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Abstract ential systems is uneasy, for limits conditions and number o
processus fluctuate. As an alternative, the multi-agent ap-
In the context of biological complex systems multi- proach [6, 20], already used in several biochemical models
agent simulation, we present an interaction-agent model fo [11, 12, 19], provides a conceptual, methodological and ex-
reaction-diffusion problems that enables interactionhwit perimental framework well-fitted for imagination, modeli-
the simulation during the execution, and we establish a sation and experimentation of complexity. In this context,
mathematical validation for our model. We use two types our work applies to the simulation of biological chemical
of interaction-agents: on one hand, in a chemical reactor kinetics phenomenons taking into account the variability o
with no spatial dimension -e.g. a cell-, areaction-ageptre the number of implied reactants.
resents an autonomous chemical reaction between several We present an interaction-agent model, dedicated to
reactants, and modifies the concentration of reaction prod- reaction-diffusion processes and based on two kinds of
ucts. On the other hand, we use interface-agents in orderagents:
to take into account the spatial dimension that appears with

diffusion : interface-agents achieve the matching transfe - In a dimensionless chemical reactor, a reaction-agent
reactants between cells. This approach, where the simula- [15] represents a chemical reaction which loops into
tion engine makes agents intervene in a chaotic and asyn- 3 perception/decision/action cycle : it reads the con-
chronous way, is an alternative to the classical model - centration of reactants, adapts its reaction speed, and
which is not relevant when the limits conditions are fre- modifies Consequenﬂy the concentration of reaction

quently modified- based on partial derivative equations. We products_ Each agent independenﬂy executes a clas-
enounciate convergence results for our interaction-agent sical ordinary differential system algorithm [4]. For

methods, and illustrate our model with an example about each of these classical methods, we build the matching
coagulation inside a blood vessel. reaction-agent method.

- In order to take into account spatial diffusion pro-

1. Introduction cesses, we use an interface-agent between each pair of
neighbor meshes for the transfer of chemical reactants
Algorithms for the numerical resolution of differential according to the diffusion coefficient. We do not solve
systems, though they give precise results, do not fit well any partial derivative equation.

with the study of complex systems [1]. which aaepri-

ori open (dynamical appearance/disappearance of compo- The simulation engine evolves interaction-agents asyn-
nents), heterogenous (various morphology and behavioursghronously and chaotically (see section 2), in order todvoi
and made of entities that are composite, mobile and dis-the typical inflexibility of synchronous systems, as well as
tributed in space ; their number changes during time, andbias in numerical results.

they interact with each other. Describing the evolution of ~ Biochemical kinetics is a natural application context for
such systems by means of deterministic methods like differ-our model: a classical example is given by cancer, since



chromosomic instability [9] implies on a regular basis mod-
ifications or creations of new reactions [2]. We have also
used our reaction-agent model for simulatiomveiPk path-
way [14], and simulation of the extrinsic pathway of blood
coagulation [13].

From a more general point of view, we set up agents au-
tonomy as a basic principle [18] : this principle gives us the
ability to interact with a running simulation, opening the
path to a new way of experimenting : thevirtuo experi-
mentation [17].In virtuo experimentation makes it possible
to interfere with a model by adding or removing reactants,
as well as interaction between reactants. The main interest
of such an experimentation is that these alterations are pos
sible without having to stop the progress of the simulation :
experimental conditions of thie virtuo way are therefore
very close to theén vivo andin vitro ones, and fundamen-
tally different from then silico one.

In section 2 of this paper, we present what we call chaotic
and asynchronous iterations, that is, the way we make our
interaction-agents intervene. In section 3 we describe our
reaction-agent model for numerical computation of differ-
ential systems for chemical kinetics inside a cell, so as our
formal results of convergence. In section 4 we describe our
interface-agent model, dedicated to diffusion process. We
also formalize our model and state the main results about
convergence. Section 5 shows an illustrating example of
our approach for a blood circulation simulation inside a
blood vessel. For the sake of concision, we will not ex-
pose demonstrations of mathematical results (which are not
conjectures but proved results). Please contact first autho
to obtain proofs.

