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Abstract

In the context of biological complex systems multi-
agent simulation, we present an interaction-agent model for
reaction-diffusion problems that enables interaction with
the simulation during the execution, and we establish a
mathematical validation for our model. We use two types
of interaction-agents: on one hand, in a chemical reactor
with no spatial dimension -e.g. a cell-, a reaction-agent rep-
resents an autonomous chemical reaction between several
reactants, and modifies the concentration of reaction prod-
ucts. On the other hand, we use interface-agents in order
to take into account the spatial dimension that appears with
diffusion : interface-agents achieve the matching transfer of
reactants between cells. This approach, where the simula-
tion engine makes agents intervene in a chaotic and asyn-
chronous way, is an alternative to the classical model -
which is not relevant when the limits conditions are fre-
quently modified- based on partial derivative equations. We
enounciate convergence results for our interaction-agent
methods, and illustrate our model with an example about
coagulation inside a blood vessel.

1. Introduction

Algorithms for the numerical resolution of differential
systems, though they give precise results, do not fit well
with the study of complex systems [1]. which area pri-
ori open (dynamical appearance/disappearance of compo-
nents), heterogenous (various morphology and behaviours)
and made of entities that are composite, mobile and dis-
tributed in space ; their number changes during time, and
they interact with each other. Describing the evolution of
such systems by means of deterministic methods like differ-

ential systems is uneasy, for limits conditions and number of
processus fluctuate. As an alternative, the multi–agent ap-
proach [6, 20], already used in several biochemical models
[11, 12, 19], provides a conceptual, methodological and ex-
perimental framework well-fitted for imagination, modeli-
sation and experimentation of complexity. In this context,
our work applies to the simulation of biological chemical
kinetics phenomenons taking into account the variability of
the number of implied reactants.

We present an interaction-agent model, dedicated to
reaction-diffusion processes and based on two kinds of
agents:

- In a dimensionless chemical reactor, a reaction-agent
[15] represents a chemical reaction which loops into
a perception/decision/action cycle : it reads the con-
centration of reactants, adapts its reaction speed, and
modifies consequently the concentration of reaction
products. Each agent independently executes a clas-
sical ordinary differential system algorithm [4]. For
each of these classical methods, we build the matching
reaction-agent method.

- In order to take into account spatial diffusion pro-
cesses, we use an interface-agent between each pair of
neighbor meshes for the transfer of chemical reactants
according to the diffusion coefficient. We do not solve
any partial derivative equation.

The simulation engine evolves interaction-agents asyn-
chronously and chaotically (see section 2), in order to avoid
the typical inflexibility of synchronous systems, as well as
bias in numerical results.

Biochemical kinetics is a natural application context for
our model: a classical example is given by cancer, since



chromosomic instability [9] implies on a regular basis mod-
ifications or creations of new reactions [2]. We have also
used our reaction-agent model for simulation ofMAPK path-
way [14], and simulation of the extrinsic pathway of blood
coagulation [13].

From a more general point of view, we set up agents au-
tonomy as a basic principle [18] : this principle gives us the
ability to interact with a running simulation, opening the
path to a new way of experimenting : thein virtuo experi-
mentation [17].In virtuo experimentation makes it possible
to interfere with a model by adding or removing reactants,
as well as interaction between reactants. The main interest
of such an experimentation is that these alterations are pos-
sible without having to stop the progress of the simulation :
experimental conditions of thein virtuo way are therefore
very close to thein vivo and in vitro ones, and fundamen-
tally different from thein silico one.

In section 2 of this paper, we present what we call chaotic
and asynchronous iterations, that is, the way we make our
interaction-agents intervene. In section 3 we describe our
reaction-agent model for numerical computation of differ-
ential systems for chemical kinetics inside a cell, so as our
formal results of convergence. In section 4 we describe our
interface-agent model, dedicated to diffusion process. We
also formalize our model and state the main results about
convergence. Section 5 shows an illustrating example of
our approach for a blood circulation simulation inside a
blood vessel. For the sake of concision, we will not ex-
pose demonstrations of mathematical results (which are not
conjectures but proved results). Please contact first author
to obtain proofs.

