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Abstract—Multi Interaction Systems are dedicated to real-
time interactive simulations. They are based on chaotic and
asynchronous scheduling of autonomous processes, in which
physical or biological phenomena involved in the system are
desynchronized. This allows interactivity, especially the capability
to add or remove phenomena in the course of a simulation. This
“desynchronized scheduling” leads to methods of resolution of
ordinary differential systems and partial derivative equations.
Proofs of convergence for these methods have been given, but
the problem of absolute stability, eventhough it is crucial when
considering multiscale or stiff problems, has not yet been treated.
The aim of this article is to present absolute stability conditions
for chaotic and asynchronous schemes. We give criteria so
as to predict instability thresholds, and study in details the
significative example of a damped spring-mass system. Our
results, which make use of random matrices products theory,
stress the point that the desynchronization of phenomena, and a
random scheduling of their activations, can lead to instability.

Index Terms—Chaotic asynchronous scheduling, Multi-
interaction systems, Ordinary differential systems, Absolute sta-
bility, Random matrices products.

I. INTRODUCTION

Multi Interaction Systems (MIS) [1] were introduced in the

context of Virtual Reality. The initial aim was to provide

medical researchers with a simulator dedicated to virtual

experimentation and allowing the user four essential points:

1) Interact with the simulated system in the course of the

simulation, without stopping it, by adding or removing

interactions or constituents in the system, so as to be as

close as possible from the in vitro experimentation.

2) Achieve this interactive simulation without knowing

anything about programmation or numerical methods for

solving differential systems.

3) Take into account widely different time and space scales

for simulated phenomena.

4) Obtain as precise results as possible, particularly when

solving differential or partial derivative systems.

Fig. 1. In Virtuo simulation of endothelium using a MIS.

Thereby, the challenge was to create a simulator for what was

called in virtuo experimentation [2], that is, to summarize, in

silico computations in the conditions of in vitro experiments.

For this purpose, the MIS paradigm proposed to reify inter-

actions into the system instead of constituents, with the main

and basical advantage to provide modularity, i.e. adding or

removing interactions in course of simulation. Thus, a MIS can

be seen as a collection of autonomous processes-interactions,

each acting on a collection of variables-constituents, and

carrying its own time step. This radical change in perspective

has made feasible the constraints, outlined above, of in virtuo

experimentation. It also led to the choice of a new kind of sim-

ulation algorithms, based upon random scheduling of interac-

tions inside the system: chaotic asynchronous scheduling [1],

[3], [4]. The principle is to consider each (physical, biological)

phenomenon acting on the system -i.e. an interaction between

constituents- as autonomous. The simulation engine evolves

interactions asynchronously (one after the other, into cycles)

and chaotically (the order of interventions changes randomly

from one cycle to the other). This scheduling was chosen in

order to avoid the typical inflexibility of synchronous systems,

as well as bias in numerical results.

From a formal point of view, chaotic asynchronous schedul-

ing provides methods of resolution of ordinary differential



equations or systems (say, to simplify, ODE) [3], as well as

methods for partial derivative equations [4]. The present work

deals with the case of numerical resolution of ODE. Let us

give the principle of chaotic asynchronous scheduling in this

context: if one wants to solve the cauchy problem

Y ′(t) = (f1 + · · ·+ fp)(t, Y (t)), Y (t0) = Y0 (1)

the principle is to consider functions fi as autonomous agents,

what is necessary when desynchronizing the different phe-

nomena represented by each of these functions. Considering

a numerical method for solving (1), the matching chaotic

asynchronous method will be given by successive applica-

tions of the chosen method, one for each function. These

resolutions take place during the same time step, and the

order of resolutions, that is, the order of interventions of

functions/phenomena fi, changes randomly at each time step.

Details about this process are given in section III.

This desynchronization eases a modular and incremental

building of the numerical model. This is especially usefull

when building biochemical models, since the modeller usually

selects, subjectively, the reactions which are most likeky

involved, and runs the model. If results are not correct enough,

the model is incremented with other reactions, etc., until a

satisfying model is obtained. Modularity makes this process

natural and doesn’t require to stop the simulation to modify

the code of equations.

Furthermore, chaotic asynchronous simulation provides a

means to bear with non-determinism, which occurs most of

the time in chaotic systems because of causality between

phenomena at the beginning of the experiment, at a very small

scale [5]. Introducing random causality inside a computation

time step facilitates the construction of simulators able to

report a non-determinist behavior.

Many applications have been achieved in different domains,

though, as said above, biochemical kinetics is a natural ap-

plication context: a classical example is given by cancer,

since chromosomic instability [6] implies on a regular basis

modifications or creations of new reactions [7]. In this context,

an application of this scheduling to computer simulation of

multiple myeloma was recently achieved [8]. Notice that it is

also used for simulation of MAPK pathway [9], and simulation

of the extrinsic pathway of blood coagulation [10]. In an

other context, chaotic asynchronous scheduling is used for

simulation of sea states, which is typically multi-model and

multi-scale [11].