2. Chaotic and Asynchronous iterations

In this short section, we describe precisely the way our
interaction-agents intervene during the simulation, wiat

algorithmsa priori do this hypothesis based upon
the choice of infinitesimal time-step.A contrario,
interaction-agent model does the asynchronic hypoth-
esis for chemical reactions. We claim that this hypoth-
esis is not only more realistic, but moreover allows the
user to interfere at runtime with the reactions by adding
or removing a reaction-agent, at any time of the simu-
lation. Time is then divided into scheduler cycles in-
side of which each interaction-agent acts once and only
once, considering the state of the system at the moment
it acts. From a physical point of view, each scheduler
cycle corresponds to one time-step of the classical ap-
proach.

Chaotic iterations : an unalterable arrangement for
interaction-agents operations at each cycle mightintro-
duce a bias -we proved mathematical results that con-
firm it- in the simulation. In order to avoid this bias the
scheduler makes each reaction-agent operate in a ran-
dom order, which changes for each iteration step. This
is what we call chaotic iterations.

Figure 1 illustrates this scheduling strategy.

agent 1 e

agent2 === agent3 mimim

-» synchronous approach

-» physical time

------ ! 1 I— I }-» asynchronous approach

name chaotic and asynchronous iterations.

Each agent has to perform a perception/decision/action
cycle (see section 3 for the case of reaction-agent and sec-
tion 4 for the case of interface-agent). At each step, the
scheduler [10] makes one interaction-agent carry out its
perception/decision/action cycle. Interaction-agent®ae We now describe our reaction-agent model dedicated to
after the other following the scheduler cycle whose length biochemical reactions inside a cell.
equals the number of agents. Interaction-agents each act
once and only once in a sheduler cycle, but the_ order ing3 Reaction-agent
which they do so is randomly chosen. Let’s precise these
notions :

Figure 1. Classical and reaction-agent points
of view for reactions scheduling. Case of 3
interaction-agents rj, 1<i<3.

3.1. Principle

- Asynchronous iterations: a fundamental statement is
that in the classical approach, time discretisation in-  The reaction-agents based methods are numerical meth-
duces the hypothesis that all reactions occur simul- ods for computation of differential systems which permit to
taneously during the same time-step. Indeed, classi-take into account, at runtime, the evolvingness of these sys
cally used differencial systems numerical resolution tems Each reaction-agent matches a reaction of the system



we want to modelize. Each agent behaviour loops in the we propose aaction-agent versionf this algorithm :
following cycle:

é* = éﬂ + hncbfl(
- Perception: sensing of concentration of all reactions Crir = Ci4hndy(

componentsi(e. reactants and products),

o)
G,

o) )

tna
tna

or, equiprobably,
- Decision: computation of the amount of consumed re- . .
actants (and thus of the amount of formed products), Ci = Cn+hy®s,(th,Cq,hn) 5)

én+1 C* + hncbfl (tn, 6*7 hn)
- Action : writing the new concentrations of the reaction
components. Thus, in a single time-step, the algorithm is here applied

two times : once for each reaction. Each application takes
Reaction-agents act by the way of chaotic and asynchronougnto account the state of the system at the current time. In
iterations, as described in section 2. order to avoid bias, at each time step a random arrangement
of reaction-agents operations is performed.

3.2. Illustration
3.3. Formalization and principal results

Consider a medium with no spatial dimension contain-
ing several reactants. L& (t)] be the concentrations vec-
tor at instantt. In this mediumm chemical reactions oc-
cur. Their respective speeds are given by vectorial funstio
fi, 1 <i <m, whose arguments are time and concentrations
vector. The evolution in time of reactants concentratiors a
classically described by the differential system

We now give the mathematical formalization of our
reaction-agent model, and the validating results we have ob
tained. The natural integers ring is callBdR is the reals
field, andSy the permutations of orden group [3]. For the
sake of simplicity we only consider differential systems of
a single equation; however definitions and results areyeasil
generalizable. More details about numerical resolution of

d ordinary differential equations can be found in [7].

