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1. Introduction

Nowadays, piezoelectric materials have a key role in manufac-
turing of sensors and actuators, which may be used for active
control of elastic deformations and vibrations of the structures.
These materials have a wide range of applications in science and
technology such as in ultrasonic transducers, sonar projects, and
under water acoustic.

In order to successfully integrate piezoelectric actuators into
structures, the physical nature of the interface condition between
the actuators and the base structure, and its effect on the induced
electro-mechanical field must be fully understood.

Some years ago, Hashin [1] using the generalized self-consistent
scheme studied the thermoelastic properties of unidirectional fiber
composites with imperfect interface conditions defined in terms of
linear relations between interface tractions and displacement
jumps. Besides, the asymptotic scheme for the analysis of dilute
elastic composites, which includes circular inclusions with imper-
fect bonding at the interface, is presented by Bigoni et al. [2]. The
interface, in this work, is characterized by a discontinuous displace-
ment field across it, linearly related to the tractions. Recently, an
uez-Ramos).
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asymptotic approach for simulation of the imperfect interfacial
bonding in composite materials is proposed by Andrianov et al.
[3] where a problem of the axial shear of elastic fibre-reinforced
composites with square and hexagonal arrays of cylindrical inclu-
sions is considered. The performed analysis is based on the
asymptotic homogenization method and the cell problem is solved
using the underlying principles of the boundary shape perturbation
technique. Moreover, the effective elastic moduli of composite
materials are investigated by Yanase and Ju [4] in the presence of
imperfect interfaces between the inclusions and the matrix. The
primary focus is on the spherical particle reinforced composites. By
admitting the displacement jumps at the particle–matrix interface,
the modified Eshelby inclusion problem is studied. Besides, Chen
et al. [5] studied a micromechanical method based on generalized
method of cells for investigating elastic and plastic response of
composites subjected to off-axis loading. To date, to the best of the
author’s knowledge, the problems associated with piezoelectric
materials and inhomogeneities with imperfect interface conditions
have not been reported intensively in the literature. For instance,
piezothermoelastic constitutive laws at a weak interface is analyzed
by Shu [6]; Shodja et al. [7] examine the electro-mechanical fields
for a circular anisotropic piezoelectric fiber sensor inside an
anisotropic piezoelectric or non-piezoelectric elastic matrix with
imperfect interface under remote in-plane uniform tension, among
other works.



Fig. 1. The heterogeneous medium and extracted the parallelogram periodic cell.
Different authors are investigating the behavior of composites
with non-perfect bonding contact. Recently, an asymptotic study
of different types of imperfect interfaces arising in the problem of
conduction through a granular composite material was presented
in [8]. In Andrianov et al. [3], imperfection is considered by means
of a discontinuity of the displacement (spring model). However, it
may look natural that the mechanical weakening of the interface
(due to delamination, decohesion, etc.) should also induce the
decrease of the electric contact. For instance, in piezoelectric
material, due to their electro-mechanical coupling, there exist
induced electric charges when a mechanical loading is applied [9].
Although the electro-mechanical coupling exists, the mechanical
contribution is remarkable in the behavior of the composites. In
this sense, as a first approximation in the study of piezoelectric
composites under imperfect contact (mechanic and electric) we
assume only mechanical imperfect adherence.

The present work is motivated by the interest to study the
influence of imperfect contact over the effective piezoelectric
response when the composites have oblique fibrous orientation.
Composites with rhombus periodic cell are important since they
could describe monoclinic behavior of certain physical and biolo-
gical structures. This is an extension of previous results reported
by Bravo-Castillero et al. [10] and Sabina et al. [11] where perfect
contact for piezoelectric composites was considered. Moreover, in
this contribution other recent researches related to composites
with perfect contact conditions and parallelogram cells studied by
Guinovart-Díaz et al. [12,13] and Rodríguez-Ramos et al. [14] are
extended to composites with the same distribution of the periodic
cells but now with no-well bonding contact. The interface imper-
fection is posed on the mechanical fields only. The mechanical
behavior of imperfect interface is modeled via an idealization of a
layer of mechanical springs of zero thickness. The vanishing value
of ~Kn and ~K t , ~Ks corresponds to pure debonding (normal perfect
debonding), in-plane pure sliding, and out-of-plane pure sliding,
respectively. The status of the mechanical bonding is completely
determined by appropriate values of these constants. For large
enough values of the constants, the perfect bonding interface is
achieved. The spring approach is used for the calculation of the
piezoelectric effective coefficients in a composite with different
angular distribution of fibers. Using the two scale asymptotic
homogenization method the formulation of the local problems
for linear two phase piezoelectric composites with parallelogram
cell and mechanical imperfect contact conditions is given and the
solution of each plane local problems is found using the potential
methods of a complex variable and the properties of doubly
periodic Weierstrass elliptic functions. Besides, the complete set
of analytical expressions for the piezoelectric coefficients of a fiber
reinforced composite with circular cylindrical shape periodically
distributed in the matrix under linear spring imperfect contact
conditions are obtained via AHM. The study of such composites
with mechanic and electric coupled effect is an extension of
previous works considered by Molkov and Pobedria [15],
Rodríguez-Ramos et al. [16] and Lopez-Realpozo et al. [17] where
only the elastic properties of the composite with mechanical
imperfect contact were analyzed. In particular, the last two works
are referred only to antiplane elastic properties.

The heterogeneous problem formulation is presented in
Section 1 where the basic equations and the general statement
of the imperfect conditions are written. In Section 2 the two scale
asymptotic homogenization algorithm is developed and the state-
ment of the plane and antiplane local problems with mechanical
(spring) imperfect conditions are written. Solutions of each local
problem are given in Sections 3 and 4. Moreover, Section 5 is
devoted to present some important parameters used for evaluat-
ing the performance of 1–3 piezoelectric composites. In Section 6
validations of the present model and comparisons with other
2

theoretical and experimental approaches are shown as well as the
effect of the imperfect adherence in the ultrasonic transducers
applications. Finally, some conclusions are written.
2. Heterogeneous problem formulation

Consider piezoelectric materials that respond linearly to changes
in the mechanic and electric fields. A two-phase uniaxial reinforced
material is considered here in which fibers and matrix have homo-
geneous and transversely isotropic properties; the axis of transverse
symmetry coincides with the fiber direction, which is taken as the
Ox3-axis. The fiber cross-section is circular. Moreover, the fibers are
periodically distributed without overlapping in directions parallel to
the Ow1- and Ow2-axis, where w1≠0 and w2≠0 ðw2≠λw1, λ∈ℝÞ are
two complex numbers which define the parallelogram periodic cell
of the two-phase composite. Therefore the composite Ω consists of a
parallelogram array of identical circular cylinders embedded in a
homogeneous medium (Fig. 1). The cylinders are infinitely long.

The response of the material at the microscale level is analyzed
using representative material elements (RME) or Representative Cell.
The fiber-reinforced material is assumed to have a periodic arrange-
ment of fine scale fibers embedded in a matrix. A sample RME is
shown in Fig. 2 where the appropriate periodic unit cell Y is taken as
a regular parallelogram in the y1y2-plane so that Y ¼ Y1∪Y2 with
Y1∩Y2 ¼ ϕ, the domain Y1 is occupied by the matrix and its
complement Y2 a circle of radius R, is filled up with the fiber for a
piezoelectric composite with rectangle, rhombic and parallelogram
arrangements of unidirectional fibers. A local Cartesian coordinate
system y is introduced at the microscale and oriented such that the
y3-axis is aligned parallel to the axis of the fibers. The microscale
coordinates y of a point in the RME are related to the macroscale
coordinates x by y¼ x=ε, where ε≪1. Beside the use of subscript,
matrix and fiber associated quantities are also referred below by
means of superscripts in brackets (1) and (2), respectively. Two-
phase composite is considered which comprises a matrix with
homogeneous properties given by the following moduli tensors:
elastic Cð1Þ

ijkl, piezoelectric e
ð1Þ
ijk and dielectric permittivity κð1Þij , in which

are embedded parallel circular cylindrical fibers with corresponding
homogeneous properties Cð2Þ

ijkl, e
ð2Þ
ijk and κð2Þij :

To denote the dependence of a field variable on the macroscale
and microscale coordinates, the superscript ε is used, i.e.
ℱε ¼ℱðx,yÞ where ℱε represents a scalar, vector or tensor field.
All field variables are assumed to depend on the coordinates of
both scales. For an arbitrary microstructure, material phases, and
therefore material properties such as elastic constants, are
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Fig. 2. Different unit cells – rectangle, rhombic and parallelogram.
functions of the microscale coordinates y: In the following for-
mulation, indicial and direct notation will be used interchangeably.

The local governing mechanical and charge equilibrium equa-
tions in the absence of body forces and free charges are

sεij,j ¼ 0, Dε
i,i ¼ 0 in Ω ð1Þ

where the subscript comma denotes partial differentiation, sεij are
the components of the Cauchy stress tensor and Dε

i are the
components of the electric displacement vector.

Using the conventional indicial notation in which repeated
subscripts are summed over the range of i,j,k,l¼ 1,2,3, the con-
stitutive equations are

sεij ¼ Cijklε
ε
kl−ekijE

ε
k, Dε

i ¼ eiklε
ε
klþκikE

ε
k, ð2Þ

where εεkl is the infinitesimal strain tensor and Eεk, is the electric
field vector. The quantities Cijkl, ekij, κik are components of the
elastic stiffness tensor, the piezoelectric tensor, and the dielectric
permittivity tensor, respectively.