The convergence of these methods has been established [3],

[4], but the problem of absolute stability [12] has not yet been

treated, despite its importance: indeed, the region of absolute

stability can be seen as the set of values of the time step

outside which the distance between the exact solution and

the approximate gets out of control. Thus, when simulating

multiscale problems, one has to find a compromise between

precision and a realistic time simulation, and this choice can

not be made without knowing the region of absolute stability.

Another important case where this knowledge is crucial is

given by stiff problems [13], with brutal variations of the

solution of an ODE. The aim of this article is to present

absolute stability conditions for chaotic and asynchronous

schemes. We give general results, based upon the theory

of products of random matrices, and stress the point that

in certain circumstances, these schemes may impose strong

conditions on the time step, mainly when opposing forces are

at work in the system. A significative illustration is the case

of a damped spring-mass system where the different physical

phenomena are desynchronized.

In section II, we remind the reader of the problem of ab-

solute stability of methods for solving ODEs, so as properties

of classical explicit and implicit schemes. In section III, we

describe how desynchronization of phenomena leads to define

asynchronous and chaotic asynchronous schemes. We also

recall results of convergence for these methods. Sections IV

and V expose the main results of this paper : we study absolute

stability for asynchronous and chaotic asychronous schemes,

in a general context, providing conditions on integration steps.

Finally, section VI exposes the practical example of a damped

spring-mass system, where the three phenomena involved are

not considered as synchronous. In this case, we show that

absolute stability conditions can be drastical.

II. ABSOLUTE STABILITY ISSUES

Let us first remind the reader of absolute stability issues

[14], [13], so as of classical cases.

A. Definitions

We consider the following differential system (classically

named test equation)

X ′(t) = A ·X(t) (2)

where A is a square matrix with distinct eigenvalues all lying

in the negative half-plane ℜ(z) < 0. Its general solution is

X(t) = exp(tA) ·X(0)

One has, under these conditions,

lim
t→∞

X(t) = ~0

Consider the one dimensional case y′ = λy, ℜ(λ) < 0, and

assume that, with the method which is used, yn approximates

the exact solution y(tn) at time tn. The region of absolute

stability for a method is the set of values of the time step h
and of λ for which

lim
n→∞

yn = ~0

is verified. One can consider absolute stability as the capability

of a method to bare brutal variations of the solution, even with

large time steps. This is preponderant with real-time multiscale

simulations, which induce the choice of optimal time steps.

In the multidimensional case given by equation (2), a

necessary condition for the absolute stability of a method is

that hλ be in the stability region of this method for each

eigenvalue λ of A and h the largest time step.



B. Examples of classical Euler methods

Before exposing what regards asynchronous schemes, we

recall classical results about elementary methods. The simplest

method for solving (2) is the Euler algorithm. It is given by

Xn = Xn−1 + hA ·Xn−1 (3)

In the one dimensional case, one easily gets the absolute

stability region : this is the open disk defined by {z = hA ∈
C : |1 + z| < 1}.

Consider the simple example A = −λ, λ ∈ R+. Equation

(2) is simply X ′(t) = −λX(t), and its solution is X(t) =
e−λtX(0). Applying explicit Euler scheme, one obtains Xn =
(1−λh)nX0, and the absolute stability condition is |1−λh| <
1, that is, h < 2/λ. Figure 2 shows different approximations

of the solution with λ = 6, i.e. 2/λ = 1/3.

Fig. 2. Explicit Euler scheme applied to test-equation y′ = −6y with
different time steps. The absolute stability threshold h = 1/3 is highlighted.

In the general multidimensional case, equation (3) gives

Xn = (I + hA)n ·X0 (4)

where I is the identity matrix. Therefore (see section IV), the

absolute stability condition is here

ρ(I + hA) < 1

with ρ(M) the spectral radius of M .

A more efficient algorithm, regarding absolute stability, is

given by the Implicit Euler method

Xn = Xn−1 + hA ·Xn (5)

Here, one easily gets the fact that the absolute stability

region is the whole complex plane. Indeed, for the one

dimensional test-equation, one gets with implicit Euler method

Xn = 1
(1+λh)nX0, so that limn→∞ Xn = 0 ∀h, and absolute

stability is guaranteed. Figure 3 shows different approxima-

tions, for the same example and the same values of the time

step as in figure 2.

Fig. 3. An application of Implicit Euler scheme for the test-equation y′ =
−6y with the same values of the time step as in figure 2.