GCOI= (fut fat -+ fm) (.Clt). (1) _
Remark 3.1. We have also adapted this autonomous agents
point of view for classical multiple steps methods, or for im
plicits methods [8]. Convergence and stability features ar
better for these methods than for single step methods. How-
ever these methods not only conflict with principles of multi
agents systems whose behaviour is markovian; but more-

over they rule out the ability to modify the number of agents

under condition€[to] for concentrations at initial instant.
Such systems are numericaly solved by the mean of very
precises algorithms [4, 7], which allows computation of all
concentrations at each instant of the discretised time : for
one step methods, the concentrations veGfax at instant
th+1 IS computed from the same vector at instannamed

C,. This leads to a computation algorithm such as below : atruntime.
) Co = Cii[to] ) @ General definition
Corr = Cothn®@i iy (tn,Co,hn) Definition 3.2. Let
wherehy = th1 —th, P14+, IS @ function dependent on Vst = Yo+ Mn® (tr, Yo, Pi) ©)

the sum off; speeds, and which characterizes the chosen

algorithm. As we stated, here reactions are supposed to bée a one step method for Cauchy problem resolution
simultaneous and the main drawback of this modelisation is

its staticness : adding or removing a reaction at runtime im- { y(to) = Yo @)
plies rewriting the system and reruning the program, which y(t) = f(t,y(t)).

is unsuitable for complex system simulation and runtime . . .

modification of these systems. Our method also uses a clasl-"at me N ; We callreaction-agent version of method (6)
sical resolution algorithm but applies it for each reaction for resolution of problem

during the same time-step. Let’s consider an elementary ex- _ o

ample with two reactions, whose speeds firand f,. As { ;/é?) - g/:;l-’r fot -+ fm) (L, (1))
an alternative to the numerical computation of the system

(1) (whenm = 2) using algorithm (2), that is, the method given by

(8)

Cni1=Cn+hn®r, 41, (tn,Ca, ), Q) Ynt+1 = Yn+ hn®g;, (t, Yn, n) )



defined by an equiprobable choice, at each time step n  Main results We enounciate here our main results about

n+ 1, ofo, € Sy, and by relations convergence of reaction-agent methods.
Yar = Yn+ha®sy o (tn,Yn,hn) Theorem 3.5. 1. Reaction-agent version of Euler's
Vi, 1<i<m-—1, method is convergent of average order
y*i+1 - y*i + hnq)fon(i+1) (tn, y*i ’ hn)

2. Reaction-agentversion of ord2Runge-Kutta method

Yol = Yam (10) is convergent of average ord@r
3. Consider a one step method, convergent of ordei3p

Example 3.3. We remind the reader that for Cauchy prob- Thus its reaction-agent version is convergent of aver-

lem resolution (7), orde? Runge-Kutta method is given by age order2.
Vi1 = Yn+ hn®s (th, Yo, hn) Theorem 3.5 claims in substance that there is no pointin
using reaction-agent’s version of a Runge-Kutta method of

where h h order> 3.

d(t,y,h) = f(t+ 5 Y15 f(t,y)). Of course, because of asynchronism, the efficiency of

our reaction-agent model is much weaker than the one of
classical integration methods . However, we stress again
the point that it is the only model -to our knowledge- that
enablesn virtuo experimentation for biochemical reactions.

The matching reaction—agentversmn for resolution of prob
lem (8) is given by definition 3.2, whevg 1 <i <m,

h
q)fi(taya )_ f(t+ 7y+ (t7y>)
For instance, two reaction-agents case leads to 4. Interface-agent

Yni1 = Yo+ ®op (. Yo, i) 4.1. Diffusion equations and classical ap-

with, equiprobably, proach
CI_JGF (tt,y, r:]) he (t The diffusion equation is a partial differential equation,
=fi(t+ E,y+ 2f1( ,Y)g i which describes the density fluctuations in a material under
+f2 (t +3,y+hfi(t+3,y+3f(ty)) going diffusion.
+r_21 fo(t,y+hfy(t+ 2,y+ n fl(t y)))) The equation is usually written as:
if o, = Id (identityma
n = Id (identitymap X 0. DX)OX(F,) (12)
or ot
%n (t,y,h) whereX is the density of the diffusing materialis time,D
2( +g y+3 f2(t y)) is the collective diffusion coefficient, is the spatial coor-
h h dinate and the nabla symbdlrepresents the vector differ-
+ 9 +hf _7 + _f ta . . . ..
2Y btz v+ 2k i)) ) ential operator. If the diffusion coefficient depends on the
+3f1(t,y+hia(t+ 5 y+ §f2(t7y)))) density then the equation is nonlinear; if D is a constant,
if on(1) =2. however, then the equation reduces to the following linear
equation:
Average order of a reaction-agent method Acoording ox = DAX(T,t), (13)
to definition 3.2, the computation gf, 1 in function ofy, ot