2. Chaotic and Asynchronous iterations

In this short section, we describe precisely the way our
interaction-agents intervene during the simulation, whatwe
name chaotic and asynchronous iterations.

Each agent has to perform a perception/decision/action
cycle (see section 3 for the case of reaction-agent and sec-
tion 4 for the case of interface-agent). At each step, the
scheduler [10] makes one interaction-agent carry out its
perception/decision/action cycle. Interaction-agents act one
after the other following the scheduler cycle whose length
equals the number of agents. Interaction-agents each act
once and only once in a sheduler cycle, but the order in
which they do so is randomly chosen. Let’s precise these
notions :

- Asynchronous iterations: a fundamental statement is
that in the classical approach, time discretisation in-
duces the hypothesis that all reactions occur simul-
taneously during the same time-step. Indeed, classi-
cally used differencial systems numerical resolution

algorithms a priori do this hypothesis based upon
the choice of infinitesimal time-step.A contrario,
interaction-agent model does the asynchronic hypoth-
esis for chemical reactions. We claim that this hypoth-
esis is not only more realistic, but moreover allows the
user to interfere at runtime with the reactions by adding
or removing a reaction-agent, at any time of the simu-
lation. Time is then divided into scheduler cycles in-
side of which each interaction-agent acts once and only
once, considering the state of the system at the moment
it acts. From a physical point of view, each scheduler
cycle corresponds to one time-step of the classical ap-
proach.

- Chaotic iterations : an unalterable arrangement for
interaction-agents operations at each cycle might intro-
duce a bias -we proved mathematical results that con-
firm it- in the simulation. In order to avoid this bias the
scheduler makes each reaction-agent operate in a ran-
dom order, which changes for each iteration step. This
is what we call chaotic iterations.

Figure 1 illustrates this scheduling strategy.
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Figure 1. Classical and reaction-agent points
of view for reactions scheduling. Case of 3
interaction-agents r i , 1≤ i ≤ 3.

We now describe our reaction-agent model dedicated to
biochemical reactions inside a cell.

3. Reaction-agent

3.1. Principle

The reaction-agents based methods are numerical meth-
ods for computation of differential systems which permit to
take into account, at runtime, the evolvingness of these sys-
tems Each reaction-agent matches a reaction of the system



we want to modelize. Each agent behaviour loops in the
following cycle:

- Perception : sensing of concentration of all reactions
components (i.e. reactants and products),

- Decision: computation of the amount of consumed re-
actants (and thus of the amount of formed products),

- Action : writing the new concentrations of the reaction
components.

Reaction-agents act by the way of chaotic and asynchronous
iterations, as described in section 2.

3.2. Illustration

Consider a medium with no spatial dimension contain-
ing several reactants. Let[~C(t)] be the concentrations vec-
tor at instantt. In this mediumm chemical reactions oc-
cur. Their respective speeds are given by vectorial functions
fi , 1≤ i ≤ m, whose arguments are time and concentrations
vector. The evolution in time of reactants concentrations are
classically described by the differential system

d
dt

[~C(t)] = ( f1 + f2 + · · ·+ fm)(t,~C[t]), (1)

under conditions~C[t0] for concentrations at initial instant.
Such systems are numericaly solved by the mean of very
precises algorithms [4, 7], which allows computation of all
concentrations at each instant of the discretised time : for
one step methods, the concentrations vector~Cn+1 at instant
tn+1 is computed from the same vector at instanttn, named
~Cn. This leads to a computation algorithm such as below :

~C0 = ~C[t0]
~Cn+1 = ~Cn +hnΦ f1+···+ fm(tn,~Cn,hn)