III. ASYNCHRONOUS AND CHAOTIC ASYNCHRONOUS

SCHEMES

Chaotic asynchronous schemes were presented in [3] and

[4], where their general definition and convergence properties

were detailed. For the sake of simplicity, and because we

deal with absolute stability, we will simply remind the reader

of the principle of asynchronous and chaotic asynchronous

scheduling, when applied to test-equation (2). The example

of explicit Euler scheme, though simple, will enable us to

stress the difference between asynchronous and chaotic asyn-

chronous schemes, so as problems posed by “poor” properties

of the spectral radius.

Here is the principle: we consider equation (2) and assume

that matrix A is written

A =

m
∑

i=1

Ai (6)

As regards applications in the domain of interactive real-time

simulations, each Ai is the matricial representation of a distinct

phenomenon. Each of these phenomena will be activated at

specific moments. In the asynchronous case one defines a

scheduling that will be repeated all along the simulation.

In the chaotic asynchronous case, this order of phenomena

activations changes randomly at each cycle.

The next sections describe in details these simulation methods.

A. Asynchronous Euler schemes

Consider a fixed permutation σ ∈ Sm, where Sm is

the symmetric group of permutations of m elements. This

permutation is used at each time step, and characterizes the

scheduling of Ai’s interventions in cycles. We recall that this

“desynchronization” mainly makes it easy to add or remove

phenomena in the course of a running simulation, without

stopping it.

The principle is to execute the same algorithm (here explicit

Euler) successively with each phenomenon involved, accord-

ing to the order of interventions fixed by the permutation σ.

On one time step, the execution of asynchronous explicit Euler



algorithm gives :

X∗1 = Xn−1 + hAσ(1) ·Xn−1

X∗2 = X∗1 + hAσ(2) ·X∗1

...

Xn = X∗(m−1) + hAσ(m) ·X∗(m−1)

Thus, one gets

Xn =

(

m
∏

i=1

(I + hAσ(i))

)n

·X0 (7)

We stress again the point that the same permutation σ is used

here on each time step.

In a similar way, asynchronous scheme applied to implicit

Euler algorithm leads to :

Xn =

(

m
∏

i=1

(

I − hAσ(m−i+1)

)−1

)n

·X0 (8)

B. Chaotic asynchronous explicit Euler scheme

The fundamental difference between asynchronous and

chaotic asynchronous schemes is that a new permutation is

chosen at each time step for the scheduling of phenomena.

During time step n, the order of interventions of phenom-

ena involved makes matrices intervene the following way :

Aσn(1), Aσn(2), . . . , Aσn(m), where σn is the permutation of

m operators Ai which is involved at time n.

For this time step, chaotic asynchronous Euler algorithm

gives :

X∗1 = Xn−1 + hAσn(1) ·Xn−1

X∗2 = X∗1 + hAσn(2) ·X∗1

...

Xn = X∗(m−1) + hAσn(m) ·X∗(m−1)

Thus, one gets

Xn =

m
∏

i=1

(I + hAσn(i)) ·Xn−1

that is

Xn =

n
∏

k=1

m
∏

i=1

(I + hAσk(i)) ·X0

Here again, this chaotic asynchronous scheme may be applied

to implicit Euler algorithm and leads to

Xn =

n
∏

k=1

m
∏

i=1

(I − hAσk(m−i+1))
−1 ·X0

As an introduction to the kind of problems that arise when

using these methods, the next part deals exclusively with

the asynchronous case. The chaotic case will be even more

difficult to handle, because it involves stochastic processes.

IV. ISSUES AND RESULTS ABOUT ASYNCHRONOUS EULER

SCHEMES

In the following, we denote by ρ(M) the spectral radius of

a matrix M . We will make use of the following fundamental

property:

Theorem IV.1. [15] Let M a matrix in C
n×n.

lim
n→∞

Mn = 0 ⇐⇒ ρ(M) < 1

A. Stability regions

Considering equation (4), theorem IV.1 implies that the

absolute stability condition for explicit Euler scheme is given

by

ρ(I + hA) < 1 (9)

The same way, considering equation (7), the absolute stabil-

ity condition for asynchronous explicit Euler scheme is given

by

ρ

(

m
∏

i=1

(I + hAσ(i))

)

< 1

with σ the fixed permutation chosen at the beginning

of the execution. An obvious remark is that this condition

is not as easy to check as (9), and may induce complex

computations (our damped mass-spring example will exhibit

this complexity). This is the reason why it is important to

provide absolute stability conditions for these asynchronous

schemes. This is what we present in the following.