The gradient equations, which involve the strain–displacement
equations and electric field-potential, are

εεkl ¼
1
2

∂uε
k

∂xl
þ ∂uε

l

∂xk

� �
, Eεk ¼−ϕε

;k, ð3Þ

where uε
k and ϕε are the mechanical displacement and the electric

potential, respectively.
The material constants are assumed to satisfy the symmetries

Cijkl ¼ Cjikl ¼ Cklij, ekij ¼ ekji, κik ¼ κki: In addition, the elasticity ten-
sor and the dielectric permittivity tensor are assumed to be
positive definite.

Substituting (2) and (3) into (1) we obtain a coupled system of
partial differential equations with coefficients rapidly oscillating

ðCijklðyÞuε
k,lþekijðyÞϕε

,kÞ,j ¼ 0, ðeiklðyÞuε
k,l−κikðyÞϕε

,kÞ,i ¼ 0 in Ω : ð4Þ

Eq. (4) represents a system of equations for finding ui and ϕ. For
a complete solution, it is necessary to assign suitable boundary
conditions, for instance

uε
i ¼ ûi; sεijnj ¼ Ŝi; ϕε ¼ ϕ0; Dε

i ni ¼ 0 on ∂Ω, ð5Þ

where ûi, Ŝi and ϕ0 are the prescribed displacement, force and
electric potential on the boundary of the composite, respectively.

The interface conditions are specified as follows. The inclusion
problems associated with piezocomposite materials, which have
been presented in the literature, are mainly concerned with
perfect interface condition; see for example, the works of Avella-
neda and Swart [18] and Gibiansky and Torquato [19]. In the case
of perfect bonding, the continuities of displacement, traction,
electric potential, and normal electric displacement are concerned.
Often, the above electro-mechanical interface conditions are not
realistic assumptions in modeling the actual physical problems. In
this section it is intended to analyze the behavior of a piezo-
composite under only mechanical imperfect contact. The mechan-
ical behavior of imperfect interface is modeled via an idealization
of a layer of mechanical springs of zero thickness. The spring
3

constants are the measures for the magnitude of the associated
continuities. The vanishing value of ~Kn and ~K t , ~K s corresponds to
pure debonding (normal perfect debonding), in-plane pure sliding,
and out-of-plane pure sliding, respectively. The status of the
mechanical bonding is completely determined by appropriate
values of these constants. For large enough values of the constants,
the perfect bonding interface is achieved.

The spring stiffness matrix, the mechanic displacement and the
traction vectors using the vector notation are written as

u¼
un

ut

us

0
B@

1
CA, T¼

Tn

Tt

Ts

0
B@

1
CA, K¼

~Kn 0 0
0 ~K t 0
0 0 ~K s

0
B@

1
CA: ð6Þ

The effect of mechanical imperfection is incorporated through
the mechanical displacements jumps across the interface, while
the corresponding tractions, electric potential and normal electric
displacement remain continuous. Several examples addressing the
effect of electro-mechanical imperfections on the induced electro-
mechanical fields are thoroughly examined by Shodja et al. [9].
There are seven types of imperfections considered in Table 1 of the
work of Shodja et al. [9]. Mechanical partial debonding (type of
imperfection VII) listed in Table 1 is focused in the present work.
Hence, the mechanical imperfect condition considered in Shodja
et al. [7] and Hashin [1] may be expressed as

Tð1Þ þTð2Þ ¼ 0, TðγÞ ¼ ð−1Þγþ1K½u�, ½ϕ� ¼ 0, ½D�n¼ 0 on Γ: ð7Þ
In these relations ½�� indicates the jump in the quantity at the

common interface Γ between the fiber and the matrix; n is the
outward unit normal on Γ; un, ut , us are the normal and the two
tangential components of the mechanic displacement vector,
respectively; Tn, Tt , Ts are the normal and tangential components
of the traction vector T (Ti ¼ sijnj). The superscripts ðγÞ, γ ¼ 1,2
denote the matrix and fiber respectively.

In order to study the imperfect contact conditions, the relations
between the displacement and traction vectors (6) are related to
their Cartesian representations by the following expressions:

un

ut

us

0
B@

1
CA¼

cosφ sinφ 0
−sinφ cosφ 0

0 0 1

0
B@

1
CA

u1

u2

u3

0
B@

1
CA,

Tn

Tt

Ts

0
B@

1
CA¼

cosφ sinφ 0
−sinφ cosφ 0

0 0 1

0
B@

1
CA

T1

T2

T3

0
B@

1
CA:

ð8Þ
Thus, the expression (7) on Γ, can be rewritten in the following

indicial form:

Tð1Þ þTð2Þ ¼ 0 on Γ, T ðγÞ
n ¼ ð−1Þγþ1 ~Kn½un�, T ðγÞ

t ¼ ð−1Þγþ1 ~K t ½ut �,
T ðγÞ
s ¼ ð−1Þγþ1 ~Ks½us� on Γ, ½ϕ� ¼ 0, ½D�n¼ 0 on Γ: ð9Þ
3. Two scales asymptotic formulation

The overall properties of the above periodic medium are sought
by means of the AHM in the same way as it is developed by
Bakhvalov and Panasenko [20] and Bensoussan et al. [21]. In this



section, the application of the general AHM method using the two
scale formulation for the electroelastic heterogeneous problem is
presented. As discussed earlier, field variables are assumed to
depend on both the macroscale coordinates x and microscale
coordinates y, and therefore, spatial derivatives of the field
variables are obtained by use of the chain rule and the relation
y¼ x=ε as

∂ℱε

∂xi
¼ ∂ℱðx,yÞ

∂xi
þ 1

ε

∂ℱðx,yÞ
∂yi

: ð10Þ

The AHM method assumes a two-scale asymptotic expansion
for the mechanical displacement and electric potential analogous
to Bravo-Castillero et al. [10] and Sabina et al. [11]:

uεðxÞ ¼ u0ðx,yÞþεu1ðx,yÞþ⋯,

ϕεðxÞ ¼ ϕ0ðx,yÞþεϕ1ðx,yÞþ⋯, ð11Þ
where the superscripts on the field variables denote the different
orders in the asymptotic expansion and do not imply exponentia-
tion. Although uε and ϕε depend on coordinates x and y, it has
been previously demonstrated that the lowest order terms u0 and
ϕ0 depend only on the macroscale coordinates x and correspond to
the average macroscale values as ε-0: In other words,

lim
ε-0

uε ¼ u0ðx,yÞ ¼ uðxÞ, lim
ε-0

ϕε ¼ ϕ0ðx,yÞ ¼ ϕðxÞ,

where uðxÞ and ϕðxÞ denote the average macroscale displacement
and electric potential, respectively. The average is considered in
the sense that any field variable ℱε, which is a function of both the
macroscale and microscale coordinates, is integrated over the cell
domain to obtain the corresponding averaged field variable ℱ
which is dependent only on the macroscale coordinates, i.e.
ℱ¼ ð1=jY jÞRYℱεdY :

As such, the first order terms εu1ðx,yÞ and εϕ1ðx,yÞ represent
the microscale fluctuations in the mechanical displacement and
electric potential, respectively. The infinitesimal strains and elec-
tric field, which are obtained from (3) and (11) using (10), are
substituted into the constitutive equation (2) to obtain the
following expansions for the stress and electric displacement:

sεij ¼ s0ijðx,yÞþOðεÞ, Dε
i ¼D0

i ðx,yÞþOðεÞ, ð12Þ

where the zero order terms for the stress and electric displace-
ment are

s0ijðx,yÞ ¼ Cijkl
∂uk

∂xl
þ ∂u1

k

∂yl

!
þekij

∂ϕ
∂xk

þ ∂ϕ1

∂yk

!
,

D0
i ðx,yÞ ¼ eikl

∂uk

∂xl
þ ∂u1

k

∂yl

!
−κik

∂ϕ
∂xk

þ ∂ϕ1

∂yk

!
: ð13Þ

Since ε≪1, the microscale stress and electric displacement
correspond to the first order term in (12). Inserting (12) into the
mechanical and charge equilibrium equation (1), multiplying by ε,
and taking the limit as ε-0 yields the following local equilibrium
equations:

∂s0ij
∂yj

¼ 0,
∂D0

i

∂yi
¼ 0: ð14Þ

To proceed with the asymptotic formulation, due to the
linearity of this problem and assuming regularity of both the
inclusions shapes and the smoothness of the coefficients, the
following decompositions are used for u1 and ϕ1:

u1ðx,yÞ ¼ pqMðyÞ ∂u
0
p

∂xq
ðxÞþpPðyÞ

∂ϕ0

∂xq
ðxÞ,

ϕ1ðx,yÞ ¼ pqNðyÞ ∂u
0
p

∂xq
ðxÞþpQ ðyÞ ∂ϕ

0

∂xq
ðxÞ, ð15Þ

where the sets of pq-functions, pqΜðyÞ and pqNðyÞ, and p-functions,
4

pPðyÞ and pQ ðyÞ, depend only on y:They are microscale character-
istic functions that relate the macroscale strain and electric field to
the microscale fluctuations in the mechanical displacement and
electric potential. They are the unique periodic solution of the so-
called pq-local and p-local problems, denoted by pqL and pI ,
respectively, over the periodic unit cell Y , defined below.

