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On s'intéresse dans ce travail à la modélisation mécanique multi-échelle de matériaux hétérogènes nano-renforcés. De tels matériaux présentent des effets de surface qui sont typiquement modélisés, dans le cadre des méthodes d'homogénéisation en champs moyens, à l'aide de modèles d'interface. D'un point de vue physique, des résultats expérimentaux démontrent l'existence d'une zone perturbée de la matrice dans le voisinage du renfort, assimilée à une interphase. Les propriétés de celle-ci présentent des fluctuations locales aléatoires qu'il convient de modéliser par un modèle probabiliste. L'objet de cette étude, restreinte au cadre de l'élasticité linéaire, sont : (i) la modélisation stochastique de l'interphase ; (ii) l'étude de la relation entre cette modélisation aléatoire et un modèle asymptotique d'interface. La contribution proposée s'articule autour de deux aspects. Le premier est de construire un modèle probabiliste associé au champ aléatoire d'élasticité de l'interphase. La seconde étape porte sur une étude paramétrique du tenseur apparent pour la microstructure hétérogène. Des simulations sont notamment effectuées pour confronter l'influence de l'interphase non-homogène et de l'interface sur la propriété homogénéisée du matériau. Lorsque le comportement asymptotique constitue une approximation raisonnable, les propriétés de surface sont ainsi déduites à l'aide de la résolution d'un problème d'optimisation formulé sur les propriétés effectives.

Modélisation probabiliste des effets de surface pour des matériaux nano-renforcés
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Introduction

Dans ce travail, on s'intéresse à la modélisation multi-échelle des matériaux hétérogènes à renforts nanoscopiques particulaires. Ce type de matériau exhibe des effets de surface largement mis en évidence d'un point de vue expérimental (voir par exemple [START_REF] Berriot | Reinforcement of model filled elastomers : experimental and theorical approach of swelling properties[END_REF]). Dans le cas des matrices polymères, des contributions récentes ont montré, à l'aide de simulations par Dynamique Moléculaire [START_REF] Marcadon | Effets de taille et d'interphase sur le comportement mécanique de nanocomposites particulaires Thèse[END_REF], que l'effet de renforcement est notamment dû à une modification locale de la répartition des chaînes. Du point de vue de la modélisation, cette zone perturbée est assimilable à une interphase dont les propriétés mécaniques présentent alors des fluctuations spatiales et aléatoires. Il est alors légitime de s'interroger sur la modélisation de ces propriétés, tout autant que sur la relation entre un tel modèle et les modèles d'interface typiquement utilisés dans les méthodes d'homogénéisation par champs moyens. Ce travail constitue une première contribution à cette problématique, restreinte ici au cas de l'élasticité linéaire 2D.

Dans la suite de l'exposé, nous considérons un matériau hétérogène constitué de trois phases, à savoir d'une matrice, d'une particule sphérique et d'une interphase (voir la figure 1). Afin de simplifier l'analyse, et d'après les résultats présentés dans [START_REF] Marcadon | Effets de taille et d'interphase sur le comportement mécanique de nanocomposites particulaires Thèse[END_REF], on suppose de plus que l'épaisseur de l'interphase est constante.

inc m I L R0 h Figure 1 -Microstructure considérée
Les données géométriques décrivant la microstructure sont alors le rayon du renfort nanoscopique R 0 , la fraction surfacique f i de l'inclusion, l'épaisseur h de l'interphase et enfin la taille du domaine L.

On note par ailleurs (I) le domaine géométrique occupé par l'interphase, repéré dans un système de coordonnées cylindriques :

(I) := {(r cos θ, r sin θ) | r ∈ [R 0 ; R 0 + h], θ ∈ [0; 2π]} (1) 
Dans un premier temps, nous nous intéressons à la construction d'un modèle probabiliste pour les propriétés de l'interphase. Cette construction fait l'objet de la section suivante.

Modélisation probabiliste des propriétés de l'interphase

De façon générale, il n'existe pas de séparation d'échelle pour les propriétés équivalentes de l'interphase, ces propriétés étant alors qualifiées "d'apparentes". Cette non-séparation des échelles implique que le matériau "équivalent" pour l'interphase doit être modélisé comme un champ aléatoire, dont les niveaux d'anisotropie et de fluctuations statistiques sont susceptibles d'évoluer avec la coordonnée spatiale. On s'intéresse donc à la modélisation d'un champ aléatoire [C int (x)], x ∈ (I) , à valeurs dans l'espace M + 3 (R) des matrices (3×3) réelles, symétriques définies-positives, représentant les propriétés élastiques de l'interphase. Pour r et θ fixés, [C int (r, θ)] est une matrice aléatoire, définie par une densité de probabilité notée p [C int (r,θ)] . Dans ce travail, nous suivons la méthodologie de construction introduite dans [START_REF] Soize | Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF], qui consiste essentiellement : -à prescrire la famille de lois marginales d'ordre 1, dont chaque élément est construit à l'aide du principe du Maximum d'Entropie ( [START_REF] Jaynes | Information theory and statistical mechanics[END_REF], [START_REF] Shannon | A mathematical theory of communication Bell System[END_REF]). -à introduire les dépendances (et les corrélations) statistiques à l'aide de champs Gaussiens homogènes normalisés, appelés germes stochastiques, tels que la matrice [C int (x)] s'exprime algébriquement à l'aide d'une transformation mesurable non-linéaire (connue) de ces germes au point considéré. On note S l'entropie de Shannon de la fonction densité de probabilité p [START_REF] Shannon | A mathematical theory of communication Bell System[END_REF] :