depends upon the choice of the permutatign Thus we whereA is the Laplace operator. This equation is also called
have to keep this in mind to characterize the convergencethe heat equation.
With the same notations as above, the average evolution on In the following, we first describe the finite difference

one step is given by method for the resolution of equation (13), since we will
— compare our interface-agent model to this method to pro-
e ®(tn, Yn, ), vide proofs of convergence.
o = — ernq)Gn (11) For the sake of simplicity, we place ourselves in the one
M g dimensional case (though our results can be extended to the

Definition 3.4. The order (in the usual sense) of the method Multi-dimensional case), and equation (13) can be written
given by (11) is called thaverage ordesf the method given ax 32X

by definition 3.2. 5= DW' (14)



wherex is the space parameter. In order to be exhaustive,4.2. Interface agent model

we consider the finite case<9x < L, with the bounding
limits :
oX

X(0) = X, I

lkeL= 0. (15)

Space-time discretization The finite difference method
uses a space discretization

M-1
[0,L] = | [Xm,Xm+h], Xm=mh h=L/M,

m=0

(16)

so as a time discretization :

N—-1
[0,tmax) = J [tn,tn + Bt], th = ndt, 3t = tmax/N.
n=0

Values ofX(x,t) in points(xm,tn) will be denoted

Xin = X (Xm, tn)

Numerical scheme Approaching derivation operators
with first order Taylor formula, we get the discretization of
(14):

n+1_ wyn n __o n_|_ n
Xm 5 Xn_pXmit r);m Xm—lzo,mzl,...,lvl—l.

Since X? is known, one can compu®é*! by means of
relation

XA =X DO - B (1)

General principle Our interface-agent approach is basi-
cally different, since we do not solve any partial derivativ
equation. The system evolves by means of agents acting
cyclically, as described below :

1. The system is discretized as in (16).

2. In the middle of each intervak;,x;11] is placed an
interface-agemd , ;, which, when it intervenes, has to
update the values of in x; andx;1. Thus, ifAl, in-
tervenes at timg, it computes<! andX, ,, taking into

account the diffusion procesa/alues in other points

are unchanged

3. Interface-agents intervene a chaotic and asynchronous
way, as defined in section 2. Time is divided into
scheduler cycles, each one containMgtime steps,
whith each interface-agent operating once and only
once, in a random order.

4. In order to compare our model to the finite difference
method, we will consider the state of the system at a
momentj which is a multiple of\M, so that values of
X in each point have been updated the same number of
times.

5. We will extend our results to the case, where agents
can stop operating for a while, and do not not in-
evitably act in each scheduler cycle (see theorem 4.6).

Action of an interface-agent We now describe more pre-

The vector form of relation (17), which gives the state of cisely the action of_;, which separates two meshes with

the system at tima+ 1 in function of its state at time, is
XM= g£.x"

where# is the matrix

1 0 0 0 0 0
0w 1-2w w o - 0 0
0 w 1-20 w O 0
}[:
0 0 0 w 1-20w w
1 0 0 0 w 1-20 w |
(18)

Remark 4.1. Here, and in the following, we pat = D%

the same length, denotedC; andC;, 1, in which are com-
putedX; andX, 1.

SupposeA}+1 intervenes at timg. It updates the val-
uesX; andX;11 according to the following linear equations,

which represent a discretization of Fick’s Law :

™ . . .
X X+ (Xl —X)
XIJ-~-+:I.l = '+1_(’~)( '+1_xiJ) (19)
X = XL igdii+y
Note thatA? operates the following way :
™ .
=
Xt = xd—x] = X)) (20)
xkj+1 ij7 k> 2



and as regardal —*, we have :

j+1
XMfl

j+1
XM

We denote); i1 the matrix which matches with the ac-

X, 0<i<M-2
(1— w)Xy_1 + X,
XW-1-

tion ofA}H. Forinstance, for K i <M -2,

Mij1=

(21)

(22)

4.3. Main results

We now enounciate the mathematical results that vali-
date our interface-agent model. Proofs of results of conver
gence are based upon linear algebra methods ([16]).