The pqL problem seeks displacements pqMðγÞðyÞ and potential

pqNðγÞðyÞ, in Yγ , γ ¼ 1,2, which are periodic functions of periods
w1 ¼ 1, w2 ¼ beiΘ, b40 is the modulus of this complex number
and are the solution of the following equations

pqs
ðγÞ
iδ,δ ¼ 0 in Y γ ,

pqD
ðγÞ
δ,δ ¼ 0 in Y γ , ð16Þ

under imperfect mechanical and perfect electrical conditions

pqT
ð1Þ þpqT

ð2Þ ¼ 0, ½pqN � ¼ 0 on Γ, pqT
ðγÞ
n ¼ ð−1Þγþ1 ~Kn½pqMn

�,

pqT
ðγÞ
t ¼ ð−1Þγþ1 ~K t ½pqMt

�, pqT
ðγÞ
s ¼ ð−1Þγþ1 ~K s½pqMs

� on Γ,

½pqDδ
�nδ ¼−½eðγÞδpq�nδ on Γ: ð17Þ

To assure the solution of the pqL problems is unique, the
functions also satisfy condition that 〈pqM〉¼ 〈pqN〉¼ 0, where the
angular brackets define the volume average per unit length over
the unit periodic cell 〈F〉¼ 1=jY jRYFðyÞdy:

Moreover,

pqs
ðγÞ
iδ ¼ CðγÞ

iδkλ pqM
ðγÞ
k,λþeðγÞλiδ pqN

ðγÞ
,λ ,

pqD
ðγÞ
δ ¼ eðγÞδkλ pqM

ðγÞ
k,λ−κ

ðγÞ
δλ pqN

ðγÞ
,λ , ð18Þ

the comma notation denotes a partial derivative relative to the yδ
component, i.e. U ,δ≡∂U=∂yδ; the summation convention is also
understood for Greek indices, which run from 1 to 2; no summa-
tion is carried out over upper case indices, whether Latin on Greek.
The functions pqMt

, pqMs
, pqMn

are the two tangential and normal
components of the vector pqM whereas pqTt

, pqTs
, pqTn

, are the two
tangential and normal components of the traction vector

pqTi
¼ ðpqsijþCijpqÞnj associated to the local problem pqL. The

symmetry between the indices p and q shows right away that at
most six problems needs to be considered.

In similar manner the pI problem is stated as follows: the
displacements pPðγÞ ðyÞ and potential pQ ðγÞ ðyÞ are sought in Y γ ,
γ ¼ 1,2, which are periodic functions of periods w1 ¼ 1,
w2 ¼ b eiΘ, b is the modulus of this complex number and that
satisfy following equations:

ps
ðγÞ
iδ,δ ¼ 0 in Yγ ,

pD
ðγÞ
δ,δ ¼ 0 in Yγ , ð19Þ

and the above mentioned interface conditions adapted to this
problem

pT
ð1Þ þpT

ð2Þ ¼ 0, ½pQ � ¼ 0, on Γ, pT
ðγÞ
n ¼ ð−1Þγþ1 ~Kn½pPn

�,

pT
ðγÞ
t ¼ ð−1Þγþ1 ~K t ½pPt

�, pT
ðγÞ
s ¼ ð−1Þγþ1 ~Ks½pPs

�, on Γ, ½pDδ
�nδ ¼ ½κðγÞδp �nδ, on Γ,

ð20Þ
where the functions pPt

, pPs
, pPn

are the two tangential and
normal components of the vector pP whereas pTt, pTs, pTn, are
the tangential and normal components of the traction vector

pTi ¼ ðpsijþepijÞnj associated to the local problem pI and
〈pP〉¼ 〈pQ 〉¼ 0,for the uniqueness of the solution. Furthermore,

ps
ðγÞ
iδ ¼ CðγÞ

iδkλ pP
ðγÞ
k,λþeðγÞλiδ pQ

ðγÞ
,λ ,

pD
ðγÞ
δ ¼ eðγÞδkλ pP

ðγÞ
k,λ−κ

ðγÞ
δλ pQ

ðγÞ
,λ : ð21Þ

Also the non-homogeneous pI problems will cooperate towards
the homogenized moduli.

The local equilibrium equation (14) are multiplied by test
functions viðyÞ and wðyÞ, respectively, and integrated over the



Table 1
Effective properties related to the local problems.

11L 22L 33L 23L 13L 12L 1I 2I 3I

Cn

1111 Cn

1122 Cn

1133 0 0 Cn

1112 0 0 en311
Cn

2211 Cn

2222 Cn

2233 0 0 Cn

2212 0 0 en322
Cn

3311 Cn

3322 Cn

3333 0 0 Cn

3312 0 0 en333
0 0 0 Cn

2323 Cn

2313 0 en132 en232 0
0 0 0 Cn

1323 Cn

1313 0 en131 en231 0

Cn

1211 Cn

1222 Cn

1233 0 0 Cn

1212 0 0 en321
0 0 0 en123 en113 0 κn11 κn12 0
0 0 0 en223 en213 0 κn12 κn22 0
en311 en322 en333 0 0 en312 0 0 κn33
RME domain Y to obtain the weak forms of the mechanical and
charge equilibrium equations:Z
Y
s0ij

∂vi
∂yj

dY ¼ 0,
Z
Y
D0
i
∂w
∂yi

dY ¼ 0: ð22Þ

Inserting (15) into (13) and the result into (22), and requiring
that the equation hold for arbitrary ∂u0

p=∂xq and ∂ϕ0=∂xq results in
the following weak form equations for the characteristic functions,
the sets of pq-functions pqΜðyÞ and pqNðyÞ, and p-functions, pPðyÞ
and pQ ðyÞ,Z
Y

Cijkl

∂pqMk

∂yl
−ekij

∂pqN
∂yk

� �
∂vi
∂yj

dY ¼
Z
Y
Cijpq

∂vi
∂yj

dY ,

Z
Y

ekij
∂pQ
∂yk

−Cijkl

∂pPk

∂yl

� �
∂vi
∂yj

dY ¼
Z
Y
eqij

∂vi
∂yj

dY ,

Z
Y

eikl
∂pqMk

∂yl
þκik

∂pqN
∂yk

� �
∂w
∂yi

dY ¼
Z
Y
eipq

∂w
∂yi

dY ,

Z
Y

κik
∂pQ
∂yk

þeikl
∂pPk

∂yl

� �
∂w
∂yi

dY ¼
Z
Y
κiq

∂w
∂yi

dY : ð23Þ

Eq. (23) represents a system of partial differential equations
that must be solved to obtain the microscale characteristic func-
tions pqΜðyÞ, pqNðyÞ, pPðyÞ and pQ ðyÞ. The characteristic functions
are subject to periodic boundary conditions over the RME domain
Y in analogous form to Pobedria [22].

The constitutive relations of the linear piezoelectric theory for a
heterogeneous and periodic medium, Ω, is characterized by the
Y-periodic functions CðyÞ, eðyÞ, κðyÞ. The original constitutive
relations with rapidly oscillating material coefficients are trans-
formed in new physical relations with constant coefficients Cn, en,
κn which represent the elastic, piezoelectric and permittivity
properties, respectively of an equivalent homogeneous medium
and are called the effective coefficients of Ω. Therefore, the system
(4) can be transformed into equivalent system with constant
coefficients which represent the overall properties of the
composite.

The main problem to obtain such average formulae is to find
the Y-periodic solutions of nine pqL, pI (p,q¼ 1,2,3) local problems
on Y in terms of the fast variable y as it was reported by Bravo-
Castillero et al. [10] and Sabina et al. [11] based on the mathema-
tical statement of both problems.

Once the local problems are solved, the homogenized moduli
Cn

ijpq, enkij, κnik may be determined by using the following formulae:

Cn

ijpq ¼ 〈CijpqþCijkl pqMk,lþekij pqN,k〉, enipq ¼ 〈eipqþeikl pqMk,l−κik pqN,k〉,

enpij ¼ 〈epijþCijkl pPk,lþekij pQ ,k〉, κnip ¼ 〈κip−eikl pPk,lþκik pQ ,k〉:

ð24Þ
Finally, the homogenized boundary value problem associated

with (4)-(5) has the form

s0ij,j ¼ 0, D
0
i,i ¼ 0 in Ω, u0

i ¼ ui; s0ijnj ¼ Si; f
0 ¼ ϕ0; D

0
i ni ¼ 0 on ∂Ω,

ð25Þ
where the corresponding macroscale constitutive equations are

s0ij ¼ Cn

ijklu
0
k,lþenkijϕ

0
,k, D

0
i ¼ enkiju

0
k,l−κ

n

ikϕ
0
,k: ð26Þ

Here u0
i ðxÞ ¼ 〈uiðx,yÞ〉 is the averaged displacement vector and

ϕ
0ðxÞ ¼ 〈ϕðx,yÞ〉 the averaged electric potential.
Each local problem (16) and (17) and (19) and (20) ðp,q¼ 1,2,3Þ

uncouples into two sets of equations. The plane and antiplane-
strain systems of equations which correspond to five plane-strain
local problems ppL, 12L, 3I and fourth antiplane-strain one

13L, 23L, 1I , 2I : Table 1 shows the correspondence between the
effective properties and the local problems. The global behavior of
the piezoelectric composite is related to the class symmetry
monoclinic 2, see details in Royer and Dieulesaint [23], which
5

contain 13 elastic, 8 piezoelectric and 4 dielectric independent
coefficients.

