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A hybrid dynamic model for bio-inspired robots with soft appendages -Application to a bio-inspired flexible flapping-wing micro air vehicle

. In such a framework, the robot is considered as a tree-like structure of rigid bodies whose the joint evolution is governed by stress-strain laws or control torques. Based on the Newton-Euler formulation of these systems, we propose a new algorithm able to compute at each step of a time loop both the net and passive joint accelerations along with the control torques supplied by the motors. For the purpose of illustration, following our works begun in [4], the proposed algorithm is applied to the simulation of the hovering flight of a soft flapping-wing insect-like robot (see the video at [5]).

I. INTRODUCTION

As revealed by works in biology as those of Alexander [START_REF] Alexander | Elastic mechanisms in animal movement[END_REF], animals have developed soft organs to improve their locomotion performances. As an example, in the case of flying insects, as sphinx moths, the twisting strain of the wing along the leading edge generates a phase lag between the stroke and the pitch which is at the origin of the lift during flight [START_REF] Dickinson | Wing rotation and the aerodynamic basis of insect flight[END_REF]. Another relevant example of the benefits of compliances in animal locomotion is illustrated by the dead fish in a wake. In fact, recent experiments [START_REF] Beal | Passive propulsion in vortex wakes[END_REF] and simulations [START_REF] Candelier | Note on the swimming of an elongated body in a non-uniform flow[END_REF] reveal that a dead trout placed in the wake downstream from obstacles can extract energy passively from large-scale coherent vortices and ascend flow. Based on these two examples, it appears that, soft organs allow animals: 1 • ) to add useful degrees of freedom for locomotion without adding muscles; 2 • ) to cyclically accumulate and restore kinetic energy in order to minimize the power consumption during the locomotion. From the roboticist's view point, the implementation of these concepts would allow to design simpler, lighter and cheaper robots. As a result, the reproduction of compliant wings of flying insects is the key to success of the new generation of Micro Air Vehicles (MAV) [START_REF] Wood | The first takeoff of a biologically inspired at-scale robotic insect[END_REF], [START_REF] Pérez-Arancibia | First controlled vertical flight of a biologically inspired microrobot[END_REF]. To help researches to study soft locomotion, we propose, in this paper, a Mobile Multibody Systems (MMS) framework devoted to the dynamic modelling and simulation of locomotion systems which use soft appendages. The proposed algorithm allows to solve numerically the three following coupled dynamics: 1 • ) the external forward dynamics ruling the net motions of the MMS produced by locomotion through a model of the contact forces with environment; 2 • ) the internal inverse Mathieu POREZ, Frédéric BOYER and Ayman BELKHIRI are with IRCCyN, EMN -La Chantrerie -4, rue Alfred Kastler,B.P. 20722, 44307 Nantes Cedex 3 France. Contact: mathieu.porez@mines-nantes.fr dynamics ruling the control internal torques produced by the shape variations of the MMS; 3 • ) the internal forward dynamics ruling the strains of the compliant organs. While being applicable to a wide diversity of systems, the algorithm is here illustrated on the case of the hovering flight of a soft MAV inspired of big moths of Sphyngidae family as Manduca sexta (see the video at [START_REF] Porez | Hovering flight simulation[END_REF]). In order to present this framework, the article is structured as follows. The modelling of a MMS is first presented in section II. In section III, a hybrid algorithm dedicated to the computing of the forward and the inverse dynamics of the MMS is introduced. Then, the resulting simulator is exploited in section IV, in the context of the flapping flight. Lastly, the article ends with section V by some concluding remarks.