(2)

wherehn = tn+1− tn, Φ f1+···+ fm is a function dependent on
the sum of fi speeds, and which characterizes the chosen
algorithm. As we stated, here reactions are supposed to be
simultaneous and the main drawback of this modelisation is
its staticness : adding or removing a reaction at runtime im-
plies rewriting the system and reruning the program, which
is unsuitable for complex system simulation and runtime
modification of these systems. Our method also uses a clas-
sical resolution algorithm but applies it for each reaction
during the same time-step. Let’s consider an elementary ex-
ample with two reactions, whose speeds aref1 and f2. As
an alternative to the numerical computation of the system
(1) (whenm= 2) using algorithm (2), that is,

~Cn+1 = ~Cn +hnΦ f1+ f2(tn,~Cn,hn), (3)

we propose areaction-agent versionof this algorithm :

~C⋆ = ~Cn +hnΦ f1(tn,~Cn,hn)
~Cn+1 = ~C⋆ +hnΦ f2(tn,~C⋆,hn)

(4)

or, equiprobably,

~C⋆ = Cn +hnΦ f2(tn,~Cn,hn)
~Cn+1 = C⋆ +hnΦ f1(tn,~C⋆,hn)

(5)

Thus, in a single time-step, the algorithm is here applied
two times : once for each reaction. Each application takes
into account the state of the system at the current time. In
order to avoid bias, at each time step a random arrangement
of reaction-agents operations is performed.

3.3. Formalization and principal results

We now give the mathematical formalization of our
reaction-agent model, and the validating results we have ob-
tained. The natural integers ring is calledN, R is the reals
field, andSm the permutations of ordermgroup [3]. For the
sake of simplicity we only consider differential systems of
a single equation; however definitions and results are easily
generalizable. More details about numerical resolution of
ordinary differential equations can be found in [7].

Remark 3.1. We have also adapted this autonomous agents
point of view for classical multiple steps methods, or for im-
plicits methods [8]. Convergence and stability features are
better for these methods than for single step methods. How-
ever these methods not only conflict with principles of multi
agents systems whose behaviour is markovian; but more-
over they rule out the ability to modify the number of agents
at runtime.

General definition

Definition 3.2. Let

yn+1 = yn +hnΦ f (tn,yn,hn) (6)

be a one step method for Cauchy problem resolution
{

y(t0) = y0

y′(t) = f (t,y(t)).
(7)

Let m∈ N
∗. We callreaction-agent version of method (6),

for resolution of problem
{

y′(t) = ( f1 + f2 + · · ·+ fm)(t,y(t))
y(t0) = y0

(8)

the method given by

yn+1 = yn +hnΦσn(tn,yn,hn) (9)



defined by an equiprobable choice, at each time step n→
n+1, of σn ∈ Sm, and by relations

y⋆1 = yn +hnΦ fσn(1)
(tn,yn,hn)

∀i, 1≤ i ≤ m−1,
y⋆i+1 = y⋆i +hnΦ fσn(i+1)

(tn,y⋆i ,hn)

yn+1 = y⋆m
(10)

Example 3.3. We remind the reader that for Cauchy prob-
lem resolution (7), order2 Runge-Kutta method is given by

yn+1 = yn +hnΦ f (tn,yn,hn)

where

Φ f (t,y,h) = f (t +
h
2
,y+

h
2

f (t,y)).

The matching reaction-agent version for resolution of prob-
lem (8) is given by definition 3.2, where∀i, 1≤ i ≤ m,

Φ fi (t,y,h) = fi(t +
h
2
,y+

h
2

f (t,y)).

For instance, two reaction-agents case leads to

yn+1 = yn +hnΦσn(tn,yn,hn)

with, equiprobably,

Φσn(t,y,h)

= f1(t + h
2,y+ h

2 f1(t,y))

+ f2
(

t + h
2,y+h f1(t + h

2,y+ h
2 f1(t,y))

+ h
2 f2(t,y+h f1(t + h

2,y+ h
2 f1(t,y)))

)

if σn = Id (identitymap)

or

Φσn(t,y,h)

= f2(t + h
2,y+ h

2 f2(t,y))

+ f1
(

t + h
2,y+h f2(t + h

2,y+ h
2 f2(t,y))

+ h
2 f1(t,y+h f2(t + h

2,y+ h
2 f2(t,y)))

)

if σn(1) = 2.