The local-value problems set up in (16) and (17), (19) and (20)
have been solved in the present work using the methods of a
complex variable and the properties of doubly periodic elliptic and
related functions with periods w1 and w2 as it is reported by
Bravo-Castillero et al. [10] and Sabina et al. [11]. Taking into
account that the rate of debonding would depend not only upon
the debonding parameters, but also upon the elastic moduli of the
components and the fiber volume fraction [1] in the solution of
these problems, the following relations are used ~K t ¼ KtC

ð1Þ
44=R,

~Kn ¼ KnC
ð1Þ
44=R,

~K s ¼ KsC
ð1Þ
44=R where Kt ,Kn and Ks are dimensionless

parameters.
4. Solution of antiplane problems

Now, the problem 13L is explained in detail from the set of
antiplane problems 13L, 23L, 1I , 2I . From now on, the preindices
are not used and the effective properties are denoted with the
short notation. The determination of the shear piezoelectric
effective properties, denoted by Cn

44, Cn

45, Cn

55, (shear moduli),
en15, en14, en24, (shear stress piezoelectric coefficient) and κn11,
κn12, κn22, (transverse permittivity constant) is the main aim of this
part where the constituents of each phase of the composite are of
class 6 mm and the short indicial notation is used. In this case the
relevant constitutive relations are

s23 ¼ 2C44ε23−e15E2, s13 ¼ 2C44ε13−e15E1,
D1 ¼ 2e15ε23þκ11E1, D2 ¼ 2e15ε13þκ11E2: ð27Þ

The displacement M≡13M and potential N≡13N , which appear
in (24), are the unique solution of the above mentioned local
problem 13L. In this case Eq. (16) yields

ΔMðγÞ ¼ 0, ΔNðγÞ ¼ 0 in Yγ ð28Þ
where Δ is the two-dimensional Laplacian and the contact condi-
tions (17) on Γ are written in the form

T ð1Þ
s þT ð2Þ

s ¼ 0 on Γ, ‖N‖¼ 0, ‖ðe15M,δ−κ11N,δÞnδ‖¼ −‖e15‖n1 on Γ,

ðCðγÞ
44M

ðγÞ
,δ þeðγÞ15N

ðγÞ
,δ ÞnδþCðγÞ

44n1 ¼ ð−1Þγþ1KsC
ð1Þ
55‖M‖R−1 on Γ:

ð29Þ
Eq. (24) are transformed to area integrals applying Green´s

theorem. The doubly periodic boundary conditions on Y and the
continuity of displacement and potential on Γ leads to

Cn

55−iC
n

45 ¼ 〈C55〉þð−1Þγ C
ðγÞ
55

V

Z
Γ
MðγÞdy2þ iMðγÞdy1þð−1Þγ e

ðγÞ
15

V

Z
Γ
NðγÞdy2þ iNðγÞdy1,

en15−ie
n

14 ¼ 〈e15〉þð−1Þγ e
ðγÞ
15
V

Z
Γ
MðγÞdy2þ iMðγÞdy1þð−1Þγ κ

ðγÞ
11
V

Z
Γ
NðγÞdy2þ iNðγÞdy1

ð30Þ
where summation convention is understood for γ, which run from
1 to 2.



Methods of potential theory are used to solve (29). Doubly
periodic harmonic functions are to be found in terms of the
following Laurent and Taylor expansions of harmonic functions:

Mð1ÞðzÞ ¼ Re
z
R
a0þ ∑

∞

p ¼ 1

0 R
z

� �p

apþ ∑
∞

k ¼ 1

0 ∑
∞

p ¼ 1

0 z
R

� �p
ηkpak

9=
;,

8<
:

Nð1ÞðzÞ ¼ Re
z
R
b0þ ∑

∞

p ¼ 1

0 R
z

� �p

bpþ ∑
∞

k ¼ 1

0 ∑
∞

p ¼ 1

0 z
R

� �p
ηkpbk

9=
;, in Y1

8<
:

Mð2ÞðzÞ ¼ Re ∑
∞

p ¼ 1

0cp
z
R

� �p9=
;, Nð2ÞðzÞ ¼ Re ∑

∞

p ¼ 1

0dp
z
R

� �p9=
;, in Y2

8<
:

8<
:

ð31Þ
where

ηkl ¼−
ðkþ l−1Þ!
ðk−1Þ!l! Rkþ l ∑

∞

m ¼ −∞
∑
∞

n ¼ −∞

1

ðmw1þnw2Þkþ l
, m2þn2≠0, kþ l42

and an,bn,cn,dn are real undetermined coefficients; w1, w2, are the
periods of the parallelogram array, respectively (see Fig. 2). The
superscript “o” next to the summation symbol means that “p” runs
only over odd integers so that each term in (31) has the same anti-
symmetry property as MðγÞ and NðγÞ, namely, MðγÞð−zÞ ¼−MðγÞðzÞ,
NðγÞð−zÞ ¼ −NðγÞðzÞ (see more details in the works Bravo-Castillero
et al. [10] and Sabina et al. [11]).

The line integrals in (30) and the assumed expansions (31)
produce a very simple result as a consequence of the orthogonality
of the trigonometric functions, namely

Z
Γ
Mð1Þdx2þ iMð1Þdx1 ¼ πR a1þa0þ ∑

∞

k ¼ 1

oηk1ak

1
CA,

0
B@

Z
Γ
Nð1Þdx2þ iNð1Þdx1 ¼ πR b1þb0þ ∑

∞

k ¼ 1

oηk1bk

1
CA,

0
B@

Z
Γ
Mð2Þdx2þ iMð2Þdx1 ¼ πRc1,

Z
Γ
Nð2Þdx2þ iNð2Þdx1 ¼ πRd1: ð32Þ

Replacing (32) into Eq. (30) and taking into consideration the
imperfect contact condition (29) we obtain the final expression of
the effective coefficients,

Cn

55−iC
n

45 ¼ Cð1Þ
55 ð1−2V2Π11Þ, en15−ie

n

14 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1Þ
55κ

ð1Þ
11

q
ðEð1Þ−2V2Π21Þ,

ð33Þ
where

Π11 ¼ a1þEb1, Π21 ¼ Ea1−b1, EðγÞ ¼ eðγÞ15=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðγÞ
55κ

ðγÞ
11

q
,

the overbar denotes complex conjugate numbers, the fiber volume
fraction is V2 ¼ πR2=V , V ¼ jw1jjw2jsinθ denotes the area of peri-
odic cell. The unknown constants a1, b1 are solutions of the infinite
systems related to the local problems 13L, in which only the
residue of M(γ) and N(γ) contributes towards Cn

55, Cn

45 and
en15, en14. Thus, expressions for a1, b1 are now sought from the
system of infinite equations

M�D¼ U , ð34Þ
where the vector DT ¼ ðx1,x2,x3,x4Þ contains the real and imaginary
parts of the unknowns a1 ¼ x1þ ix2, b1 ¼ x3þ ix4 and the vector U
is given by UT ¼ Rðβ21,0,β41,0Þ. The super index T denotes trans-
pose and the 4�4-order matrix mðmnkÞ is defined by the following
matrix form,

M¼KþR2g−n1P−1n2, ð35Þ
6

K ¼

β11 0 α11 0
0 β11 0 α11
β31 0 α31 0
0 β31 0 α31

0
BBBB@

1
CCCCA,

J ¼
β21

h11þh12 h21−h22
−ðh21þh22Þ h11−h12

!
α21

h11þh12 h21−h22

-ðh21þh22Þ h11−h12

!

β41
h11þh12 h21−h22

−ðh21þh22Þ h11−h12

!
α41

h11þh12 h21−h22

−ðh21þh22Þ h11−h12

!
0
BBBBB@

1
CCCCCA

with

h11 ¼ℜe
δ1w2−δ2w1

w1w2−w2w1

� �
, h12 ¼ℜe

δ1w2−δ2w1

w1w2−w2w1

� �
,

h21 ¼ℑm
δ1w2−δ2w1

w1w2−w2w1

� �
, h22 ¼ℑm

δ1w2−δ2w1

w1w2−w2w1

� �
,

δγ ¼ 2ζðwγ=2Þ, ζðzÞ
is the Zeta quasi-periodic Weierstrass function defined as

ζðzÞ ¼ 1
z
þ ∑

∞

m,n

1
z−Tmn

þ 1
Tmn

þ z

T2
mn

!
, Tmn ¼mw1þnw2

and the prime over the summation symbol means that the pair (m,
n)¼(0, 0) is excluded. The Legendre’s relationship links δ1, δ2 and
the periods w1, w2 : δ1w2−δ2w1 ¼ πi: The Laurent series expansion
of ζ is ζðzÞ ¼ ð1=zÞ−∑∞

k ¼ 2ckðz2k−1=2k−1Þ, where c1 ¼ 0, c2 ¼ 3

S4, c3 ¼ 5S6 and ck ¼ ð3=ð2kþ1Þðk−3ÞÞ∑k−2
m ¼ 2cmck−m, k≥4: The lat-

tice Sk is defined by Sk ¼∑m,nðmw1þnw2Þ−k, m2þn2≠0, k42,
S2 ¼ 0: In particular S4 and S6 used in the numerical implementa-
tion are reported in Table 1 of Chih-Bing [24] for parallelogram and
rhombic cells respectively.

The matrices n1, P and n2 are of infinite order and for the
numerical implementation it is necessary to truncate to certain

order n∈ℕ: The matrix P ¼
P11 … P1n

⋮ ⋯ ⋮
Pn1 ⋯ Pnn

 !
4n�4n

is composed of sub-

matrices ðPtsÞ4�4, defined by Pts ¼ δtsKþz ts,

K¼

β1 2tþ1 0 α1 2tþ1 0
0 β1 2tþ1 0 α1 2tþ1

β3 2tþ1 0 α3 2tþ1 0
0 β3 2tþ1 0 α3 2tþ1

0
BBBB@

1
CCCCA,

z ts ¼
β2 2tþ1

w1 2tþ1 2sþ1 -w2 2tþ1 2sþ1

-w2 2tþ1 2sþ1 -w1 2tþ1 2sþ1

!
α2 2tþ1

w1 2tþ1 2sþ1 -w2 2tþ1 2sþ1

-w2 2tþ1 2sþ1 -w1 2tþ1 2sþ1

!