S(p) = - M + 3 (R) p([C]) ln(p([C]))d[C], (2) 
où d[C] est l'élément de volume sur M + 3 (R). Afin de procéder à la construction du modèle, on suppose que [C int ] satisfait λ contraintes algébriques, exprimées sous forme d'espérances mathématiques et définissant l'information objectivement disponible sur [C int ]. La fonction densité de probabilité p [C int ] recherchée, estimée à l'aide du principe du maximum d'entropie, est alors obtenue comme la solution du problème d'optimisation :

p [C int ] = arg max p∈Cad S(p), (3) 
où C ad est l'espace admissible de toutes les fonctions de M + 3 (R) dans R + telles que toutes les contraintes sont satisfaites. Plus spécifiquement, on considère les contraintes suivantes [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics Probabilistic[END_REF] :

M + 3 (R) p [C int ] ([C])d[C] = 1, E{[C int (x)]} = [C int (x)] ∈ M + 3 (R), E{log(det([C int (x)]))} = ν, |ν| < +∞.
On obtient alors la loi marginale suivante :

p [C int ] ([C]) = 1 M + 3 (R) ([C]) × c × (det[C]) B/δ 2 -2 × exp - B δ 2 ≪ [C] -1 , [C] ≫ , (4) 
où c est la constante de normalisation, δ est le paramètre contrôlant le niveau des fluctuations statis-

tiques, B = 1 2 + (tr[C]) 2 2tr([C] 2 ) et ≪ •, • ≫ désigne le produit scalaire dans M + 3 (R).
Par ailleurs, on montre qu'il existe une transformation non-linéaire mesurable T telle que [START_REF] Soize | Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF] [

C int (x)] = T (ξ 1 (x), . . . , ξ 6 (x)) (5) 
pour tout x de (I), où {ξ 1 (x), x ∈ R 2 }, . . . , {ξ 6 (x), x ∈ R 2 } sont des champs Gaussiens réels scalaires homogènes et normalisés, appelés germes stochastiques. Le modèle dépend donc de la fonction moyenne

x → [C int (x)], du paramètre δ et des fonctions de corrélation des germes. On note (r, θ; r ′ , θ ′ ) → ρ ξi (r, θ; r ′ , θ ′ ) la fonction de corrélation normalisée du germe {ξ i (x), x ∈ R 2 }. Nous retenons ici une hypothèse de séparation des variables, soit :

ρ ξi (r, θ; r ′ , θ ′ ) := ρ ξi r (r, r ′ ) × ρ ξi θ (θ, θ ′ ). (6) 
D'après les résultats présentés dans [START_REF] Marcadon | Effets de taille et d'interphase sur le comportement mécanique de nanocomposites particulaires Thèse[END_REF], l'hypothèse de stationarité orthoradiale peut être retenue et on pose (avec un abus de notation)

ρ ξi θ (θ, θ ′ ) = ρ ξi θ (τ θ ), avec τ θ = |θ -θ ′ |.
En supposant de plus la l'homogénéité suivant la direction radiale, on pose de même ρ ξi r (r, r ′ ) = ρ ξi θ (τ r ), avec τ r = |r -r ′ |. Dans ce travail, on retient les formes algébriques suivantes :

ρ ξi θ (τ θ ) = cos (2τ θ ) cosh( τθ-π Lθ ) cosh( π Lθ ) , et ρ ξi r (τ r ) = 4L 2 r π 2 τ 2 r sin 2 πτ r L r , (7) 
où L r et L θ sont les longueurs de corrélations suivant les directions radiale et angulaire respectivement, supposées identiques -par simplicité -pour les six germes stochastiques. On constate donc que pour une valeur donnée de h, les coefficients de variation tendent vers 0 (et ce, pour toutes les composantes du tenseur apparent) lorsque les longueurs de corrélation tendent vers 0. En d'autres termes, le milieu constituant l'interphase devient homogénéisable lorsque le rapport entre h et les longueurs de corrélation devient grand. Dans ce cas, il est possible de construire un modèle d'interface équivalent. Ce point est précisément discuté dans la prochaine section.