II. THE PROBLEM STATEMENT.

A. Parametrisation and notations. In accordance with Fig. 1, let us consider a MMS with a tree-like structure, in a 3-D space of an unbounded volume filled of an initially quiescent fluid (e.g. air, water, etc ...). We attach to the ambient geometric space a fixed spatial orthonormed frame denoted by F e = (O e , s e , n e , a e ), where a e supports the vertical axis and the plane (O e , s e , n e ) defines the ground. The considered MMS is composed of a sequence of N + 1 rigid bodies interconnected through N passive or actuated 1-DoF angular joints. These bodies are denoted B 0 , B 1 , ..., B N , with B 0 representing the reference body. Moreover, the bodies are numbered from B 0 toward the tips of the branches in increasing order. In the following, we denote by j and i, the indices of the current body and its antecedent in the branch respectively. Moreover, we defined by J a the index set of actuated joints and by J p the index set of passive joints. We attach to each body B j of mass density ρ j a mobile frame F j = (O j , s j , n j , a j ), where the center O j coincides with the center of the joint j, and a j supports the joint axis. Let us note that s j and n j are directed as required. At any time t, the robot configuration is defined by the vector of joint positions r = (r 1 , ..., r n ) T defining the relative angles around the joint axis between the bodies, together with the orientation matrix e R 0 and the position vector e P 0 of the mobile frame attached to the reference body F 0 = (O 0 , s 0 , n 0 , a 0 ) with respect to F e . The time evolution of ( e R 0 , e P 0 ) defines the rigid net motion of the MMS. Finally, throughout this article, we will use the following notation convention. For any physical variable modelled by a tensor, the right lower index will represent the body index (to which it is related) while the left upper exponent will indicate the index of the projection frame (e.g. e R 0 , e P 0 ). When the tensor related to a body is expressed in the mobile frame of this body, the upper index is omitted. Moreover, the temporal derivative ∂./∂t will be sometimes denoted by a 'dot'.

B. Mobile Multibody System model.

To model the MMS presented previously, we chose to use the Newton-Euler (N-E) framework proposed in [START_REF] Khalil | Dynamic modeling and simulation of 3-d serial eel-like robot[END_REF], [START_REF] Boyer | Recursive inverse dynamics of multibody systems with joints and wheels[END_REF], [START_REF] Boyer | Locomotion dynamics for bio-inspired robots with soft appendages: application to hovering flight and passive swimming[END_REF]. This general setting is devoted to the modelling of MMS, i.e. Multibody Systems with a mobile basis (here B 0 ) whose motion is governed by locomotion. Let us start by introducing the geometric model of the MMS which relates the posture of any frame F j with that of the antecedent frame F i , both expressed in the earth frame F e and represented by the two (4 × 4) matrices e g i and e g j of SE(3). This model can be detailed as:

e g j = e g i i g j (r j ) = e g i i R j (r j ) i P j 0 1 , (1) 
where i R j and i P j are the orientation matrix and the position vector of F j with respect to F i .

Regarding the velocity of the body j, it is a (6 × 1) vector of se(3) denoted η j and related to the velocity of the antecedent body i through the recursive relation:

η j = (V T j , Ω T j ) T = Ad j gi η i + ṙj A j , (2) 
where V j and Ω j are respectively the linear and angular Galilean velocities of the considered body, both expressed in its mobile frame, A j = (0 T 3 , a T j ) T is the (6 × 1) unit vector supporting the joint axis j, and Ad j gi is the adjoint map operator allowing to change a (6 × 1) velocity from F i to F j [START_REF] Murray | A mathematical introduction to robotic manipulation[END_REF]:

Ad j gi = j R i j R i i P T j 0 j R i . ( 3 
)
Let us remark that in (3), we introduced the 'hat' notation which changes a (3 × 1) vector into its associated (3 × 3) skew-symmetric tensor. Thus, for any vectors A and B in R 3 , Â is defined such that ÂB = A × B.

Once the Galilean velocities are defined, by time differentiation of (2), the acceleration, denoted by ηj , of B j is given by: ηj = Ad j gi ηi +

ζ j + rj A j , (4) 
where ζ j represents the part of accelerations in (4) which only depends on velocities through the detailed expression:

ζ j = ( j V i + j P i × j Ω i ) × ṙj a j ṙj j Ω i × a j . (5) 
Finally, by applying to the j th body, the Newton's law and the Euler's theorem, one obtains the dynamic equations of B j in the Newton-Euler form:

f j = M j ηj + β j + f ext,j + k Ad T k gj f k , (6) 
where k are the indices of all the successive bodies to B j . Moreover, in (6), we introduced the following notations:

• For any j, f j is the (6 × 1) force vector (element of se(3) * ) exerted by

B i onto B j . • M j is the (6 × 6) inertia tensor of B j (element of se(3) * ⊗ se(3)
), which can be detailed as:

M j = M j -M S j M S j I j (7) = ρ j V B j 1 3 -Ô j Q Ô j Q -Ô j Q Ô j Q dV Bj ,
where Q is a point of B j , 1 3 is the 3 × 3 unit matrix, while M j , M S j and I j are the tensor of body mass (spherical in the rigid body case), the tensor of first inertia moments (skew-symmetric in the rigid body case) and the tensor of angular inertia of the link j respectively. • The (6 × 1) vector of Coriolis and centrifugal forces:

β j = -Ω j × (M S j Ω j ) + Ω j × (M j V j ) Ω j × (I j Ω j ) + M S j (Ω j × V j ) . ( 8 
)
• The (6 × 1) vector of external forces denoted by f ext,j whose the model depends on the considered locomotion problem.

Let us note that, for j = 0, (6) describes the time evolution of the MMS net motion and is named the external forward dynamic model.

III. THE HYBRID ALGORITHM.

A. Algorithm working

In accordance with the assumptions of section II, we now address the following dynamic problem: knowing at each time t, the state of the MMS ( e g 0 , e η 0 , r, ṙ), the accelerations rj (for j ∈ J a ) applied to the actuated joints through

Control law

Strain-stress law 1 st for. rec. loop 2 nd for. rec. loop motion control laws and the torques τ j (for j ∈ J p ) applied to the passive joints through stress-strain material laws or control torque; the dynamic problem consists in calculating the accelerations of the reference body η0 (describing the net motion of the MMS with respect to the Galilean frame F e ), the torques τ j (for j ∈ J a ) applied on the actuated joints and the accelerations rj (for j ∈ J p ) of the passive joints. This dynamic problem is named mixed dynamic problem since it involves the forward and the inverse forms of the dynamic of a multi-body system [START_REF] Khalil | Dynamic modeling and simulation of 3-d serial eel-like robot[END_REF]. To resolve such a problem, we here propose to extend to the MMS of treelike structure, the inverse algorithm of Luh et al. [START_REF] Luh | On-line computational scheme for mechanical manipulators[END_REF] and the forward algorithm of Featherstone [START_REF] Featherstone | The calculation of robot dynamics using articulatedbody inertias[END_REF] both dedicated to the manipulators. Due to its mixed (inverse, forward) nature, the resulting algorithm will be named "hybrid algorithm" and its flow chart is described on Fig. 2. From a computational point of view, this algorithm, resolves, at each time step of a time loop, three recursive sets of equations on the bodies index. The first loop is a forward recursive loop (from the reference body to the tips of the branches of the considered tree-like structure), which compute all the state dependent variables related to subsequent computing as the transformation matries, velocities, inertia tensors, etc ... . It is followed by a backward loop (from the tips of the branches to the reference body) which computes η0 , i.e. solves the external forward dynamic model. To do this, the recursive process computes the (6 × 6) inertia matrix of the whole MMS: M * 0 , and β * 0 the (6 × 1) vector of all external and inertia forces applied on the MMS. Finally, once these amounts known, they allow to compute the current acceleration of the reference body as follows:

1 st back. rec. loop Passive joint Actuated joint 1 s 2 g j , η j , ζ j , M j , β j ,F ext,j M * j , β * j H j , K j , α j , M * j , β * j η0 =(M * 0 ) -1 β * 0 η 0 , e g 0 1 s 2 bo(j)=1 bo(j)=1 bo(j)=1 bo(j)=0 bo(j)=0 bo(j)=0 rd,j τ j rj τ j ṙj ,r j Hybrid algorithm η0 = -(M * 0 ) -1 β * 0 bj =0 bj =1 bj =0 bj =1 bj =0 bj =1 g j , η j , ζ j , M j , β j ,f ext,j
η0 = -(M * 0 ) -1 β * 0 , (9) 
which is used to initialize the last forward recursive loop (see the flow chart on Fig. 2) dedicated to the internal dynamics. This loop computes the accelerations of the passive joints and the torque applied on the actuated joints, which are the expected outputs allowing to update (after a time integration) the external state (i.e. ( e g 0 , e η 0 ) and the internal state (r j , ṙj for j ∈ J p ) of the MMS before to increment the time and to begin the next iteration.

