJ(Z)—VTy(Z)-

o)+ =209 @)+, @),

oh—a\) +2i07) = 220! @)+ (@), (40)
and y» =3-40, ) =) /(CY) +C) is the transverse Poisson's
ratio. The prime denotes a derivative with respect to z. The

representation of the complex potentials ¢,, y, of periods w, is
given in the form

a S S _
¢1(@)=pz+c@Ra+ ¥ Ry 3 @)™,
k=3 m,n

v1(2)= Tho+<@Rby +Q@Ra; + 3 * [R“bk 3 @)+ KR X P @)™
k=3 mn mn

© . /Z ® /2

n@= 3 *(g) % vo= X *(g) de 1)
where the coefficients ag, bg, ax, by cx d, are complex numbers
and undetermined, Q(z) is Natanzon's function, fpy,,=mw;+nws,
wi=1, w,=Re” for m,nez, the asterisk on the sigma symbol
means that the double summation excludes the term m=n=0.
The double periodicity and quasi-periodicity of these functions
leads to

bo = [A2 V@ +Asa1-A1 D1]R?,
(42)

2 Vag—tdo = (~AyVay +Aa; +AD1)R?,

where
W162—W56q
Wiwy—Wi Wy’

P.=2Q (%)W (). p@=—-C@.

Using the simple action-reaction principle given by the second
and third equation (39) and after some algebraic manipulations of
the formulae Kolosov-Muskhelishvili (40) and the series expan-
sion of the potential functions (41) we can obtain the following
relations between the unknown constants of the above expan-
sions:
b= 2w R+ T o f-gRe, 43)

k=1

_ W162—W2 681

W1P,-W;Py
Wiwy—Wi Wy’ B

A] = — T —
WiWr—W1W>

D, B, & _
bpia= [p—E—pKnKt)(m(K] +])] ap— [1 + E—pKnKt;(m(K] +D| Y Tk py 20k
P p k=1

(44)
—-C{ A1R*a;-C7AR*T,
1 "_ClJr i 0’7k1 a
- 4
= 2t D) . k=1 p . @
+Cr 5 omad+ (424120 )Ry
KnKoym(c1+1) x
o2 ==L D D7, 8y F one, 200 (46)
K =
dp = KnKeym(e1 +1) —ap+ Z ’7kp+2ak>
P
Co(Kn—Ko)ysi—An(K. 1< 4+ KnK(Cpy1i
n p(Kn—K¢)y3j—Ap( E+ t)731+ nKt p}’u){mR(s]pv 47)
P
where
_ szm 1 _ 1-x2 +xmk1-1) 2Ym
B= (] Am™ @) C=B 2a0 t aokn’

p_ B(Kz—l 4;(m(1 +Ya5/72p)

C
+ __ —
2a0 ZaoK, >, C1 =1+4+x; i){m(1+K1)+2ﬂoB,



_ 2 4\ [Re(A2)R* 1
a0 = [1-RetA] + (i1 G ) [ RN 2,
+1)Re{A;}R? .
fo = K2t DREAIRT

SMiAL R + M,
K]—1 2

Re{z} and Im{z} denote real and imaginary part of complex
number z. Then,

Ag :)(mK1+]_

2Dxm 2(p+2m &
Kn Kn E,’

Ap = (P+2)(KnKe(1—xm) +p(Kn—Ko)ym+ Kn+Keyym),
Bp = KeKn(1—xm) +P(Kn—Ko)xm,

Cp = KnK (2 +m) + 0+ 2)m(Kn + Ko)p + Kn=Ko),
Dy = pym(Kn+Ky), Ep = ApDp—CBy,

+KnK ey m(x1 + ])<K2 +Xm—

Sy is the Kronecker's delta function, C; is the binomial
coefficient, V; and V, are the area of the matrix and fiber
respectively, V;+V,=1. The parameters involved in this expres-
sion are defined as follows:

k PW1+qW;
=/ Wiy Tapr=Y— T2
o \/;Wkp A IJZJ:I(I?W1+‘JW2)"+k+1

The above expressions (43)-(47) depend on the unknown
parameter a, which can be calculated from the following system
of algebraic equations:

p*+q?#0, p,g-integer numbers.

ap +Hlpal +H2pa1 + Z Wkpak+ Z Mkpak :HBpRVZjv (48)
k=1 k=1

where p=1,3,5,...,

Hip = BAyy VR?51p—(711,~A1R281p)R*A1 C, Hap = BA3R251p—(171,~A1 R281,)R?A; C,

Mkp = Bka_BDgﬁkJer +(ﬁ]p_/q1 Rzﬁlp)cﬁkl +BB(A2)_1ﬁkp+2v
Wip = —BCErkp +(Tp—A R%815)Criit,