Moreover, since any permutation may be initially chosen

and then used during the whole simulation, we get the trivial

following criteria for explicit and implicit asynchronous Euler

schemes:

Proposition IV.2. 1) The absolute stability domain for

asynchronous explicit Euler scheme, when resolving

X ′ = A ·X = (
∑m

i=1 Ai) ·X , is given by the set

SA = {h ∈ R+ : ∀σ ∈ Sm,

ρ(
m
∏

i=1

(I + hAσ(i))) < 1}

2) The absolute stability domain for asynchronous implicit

Euler scheme, when resolving

X ′ = A ·X = (
∑m

i=1 Ai) ·X , is given by the set

SA = {h ∈ R+ : ∀σ ∈ Sm,

ρ(

m
∏

i=1

(I − hAσ(m−i+1))
−1) < 1}

In section VI, a detailed example will show that these

criteria may induce complex conditions on time steps, when

applied to concrete cases. But even the most simple case of a

one dimensional equation leads to non trivial conditions, the

following example may be instructive.



B. Examples of stability regions in one dimension

In this section we illustrate the non triviality of absolute

stability conditions for asynchronous schemes, even in elemen-

tary cases. We want to show that the conditions of absolute

stability for asynchronous schemes, in both cases of explicit

and implicit Euler, are uneasy to handle in general. Even in

the simple case of one differential equation, where all Ai are

real numbers and commute, conditions on the spectral radius

become |∏m
i=1(1+hAi)| < 1 and |∏m

i=1
1

1−hAi

| < 1, so that

a general condition on h is not easy to extract. For instance,

one can consider the special case where m = 2 and A1, A2

are real numbers, here denoted −λ1 and −λ2: we assume in

the following λ1 + λ2 > 0, so that the problem

x′(t) = −(λ1 + λ2)x(t), λ1 + λ2 > 0 (10)

remains stiff.

In the case of the explicit Euler scheme, the absolute

stability condition for (10) is |(1 − λ1h)(1 − λ2h)| < 1. A

direct study leads to the following alternative:

Proposition IV.3. • If λ1λ2 > 0, the absolute stability

condition for (10) is

h ∈
]

0;
λ1 + λ2 −

√

(λ1 + λ2)2 − 8λ1λ2

2λ1λ2

[

∪
]

λ1 + λ2 +
√

(λ1 + λ2)2 − 8λ1λ2

2λ1λ2
;
λ1 + λ2

λ1λ2

[

• If λ1λ2 < 0, the absolute stability condition for (10) is

h ∈
]

0;
λ1 + λ2 −

√

(λ1 + λ2)2 − 8λ1λ2

2λ1λ2

[

On the other hand, the absolute stability condition for the

implicit scheme (5) is

∣

∣

∣

1
(1+hλ1)(1+hλ2)

∣

∣

∣ < 1 what leads to

another alternative:

Proposition IV.4. • If λ1λ2 > 0, the absolute stability

condition for (10) is trivial, so that the method is ab-

solutely stable.

• If λ1λ2 < 0, the absolute stability condition for (10) is

h ∈
]

0;
λ1 + λ2

−λ1λ2

[

∪
]

λ1 + λ2 +
√

(λ1 + λ2)2 − 8λ1λ2

−2λ1λ2
; +∞

[

For example, let us consider the case λ1 = −3, λ2 = 11,

so that λ = λ1 + λ2 = 8. Therefore our problem is the stiff

one :

x′ = −8x = −(−3 + 11)x

Absolute stability conditions are in this case :

• classical synchronous Euler : h < 2
8 = 0.25

• explicit asynchronous Euler: h < 0.1531
• implicit asynchronous Euler :

h ∈ ]0; 0.2424[ ∪ ]0.3956;+∞[ (11)

One can check these results with different simulations.

This simple example suggests that the exact absolute sta-

bility region of a general asynchronous scheme may be really

complex. Nevertheless, we can prove an easier-to-apply (but

less precise) criterion for the explicit case.

C. Criterion of absolute stability (explicit scheme)

The proof of the following proposition is based on majora-

tion of ‖
∏m

i=1(In+hAσ(i))‖. Details can of course be asked

to authors.

Proposition IV.5. Consider the decomposition A =
∑m

i=1 Ai

where A ∈ L(Cn). Let P be the passage matrix into a base

where A is triangular, and the norm defined by

‖v‖A = ‖P−1v‖1

Let M = maxi ‖Ai‖A, and Pm(X) the polynomial defined by

Pm(X) = (X + 1)m − 1−mX . Then, the absolute stabil-

ity region for Euler chaotic asynchronous scheme, with the

desynchronization considered, contains the set

SA = {h > 0 : 0 < ρ(In + hA) < 1− Pm(hM)}.

We will see an illustration of this criterion in section VI. But

for now, in the next section, we study the chaotic asynchronous

case.

V. CHAOTIC ASYNCHRONOUS EULER SCHEMES

This section presents our main results about absolute sta-

bility of chaotic asynchronous schemes. We recall that the

fundamental difference between asynchronous and chaotic

asynchronous schemes is the fact that, in the latter case, a

new permutation is chosen at each time step for the scheduling

of phenomena. This leads to radically different properties of

stability, as detailed below.