The main result is the following : given an unspecified
vectorX? = (X9, X?,...,X9), its image by a composition of
scheduler cycles, each randomly ordered, admits for limit,
when the number of cycles tends to infinity, the equilibrium
stateX = (X§,X3,...,XJ). This means . that the repartition
of X balances with the source val¥§.

Notations A scheduler cycle is characterized by an en-
domorphism orRM+1, compounded witiVl applications
f1, f2,..., fm. The applicationf; traduces the action of the
inten‘ace—agen@\}‘l and is represented, in the canonical ba-
sis of RM*+1, by the matrix?4_1 . Vectors of the canonical
basis are denoted gy, 1 <i < M+ 1. Recall thaGy, is the
permutations of ordem group. The following application

Description of a scheduler cycle Let us consider the fol-
lowing example : at momemtM, we suppose that a cycle
begins, in which interface-agents intervene in the precise
orderA?, A}, ..., AM-1. Applying equations (20, 19, 21)
one after the other in this order, the state of the system at
moment(n+1)M is given by

defines a scheduler cycle corresponding ® Sy1 :

bo = fomrny© fomy 0 0 fo), 0 € Susa.

Finally, we putX = (1,...,1).
The following proposition gives properties of applica-

tions f; that will lead to results of convergence :

XMEDM — A g Map- Mo - X™,
For instance, iM = 4, with this choice of order,

X(n+l)M = /- XnM

where

L=
1 0 0 0 0
l1-ww (1-w? w 0 0
1-wo? (1-ww (1-w)p? w 0
1-ww (1-w2w (1-w2w (1-w? o
1-ww (1-w? 1-w?w (1-w? w

Remark 4.2. Remark the essential fact that if we develop
the coefficients of. and only keep terms of ordet 1 we
get

1 0 0 0 0

w 1-2w w 0 0
L~]| 0 w 1-2w w o |,

0 0 w 1-20 w

0 0 w 1-20 w

which is precisely the operatd obtained in the finite dif-
ference numerical scheme (equation (18)). We are going to
generalize this observation.

Proposition 4.3.

1. The application {f (to which is asso-
ciated Mp 1) is diagonalizable. Its eigenvalues ate
with multipicity M, andl — w with multiplicity 1. For
this application :

e The eigenspace associated to the eigenvalise

generated by £+ e,€3,...,eM+1.

e The eigenspace associated to the eigenvalde
wis generated bye

. Forallisuchtha <i <M —1: the application fis

diagonalizable. Its eigenvalues atewith multipicity
M, and1— 2w with multiplicity 1. For this application
fi:
e The eigenspace associated to the eigenvialise
generated byie-e1,€j, j & {i,i+1}.

e The eigenspace associated to the eigenvalue
2wis generated by-g +g.1.

. The applicationy (to which is associate@y_1m) is

diagonalizable. Its eigenvalues atewith multipicity
M, andO with multiplicity 1. For this application :

e The eigenspace associated to the eigenvalise
generated by @ +ewv+1,€j, j € {M,M+1}.

e The eigenspace associated to the eigenv@lise
generated by-="; ey + ew 1.



We deduce from this proposition our main result of con-
vergence :

Theorem 4.4. For all sequence(ok)ken Of elements in
Suv+1, and fo all X inRM+1, we have

Fl)il;f'lw(bop °© q)"p—l 0-:+0 ¢01 (X) = Xl)zv

where X is the first component of X.

Remark 4.5. The main task of the proof of theorem 4.4 is
to show that eaclpy is a contraction, ani is a fixed point
for ¢g.

Proof of theorem 4.4 can be extended to the case, wher
a scheduler cycle (in which each interface-agent acts onc

and only once) is replaced by a sequence in which each

interface-agent actt leastonce. This leads to the follow-
ing general result :

Theorem 4.6. We keep the same notations. [&f)ncn+ be

a sequence of elements (not necessarily different) in the se
{f1,f2,..., fmi1}. LetTy be the space of applications of
the typefko fi_10---0 f1. We denote by ifby) the number

of interventions ofifin Dy € k. Suppose

lim min (Nj(®y)) = .
A, gin, (N (®) = +oo
Thus,
VX = (X1,X2, - -, Xn11) € RMFL V(@D )ens,

lim ((X)) = x1X.