_ = 17 2 17
H3p:(’11p_A1R251p)P+ﬂ(AO) 1 315 - (1_ ){mP>(Ao) 171 5117'

2m BP
ﬁ(p—l—Z)) Fp ,

D
KuKiym(1 +;<1) —"

B) = ym(x1+1) {1 +KnK; <K2 +X¥m—
0 B, o
Cp =1 —I—KnK[;(m(l —I—Kl)f, Dp =

Tkp = Z MkiMMip» ka—(p+2)’7k(p+2)+k'7k+2p+kR Pk p+kTp+k~
(49)

Eq. (48) represents an infinite linear system from which we can
calculate coefficients a, as it is done for example by Rodriguez-
[25] being 2y1(f) = Cy)—~C)+CH~CY, Tiyr=
Z BB mn k-I-1 for k+I>3 and &, denotes delta Kronecker’s symbol.

Ramos et al.

From the solution of the in-plane local problems gL, 1oL and 3l
the coefficients C};, Ci,, Ci3, iy, Chs Cis, Cigr Cigr Cogo
Cie, €%, €%, €%y, els, K%, are derived. The closed form formulae
of the effective coefficients can be listed as follows:

Elastic

Ci =(C11)-V, ” ” — Re{xyA1—41}— V2||k||(x1+1)§Re{R”k”}+V2||m||
12V, kll”llé” <2 nRe(a) + |I> (50)

= €V I ey, + Ve + D2 -vam)
+2V2,r<1;1“11§!1| (2 ”‘E{“z}ﬂ{;zn) GD

CT3:(C13)—V2”1<%?3”916{K As—A3}— v2||c13||(;qJrl)sne{R”C13 ”}

killCasll ?
+2V, ik, 2ymRe{ds}+ iCoal (52)
G5y =(Ci1)- V2ume{KzAz—Alz}+V2||kll(K1 +])9{e{RC|l|112“}+V2||mII
kq ||k||
+2Var e (2 Re(ay)}+ ”k”> (53)
" IKIICa3l
G35 =(C13)-V2 TWC{KZM 43}+V2||C13||(K1+1)?RE{R”C ”}
ki lICsll ?
+2V2W 2y mRef{As}+ ICssl] (54)
C _
(33 =(C33)-V3 (01 13” Re(xyA3-Asz}
C(“ncnn c?
+2V, 13220 2y RefAs) + 55
2" mKn AR TeoY (53)
ss—cgs) Valim|l(xq +1)Sm{ay )}, (56)
1=V ! 1 7
Al <||~sm{(m+ ) R”k”] 57)
Ciy =Vallk \sm{ ] 58
62 = Vallkll R||k|| (58)
C§3:V2||C13||3m[(K1+]) 13 } (59)
R|ICsll
Piezoelectric
o
e} =<e31>—v2Mme{K241 Aq}+2V, ” I (2 nRefd )+ ky ) (60)
my (Il
e5, =(es1)-V> Ukillesn | Refxydy—42}+2V, 831 ”k” (2 mRe{dz}+ ks ) 61
my [Iell
C e _
et = (ex3)—V I lllenl] ”rﬂl'l' 31 pe(pa5-25)
(1) (2)
e3q 13l €5
2V, 320 2ymRe{a 62
T K, st e 62)
millle - limjlety
e§5=—V2WWG{K2412—412}+4)(,HV2 1 Re(drp), (63)
1 m K,

where 45 = ¢1/(Rymy2s), 15 denotes the residue a; of the function
¢1(2) in (41) for each problem (L. Analogously, the magnitude
ai 12y denotes the residue a; of the function ¢,(z) for the local
plane problem L;,, where the system (48) and the expressions (49)
are the same with the only different expression Hs(h,) =1 Eé&q,.
Moreover, A1 = ¢1/(2Ry).

The local problem ;I is solved analogously to the problem Lg;
and we omit the steps for the solution, only we present the
analytic expression of the dielectric permittivity effective coeffi-
cient «%, in order to characterize completely the composite

Dielectric permittivity

K3 = (k33)+ V3 lle 31” 1L Refx,dA—A}+2V,

(2)
1||€31|| 2% e3
mRe{A}+
MKy At s

(64)
and A =c1/(Rymlles ).