Average order of a reaction-agent method Acoording
to definition 3.2, the computation ofyn+1 in function ofyn

depends upon the choice of the permutationσn. Thus we
have to keep this in mind to characterize the convergence.
With the same notations as above, the average evolution on
one step is given by

yn+1 = yn + Φ̄(tn,yn,hn),

Φ̄ =
1
m! ∑

σn∈Sm

Φσn
(11)

Definition 3.4. The order (in the usual sense) of the method
given by (11) is called theaverage orderof the method given
by definition 3.2.

Main results We enounciate here our main results about
convergence of reaction-agent methods.

Theorem 3.5. 1. Reaction-agent version of Euler’s
method is convergent of average order1.

2. Reaction-agent version of order2 Runge-Kutta method
is convergent of average order2.

3. Consider a one step method, convergent of order p≥3.
Thus its reaction-agent version is convergent of aver-
age order2.

Theorem 3.5 claims in substance that there is no point in
using reaction-agent’s version of a Runge-Kutta method of
order≥ 3.

Of course, because of asynchronism, the efficiency of
our reaction-agent model is much weaker than the one of
classical integration methods . However, we stress again
the point that it is the only model -to our knowledge- that
enablesin virtuoexperimentation for biochemical reactions.

4. Interface-agent

4.1. Diffusion equations and classical ap-
proach

The diffusion equation is a partial differential equation,
which describes the density fluctuations in a material under-
going diffusion.

The equation is usually written as:

∂X
∂t

= ∇ ·D(X)∇ X(~r,t) (12)

whereX is the density of the diffusing material,t is time,D
is the collective diffusion coefficient,~r is the spatial coor-
dinate and the nabla symbol∇ represents the vector differ-
ential operator. If the diffusion coefficient depends on the
density then the equation is nonlinear; if D is a constant,
however, then the equation reduces to the following linear
equation:

∂X
∂t

= D∆X(~r,t), (13)

where∆ is the Laplace operator. This equation is also called
the heat equation.

In the following, we first describe the finite difference
method for the resolution of equation (13), since we will
compare our interface-agent model to this method to pro-
vide proofs of convergence.

For the sake of simplicity, we place ourselves in the one
dimensional case (though our results can be extended to the
multi-dimensional case), and equation (13) can be written

∂X
∂t

= D
∂2X
∂x2 . (14)



wherex is the space parameter. In order to be exhaustive,
we consider the finite case 0< x < L, with the bounding
limits :

X(0) = X0,
∂X
∂x

|x=L= 0. (15)

Space-time discretization The finite difference method
uses a space discretization

[0,L] =
M−1
[

m=0

[xm,xm+h], xm = mh, h = L/M, (16)

so as a time discretization :

[0,tmax] =
N−1
[

n=0

[tn,tn +δt], tn = nδt, δt = tmax/N.

Values ofX(x,t) in points(xm,tn) will be denoted

Xn
m = X(xm,tn)

Numerical scheme Approaching derivation operators
with first order Taylor formula, we get the discretization of
(14) :

Xn+1
m −Xn

m

δt
−D

Xn
m+1−2Xn

m+Xn
m−1

h2 = 0, m= 1, . . . ,M−1.

SinceX0
m is known, one can computeXn+1

m by means of
relation

Xn+1
m = Xn

m+D
δt
h2(Xn

m+1−2Xn
m+Xn

m−1). (17)

The vector form of relation (17), which gives the state of
the system at timen+1 in function of its state at timen, is

Xn+1 = H ·Xn,

whereH is the matrix

H =

























1 0 0 · · · 0 0 0
ω 1−2ω ω 0 · · · 0 0
0 ω 1−2ω ω 0 · · · 0
...

...
.. .

. . .
...

. . .
. . .