β4 2tþ1

w1 2tþ1 2sþ1 -w2 2tþ1 2sþ1

-w2 2tþ1 2sþ1 -w1 2tþ1 2sþ1

!
α4 2tþ1

w1 2tþ1 2sþ1 -w2 2tþ1 2sþ1

-w2 2tþ1 2sþ1 -w1 2tþ1 2sþ1

!
0
BBBBB@

1
CCCCCA,

w1kp ¼ℜeðwkpÞ, w2kp ¼ℑmðwkpÞ,

are the real and imaginary parts of the complex number

wkp ¼
ðkþp−1Þ!

ðk−1Þ!ðp−1Þ!
Rkþpffiffiffiffiffiffi

kp
p Skþp, k¼ 2t−1, p¼ 2s−1, t,s¼ 1,2,3…:

The matrices n1 ¼ ðn41 ⋯ n4nÞ4�4n and n2 ¼
n14

⋮
nn4

 !
4n�4

are

composed of sub-matrices ðn4tÞ4x4 and ðnt4Þ4�4 defined by
n4k ¼ z2tþ1 1, nt4 ¼ z1 2tþ1 respectively. The magnitudes
β1p, β2p, β3p, β4p, α1p, α2p, α3p, α4p are given as follows,

β1p ¼ 1, β2p ¼ 1−χpð1−K−1
s pÞ

1þ χpð1þK−1
s pÞ , β3p ¼ 1, β4p ¼

Eð1Þ− ffiffiffiffiffiffiffiχpχt
p Eð2Þð1−K−1

s pÞ
Eð1Þ þ ffiffiffiffiffiffiffi

χpχt
p Eð2Þð1þK−1

s pÞ ,

α1p ¼ Eð1Þ þ χpE
ð1ÞpK−1

s þ ffiffiffiffiffiffiffi
χpχs

p Eð2Þ

1þ χpð1þK−1
s pÞ , α2p ¼ Eð1Þ þ χpE

ð1ÞpK−1
s − ffiffiffiffiffiffiffi

χpχt
p Eð2Þ

1þ χpð1þK−1
s pÞ ,

α3p ¼ −1þp ffiffiffiffiffiffiffiχpχt
p Eð1ÞEð2ÞK−1

s −χt
Eð1Þ þ ffiffiffiffiffiffiffi

χpχt
p Eð2Þ ð1þK−1

s pÞ , α4p ¼ −1þp ffiffiffiffiffiffiffiχpχt
p Eð1ÞEð2ÞK−1

s þ χt

Eð1Þ þ ffiffiffiffiffiffiffi
χpχt

p Eð2Þð1þK−1
s pÞ ,

ð36Þ



where

χp ¼ Cð2Þ
44=C

ð1Þ
44 , χt ¼ κð2Þ11=κ

ð1Þ
11 :

The limit case of perfect contact condition for piezoelectric
antiplane problem is derived as a particular case of (34)–(36) as
Ks-∞. In this case, the parameters a1, b1 are the same that
formula (3.25) page 1475 reported by Bravo-Castillero et al. [10].
The infinite system (34)–(36) is used such that it is truncated for
obtaining an n�n order system. It is interesting to note that the
effective properties are monotonic function of order n of the
solution of the system. The numerical results converge well to
the exact solutions when an adequate order in the solution of the
system is chosen as n increase. The truncation order for solving the
system increases as the parameters K, χn and the fiber volume
fraction are high. In the numerical examples the solutions are
given for n¼10, because this order of n achieves the require
accuracy for the parameters used.

The remaining antiplane problems 23L, αI (α¼1,2) can be solved
in analogous form to the aforementioned problem. As a summary,
all the effective coefficients derived from the antiplane set of local
problems can be listed as follows:

Cn

55−iC
n

45 ¼ Cð1Þ
55 ð1−2V2H11Þ,

Cn

45−iC
n

44 ¼ −Cð1Þ
55 ðiþ2V2H12Þ,

en15−ie
n

14 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1Þ
55κ

ð1Þ
11

q
ðE−2V2H21Þ,

en14−ie
n

24 ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1Þ
55κ

ð1Þ
11

q
ðiEþ2V2H22Þ,

κn11−iκ
n

12 ¼ κð1Þ11 ð1þ2V2H31Þ,
κn12−iκ

n

22 ¼−κð1Þ11 ði−2V2H31Þ ð37Þ
where

H1α ¼ a1ðα3Þ þEb1ðα3Þ, H2α ¼ Ea1ðα3Þ−b1ðα3Þ,

H3α ¼ Ea1ðαÞ−b1ðαÞ, E¼ eð1Þ15=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1Þ
55κ

ð1Þ
11

q
,

the over bar denotes complex conjugate numbers and a1ðα3Þ, b1ðα3Þ,
a1ðαÞ and b1ðαÞ are solution of the infinite systems related to the
local problems 13L, 23L, 1I and 2I
5. Solution of plane local problems

Now, the problem ββL is considered. We can obtain from (18)
the constitutive equations for the plane piezoelectric problem

s11 ¼ C11 ββM1,1þC12 ββM2,2, s22 ¼ C12 ββM1,1þC11 ββM2,2,

s12 ¼ C66ðββM1,2þββM2,1Þ, D3 ¼ e15 ββM1,1þe24 ββM2,2: ð38Þ

The system of equations related to this plane problem is
decoupled into two pure elastic equations s11,1þs12,2 ¼
0, s12,1þs22,2 ¼ 0, and one electric equation D3,1þD3,2¼0 with
the same unknown functions ββM1, ββM2. The ββ pre-subindices are
dropped from all relevant quantities. Therefore, we only need to
find the solution of the same problem derived from plane
elasticity equations with imperfect contact condition

sðγÞαδ,δ ¼ 0 in Yγ , T ð1Þ
n þT ð2Þ

n ¼ 0, T ð1Þ
t þT ð2Þ

t ¼ 0 on Γ,

T ðγÞ
n ¼ ð−1Þγþ1Cð1Þ

66Kn‖Mn‖R−1, T ðγÞ
t ¼ ð−1Þγþ1Cð1Þ

66Kt‖Mt‖R−1 on Γ:

ð39Þ
Now, the idea consists to rewrite the mathematical formulation

of imperfect contact given by (39) in terms of the potential
functions φγ, ψγ.

The methods of a complex variable z in terms of two harmonic
functions and the Kolosov–Muskhelishvili complex potentials are
applicable. The potentials are related to the displacement and
7

stress components by means of the formulae

2CðγÞ
66ðuðγÞ

1 þ iuðγÞ
2 Þ ¼ χðγÞφγðzÞ−zφ=

γ ðzÞ−ψγ ðzÞ,
sðγÞ11þsðγÞ22 ¼ 2½φ=

γ ðzÞþφ=
γ ðzÞ�,

sðγÞ22−s
ðγÞ
11þ2isðγÞ12 ¼ 2½zφ==

γ ðzÞþψ=
γ ðzÞ�, ð40Þ

and χðγÞ ¼ 3−4νðγÞ, ν γð Þ ¼ CðγÞ
12=ðCðγÞ

11þCðγÞ
12Þ is the transverse Poisson's

ratio. The prime denotes a derivative with respect to z. The
representation of the complex potentials φγ, ψγ of periods ωγ is
given in the form

φ1ðzÞ ¼
a0
R
zþςðzÞRa1þ ∑

∞

k ¼ 3

nRkak ∑
∞

m,n
ðz−βmnÞ−k,

ψ1ðzÞ ¼
z
R
b0þςðzÞRb1þQ ðzÞRa1þ ∑

∞

k ¼ 3

n Rkbk ∑
∞

m,n
ðz−βmnÞ−kþkRkak ∑

∞

m,n
βmnðz−βmnÞ−k−1

" #

φ2ðzÞ ¼ ∑
∞

k ¼ 1

n z
R

� �
k
ck, ψ2ðzÞ ¼ ∑

∞

k ¼ 1

n z
R

� �
k
dk, ð41Þ

where the coefficients a0, b0, ak, bk ck dk are complex numbers
and undetermined, Q(z) is Natanzon's function, βmn¼mw1þnw2,
w1¼1, w2¼Reiθ for m,n∈Z, the asterisk on the sigma symbol
means that the double summation excludes the term m¼n¼0.
The double periodicity and quasi-periodicity of these functions
leads to

χð1Þa0−a0 ¼ ð−A1χ
ð1Þa1þA1a1þA2b1ÞR2, b0 ¼ ½A2χ

ð1Þa1þA3a1−A1b1�R2,

ð42Þ
where

A1 ¼
w1δ2−w2δ1
w1w2−w1w2

, A2 ¼
w1δ2−w2δ1
w1w2−w1w2

, A3 ¼
w1P2−w2P1

w1w2−w1w2
,

Pα ¼ 2Q
wα

2

� �
−wα ℘

wα

2

� �
, ℘ðzÞ ¼−ζ=ðzÞ:

Using the simple action–reaction principle given by the second
and third equation (39) and after some algebraic manipulations of
the formulae Kolosov–Muskhelishvili (40) and the series expan-
sion of the potential functions (41) we can obtain the following
relations between the unknown constants of the above expan-
sions:

b1 ¼
2C
B

ℜe
�
−R2A1a1þ ∑

∞

k ¼ 1

oηk1ak

�
−
P
B
Rγ2β , ð43Þ

bpþ2 ¼ p−
Dp

Ep
KnKtχmðκ1þ1Þ

	 

ap− 1þ Bp

Ep
KnKtχmðκ1þ1Þ

	 

∑
∞

k ¼ 1

oηk pþ2ak,

ð44Þ

c1 ¼
1

2ðκ2þ1Þ

−Cþ
1 A1R

2a1−C−
1A1R

2a1

þCþ
1 ∑

∞

k ¼ 1

oηk1a1

þC−
1 ∑

∞

k ¼ 1

oηk1a1þ χð2Þ þ1−2β0
P
B

� �
Rγ2j

1
CCCCCA,

0
BBBBBB@

ð45Þ

cpþ2 ¼ −
KnKtχmðκ1þ1Þ

Ep
ðDpapþBp ∑

∞

k ¼ 1

oηk pþ2akÞ, ð46Þ

dp ¼ KnKtχmðκ1þ1Þ Cp

Ep
apþ

Ap

Ep
∑
∞

k ¼ 1

0ηkpþ2ak

!

