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We give an immersion formula, the Sym-Bobenko formula, for minimal surfaces in the 3-dimensional Heisenberg space. Such a formula can be used to give a generalized Weierstrass type representation and construct explicit examples of minimal surfaces.

Introduction

A Sym-Bobenko formula is the expression of an immersion in terms of a oneparameter family of moving frames, called the extended frame. This idea was first used by A. Sym [START_REF] Sym | Soliton surfaces and their applications (soliton geometry from spectral problems)[END_REF] in the case of surfaces with negative constant (Gauss) curvature in euclidean space. A. I. Bobenko applied the method to numerous cases [START_REF] Bobenko | All constant mean curvature tori in R 3 , S 3 , H 3 in terms of theta functions[END_REF] [2] [START_REF] Bobenko | Surfaces in terms of 2 by 2 matrices. Old and new integrable cases, Harmonic maps and integrable systems[END_REF], including constant mean curvature (CMC for short) surfaces in space forms -euclidean 3-space, 3-sphere and hyperbolic 3-space -and T. Taniguchi applied it to CMC spacelike surfaces in Minkowski 3-space [START_REF] Taniguchi | The Sym-Bobenko formula and constant mean curvature surfaces in Minkowski 3-space[END_REF]. In the mean time, the work of J. Dorfmeister, F. Pedit and H. Wu [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF] and D. Brander, W. Rossman and N. Schmitt [START_REF] Brander | Holomorphic representation of constant mean curvature surfaces in Minkowski space: consequences of non-compactness in loop group methods[END_REF] show that Sym-Bobenko formulae can be seen as generalized Weierstrass type representations for CMC surfaces, extended frames coming from holomorphic data.

In Heisenberg 3-space, the classical method does not apply, since the isometry group is of dimension only 4 -contrary to the ones of space forms that are 6-dimensional -and does not act transitively on orthonormal frames; there are "not enough" isometries to define a moving frame. We show that nevertheless, for minimal immersions a Sym-Bobenko formula can be established using an ad-hoc matrix-valued map.

In [START_REF] Dorfmeister | A loop group method for minimal surfaces in the three-dimensional Heisenberg group[END_REF], J. F. Dorfmeister, J. Inoguchi and S. Kobyashi link this formula with pairs of meromorphic and anti-meromorphic 1-forms, which they call pairs of normalized potentials, in a way to get a generalized Weierstrass type representation for minimal surfaces.

Surfaces in Heisenberg space

We see the 3-dimensional Heisenberg space Nil 3 as R 3 , with generic coordinates (x 1 , x 2 , x 3 ), endowed with the following riemannian metric:

•, • = dx 2 1 + dx 2 2 + 1 2 (x 2 dx 1 -x 1 dx 2 ) + dx 3 2 .
We call canonical frame the orthonormal frame (E 1 , E 2 , E 3 ) defined by:

E 1 = ∂ ∂x 1 - x 2 2 ∂ ∂x 3 , E 2 = ∂ ∂x 2 + x 1 2 ∂ ∂x 3 and E 3 = ∂ ∂x 3 ,
and the Levi-Civita connection ∇ writes:

∇ E 1 E 1 = 0 ∇ E 2 E 1 = -1 2 E 3 ∇ E 3 E 1 = -1 2 E 2 ∇ E 1 E 2 = 1 2 E 3 ∇ E 2 E 2 = 0 ∇ E 3 E 2 = 1 2 E 1 ∇ E 1 E 3 = -1 2 E 2 ∇ E 2 E 3 = 1 2 E 1 ∇ E 3 E 3 = 0.
Note that the vector field E 3 is a Killing field and that the projection

π : (x 1 , x 2 , x 3 ) ∈ Nil 3 → (x 1 , x 2 ) ∈ R 2 on
the first two coordinates is a Riemannian submersion. From now on, we identify R 2 with C.

We may also write Nil 3 as a subset of M 2 (C). Consider the matrices:

σ 0 = i 0 0 -i , σ 1 = 0 1 1 0 , σ 2 = 0 i -i 0 and σ 3 = 1 0 0 1 .
The identification is the following:

(x 1 , x 2 , x 3 ) ∈ Nil 3 ←→ x 1 σ 1 + x 2 σ 2 + x 3 σ 3 = x 3 x 1 + ix 2 x 1 -ix 2 x 3 ∈ M 2 (C). (1)
Note that this identification is purely formal and does not involve any manifold related structure.