6. Analysis of the numerical results. Validation of the model

To illustrate how the composite material parameters vary with
imperfect interfacial parameters and volume fraction of



piezoelectric ceramic, the material parameters of PZT-7A, BaTiO3
and Araldite D are used. They are listed in Table 2.

Moreover, as it was stated aforementioned in the calculations
by AHM, the following relations are used: K.=K.Cy)/R,
Kn=KnCY/R, Ks=KCy)/RwhereK;, K, and K; are dimension-
less imperfect parameters.

As a validation of the present model derived using AHM, in
Table 3 a comparison between the model by AHM with the model
by FEM reported by Kar-Gupta and Venkatesh [26] for 1-3 piezo-
composite system under perfect contact with square-cell distribu-
tion and individual constituent phases BaTiOs; matrix and PZT-7A
fiber of hexagonal 6 mm symmetry is presented. The calculations
were made for fiber volume fraction V, =0.7. Notice a good
concordance between both models.

Some numerical calculations are shown in Table 4 in order to
illustrate the influence of imperfect adhesion in the behavior of
the 1-3 piezocomposite with square and hexagonal cells distribu-
tion and individual constituent phases BaTiOs; matrix and PZT-7A
fiber. Two different mechanical imperfect parameters are consid-
ered K =5 (imperfect contact) and K = 10'? (perfect contact) for
two different configuration of the cells and V, = 0.6. The case of
imperfect contact, where the rigidity of the interface is softening,
the effective moduli decrease because the imperfection makes
weaker the interaction between fiber and matrix. This situation is
simulating an augment of the porosity in the composite. On the
other hand, the configuration of the unit cell does not influence
upon the numerical values of the effective properties because the
global behavior of the composites with hexagonal or square cell is
transversely isotropic material as it was shown in Bravo-Castillero
et al. [10] and Sabina et al. [11]. This is different from other
configuration of the cells where the symmetry of the global
behavior of composite is tetragonal as it was studied in
Rodriguez-Ramos et al. [14]. Other possible cause of this fact is
the low contrast of the properties between matrix and fibers.

As another validation a comparison between the present model
for perfect contact with EEVM reported in Guinovart-Diaz et al.
[13] and Yan et al. [28] for a two-phase PZT/Epoxy composite for
four different configuration of basic cell arrangements
(6 =45° 60°, 75° 90°) is shown in Table 5. The used constitu-
ents properties are listed in Table 1 of Yan et al. [28] and the
calculations were made for fiber volume fraction V, = 0.6. In this
example, where the contrast between matrix and fibers is high,

Table 2
Electroelastic material constants.

BaTiO3 matrix PZT-7A fiber PZT-7A fiber Araldite D matrix

Kar-Gupta [26] Kar-Gupta [26] Levin [27] Levin [27]

Cqp (GPa) 150.4 157.7 148 8.0
Cy, (GPa) 65.63 87.67 76.2 44
C13 (GPa) 65.94 81.2 74.2 44
C33 (GPa) 145.5 125.7 131 8.0
Cyq (GPa) 43.86 29.41 25.4 1.8
Ces (GPa) 42.37 34.97 359 1.8
k11 (nC/Vm) 12.8 8.23 4.6 4.2
k33 (nC/Vm) 15.1 3.76 2.35 42
e3; (C/m?) -4.32 -2.30 -2.1 0

e33 (C/m?) 17.4 949 123 0

e;5 (C/m?) 1.4 10.6 9.2 0

the configuration of the periodic cell does have a major influence
on the effective piezoelectric moduli in comparison with Table 4.
Notice a good agreement of the present results derived by AHM
with spring parameter K = 10'? and the results obtained by EEVM.
In Table 6 the same configuration of basic cells
(0=45°, 60°, 75° 90°) for the PZT/Epoxy composite are consid-
ered. In this case, the influence of the imperfect spring parameter
K, =K;=Ks=K is illustrated for two values of the imperfect
parameters K =1, 10. The effective properties in the composite
augments as the spring factor K increases as well. The configura-
tion of the cells affects the anisotropic properties of the composite.
For example, composites with periodic cells 6 =45° 75° have
monoclinic symmetry which is different to composites with
configuration of hexagonal (0 =60°) and square (0 =90°) cells
where the symmetry groups are 6 mm and 4 mm respectively.