Let us first recall that the execution of chaotic asynchronous

Euler schemes, when solving equation (2) with the decompo-

sition (6), leads to the following formulas, where σk is the

permutation used at step k, k ≤ n:

• For chaotic asynchronous explicit Euler scheme,

Xn =
n
∏

k=1

m
∏

i=1

(I + hAσk(i)) ·X0

• For chaotic asynchronous implicit Euler scheme,

Xn =

n
∏

k=1

m
∏

i=1

(I − hAσk(m−i+1))
−1 ·X0

In this section, we prove a general criterion which ensures

that the upper Lyapunov exponent associated with a distribu-

tion on GL(d,R) is negative. Then we apply this criterion to

the absolute stability of chaotic asynchronous methods.



A. Negative upper Lyapunov exponent

Let us start with some common notations and definitions

(see [16] for a detailed theory about the products of random

matrices).

Definition V.1. If (Bi)i≥1 is a sequence of i.i.d random

matrices, we write βn the product Bn. · · · .B1. If ln+ ‖B1‖ is

integrable, then the following limit exists and is called upper

Lyapunov exponent of the sequence (or equivalentely of the

distribution associated to the sequence):

lim
n

1

n
E [ln ‖βn‖] = γ

Definition V.2. If µ is a probability measure on GL(d,R),
Gµ is the smallest closed subgroup of GL(d,R) that contains

the support of µ.

Definition V.3. A subset S of GL(d,R) is said to be irre-

ducible if there is no proper subspace V ⊂ R
d such that

M(V ) = V for all M ∈ S.

We will use the following lemma:

Lemma V.4. Let {Bn, n ≥ 1} be a sequence of independent

random matrices of GL(d,R) with common distribution µ,

and βn = Bn. · · · .B1. We suppose that:

1) Gµ is irreducible.

2) ln+ ‖B1‖+ ln+
∥

∥B−1
1

∥

∥ is integrable

Then

lim
n

1

n
sup

‖x‖=1

E [ln ‖βn · x‖] = γ

Proof: First of all, let us check that the sequence

an = sup
‖x‖=1

E [ln ‖βn · x‖]

is subadditive. For any integer n and m one has

E [ln ‖βn+m.x‖] = E [ln ‖Bn+m · · ·Bn+1Bn · · ·B1 · x‖]

= E

[

ln

∥

∥

∥

∥

Bn+m · · ·Bn+1
Bn · · ·B·x

‖Bn · · ·B1 · x‖

∥

∥

∥

∥

]

+ E [ln ‖Bn . . . B1 · x‖]

As
Bn · · ·B1 · x
‖Bn · · ·B1 · x‖

is unitary, considering the upper bounds

on ‖x‖ = 1 leads to

an+m ≤ an + am

Thereby, the sequence an

n
converges: we denote γ′ its limit.

Since Gµ is irreducible and E
[

ln+ ‖B1‖
]

is finite, we know

that, for any x 6= 0 (see [16] p.72):

lim
n

1

n
ln ‖βn · x‖ = γ almost surely.

Now, an easy computation shows that

1

n
|ln ‖βn · x‖| ≤ 1

n

n
∑

i=1

(

ln+ ‖Bi‖+ ln+
∥

∥B−1
i

∥

∥

)

From the law of large numbers, the right hand side converges

in L1, thereby, it is uniformly integrable. Thus, the left hand

side is also uniformly integrable, and as it converges almost

surely to γ, it converges as well in L1:

lim
n

1

n
E [ln ‖βn.x‖] = γ (12)

And since
1

n
E [ln ‖βn · x‖] ≤ an

n
, one has

γ ≤ γ′

On the other hand, one has

sup
‖x‖=1

E [ln ‖βn · x‖] ≤ E

[

sup
‖x‖=1

ln ‖βn · x‖
]

= E [ln ‖βn‖]

The right hand side, by definition, converges to γ, so that

γ′ ≤ γ, which ends the proof.

From this lemma, one can deduce the following result based

on the negativity of the upper Lyapunov exponent:

Proposition V.5. Let {Bn, n ≥ 1} be a sequence of indepen-

dent random matrices of GL(d,R) with common distribution

µ that satisfies

1) Gµ is irreducible.

2) ln+ ‖B1‖+ ln+
∥

∥B−1
1

∥

∥ is integrable

If there exists an integer m such that

sup
‖x‖=1

E [ln ‖βm · x‖] < 0

Then, for any x

lim
n

βn · x = 0 almost surely.

Proof: From lemma V.4, we know that

lim
n

1

n
sup

‖x‖=1

E [ln ‖βn · x‖] = γ

But, as an = sup
‖x‖=1

E [ln ‖βn · x‖] is a subadditive sequence,

we know that

lim
n

an
n

= inf
m

am
m

Our hypothesis ensures that inf
m

am
m

< 0, so that γ < 0. But,

as in lemma V.4, we know that for any x 6= 0

lim
n

1

n
ln ‖βn · x‖ = γ almost surely.