þ CpðKn−KtÞγ3j−ApðKnþKtÞγ3jþKnKtCpγ1j
Ep

χmRδ1p, ð47Þ

where

B¼ 1−χm−
2pχm
Kn

� �
ðA0

pÞ−1, C ¼ B
1−κ2þχmðκ1−1Þ

2α0
þ 2χm

α0Kn
,

P ¼ B
κ2−1
2α0

−
4χmð1þγ4β=γ2βÞ

2α0Kn

� �
, C7

1 ¼ 1þκ27χmð1þκ1Þþ2β0
C
B
,



α0 ¼ χm 1−ℜefA2gR2
h i

þ κ2−1−
4χm
Kn

� �
ℜefA2gR2

κ1−1
þ 1

2

" #
,

β0 ¼
ðκ2þ1ÞRefA2gR2

κ1−1
−iχmℑmfA2gR2þ ðκ2þ1Þ

2
,

ℜefzg and ℑmfzg denote real and imaginary part of complex
number z. Then,

A0
p ¼ χmκ1þ1−

2pχm
Kn

þKnKtχmðκ1þ1Þ κ2þχm−
2ðpþ2Þχm

Kn

� �
Dp

Ep
,

Ap ¼ ðpþ2ÞðKnKtð1−χmÞþpðKn−KtÞχmþðKnþKtÞχmÞ,
Bp ¼ KtKnð1−χmÞþpðKn−KtÞχm,
Cp ¼ KnKtðκ2þχmÞþðpþ2ÞχmððKnþKtÞpþKn−KtÞ,
Dp ¼ pχmðKnþKtÞ, Ep ¼ ApDp−CpBp,

δik is the Kronecker’s delta function, Cn
k is the binomial

coefficient, V1 and V2 are the area of the matrix and fiber
respectively, V1þV2¼1. The parameters involved in this expres-
sion are defined as follows:

ηkp ¼−

ffiffiffi
k
p

s
wkp, Tnþk ¼∑

p,q

pw1þqw2

ðpw1þqw2Þnþkþ1
, p2þq2≠0, p,q-integer numbers:

The above expressions (43)–(47) depend on the unknown
parameter ap which can be calculated from the following system
of algebraic equations:

apþH1pa1þH2pa1þ ∑
∞

k ¼ 1

0Wkpakþ ∑
∞

k ¼ 1

0Mkpak ¼H3pRγ2j, ð48Þ

where p¼1,3,5,…,

H1p ¼ BA2χ
ð1ÞR2δ1p−ðη1p−A1R

2δ1pÞR2A1C, H2p ¼ BA3R
2δ1p−ðη1p−A1R

2δ1pÞR2A1C,

Mkp ¼ BGkp−BD
0
pηkþ2pþðη1p−A1R

2δ1pÞCηk1þB0
pðA0

pÞ−1ηkpþ2,

Wkp ¼ −BC0
krkpþðη1p−A1R

2δ1pÞCηk1,

H3p ¼ ðη1p−A1R
2δ1pÞPþ

2χm
Kn

ðA0
pÞ−1

γ3j
γ2j

δ1p− 1−
2χmp
Kn

� �
ðA0

pÞ−1
γ1j
γ2j

δ1p,

B0
p ¼ χmðκ1þ1Þ 1þKnKt κ2þχm−

2χm
Kn

ðpþ2Þ
� �

Bp

Ep

	 

,

C0
p ¼ 1þKnKtχmð1þκ1Þ

Bp

Ep
, D0

p ¼ KnKtχmð1þκ1Þ
Dp

Ep

rkp ¼ ∑
∞

i ¼ 3

oηkiηip, Gkp ¼ ðpþ2Þηkðpþ2Þ þkηkþ2pþkRpþkCp
pþkTpþk:

ð49Þ
Eq. (48) represents an infinite linear system fromwhich we can

calculate coefficients ap as it is done for example by Rodriguez-

Ramos et al. [25] being 2γ1ðβÞ ¼ Cð1Þ
2β−C

ð2Þ
2β þCð2Þ

1β−C
ð1Þ
1β , Tkþ l ¼

∑
m,n

βmnβ
−k−l−1
mn for kþ l≥3 and δkl denotes delta Kronecker’s symbol.

From the solution of the in-plane local problems ββL, 12L and 3I
the coefficients Cn

11, Cn

12, Cn

13, Cn

22, Cn

23, Cn

33, Cn

66, Cn

16, Cn

26,

Cn

36, en31, en32, en33, en36, κn33 are derived. The closed form formulae
of the effective coefficients can be listed as follows:

Elastic

Cn

11 ¼ 〈C11〉−V2
‖k‖2

m1
ℜefκ2Δ1−Δ1g−V2‖k‖ðκ1þ1Þℜe

a11
R‖k‖

� �
þV2‖m‖

þ2V2
k1‖k‖
m1Kn

2χmℜefΔ1gþ
k2
‖k‖

� �
, ð50Þ

Cn

12 ¼ 〈C12〉−V2
‖k‖2

m1
ℜefκ2Δ2−Δ2gþV2‖k‖ðκ1þ1Þℜe

a12
R‖k‖

� �
−V2‖m‖

þ2V2
k1‖k‖
m1Kn

2χmℜefΔ2gþ
k2
‖k‖

� �
, ð51Þ

Cn

13 ¼ 〈C13〉−V2
‖k‖‖C13‖

m1
ℜefκ2Δ3−Δ3g−V2‖C13‖ðκ1þ1Þℜe

a13
R‖C13‖

� �
8

þ2V2
k1‖C13‖
m1Kn

2χmℜefΔ3gþ
Cð2Þ
13

‖C13‖

!
, ð52Þ

Cn

22 ¼ 〈C11〉−V2
‖k‖2

m1
ℜefκ2Δ2−Δ12gþV2‖k‖ðκ1þ1Þℜe

a12
R‖k‖

� �
þV2‖m‖

þ2V2
k1‖k‖
m1Kn

2χmℜefΔ2gþ
k2
‖k‖

� �
, ð53Þ

Cn

23 ¼ 〈C13〉−V2
‖k‖‖C13‖

m1
ℜefκ2Δ3−Δ3gþV2‖C13‖ðκ1þ1Þℜe

a13
R‖C13‖

� �

þ2V2
k1‖C13‖
m1Kn

2χmℜefΔ3gþ
Cð2Þ
13

‖C13‖

!
, ð54Þ

Cn

33 ¼ 〈C33〉−V2
‖C13‖2

m1
ℜefκ2Δ3−Δ3g

þ2V2
Cð1Þ
13‖C13‖
m1Kn

2χmℜefΔ3gþ
Cð2Þ
13

‖C13‖

 !
, ð55Þ

Cn

66 ¼ Cð1Þ
66−V2‖m‖ðκ1þ1Þℑmfa1ð12Þg, ð56Þ

Cn

61 ¼ V2‖k‖ℑm ðκ1þ1Þ a11
R‖k‖

	 

, ð57Þ

Cn

62 ¼ V2‖k‖ℑm ðκ1þ1Þ a12
R‖k‖

	 

, ð58Þ

Cn

63 ¼ V2‖C13‖ℑm ðκ1þ1Þ a13
R‖C13‖

	 

: ð59Þ

Piezoelectric

en31 ¼ 〈e31〉−V2
‖k‖‖e31‖

m1
ℜefκ2Δ1−Δ1gþ2V2

eð1Þ31‖k‖
m1Kn

2χmℜefΔ1gþ
k2
‖k‖

� �
, ð60Þ

en32 ¼ 〈e31〉−V2
‖k‖‖e31‖

m1
ℜefκ2Δ2−Δ2gþ2V2

eð1Þ31‖k‖
m1Kn

2χmℜefΔ2gþ
k2
‖k‖

� �
, ð61Þ

en33 ¼ 〈e33〉−V2
‖C13‖‖e31‖

m1
ℜefκ2Δ3−Δ3g

þ2V2
eð1Þ31‖C13‖
m1Kn

2χmℜefΔ3gþ
eð2Þ31

‖C13‖

 !
, ð62Þ

en36 ¼−V2
‖m‖‖e31‖

m1
ℜefκ2Δ12−Δ12gþ4χmV2

‖m‖eð1Þ31
m1Kn

ℜefΔ12g, ð63Þ

where Δβ ¼ c1=ðRχmγ2βÞ, a1β denotes the residue a1 of the function
φ1ðzÞ in (41) for each problem ββL. Analogously, the magnitude
a1 ð12Þ denotes the residue a1 of the function φ1ðzÞ for the local
plane problem L12, where the system (48) and the expressions (49)
are the same with the only different expression H3ðhnÞ ¼ i Eδ1n:
Moreover, Δ12 ¼ c1=ð2RχmÞ.