6.1. Effect of the imperfect adherence in the ultrasonic transducers
applications

Various parameters have been used to evaluate the perfor-
mance of 1-3 piezoelectric composites. For underwater acoustic
transducer or hydrophone, the measure of performance studied
here are the hydrostatic charge coefficient dj, hydrostatic voltage
coefficient g;,, and hydrophone figure of merit dpg,. All these
parameters are referred to 1-3 piezoelectric composites and
therefore the upper symbol “%” means overall properties of the
composite but for simplicity it is omitted in the parameters. For
instance, the hydrostatic charge coefficient d, is defined by

dy = dj3+dy3+d3;. (65)

The corresponding hydrostatic voltage coefficient g;, is defined
by

_ @y’

3
K33

Eh (66)

A useful figure of merit is the product of d, and gj,. High values
for these parameters indicate a high sensitivity of the transducer
as it is explained by Avellaneda and Swart [18] and Gibiansky and
Torquato [19].

Table 4
Behavior of the composite with perfect and imperfect contacts for hexagonal and
square cells.

Kn =K =Ks=K 60° 90°

K=5 K=10" K=5 K=10"
C}, (GPa) 104.07 154.24 104.30 154.32
%, (GPa) 40.83 78.73 40.09 78.65
C%, (GPa) 46.26 74.75 46.12 74.75
C35 (GPa) 114.83 133.26 114.75 133.26
C%, (GPa) 3221 34.66 3218 34.65
Cis (GPa) 31.62 37.75 31.23 37.67
€% (C/m?) 10.16 11.01 10.17 11.01
€%, (C/m?) -2.06 -3.15 -2.04 -3.15
e, (C/m?) 13.32 12.61 13.32 12.61
«%, (nC/Vm) 1017 9.88 10.16 9.87
x5 (nC/Vm) 8.25 8.30 8.25 8.30

Table 3

Comparison between AHM and FEM for 1-3 piezocomposite system made of BaTiO3; matrix and PZT-7A fiber.

C% (GPa)  C%, (GPa)  C% (GPa)  Ci, (GPa)  Ci, (GPa)  Cis(GPa)  efs (C/m?) e (C/m?)  e%; (C/m?) &% (nC/Vm)  «%; (nC/Vm)
AHM 1551 80.9 76.3 131.3 333 37.0 10.9 -3.0 1.8 9.4 7.2
FEM 155.0 81.0 76.3 131.3 33.3 371 10.9 -29 11.8 9.4 7.2




For biomedical imaging applications, the piezoelectric electro-
mechanical coupling k; and the acoustic impedance Z are used to
measure the performance of the medical ultrasonic imaging
transducers, where low acoustic impedance and high electrome-
chanical coupling is desired. See more details in the works of
Smith et al. [29] and Smith and Auld [30]. The electromechanical
coupling k; is defined as

E
k= —g—gé. (67)
where
B -+ B (68)
K33
The acoustic impedance Z is given by
Z=(CHp)'? (69)

where the composite density p is determined
p=Vapry+(1-V2)p; (70)

and where p, is the density of the fiber and p, is the density of the
matrix.

In Figs. 3-6 the configuration of the periodic cell is hexagonal.
Figs. 3 and 4 show the effective hydrostatic charge coefficient d;, and
the figure of merit d,,g;, of the piezoelectric composite with respect to
the volume fraction of the PZT-7A fibers for Araldite D matrix material.
Three different values of the normal imperfection parameters
(Kn=1, 10, 10")are used in the computation where the tangential
imperfect parameter taken K;= K= 10", It can be seen that the
curve K, =1 is superior to the other two curves. We could suppose
that the consideration of imperfect adherence is not good for the
performance of the composites. However, sometimes the imperfection
at the interface provokes certain improvements in some properties of
the composites for different applications. This fact could be considered

Table 5

as a paradoxical behavior, for example, the normal imperfection
improves the properties dj, dpg, and k; of the composite (Figs. 3-5).
Low values of mechanical imperfection parameters induce a weaker
bonded at the contact between matrix and fiber in the composite. In
this case the normal parameter imperfection for low adherence
between fiber and matrix improves the property d, and d;g;, of the
1-3 piezoelectric composites, and it can be seen that the dj, and d; g,
for low values of K, exceed the value of the composite with perfect
contact. The maximum value for the hydrostatic figure of merit d,g,
increases with decreasing the normal parameter of imperfection
(Fig. 4). This maximum value is achieved at a low volume fraction of
the piezoceramic fibers (V, < 15%).