This suffices to deduce the result.

B. Absolute stability of chaotic asynchronous schemes

In this section we will simply apply proposition V.5 to

chaotic asynchronous schemes. In this particular context, as-

sumptions of this proposition are generally satisfied, so that

the following criterion is relevant.

Definition V.6. In the following proposition, a matrix is said

to be associated with a chaotic asynchronous method if it is

a random product of matrices intervening at each time step:

for instance, matrices associated with chaotic asynchronous



explicit euler scheme for the resolution of X ′ = (
∑m

i=1 Ai)·X
will be the following products:

Bk =

m
∏

i=1

(I + hAσk(i)), σk ∈ Sm

Of course, our problem regards the limit of products of such

associated matrices.

Proposition V.7. Let B = {B1, . . . , BN} ⊂ GL(d,R) be

the matrices associated with a chaotic asynchronous method

applied to a linear equation. We suppose that B is irreducible,

then, if there exists an integer m such that

sup
‖x‖=1

∏

1≤,i1,··· ,im≤N

‖Bi1 · · ·Bim · x‖ < 1

Then the method is almost surely absolutely stable.

Proof: First, it is easy to check that if B is irreducible,

then Gµ is also irreducible (where µ is the uniform distribution

on B).

Since the matrices are equidistributed, one has:

sup‖x‖=1 E [ln ‖βm · x‖]
= sup‖x‖=1

1
Nm

∑

1≤,i1,...,im≤N ln ‖Bi1 · · ·Bim · x‖
= sup‖x‖=1

1
Nm ln

(

∏

1≤,i1,...,im≤N ‖Bi1 · · ·Bim · x‖
)

= 1
Nm ln

(

sup‖x‖=1

∏

1≤,i1,...,im≤N ‖Bi1 · · ·Bim · x‖
)

Our hypothesis insures that

sup
‖x‖=1

E [ln ‖βm · x‖] < 0

Since we have only a finite number of matrices, the condition

of integrability of ln+ ‖B1‖ + ln+
∥

∥B−1
1

∥

∥ is satisfied. Thus

we may apply proposition V.5 and conclude.

With quite simple calculus this criterion can indicate,

depending on the value of h, that a chaotic asynchronous

method is stable. Nevertheless in some cases, the crite-

ria is not applicable because the sequence of functions
∏

1≤,i1,··· ,im≤N ‖Bi1 · · ·Bim · x‖ converges only almost ev-

erywhere. We could have improved the criterion to handle this

fact, and produce a result like the following one :

Proposition V.8. Let Sd = {x ∈ R
d, ‖x‖ = 1}. If there exists

an integer m and a subset N ⊂ Sd of null measure such that

sup
x∈S−N

∏

1≤,i1,··· ,im≤N

‖Bi1 · · ·Bim · x‖ < 1

Then the method is almost surely absolutely stable.

But such a proposition would be useless in practice. Even

in the case of a negative Liapunov exponent, the quantity
∏

1≤,i1,··· ,im≤N ‖Bi1 · · ·Bim · x‖ may grow to infinity on a

set of null measure (this is precisely the case of system S1

in section VI-E). In these cases, the estimation of Lyapunov

exponent may become the only way to compute stability

conditions.

The next section is devoted to examples and illustrations of

all the previous results and observations.

VI. APPLICATIONS AND ILLUSTRATIONS

The damped mass-spring system is a particular case of

desynchronisation of one single differential equation, this is

why we first describe this general case.

A. Desynchronization of one single differential equation

The case of one single linear differential equation with order

m is given by:

x(m)(t)−
m−1
∑

i=0

aix
(i)(t) = 0 (13)

This equation can be written as a linear differential system:

with the notations zi = x(i), 0 ≤ i ≤ m − 1, one gets the

system











z0
z1
...

zm−1











′

=











0 1 0 . . .

0 0
. . . 0

0 . . . 0 1
a0 a1 . . . am−1











·











z0
z1
...

zm−1











what can be denoted, with obvious notations,

Z ′ = A · Z.

Consider the elementary matrices Eij , 1 ≤ i, j ≤ m. Assume

that coefficients ai each characterize a distinct phenomenon:

we can associate to ai the matrix

Pi = aiEm,i+1

and introduce an “integration phenomenon” given by the

matrix

Int =
m−1
∑

i=1

Ei,i+1

With these notations, one easyly gets

A = Int +

m−1
∑

i=0

Pi

Therefore, one can apply an asynchronous scheme (chaotic

or not), where the Pis and the integration phenomenon are

desynchronized. Our main example of a damped mass-spring

system will illustrate this process.