Modèle d'interface équivalent

Dans ce qui suit, on se propose de déterminer les propriétés surfaciques optimales associées à un modèle d'interface imparfait cohérent [START_REF] Lequang | Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases[END_REF], telles que le modèle "physique" (reposant sur une modélisation stochastique de l'interphase) et le modèle idéalisé (reposant sur une modélisation déterministe à l'aide d'une interface) fournissent des estimations similaires (dans un sens à préciser) pour les propriétés effectives.

Précisons dans un premier temps les notations. On note κ s et µ s les propriétés surfaciques recherchées. Pour le modèle avec interface, les propriétés effectives sont estimées par une approche autocohérente généralisée (détaillée dans [START_REF] Lequang | Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases[END_REF]) et sont notées κ surf eff et µ surf eff respectivement -notons que le tenseur effectif est dans ce cas isotrope. Pour le modèle avec interphase, pour lequel le tenseur apparent présente des fluctuations statistiques (contenues pour L r → 0 et L θ → 0), on considère une projection sur l'espace isotrope [START_REF] Guilleminot | Probabilistic modeling of apparent tensors in elastostatics : A MaxEnt approach under material symmetry and stochastic boundedness constraints Probabilistic[END_REF] du tenseur moyen. Le modèle homogénéisé devient alors déterministe et isotrope, caractérisé par les modules κ int.stoch iso et µ int.stoch iso . Les modules surfaciques sont alors déduits par la résolution du problème d'optimisation suivant :

(κ s , µ s ) = argmin RxR J(κ, µ), (8) 
où J est la fonction coût définie par

J(κ, µ) = (κ surf eff (κ, µ) -κ int.stoch iso ) 2 + (µ surf eff (κ, µ) -µ int.stoch iso ) 2 . (9) 
Notons ici que le problème d'optimisation n'est pas formulé avec des contraintes de positivité des modules, en accord avec la littérature (voir e.g. 

→ κ s (R 0 ) (gauche) et R 0 → µ s (R 0 ) (droite) pour différentes valeurs de l'épaisseur h.
On constate que lorsque h est trop importante, les modules surfaciques dépendent du rayon R 0 . Ceci est dû au fait que dans ce cas, la modélisation de l'interphase par une interface équivalente n'est pas pertinente. Lorsque l'épaisseur diminue et pour des longueurs de corrélation suffisamment faibles, cette hypothèse de modélisation devient recevable : on constate alors que les propriétés surfaciques "optimales" ne dépendent que sensiblement du rayon de l'inclusion, ce qui valide une hypothèse couramment retenue dans le cadre de l'homogénéisation de tels milieux.

modélisées par un champ aléatoire à valeurs matricielles. Nous avons ensuite procédé à une propagation des incertitudes afin d'estimer les propriétés apparentes élastiques de la microstructure. L'analyse paramétrique permet de mettre en évidence le rôle des longueurs de corrélation radiale et orthoradiale pour l'homogénéisation des propriétés de l'interphase. Dans un second temps, nous avons caractérisé un modèle d'interface équivalent, pour lequel les modules surfaciques sont obtenus par la résolution d'un problème d'optimisation formulé sur les propriétés effectives. On observe que lorsque l'épaisseur de l'interphase est suffisamment faible, les propriétés surfaciques obtenues deviennent indépendantes du rayon de l'inclusion.

La figure 3 Figure 2 -

 32 Figure 2 -Maillage de la microstructure.Figure 3 -Réalisation du champ aléatoire x → C int 11 (x) (en GPa).
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 35 Figure 5 -Représentation des fonctions R 0 → κ s (R 0 ) (gauche) et R 0 → µ s (R 0 ) (droite) pour différentes valeurs de l'épaisseur h.
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 1 Propriétés des phases constitutives.

	3 Homogénéisation stochastique et modèle d'interface équivalent
	3.1 Analyse paramétrique des propriétés apparentes

A l'aide des modèles géométrique et stochastique, il est à présent possible d'effectuer des simulations de la microstructure considérée. Spécifiquement, on pose R 0 = 1 nm, h = 0.5 nm et f i = 0.15, tandis que plusieurs combinaisons de longueurs de corrélation sont utilisées : L r ∈ {h, h/2, h/4, h/6}, L θ ∈ {π/5, π/10, π/20, π/30}. Le problème d'homogénéisation associé, formulé avec des conditions aux limites de Dirichlet, est résolu par la méthode des éléments finis (un maillage adaptatif étant utilisé pour discrétiser le domaine ; voir la Fig.

2

). Les différentes propriétés élastiques des phases sont résumées ci-dessous : Matrice polymère Interphase : modèle moyen Nanoparticule Module d'Young (en GPa)

ConclusionDans ce travail, nous nous sommes intéressés à la modélisation de matériaux hétérogènes présentant des effets de surface. Pour ce faire, nous nous sommes appuyés sur une modélisation probabiliste de la zone d'interphase dont l'existence est mise en évidence dans la littérature. Dans un premier temps, nous avons proposé une modélisation probabiliste des propriétés élastiques de l'interphase,