. . .
0 0 · · · 0 ω 1−2ω ω
0 0 · · · 0 ω 1−2ω ω

























(18)

Remark 4.1. Here, and in the following, we putω= D
δt
h2

4.2. Interface agent model

General principle Our interface-agent approach is basi-
cally different, since we do not solve any partial derivative
equation. The system evolves by means of agents acting
cyclically, as described below :

1. The system is discretized as in (16).

2. In the middle of each interval[xi ,xi+1] is placed an
interface-agentAi

i+1, which, when it intervenes, has to
update the values ofX in xi andxi+1. Thus, ifAi

i+1 in-

tervenes at timej, it computesX j
i andX j

i+1, taking into
account the diffusion process.Values in other points
are unchanged.

3. Interface-agents intervene a chaotic and asynchronous
way, as defined in section 2. Time is divided into
scheduler cycles, each one containingM time steps,
whith each interface-agent operating once and only
once, in a random order.

4. In order to compare our model to the finite difference
method, we will consider the state of the system at a
moment j which is a multiple ofM, so that values of
X in each point have been updated the same number of
times.

5. We will extend our results to the case, where agents
can stop operating for a while, and do not not in-
evitably act in each scheduler cycle (see theorem 4.6).

Action of an interface-agent We now describe more pre-
cisely the action ofAi

i+1, which separates two meshes with
the same lengthh, denotedCi andCi+1, in which are com-
putedXi andXi+1.

SupposeAi
i+1 intervenes at timej. It updates the val-

uesXi andXi+1 according to the following linear equations,
which represent a discretization of Fick’s Law :

∣

∣

∣

∣

∣

∣

∣

∣

X j+1
i = X j

i +ω(X j
i+1−X j

i )

X j+1
i+1 = X j

i+1−ω(X j
i+1−X j

i )

X j+1
k = X j

k , j 6∈ {i, i +1}.

(19)

Note thatA0
1 operates the following way :

∣

∣

∣

∣

∣

∣

∣

∣

X j+1
0 = X j

0

X j+1
1 = X j

1 −ω(X j
1 −X j

0)

X j+1
k = X j

k , k≥ 2

(20)



and as regardsAM−1
M , we have :

∣

∣

∣

∣

∣

∣

∣

∣

X j+1
i = X j

i , 0≤ i ≤ M−2

X j+1
M−1 = (1−ω)X j

M−1+ωX j
M

X j+1
M = X j

M−1.

(21)

We denoteMi,i+1 the matrix which matches with the ac-
tion of Ai

i+1. For instance, for 1≤ i ≤ M−2,

Mi,i+1 =





















1 0 · · · 0

0
...

...
1−ω ω

ω 1−ω 0 0
...

...
0 · · · 0 1





















(22)

Description of a scheduler cycle Let us consider the fol-
lowing example : at momentnM, we suppose that a cycle
begins, in which interface-agents intervene in the precise
orderA0

1, A1
2, . . ., AM−1

M . Applying equations (20, 19, 21)
one after the other in this order, the state of the system at
moment(n+ l)M is given by

X(n+1)M = MM−1,M · · ·M1,2 ·M0,1 ·X
nM,

For instance, ifM = 4, with this choice of order,

X(n+1)M = L ·XnM,

where

L =












1 0 0 0 0
(1−ω)ω (1−ω)2 ω 0 0
(1−ω)ω2 (1−ω)2ω (1−ω)2 ω 0
(1−ω)ω3 (1−ω)2ω2 (1−ω)2ω (1−ω)2 ω
(1−ω)ω3 (1−ω)2ω2 (1−ω)2ω (1−ω)2 ω













Remark 4.2. Remark the essential fact that if we develop
the coefficients ofL and only keep terms of order≤ 1 we
get

L ≃













1 0 0 0 0
ω 1−2ω ω 0 0
0 ω 1−2ω ω 0
0 0 ω 1−2ω ω
0 0 ω 1−2ω ω













,

which is precisely the operatorH obtained in the finite dif-
ference numerical scheme (equation (18)). We are going to
generalize this observation.