B. Damped mass-spring system

In sections IV and V, we have exposed absolute stabil-

ity conditions for asynchronous and chaotic asynchronous

schemes. In the following, we propose an illustration of these

results in the case of a second order linear differential equation,

with drastic absolute stability conditions when physical phe-

nomena involved are desynchronized. We volunteerly consider

a typical case of antagonist phenomena leading to a more

significative unstability when they are desynchronized. Indeed,

we consider the case of a damped spring-mass system, that can

be represented by the following equation

x′′ = −g − k

m
x− γ

m
x′ (14)



where:

• g is the gravity field

• m is the mass of the object

• k is the elasticity constant of the spring

• γ is the damp coefficient

All along this section, we will carry simple computations in

order to illustrate our problems. We will consider two cases

of such systems, defined by the following parameters :

(γ, k,m) = (1, 4, 1) referred as (S1) (15)

and

(γ, k,m) = (8, 1, 1) referred as (S2) (16)

But for now, we will try to explore our system in the

general case. According to our theoretical study, we will first

deal with the asynchronous case, before dealing with the

chaotic asynchronous one. This example will clearly expose

how chaotic schemes, though they are a bit more precise than

non chaotic ones, may suffer from great instability.

Using the notations

x1 = x, x2 = x′

equation (14) can be written as the system

[

x1

x2

]
′

=

[

0 1
−k/m −γ/m

]

·
[

x1

x2

]

+

[

0
−g

]

The simple change of variables

X =

[

x1

x2

]

+

[

0 1
−k/m −γ/m

]−1

·
[

0
−g

]

leads to the equivalent system

X ′ =

[

0 1
−k/m −γ/m

]

·X

In the following, we use the notations:

A =

[

0 1
−k/m −γ/m

]

, A1 =

[

0 1
0 0

]

A2 =

[

0 0
−k/m 0

]

, A3 =

[

0 0
0 −γ/m

]

so that A = A1 +A2 +A3.

Our study of absolute stability implies that the eigenvalues

of A both be in the negative half-plane. Since these eigenvalues

are

λ± =
−γ ±

√

γ2 − 4mk

2m

a direct computation shows that Re(λ±) < 0 ⇐⇒ (k, γ) ∈
(R∗

+)
2

Before exposing results for asynchronous schemes, we first

recall classical results as regards equation (14) in the case of

classical Euler schemes.

C. Classical Euler schemes

First, in the explicit Euler case, the absolute stability

condition is here ρ(I + hA) ∈ [0; 1[, and is equivalent to

|1 + hλ±| < 1. Therefore, we get the conditions :

• If γ2 − 4mk ≥ 0,

h <
4m

γ +
√

γ2 − 4mk
.

• If γ2 − 4mk ≤ 0,

h <
γ

k
.

In the case of system (S1) the condition is h < 0.25 and

for (S2) one gets h < 8− 2
√
15 ∼ 0.254

In the implicit case, the absolute stability condition is

ρ((I − hA)−1) < 1. Nevertheless, this condition is trivial,

since we have seen that implicit Euler method is absolutely

stable, with no condition on the time step. This can obviously

be verified by considering eigenvalues of (I − hA)−1.

D. Absolute stability conditions for asynchronous Euler

schemes

Now we turn to asynchronous methods and we will show

how conditions given in proposition IV.2, though simple,

can lead to difficult computations, even on our elementary

example.

Notice that proofs of propositions VI.1 and VI.2 are both

based on quite technical computations, especially for the study

of multiple-parameters 4th degree polynomials. Details of

these proofs can be asked to authors.

1) Asynchronous explicit Euler: We prove the following

result :

Proposition VI.1. Conditions of absolute stability for asyn-

chronous explicit Euler scheme for the damped mass-spring

system are the following :

• If 2γ2 − k < 0,

h < − γ

m
+

√

γ2

m2
+ 4

m

k
(17)

• If 2γ2 − k ≥ 0,

h <
m

γ
(18)

Once again we will illustrate these results with our two

systems (S1) and (S2). In the first case, the condition is h <√
2−1 ∼ 0.4142, and in the second case h < 0.125. Moreover,

we computed the criterion given in section IV.5. The following

table summarizes all these results :

System Classic Asynchronous Criterion

S1 0.25 0.414 0.084
S2 0.254 0.125 0.061

TABLE I
COMPARISON OF STABILITY CONDITIONS ON h FOR EXPLICIT METHODS.

THE FIRST COLUMN SHOWS THE STABILITY CONDITIONS FOR THE

CLASSIC EXPLICIT METHOD, THE SECOND COLUMN SHOWS THE EXACT

CONDITIONS IN THE ASYNCHRONOUS CASE AND THE THIRD ONE SHOWS

THE CONDITION BASED ON THE PROPOSITION IV.5.