For purpose of verifying the validity of the method used in the
present study, the calculated electromechanical coupling effective
factor k; is compared in Fig. 5 with existing experimental results of
Chan and Unsworth [31] for perfect contact. The material properties in
Table 2 and three different values of the normal imperfection para-
meters (K, =1, 10, 10') and the tangential imperfect parameter
K¢ =K = 10" were used for the calculations. The electromechanical
coupling effective coefficient k; characterizes the transformation of
electric to mechanical energy and conversely in the x5 axial direction.
High electromechanical coupling factor is important for designing
pulse-echo ultrasonic transducer application. This parameter k; for
contact perfect is superior to the conventional piezoelectric material
PZT-7A in almost all the range of fiber volume fraction. When the
normal imperfect parameter K, diminishes then the conversion
between electrical and mechanical energy diminishes in the normal
direction as well and by conservation of energy there exist an augment
of conversion of energy in the axial direction and it is the reason of the
increment of k.. In Fig. 5, the data points of the experiment are
scattered around the predictions with different imperfect parameters
which represent different bonding condition for the PZT-7A-Araldite
D composite. Notice that the curves related to imperfect parameters
have the same trend. Particularly the curve K, =1 is higher than

Comparison between AHM with spring parameter K = 10'2 and EEVM, for perfect contact and four different fiber arrays.

V,=06 45° 60° 75° 90°

K=10"? EEVM K=10"2 EEVM K =10 EEVM K=10"2 EEVM
C%s (GPa) 5.9623 5.962 6.3245 6.324 6.6083 6.608 6.6733 6.673
Cis (GPa) -1.6849 -1.685 0 0 0.31707 0.3171 0 0
Ci4 (GPa) 9.3321 9.332 6.3245 6.324 6.4383 6.438 6.6733 6.673
et (C/m?) 0.048005 0.04800 0.042325 0.04232 0.049655 0.04965 0.051955 0.05196
e*, (C/m?) 0.057456 -0.05745 0 0 0.006692 0.006692 0 0
€%, (C/m?) 0.16292 0.1629 0.042325 0.04232 0.046068 0.04607 0.051955 0.05196
x4 (nC/Vm) 0.14137 0.1414 0.1467 0.1467 0.15534 0.1553 0.15755 0.1576
K, (nC/Vm) 0.056539 -0.05653 0 0 0.009082 0.009082 0 0
k%, (nC/Vm) 0.25444 0.2544 0.1467 0.1467 0.15047 0.1505 0.15755 0.1576

Table 6
Influence of the imperfect spring parameter K in the global behavior of the composite.

V,=06 45° 60° 75° 90°

K=1 K=10 K=1 K=10 K=1 K=10 K=1 K=10
C%;(GPa) 1.7593 4.495 1.7594 4.795 1.7593 4.8786 1.7593 4.8731
Ci5(GPa) 0.0003 —0.5483 0 0 —-418 x 107 0.13935 0 0
C34(GPa) 1.7587 5.5916 1.7594 4.795 1.7594 4.804 1.7593 4.8731
e%5(C/m?) 0.009 0.0306 0.00940 0.03120 0.010134 0.035193 0.010328 0.036115
e%,(C/m?) —-0.0049 -0.0277 0 0 0.000777 0.004136 0 0
5,(C/m?) 0.0188 0.086 0.0094 0.0312 0.009717 0.032976 0.010328 0.036115
%, (nC/Vm) 0.142 0.1417 0.1469 0.1468 0.15567 0.15546 0.15792 0.1577
x%,(nC/Vm) -0.0577 —-0.0572 0 0 0.009155 0.009112 0 0
x%,(nC/Vm) 0.2574 0.2561 0.1469 0.1468 0.15076 0.15058 0.15792 0.1577
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Fig. 3. Effective hydrostatic charge coefficient dj, as a function of fiber volume fraction. Various normal imperfect parameters for 1-3 piezoelectric composites.
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Fig. 4. Figure of merit d,g), of the piezoelectric composite with respect to the volume fraction of the PZT-7A fibers for Araldite D matrix material and different spring

parameters.

the remaining curve which is desired for biomedical imaging
applications. k; increases as the PZT-7A volume fraction increases.
The increase becomes significant for a volume fraction greater
than 50%.

In Fig. 6, the effective electromechanical coupling k; versus the
effective acoustic impedance Z for the piezoelectric composite with
three different values of the normal imperfection parameters
(Kn=1, 10, 10'?) is shown where the tangential imperfect para-
meter is taken K; = 10'2. It can be seen the influence of the imperfect
interface in the behavior of this composite, which is useful for the
design of medical imaging transducers. It can be seen that k; first
increases rapidly with Z and notice that the curves for imperfect cases
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Kn,=1, 10 are higher than the curve of perfect contact K, = 10"?
where a slight diminish is achieved for high fiber volume fraction. k,
further increases as the normal imperfect parameter decreases with
the same value of Z. The conversion between electrical and mechanical
energy diminishes in the normal direction as K, diminishes then there
exits an increment of k; for a fixed value of the impedance or fixed
value of the fiber volume fraction.