The local problem 3I is solved analogously to the problem Lββ
and we omit the steps for the solution, only we present the
analytic expression of the dielectric permittivity effective coeffi-
cient κn33 in order to characterize completely the composite

Dielectric permittivity

κn33 ¼ 〈κ33〉þV2
‖e31‖2

m1
ℜefκ2Δ−Δgþ2V2

eð1Þ31‖e31‖
m1Kn

2χmℜefΔgþ eð2Þ31

‖e31‖

!
,

ð64Þ
and Δ¼ c1=ðRχm‖e31‖Þ:

6. Analysis of the numerical results. Validation of the model

To illustrate how the composite material parameters vary with
imperfect interfacial parameters and volume fraction of



Table 4
piezoelectric ceramic, the material parameters of PZT-7A, BaTiO3

and Araldite D are used. They are listed in Table 2.
Moreover, as it was stated aforementioned in the calculations

by AHM, the following relations are used: ~K t ¼ KtC
ð1Þ
44=R,

~Kn ¼ KnC
ð1Þ
44=R,

~Ks ¼ KsC
ð1Þ
44=R where Kt , Kn and Ks are dimension-

less imperfect parameters.
As a validation of the present model derived using AHM, in

Table 3 a comparison between the model by AHM with the model
by FEM reported by Kar-Gupta and Venkatesh [26] for 1–3 piezo-
composite system under perfect contact with square-cell distribu-
tion and individual constituent phases BaTiO3 matrix and PZT-7A
fiber of hexagonal 6 mm symmetry is presented. The calculations
were made for fiber volume fraction V2 ¼ 0:7. Notice a good
concordance between both models.

Some numerical calculations are shown in Table 4 in order to
illustrate the influence of imperfect adhesion in the behavior of
the 1–3 piezocomposite with square and hexagonal cells distribu-
tion and individual constituent phases BaTiO3 matrix and PZT-7A
fiber. Two different mechanical imperfect parameters are consid-
ered K ¼ 5 (imperfect contact) and K ¼ 1012 (perfect contact) for
two different configuration of the cells and V2 ¼ 0:6. The case of
imperfect contact, where the rigidity of the interface is softening,
the effective moduli decrease because the imperfection makes
weaker the interaction between fiber and matrix. This situation is
simulating an augment of the porosity in the composite. On the
other hand, the configuration of the unit cell does not influence
upon the numerical values of the effective properties because the
global behavior of the composites with hexagonal or square cell is
transversely isotropic material as it was shown in Bravo-Castillero
et al. [10] and Sabina et al. [11]. This is different from other
configuration of the cells where the symmetry of the global
behavior of composite is tetragonal as it was studied in
Rodriguez-Ramos et al. [14]. Other possible cause of this fact is
the low contrast of the properties between matrix and fibers.

As another validation a comparison between the present model
for perfect contact with EEVM reported in Guinovart-Díaz et al.
[13] and Yan et al. [28] for a two-phase PZT/Epoxy composite for
four different configuration of basic cell arrangements
(θ¼ 45o, 60o, 75o, 90o) is shown in Table 5. The used constitu-
ents properties are listed in Table 1 of Yan et al. [28] and the
calculations were made for fiber volume fraction V2 ¼ 0:6. In this
example, where the contrast between matrix and fibers is high,
Table 2
Electroelastic material constants.

BaTiO3 matrix
Kar-Gupta [26]

PZT-7A fiber
Kar-Gupta [26]

PZT-7A fiber
Levin [27]

Araldite D matrix
Levin [27]

C11 (GPa) 150.4 157.7 148 8.0
C12 (GPa) 65.63 87.67 76.2 4.4
C13 (GPa) 65.94 81.2 74.2 4.4
C33 (GPa) 145.5 125.7 131 8.0
C44 (GPa) 43.86 29.41 25.4 1.8
C66 (GPa) 42.37 34.97 35.9 1.8
κ11 (nC/Vm) 12.8 8.23 4.6 4.2
κ33 (nC/Vm) 15.1 3.76 2.35 4.2
e31 (C/m2) −4.32 −2.30 −2.1 0
e33 (C/m2) 17.4 9.49 12.3 0
e15 (C/m2) 11.4 10.6 9.2 0

Table 3
Comparison between AHM and FEM for 1–3 piezocomposite system made of BaTiO3 m

Cn

11 (GPa) Cn

12 (GPa) Cn

13 (GPa) Cn

33 (GPa) Cn

44 (GPa) Cn

66 (G

AHM 155.1 80.9 76.3 131.3 33.3 37.0
FEM 155.0 81.0 76.3 131.3 33.3 37.1
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the configuration of the periodic cell does have a major influence
on the effective piezoelectric moduli in comparison with Table 4.
Notice a good agreement of the present results derived by AHM
with spring parameter K ¼ 1012 and the results obtained by EEVM.

In Table 6 the same configuration of basic cells
(θ¼ 45o, 60o, 75o, 90o) for the PZT/Epoxy composite are consid-
ered. In this case, the influence of the imperfect spring parameter
Kn ¼ Kt ¼ Ks ¼ K is illustrated for two values of the imperfect
parameters K ¼ 1, 10: The effective properties in the composite
augments as the spring factor K increases as well. The configura-
tion of the cells affects the anisotropic properties of the composite.
For example, composites with periodic cells θ¼ 45o, 75o have
monoclinic symmetry which is different to composites with
configuration of hexagonal (θ¼ 60o) and square (θ¼ 90o) cells
where the symmetry groups are 6 mm and 4 mm respectively.
6.1. Effect of the imperfect adherence in the ultrasonic transducers
applications

Various parameters have been used to evaluate the perfor-
mance of 1–3 piezoelectric composites. For underwater acoustic
transducer or hydrophone, the measure of performance studied
here are the hydrostatic charge coefficient dh, hydrostatic voltage
coefficient gh, and hydrophone figure of merit dhgh. All these
parameters are referred to 1–3 piezoelectric composites and
therefore the upper symbol “n” means overall properties of the
composite but for simplicity it is omitted in the parameters. For
instance, the hydrostatic charge coefficient dh is defined by

dh ¼ dn

13þdn

23þdn

33: ð65Þ

The corresponding hydrostatic voltage coefficient gh is defined
by

gh ¼
ðdn

hÞ2
κn33

ð66Þ

A useful figure of merit is the product of dh and gh. High values
for these parameters indicate a high sensitivity of the transducer
as it is explained by Avellaneda and Swart [18] and Gibiansky and
Torquato [19].
atrix and PZT-7A fiber.

Pa) en15 (C/m2) en31 (C/m2) en33 (C/m2) κn11 (nC/Vm) κn33 (nC/Vm)

10.9 −3.0 11.8 9.4 7.2
10.9 −2.9 11.8 9.4 7.2

Behavior of the composite with perfect and imperfect contacts for hexagonal and
square cells.

Kn ¼ Kt ¼ Ks≡K 601 901

K¼5 K¼1012 K¼5 K¼1012

Cn

11 (GPa) 104.07 154.24 104.30 154.32

Cn

12 (GPa) 40.83 78.73 40.09 78.65

Cn

13 (GPa) 46.26 74.75 46.12 74.75

Cn

33 (GPa) 114.83 133.26 114.75 133.26

Cn

44 (GPa) 32.21 34.66 32.18 34.65

Cn

66 (GPa) 31.62 37.75 31.23 37.67
en15 (C/m2) 10.16 11.01 10.17 11.01
en31 (C/m2) −2.06 −3.15 −2.04 −3.15
en33 (C/m2) 13.32 12.61 13.32 12.61
κn11 (nC/Vm) 10.17 9.88 10.16 9.87
κn33 (nC/Vm) 8.25 8.30 8.25 8.30



For biomedical imaging applications, the piezoelectric electro-
mechanical coupling kt and the acoustic impedance Z are used to
measure the performance of the medical ultrasonic imaging
transducers, where low acoustic impedance and high electrome-
chanical coupling is desired. See more details in the works of
Smith et al. [29] and Smith and Auld [30]. The electromechanical
coupling kt is defined as

kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

CnE
33

CnD
33

s
, ð67Þ

where

CnD
33 ¼ CnE

33þ
en233
κn33

: ð68Þ

The acoustic impedance Z is given by

Z ¼ ðCnD
33ρÞ1=2 ð69Þ

where the composite density ρ is determined

ρ¼ V2ρ2þð1−V2Þρ1 ð70Þ
and where ρ2 is the density of the fiber and ρ1 is the density of the
matrix.

In Figs. 3–6 the configuration of the periodic cell is hexagonal.
Figs. 3 and 4 show the effective hydrostatic charge coefficient dh and
the figure of merit dhgh of the piezoelectric composite with respect to
the volume fraction of the PZT-7A fibers for Araldite Dmatrix material.
Three different values of the normal imperfection parameters
(Kn ¼ 1, 10, 1012) are used in the computationwhere the tangential
imperfect parameter taken Kt ¼ Ks ¼ 1012. It can be seen that the
curve Kn ¼ 1 is superior to the other two curves. We could suppose
that the consideration of imperfect adherence is not good for the
performance of the composites. However, sometimes the imperfection
at the interface provokes certain improvements in some properties of
the composites for different applications. This fact could be considered
Table 5

Comparison between AHM with spring parameter K ¼ 1012 and EEVM, for perfect cont

V2 ¼ 0:6 451 601

K ¼ 1012 EEVM K ¼ 1012 EEV

Cn

55 (GPa) 5.9623 5.962 6.3245 6.3

Cn

45 (GPa) −1.6849 −1.685 0 0

Cn

44 (GPa) 9.3321 9.332 6.3245 6.3
en15 (C/m2) 0.048005 0.04800 0.042325 0.0
en14 (C/m2) 0.057456 −0.05745 0 0
en24 (C/m2) 0.16292 0.1629 0.042325 0.0
κn11 (nC/Vm) 0.14137 0.1414 0.1467 0.14
κn12 (nC/Vm) 0.056539 −0.05653 0 0
κn22 (nC/Vm) 0.25444 0.2544 0.1467 0.14

Table 6
Influence of the imperfect spring parameter K in the global behavior of the composite.