Let Σ be a simply connected Riemann surface and z be a conformal parameter on Σ. A conformal immersion is denoted f : Σ → Nil 3 with unit normal N and conformal factor ρ : Σ → (0, +∞) meaning:

f z , f z = f z , f z = 0, f z , f z = ρ 2 , f z , N = f z , N = 0 and N, N = 1.
Consider also ϕ = N, E 3 : Σ → (-1, 1) denote the angle function of N ,

A = f z , E 3 : Σ → C the vertical part of f z and pdz 2 = ∇ fz f z , N dz 2 the Hopf differential of f .
The Abresch-Rosenberg differential expresses Qdz 2 = (ip + A 2 )dz 2 , and a necessary and sufficient condition for f to be minimal is ∇ fz f z = 0.

We also decompose f into f = (F, h) with F = π • f : Σ → C the horizontal projection of f and h : Σ → R its height function. We can express A in terms of F and h:

A = h z - i 4 F F z -F F z . ( 2 
)
In the matrix model (1) of Nil 3 , the map F is given by the non-diagonal coefficients -precisely the (1, 2)-coefficient -and h by the diagonal ones.

The intuitive idea behind Sym-Bobenko formulae in space forms is that, up to ambient isometries, the unit normal -or Gauss map -would locally determine the immersion up to ambient isometries. In Nil 3 such a map is defined as follows; see [START_REF] Daniel | The Gauss map of minimal surfaces in the Heisenberg group[END_REF] for details. Since Nil 3 is a Lie group, the map f -1 N takes values in the unit sphere S 2 of the Lie algebra. Moreover, for a local study, we can suppose ϕ > 0 so that the values of f -1 N are actually in the northern hemisphere of S 2 . If s denotes the stereographic projection centered at the South Pole, we call Gauss map of an immersion f the map g = s • (f -1 N ) with values in the unit disk. Actually, endowing the unit disk with the Poincaré metric, we see the Gauss map g as a map with values into the hyperbolic disk H 2 .

We use the following criterion to show that a conformal immersion in Heisenberg space is minimal: Proposition 2.1 (Daniel [6]). A conformal immersion f = (F, h) : Σ → Nil 3 is minimal if and only if:

F z z = i 2 AF z + AF z and A z + A z = 0.
Furthermore, when f is minimal its Gauss map g : Σ → H 2 is harmonic.

The Sym-Bobenko formula

Consider the family (Ψ t ) t∈R of matrix fields over Σ which are solutions of the system:

                             Ψ -1 t dΨ t = 1 4     (log ρ 0 ) z i √ ρ 0 - 4iQ 0 √ ρ 0 e 2it -(log ρ 0 ) z     dz + 1 4     -(log ρ 0 ) z 4iQ 0 √ ρ 0 e -2it -i √ ρ 0 (log ρ 0 ) z     dz Ψ t (z = 0) = σ 3
, where ρ 0 : Σ → (0, +∞) and Q 0 : Σ → C are smooth. Such a family (Ψ t ) exists if and only if:

(log ρ 0 ) z z = ρ 0 8 - 2|Q 0 | 2 ρ 0 and (Q 0 ) z = 0.
Theorem 3.1 (Sym-Bobenko formula). Using the matrix model [START_REF] Bobenko | All constant mean curvature tori in R 3 , S 3 , H 3 in terms of theta functions[END_REF], define the map f t : Σ → Nil 3 for any t ∈ R as:

f t = - 1 2 σ 0 ∂ f t ∂t d + f t nd with f t = -2 ∂Ψ t ∂t Ψ -1 t + 2Ψ t σ 0 Ψ -1 t , ( 3 
)
where the superscripts • d and • nd denote respectively the diagonal an nondiagonal terms. Then f t is a conformal minimal immersion in Heisenberg space and the family (f t ) is the so-called associated family.

Proof. Fix t ∈ R. From Equation (3), we get:

(f t ) nd = ( f t ) nd , (f t ) z d = 1 2 σ 0 ( f t ) z , f t d + 2 σ 0 ( f t ) z d and ( f t ) z z = i 4 ( f t ) z , ( f t ) z , (4) 
where [•, •] denotes the commutator. From the first equation in (4), we have that matrices f t and f t write:

f t = h F F h and f t = i h F F -i h ,
with F : Σ → C and h, h : Σ → R smooth. We show that F and h verify the conditions of Proposition 2.1. Using Equation (2) and the second identity in (4), we deduce A = i h z and since h is real-valued, we obtain A z + A z = 0. Finally, the (1, 2)-coefficient of the third equation in (4) verify:

F z z = 1 2 h z F z -h z F z = i 2 AF z + AF z ,
which concludes the proof.