Some limitations of the obtained solutions would be mentioned.
The determination of the effective properties required the conver-
gence of the series (31) and (41). These series expansion depend on
the contrast between the properties of the components and on the
volume fraction of the fibres. In the case of a high-contrast composite
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Fig. 5. Comparison of the calculated electromechanical coupling k; with the experimental data of Chan and Unsworth [31].
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Fig. 6. k; vs. Z for 1-3 piezoelectric composites with PZT-7A fibers and various value of imperfection parameter.

with densely-packed fibres, the gradients of the local fields can grow
significantly. Then, the convergence of the series decreases and
evaluation of the accurate numerical results may become very time-
consuming. In this sense, the above computations were made for
No = 10, where Ny denotes the number of equations considered in the
solution of the infinite algebraic system of Egs. (34) and (48). The
solution to the infinite order algebraic system (34) and (48) is achieved
by means of truncation to an infinite order and the Cramer's rule. A
fast convergence of successive truncations is ensured because the
system is regular (see references in Bravo-Castillero et al. (2001)) so
that successive approximations can be applied. In general, for low
volume fraction of fiber (V, < 0.4) the accuracy and convergence of
the results are good for much smaller values of Ny (Ng<2). More terms
are required for high volume fraction of fibers as well as high contrast
of fiber and matrix, in particular, Ng > 10 gives an approximation with

absolute error less than 1%. The absolute error between two con-
secutive truncations is very low.

The explicit analytical form of the effective coefficients (37),
(50)—(64) are large and complicated. They require computation of
a number of terms of series (31) and (41) and the solution of the
system (34) and (48). However, once the computational program is
established the time-consuming is very short.

7. Conclusion

In the present paper, an asymptotic approach for simulation of the
imperfect interfacial bonding in composite materials is proposed by
means of spring model. In the asymptotic limit, we can simulate
different degrees of the interface’s response: the case K- oo
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corresponds to the perfect bonding, the case K—0 to the complete
separation of the matrix and inclusions. As illustrative examples we
consider fibre-reinforced composites with different angular configura-
tions of unit cells. The analysis is based on the asymptotic homo-
genization method, the cell problem is solved using the theory of
complex variable. The local problems associated to an anisotropic
piezoelectric composite with mechanical imperfect interface condition
and parallelogram cell are formulated and solved. As the results we
obtain approximate analytical solutions for the effective moduli on
micro level depending on the degree of the interfacial debonding.
Developed solutions are valid for all values of the components’ volume
fractions and properties. The effect of the inclination of the cell affects
the anisotropic character of the composites and in general this effect
leads to different crystalline symmetries in the global behavior of the
composite, for instance, tetragonal 4mm class symmetry (6 elastic,
3 piezoelectric and 2 dielectric permittivity effective moduli) for
square periodic cell; hexagonal 6mm class symmetry (5 elastic, 3 piezo-
electric and 2 dielectric permittivity effective moduli) for hexagonal
periodic cell; orthorhombic class symmetry (9 elastic, 3 piezoelectric
and 3 dielectric permittivity effective moduli) for rectangular periodic
cell and finally monoclinic type 2 (13 elastic, 8 piezoelectric and
4 dielectric permittivity effective moduli) anisotropic behavior in the
composite with parallelogram cell. On the other hand, it follows from
the analysis of the results that in the case of the perfect electric
bonding, softening the rigidity of the interface does have an influence
on the effective elastic moduli, but has a very minor effect on the
electric properties of the material.

A parametric study has been conducted to study the influence of
the imperfect contact on the electro-mechanical properties on the
performance of the 1-3 piezoelectric composite for the designing of
transducer applications. Based on the study, we can say

1. The presence of normal imperfect contact enhances the effec-
tive hydrostatic performances of the 1-3 piezoelectric compo-
sites. The peak values of the performance parameter in the
figure of merit increases as the normal imperfect contact
diminishes.

2. The normal imperfection contact improves the performance of
the 1-3 piezoelectric composite by increasing the electrome-
chanical coupling while reducing the acoustic impedance of the
composite. This performance is improved as K, diminishes.
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