This extends convergence of our interface-agent model

sinceX satisfies the heat equation (13).

Equations (23) show that the finite difference method has
order 1 in time and order 2 in space.

We establish that the efficiency of our interface-agent
method is exactly the same:

Theorem 4.7. Let (™M pe the consistency error vector
for the interface-agent method at the end of the- 1)-th
scheduler cycle.

We have :
s(()nJrl)M -0
vym 1<m<M-1,
el IM _ o(at) + O(hz) + 3;}@)2
K < max<icm-1(XT] — X" |)

Remark 4.8. Interpretation. We first stress the point that
theorem 4.4 implies that all valugg™ — X"™| tend to0 if
n— o. Thus, the coefficient o decreases in time. How-
ever, in order to avoid a significant error at the first time
steps, the termw?/8t has to be negligible in front of?
which is equivalent to the condition

3t < h®

for the choice of time and space steps.

Finally, section 5 presents an example in which we
use reaction-agents and interface-agents in the context of
hemostasis simulation.

to the case, where agents can stop operating for a while,

and do not not inevitably act in each scheduler cycle.

4.4. Convergence speed : comparing with
finite difference method

We have established convergence results for our
interface-agentmodel. We now compare its convergence or-
der with the one of finite difference method. To this end, we
compare consistency errors for both methods. Basic defini-.
tions in numerical analysis can be found in [4]. Recall that
consistency error for the finite difference method is given
by

gt Xat 90X
ot
whereX" = (X7, X{',...,X}}) is the solution vector at time
n, and# is given by (18). Thus, we have

ot a—lt(xml—xa— Q01— 2+ X5))
%>t< (Xm’tn) 5{ (*)_2' (vatn) + O(at) + O(h )
0(8t) + 0(h?),

(23)

5. Example

We are interested in the modelisation of hemostasis [5]
and especially in the construction of a virtual 3D blood ves-
sel in which it will be possible to simulate and study the
blood coagulation process. We show here a first attempt of
this work, by means of interaction-agent method.

The blood vessel is represented by a cylinder discretized
into meshes, see figure 2. In each mesh, a numerical model
of the blood coagulation cascade can be found ; this model
presents almost all of the enzymatic reactions involved in
the extrinsic and intrinsic pathways, such as the tenase or
the prothrombinase reactions. The different biochemical
species can also diffuse from one mesh to a neighboring one
following Fick’s law as illustrated on figure 2. The overall
model includes 32 species that interaig 40 biochemical
reactions and diffusion.

This model can be simulated using a PDE-based ap-
proach and our multi-agent-system-based approach. In or-
der to validate our methodology, we have simulated the
model using both approaches, and compared the curves of
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Figure 2. Numerical model of a virtual blood
vessel. The blood vessel is represented by
a cylinder discretized into meshes. Each
mesh contains a numerical model of the
blood coagulation enzymatic cascade, and
each specie can diffuse from a mesh to an-
other by means of an interface-agent.

thrombint generation obtained in both cases ; results are
plotted in figure 3. In each mesh, we have obtained a throm-

[na] (M)

bin generation curve, and for each approach these have been
compared. In each case, the curves are overlapping, which

confirms that the PDE-based approach and the interaction-

agent method converge to the same solution.

6. Conclusion and perspectives

We have exposed the proof of efficiency of our

interaction-agent model for thén virtuo simulation of

7e-07

lla mesh 00 PDE/MAS ——
lla mesh 01 PDE/MAS
lla mesh 02 PDE/MAS --------
lla mesh 03 PDE/MAS
lla mesh 04 PDE/MAS
lla mesh 05 PDE/MAS
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Figure 3. Comparison of numerical solutions
obtained by the PDE-based approach and the
interaction-agent method (MAS). The virtual
blood vessel is composed of 11 meshes. In
each mesh, the thrombin generation curve
obtained with the interaction-agent method is
compared to the thrombin generation curve
obtained with PDE-based approach.
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