4.3. Main results

We now enounciate the mathematical results that vali-
date our interface-agent model. Proofs of results of conver-
gence are based upon linear algebra methods ([16]).

The main result is the following : given an unspecified
vectorX0 = (X0

0 ,X0
1 , . . . ,X0

M), its image by a composition of
scheduler cycles, each randomly ordered, admits for limit,
when the number of cycles tends to infinity, the equilibrium
stateX̄ = (X0

0 ,X0
0 , . . . ,X0

0 ). This means . that the repartition
of X balances with the source valueX0

0 .

Notations A scheduler cycle is characterized by an en-
domorphism onRM+1, compounded withM applications
f1, f2, . . . , fM . The applicationfi traduces the action of the
interface-agentAi−1

i and is represented, in the canonical ba-
sis ofRM+1, by the matrixMi−1,i . Vectors of the canonical
basis are denoted byei , 1≤ i ≤ M +1. Recall thatSm is the
permutations of orderm group. The following application
defines a scheduler cycle corresponding toσ ∈ SM+1 :

ϕσ = fσ(M+1) ◦ fσ(M) ◦ · · · ◦ fσ(1), σ ∈ SM+1.

Finally, we putX̄ = (1, . . . ,1).

The following proposition gives properties of applica-
tions fi that will lead to results of convergence :

Proposition 4.3. 1. The application f1 (to which is asso-
ciatedM0,1) is diagonalizable. Its eigenvalues are1
with multipicity M, and1−ω with multiplicity 1. For
this application :

• The eigenspace associated to the eigenvalue1 is
generated by e1 +e2,e3, . . . ,eM+1.

• The eigenspace associated to the eigenvalue1−
ω is generated by e2.

2. For all i such that2≤ i ≤ M−1 : the application fi is
diagonalizable. Its eigenvalues are1 with multipicity
M, and1−2ωwith multiplicity1. For this application
fi :

• The eigenspace associated to the eigenvalue1 is
generated by ei +ei+1,ej , j 6∈ {i, i +1}.

• The eigenspace associated to the eigenvalue1−
2ω is generated by−ei +ei+1.

3. The application fM (to which is associatedMM−1,M) is
diagonalizable. Its eigenvalues are1 with multipicity
M, and0 with multiplicity1. For this application :

• The eigenspace associated to the eigenvalue1 is
generated by eM +eM+1,ej , j 6∈ {M,M +1}.

• The eigenspace associated to the eigenvalue0 is
generated by ω

ω−1eM +eM+1.



We deduce from this proposition our main result of con-
vergence :

Theorem 4.4. For all sequence(σk)k∈N of elements in
SM+1, and fo all X inR

M+1, we have

lim
p→∞

ϕσp ◦ϕσp−1 ◦ · · · ◦ϕσ1(X) = x1X̄,

where x1 is the first component of X.

Remark 4.5. The main task of the proof of theorem 4.4 is
to show that eachϕσ is a contraction, and̄X is a fixed point
for ϕσ.

Proof of theorem 4.4 can be extended to the case, where
a scheduler cycle (in which each interface-agent acts once
and only once) is replaced by a sequence in which each
interface-agent actsat leastonce. This leads to the follow-
ing general result :

Theorem 4.6. We keep the same notations. Let( f̃n)n∈N∗ be
a sequence of elements (not necessarily different) in the set
{ f1, f2, . . . , fM+1}. Let Γk be the space of applications of
the typef̃k◦ f̃k−1◦ · · ·◦ f̃1. We denote by Ni(Φk) the number
of interventions of fi in Φk ∈ Γk. Suppose

lim
k→∞

min
Φk∈Γk

(Ni(Φk)) = +∞.

Thus,

∀X = (x1,x2, . . . ,xM+1) ∈ R
M+1,∀(Φk)k∈N∗ ,

lim
k→∞

(Φk(X)) = x1X̄.

This extends convergence of our interface-agent model
to the case, where agents can stop operating for a while,
and do not not inevitably act in each scheduler cycle.