One can notice that in the case of system (S1), asyn-

chronous explicit Euler scheme gives better results than the

classical scheme. Moreover, the criterion given in proposition

IV.5 is quite easy to use, but gives strong majorations.

2) Asynchronous implicit Euler: We prove the following

result :

Proposition VI.2. A sufficient condition for absolute stability

of asynchronous implicit euler scheme, in the case of a damped

spring-mass system, is

h <
τ√
k

(19)

with τ the biggest real positive root of the polynomial

∆(X) = αX3 +X2 − 2αX − 4, α =
γ√
mk

Remark : A good approximation of h < τ is given by

h <
m

2γ

(

−1 + 2
γ√
mk

+

√

1 + 4
γ√
mk

)

There is no need to explore our systems (S1) and (S2)
according to implicit asynchronous method. Indeed, implicit

Euler scheme is absolutely stable, but from the previous result,

we know that asynchronous implicit Euler scheme is not

stable (for any value of h). This illustrates clearly the loss

of performance of this method.

E. Absolute stability of chaotic asynchronous Euler schemes

We finally illustrate our theoretical results for the damped

spring-mass system with our systems (S1) and (S2). First,

we illustrate the complex behavior of the Lyapunov exponent,

and the fact that it need not be better from explicit scheme to

implicit ones. In each of the cases exposed on figures 4 and

5, we compute numerically (using approximations of invariant

measures) the Lyapunov exponents in function of the time step.

Fig. 4. comparison of chaotic asynchronous explicit and implicit Euler,
system S1

Fig. 5. comparison of chaotic asynchronous explicit and implicit Euler,
system S2

These two figures show that the behavior of the upper

Lyapunov exponent does not make implicit chaotic schemes

more stable than the explicit ones, unlike in the classical Euler

schemes. Any case may occur.

To end with, we computed the values of the different criteria

from proposition V.7, for different values of m. The following

table summarizes the calculus.

System, scheme Lyapunov exp. Crit. m = 2 Crit. m = 3

S1 explicit 0.728 — —
S1 implicit 0.652 — —
S2 explicit 0.227 0.208 0.217
S2 implicit 1.341 1.257 1.285

TABLE II
STABILITY CONDITIONS. THE FIRST COLUMN CORRESPOND TO

CONDITIONS ON h COMPUTED FROM THE ESTIMATION OF LYAPUNOV

EXPONENT, THE SECOND AND THIRD ONES GIVE CONDITIONS FROM THE

APPLICATION OF THE PROPOSITION V.7 WITH m = 2 AND m = 3.

This table shows that system S1 is an example of a

situation where proposition V.7 does not apply, as the sequence

sup‖x‖=1

∏

1≤,i1,··· ,im≤N ‖Bi1 · · ·Bim · x‖ does not converge

quickly enough. On the other hand, with system S2, one

can easily compute conditions on h without estimating the

Lyapunov exponent.

These simple examples exhibit the fact that a systematic

application of chaotic asynchronous methods leads to quite

unpredictable systems, as regards their absolute stability.

VII. CONCLUSION AND PROPOSITION

Chaotic asynchronous schemes for resolving ordinary dif-

ferential systems have shown their interest in the context of

real time interactive simulation of multi interaction systems,

especially when dealing with biochemical kinetics. Their main

advantage is the capability that is given to the user to add

or remove interactions, e.g. chemical reactions or forces, in

the course of a simulation. Nevertheless, eventhough proofs

of convergence for such schemes have been established, the



present work highlights the fact that absolute stability condi-

tions may be difficult to satisfy, when antagonist phenomena

are desynchronized: antagonist forces can lead to force the

choice of tiny time steps, making impossible the aim of real-

time simulation. An illustration is given by the case of a

mass-spring system. Therefore, a compromise has to be found

between a total desynchronization of phenomena, which leads

to instability, and synchronization, which prevents from in

virtuo experimentation.

We propose, in this perspective, to adapt splitting methods

[17] in order to keep the capacity of interacting by adding

or removing phenomena. Indeed, splitting methods seem to

be relevant when the phenomena involved in a simulated

system have to be considered as autonomous: as in the case

of chaotic asynchronous schemes, the resolution of a system

y′ = (A+B)y is replaced by successive resolutions of systems

y′ = Ay and y′ = By. The use of different time steps for

each of the subsystems permits to simulate multiscale systems.

This is also possible with chaotic asynchronous schemes, but

splitting methods have the advantage of absolute stability,

by the use of particular scheduling of integrations of each

subsystem, each of which being solved by an absolutely stable

method. Nevertheless, the choice of splitting methods makes

it impossible to add or remove phenomena in the course of

a simulation, without stopping the simulation and rewriting

algorithms with the new set of phenomena involved.

We have recently developed algorithms that can be seen

as an hybridation between chaotic asynchronous schemes and

splitting methods: a future work will expose these methods

and achieve their theoretical study.
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