V2 ¼ 0:6 451 601

K¼1 K¼10 K¼1 K¼10

Cn

55(GPa) 1.7593 4.495 1.7594 4.795

Cn

45(GPa) 0.0003 −0.5483 0 0

Cn

44(GPa) 1.7587 5.5916 1.7594 4.795
en15(C/m

2) 0.009 0.0306 0.00940 0.03120
en14(C/m

2) −0.0049 −0.0277 0 0
en24(C/m

2) 0.0188 0.086 0.0094 0.0312
κn11(nC/Vm) 0.142 0.1417 0.1469 0.1468
κn12(nC/Vm) −0.0577 −0.0572 0 0
κn22(nC/Vm) 0.2574 0.2561 0.1469 0.1468
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as a paradoxical behavior, for example, the normal imperfection
improves the properties dh, dhgh and kt of the composite (Figs. 3–5).
Low values of mechanical imperfection parameters induce a weaker
bonded at the contact between matrix and fiber in the composite. In
this case the normal parameter imperfection for low adherence
between fiber and matrix improves the property dh and dhgh of the
1–3 piezoelectric composites, and it can be seen that the dh and dhgh
for low values of Kn exceed the value of the composite with perfect
contact. The maximum value for the hydrostatic figure of merit dhgh
increases with decreasing the normal parameter of imperfection
(Fig. 4). This maximum value is achieved at a low volume fraction of
the piezoceramic fibers (V2o15%).

For purpose of verifying the validity of the method used in the
present study, the calculated electromechanical coupling effective
factor kt is compared in Fig. 5 with existing experimental results of
Chan and Unsworth [31] for perfect contact. The material properties in
Table 2 and three different values of the normal imperfection para-
meters (Kn ¼ 1, 10, 1012) and the tangential imperfect parameter
Kt ¼ Ks ¼ 1012 were used for the calculations. The electromechanical
coupling effective coefficient kt characterizes the transformation of
electric to mechanical energy and conversely in the x3 axial direction.
High electromechanical coupling factor is important for designing
pulse-echo ultrasonic transducer application. This parameter kt for
contact perfect is superior to the conventional piezoelectric material
PZT-7A in almost all the range of fiber volume fraction. When the
normal imperfect parameter Kn diminishes then the conversion
between electrical and mechanical energy diminishes in the normal
direction as well and by conservation of energy there exist an augment
of conversion of energy in the axial direction and it is the reason of the
increment of kt . In Fig. 5, the data points of the experiment are
scattered around the predictions with different imperfect parameters
which represent different bonding condition for the PZT-7A–Araldite
D composite. Notice that the curves related to imperfect parameters
have the same trend. Particularly the curve Kn ¼ 1 is higher than
act and four different fiber arrays.

751 901

M K ¼ 1012 EEVM K ¼ 1012 EEVM

24 6.6083 6.608 6.6733 6.673
0.31707 0.3171 0 0

24 6.4383 6.438 6.6733 6.673
4232 0.049655 0.04965 0.051955 0.05196

0.006692 0.006692 0 0
4232 0.046068 0.04607 0.051955 0.05196
67 0.15534 0.1553 0.15755 0.1576

0.009082 0.009082 0 0
67 0.15047 0.1505 0.15755 0.1576

751 901

K¼1 K¼10 K¼1 K¼10

1.7593 4.8786 1.7593 4.8731
−4.18�10−5 0.13935 0 0
1.7594 4.804 1.7593 4.8731
0.010134 0.035193 0.010328 0.036115
0.000777 0.004136 0 0
0.009717 0.032976 0.010328 0.036115
0.15567 0.15546 0.15792 0.1577
0.009155 0.009112 0 0
0.15076 0.15058 0.15792 0.1577



Fig. 3. Effective hydrostatic charge coefficient dh as a function of fiber volume fraction. Various normal imperfect parameters for 1–3 piezoelectric composites.

Fig. 4. Figure of merit dhgh of the piezoelectric composite with respect to the volume fraction of the PZT-7A fibers for Araldite D matrix material and different spring
parameters.
the remaining curve which is desired for biomedical imaging
applications. kt increases as the PZT-7A volume fraction increases.
The increase becomes significant for a volume fraction greater
than 50%.

In Fig. 6, the effective electromechanical coupling kt versus the
effective acoustic impedance Z for the piezoelectric composite with
three different values of the normal imperfection parameters
(Kn ¼ 1, 10, 1012) is shown where the tangential imperfect para-
meter is taken Kt ¼ 1012. It can be seen the influence of the imperfect
interface in the behavior of this composite, which is useful for the
design of medical imaging transducers. It can be seen that kt first
increases rapidly with Z and notice that the curves for imperfect cases
11
Kn ¼ 1, 10 are higher than the curve of perfect contact Kn ¼ 1012

where a slight diminish is achieved for high fiber volume fraction. kt
further increases as the normal imperfect parameter decreases with
the same value of Z. The conversion between electrical andmechanical
energy diminishes in the normal direction as Kn diminishes then there
exits an increment of kt for a fixed value of the impedance or fixed
value of the fiber volume fraction.

Some limitations of the obtained solutions would be mentioned.
The determination of the effective properties required the conver-
gence of the series (31) and (41). These series expansion depend on
the contrast between the properties of the components and on the
volume fraction of the fibres. In the case of a high-contrast composite



Fig. 5. Comparison of the calculated electromechanical coupling kt with the experimental data of Chan and Unsworth [31].

Fig. 6. kt vs. Z for 1–3 piezoelectric composites with PZT-7A fibers and various value of imperfection parameter.
with densely-packed fibres, the gradients of the local fields can grow
significantly. Then, the convergence of the series decreases and
evaluation of the accurate numerical results may become very time-
consuming. In this sense, the above computations were made for
N0 ¼ 10, where N0 denotes the number of equations considered in the
solution of the infinite algebraic system of Eqs. (34) and (48). The
solution to the infinite order algebraic system (34) and (48) is achieved
by means of truncation to an infinite order and the Cramer's rule. A
fast convergence of successive truncations is ensured because the
system is regular (see references in Bravo-Castillero et al. (2001)) so
that successive approximations can be applied. In general, for low
volume fraction of fiber (V2o0:4) the accuracy and convergence of
the results are good for much smaller values of N0 (N0≤2). More terms
are required for high volume fraction of fibers as well as high contrast
of fiber and matrix, in particular, N0410 gives an approximationwith
12
absolute error less than 1%. The absolute error between two con-
secutive truncations is very low.

The explicit analytical form of the effective coefficients (37),
(50)–(64) are large and complicated. They require computation of
a number of terms of series (31) and (41) and the solution of the
system (34) and (48). However, once the computational program is
established the time-consuming is very short.
7. Conclusion

In the present paper, an asymptotic approach for simulation of the
imperfect interfacial bonding in composite materials is proposed by
means of spring model. In the asymptotic limit, we can simulate
different degrees of the interface's response: the case K-∞



corresponds to the perfect bonding, the case K-0 to the complete
separation of the matrix and inclusions. As illustrative examples we
consider fibre-reinforced composites with different angular configura-
tions of unit cells. The analysis is based on the asymptotic homo-
genization method, the cell problem is solved using the theory of
complex variable. The local problems associated to an anisotropic
piezoelectric composite with mechanical imperfect interface condition
and parallelogram cell are formulated and solved. As the results we
obtain approximate analytical solutions for the effective moduli on
micro level depending on the degree of the interfacial debonding.
Developed solutions are valid for all values of the components’ volume
fractions and properties. The effect of the inclination of the cell affects
the anisotropic character of the composites and in general this effect
leads to different crystalline symmetries in the global behavior of the
composite, for instance, tetragonal 4mm class symmetry (6 elastic,
3 piezoelectric and 2 dielectric permittivity effective moduli) for
square periodic cell; hexagonal 6mm class symmetry (5 elastic, 3 piezo-
electric and 2 dielectric permittivity effective moduli) for hexagonal
periodic cell; orthorhombic class symmetry (9 elastic, 3 piezoelectric
and 3 dielectric permittivity effective moduli) for rectangular periodic
cell and finally monoclinic type 2 (13 elastic, 8 piezoelectric and
4 dielectric permittivity effective moduli) anisotropic behavior in the
composite with parallelogram cell. On the other hand, it follows from
the analysis of the results that in the case of the perfect electric
bonding, softening the rigidity of the interface does have an influence
on the effective elastic moduli, but has a very minor effect on the
electric properties of the material.

A parametric study has been conducted to study the influence of
the imperfect contact on the electro-mechanical properties on the
performance of the 1–3 piezoelectric composite for the designing of
transducer applications. Based on the study, we can say
1.
 The presence of normal imperfect contact enhances the effec-
tive hydrostatic performances of the 1–3 piezoelectric compo-
sites. The peak values of the performance parameter in the
figure of merit increases as the normal imperfect contact
diminishes.
2.
 The normal imperfection contact improves the performance of
the 1–3 piezoelectric composite by increasing the electrome-
chanical coupling while reducing the acoustic impedance of the
composite. This performance is improved as Kn diminishes.
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