4.4. Convergence speed : comparing with
finite difference method

We have established convergence results for our
interface-agent model. We now compare its convergenceor-
der with the one of finite difference method. To this end, we
compare consistency errors for both methods. Basic defini-
tions in numerical analysis can be found in [4]. Recall that
consistency error for the finite difference method is given
by

en+1
m =

Xn+1
m −H Xn

m

δt
whereXn = (Xn

0 ,Xn
1 , . . . ,Xn

M) is the solution vector at time
n, andH is given by (18). Thus, we have

en+1
m = 1

δt

(

Xn+1
m −Xn

m−ω(Xn
m+1−2Xn

m+Xn
m−1)

)

= ∂X
∂t (xm,tn)− h2

δt ω∂2X
∂x2 (xm,tn)+ O(δt)+ O(h2)

= O(δt)+ O(h2),
(23)

sinceX satisfies the heat equation (13).
Equations (23) show that the finite difference method has

order 1 in time and order 2 in space.
We establish that the efficiency of our interface-agent

method is exactly the same:

Theorem 4.7. Let ε(n+1)M be the consistency error vector
for the interface-agent method at the end of the(n+ 1)-th
scheduler cycle.

We have :
∣

∣

∣

∣

∣

∣

∣

∣

∣

ε(n+1)M
0 = 0
∀m, 1≤ m≤ M−1,

ε(n+1)M
m = O(δt)+ O(h2)+3K

δt ω
2,

K ≤ max0≤i≤M−1(|XnM
i+1−XnM

i |).
(24)

Remark 4.8. Interpretation. We first stress the point that
theorem 4.4 implies that all values|XnM

i+1−XnM
i | tend to0 if

n→ ∞. Thus, the coefficient ofω2 decreases in time. How-
ever, in order to avoid a significant error at the first time
steps, the termω2/δt has to be negligible in front of h2,
which is equivalent to the condition

δt < h6

for the choice of time and space steps.

Finally, section 5 presents an example in which we
use reaction-agents and interface-agents in the context of
hemostasis simulation.

5. Example

We are interested in the modelisation of hemostasis [5]
and especially in the construction of a virtual 3D blood ves-
sel in which it will be possible to simulate and study the
blood coagulation process. We show here a first attempt of
this work, by means of interaction-agent method.

The blood vessel is represented by a cylinder discretized
into meshes, see figure 2. In each mesh, a numerical model
of the blood coagulation cascade can be found ; this model
presents almost all of the enzymatic reactions involved in
the extrinsic and intrinsic pathways, such as the tenase or
the prothrombinase reactions. The different biochemical
species can also diffuse from one mesh to a neighboring one
following Fick’s law as illustrated on figure 2. The overall
model includes 32 species that interactvia 40 biochemical
reactions and diffusion.

This model can be simulated using a PDE-based ap-
proach and our multi-agent-system-based approach. In or-
der to validate our methodology, we have simulated the
model using both approaches, and compared the curves of
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Figure 2. Numerical model of a virtual blood
vessel. The blood vessel is represented by
a cylinder discretized into meshes. Each
mesh contains a numerical model of the
blood coagulation enzymatic cascade, and
each specie can diffuse from a mesh to an-
other by means of an interface-agent.

thrombin1 generation obtained in both cases ; results are
plotted in figure 3. In each mesh, we have obtained a throm-
bin generation curve, and for each approach these have been
compared. In each case, the curves are overlapping, which
confirms that the PDE-based approach and the interaction-
agent method converge to the same solution.

6. Conclusion and perspectives

We have exposed the proof of efficiency of our
interaction-agent model for thein virtuo simulation of
reaction-diffusion phenomena. Due to their asynchronism,
our algorithms are of course weaker than classical ones for
the resolution of partial derivative systems. Nevertheless,
as far as we know, interaction-agent model is the only one
which enables a real dynamical interaction with the simu-
lation, without stopping it. In the future, we plan to study
the same way advection phenomena, in order to be able to
make assuptions, by means of a complete model of virtual
blood vessel, about unexplained phenomena of hemostasis.
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