Before detailing the three loops previously presented, let us introduce the following Boolean variable defining the type of the j th joint, i.e. for "actuated" or "passive" type:

∀j, b j = 1 if rj (t) is imposed and τ j (t) is unknown; 0 if τ j (t) is imposed and rj (t) is unknown.

B. The first forward recursion on the kinematics

As the current robot's state ( e g 0 , e η 0 , r, ṙ) is known, the algorithm starts by the following forward recursion: For j = 0, 1, ..., N , computes:

• i R j , i P j and the body transformations e g j from (1);

• the body velocities η j from (2); • the terms ζ j of (4) from (5);

• the body inertia matrices M j from (7);

• the body Coriolis and centrifugal forces β j from (8);

• the external forces f ext,j whose the model depends on the studied problem;

and initializes:

• the generalized inertia matrix M * j from :

M * j = M j ; (10) 
• the generalized forces β * j from :

β * j = β j + f ext,j . (11) 
End for.

C. The backward recursion on the external forward dynamics

Once all the state-dependent variables are known, the next step of the computational algorithm consists in executing the following recursion:

For j = N, N -1, ..., 1, computes:

• If b j = 1 : M * i = M * i + Ad T gj,i M * j Ad gj,i ; β * i = β * i + Ad T gj,i (M * j (A j rj + ζ j ) + β * j ) .
• Else (if b j = 0) :

H j = A T j M * j A j ; K = M * j -M * j (A j H -1 j A T j )M * j ; α = Kζ j + M * j A j H -1 j (τ j -A T j β * j ) + β * j ; M * i = M * i + Ad T gj,i KAd gj,i ; β * i = β * i + Ad T gj,i α . • End if.
End for.

Once this recursion loop is carried out, the accelerations η0 of B 0 are computed from [START_REF] Candelier | Note on the swimming of an elongated body in a non-uniform flow[END_REF].

D. The second forward recursion loop on the internal (inverse and forward) dynamics

Finally, the algorithm ends with a second forward recursion initialised by the current state and η0 : For j = 1, 2, ..., N , computes:

ηj = Ad gj,i ηi ; • If b j = 1 : ηj = ηj + A j rj + ν j ; τ j = A j (M * j ηj + β * j ) .
• Else (if b j = 0) :

rj = H -1 j (τ j -A T j (M * j ( ηj + ν j ) + β * j )) ; ηj = ηj + A j rj + ν j . • End if. End for.
Lastly, in order to update the external state of the MMS, for the next iteration of the time loop, η0 is numerically integrated with a numerical integrator based on quaternions. As regards the internal state, i.e. ṙj and r j , they are updated by time integration of rj .

IV. APPLICATION TO THE FLAPPING FLIGHT.

In this section, we propose to apply the algorithm, introduced in section III, to the simulation of the hovering flight of a flapping-wing insect-like robot bio-inspired from the sphinx moth Manduca sexta (see the video at [START_REF] Porez | Hovering flight simulation[END_REF]).

A. The robot parametrisation.

The considered robot is composed of a rigid thorax and two soft wings whose the deformations are concentrated along the leading edge (see Fig. 3). For this numerical example, only the twisting around the leading edge and the bending in the plan perpendicular to the wing have been taken into account. In order to model such a soft system with the above general framework (see section III), we propose to discretize each wing of the robot into a serial assembly of rigid bodies. The discretization of each of the wings of span S consists in dividing them into M sections with a length of l = S/M . Each section is composed of the following serial assembly: 1 • ) a 1-DoF angular joint aligned with the leading edge (modeling the twisting); 2 • ) a fictitious rigid body with no inertia; 3 • ) a 1-DoF angular joint whose the axis is in the wing plan and orthogonal to the leading edge (modeling the bending); 4 • ) a rigid body or "blade" whose the size and the inertia are the same as those of the considered section. Once so discretized, the virtual robot has N = 4M + 1 bodies and 4M angular joints. To illustrate this, Fig. 4 shows a virtual robot with M = 2 sections and N = 9 bodies. In accordance with Fig. 5, the thorax, which is defined as the reference body, is denoted by B 0 while the rigid bodies constituting the right and the left wing are denoted B 1 , B 2 , ..., B 2M and B 2M +1 , B 2M +2 , ..., B 4M respectively. The body B 0 of mass density ρ t , is an ellipsoid whose the half-axes are a, b et c along the vectors s 0 , n 0 , et a 0 of the frame F 0 = (O 0 , s 0 , n 0 , a 0 ) attached to the geometric center of B 0 . The wings are attached to B 0 at αc from O 0 along s 0 . The blades, i.e. the bodies j ∈ {2, 4, ..., 4M }, have a length of l = S/M (along a j ), a cord of c j (along n j ), a thickness of e (along s j ) and a mass density of ρ w . The wing having an elliptical shape, the cord c j of B j is a function of the position X j of the section along the leading edge (from the root to the tip) which is defined as follow:
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c j = C 1 -X 2 j /S 2 ,
where C is the cord of the wing at its roots. As far as the joints linking the wings to the thorax (i.e. j ∈ {1, 2M + 1}) are concerned, they actuated to generate the typical stroke observed in the sphinx moth [START_REF] Willmott | The mechanics of flight in the hawkmoth manduca sexta. i. kinematics of hovering and forward flight[END_REF] according to the following time law:

rj = -Aω 2 cos(ωt) , if j = 1 , Aω 2 cos(ωt) , if j = 2M + 1 ,
where A and ω are the amplitude and the frequency of the stroke respectively. As regards the other joints of the robot, they are all passive. Thus, the strain accelerations rj of these joints are unknown while the strain torques τ j are imposed through strain-stress law function of the strain state, i.e. (r j , ṙj ). More precisely, the strain torques applied to the joints numbered j ∈ {3, 5, ..., 2M -1} ∪ {2M + 3, 2M + 5, ..., 4M -1}, modeling the twist of the wings, are ruled by the following viscous-elastic model:

τ j = -k t,j r j -µ ṙj , ( 12 
)
while the strain torques assigned to the joints numbered j ∈ {2, 4, ..., 2M } ∪ {2M + 2, 2M + 4, ..., 4M }, which model the bending, are governed by:

τ j = -k b,j r j -µ ṙj . (13) 
In ( 12)-( 13), we introduced µ the structural damping together with k t,j and k b,j the stiffness of twisting and bending respectively defined along the leading edge by the following linear functions:

k t,j = k 1 t + X j S (k 2 t -k 1 t ) , k b,j = k 1 b + X j S (k 2 b -k 1 b ) , with k 1 t and k 2 t (k 1 b and k 2 b
) the stiffness of twisting (of bending) at the root and the tip respectively.

B. Model of the external forces.

Let us now specify the model of the external forces chosen for this dynamic problem. It is the following:

f ext,j = f g,j + f aero,j , (14) 
where f g,j is the (6 × 1) vector of gravity forces applied on B j and f aero,j is the (6 × 1) vector of the aerodynamic forces ( = 0, only for the blade bodies of the wing). In this numerical example, on the basis of the quasi-steady model of Dickinson & al [START_REF] Dickinson | Wing rotation and the aerodynamic basis of insect flight[END_REF], [START_REF] Walker | Rotational lift: something different or more of the same?[END_REF], we distinguish two types of aerodynamic forces: 1 • ) the added mass forces due to the fluid inertia; 2 • ) the quasi-steady forces of lift and drag whose time dependancy is due to the body kinematics and not to the fluid flow history. Based on these considerations, f aero,j is defined as:

f aero,j = f a,j + f s,j ,
where f a,j and f s,j are the (6 × 1) vector of the added mass forces and the (6 × 1) vector of the quasi-steady forces respectively.

In order to establish a model of aerodynamic forces, let us consider the wing blade B j . We define by ξ the abscissa of the cross-sections of B j along the leading edge. On each cross-section, along the cord, at a distance of 0.4c j from the leading edge, we fixe the center of pressure C p where the quasi-steady forces (i.e. the lift and drag) are applied. Moreover, on C p , we attach two unit vectors t and w. t belongs to the blade plan and oriented from the trailing edge to the leading edge while w is orthogonal to the blade plan and oriented from the intrados to the extrados. Based on these definitions, the model of the quasi-steady forces can be detailed as:

f s,j = l 0 1 0 Ôj C p 1 L + D 0 dξ ,
where L et D are the lift and the drag forces respectively defined by: As regards the vector of the added mass forces f a,j , it can be simply derived by a kinetic momenta balance applied to the fluid which laterally bounds B j . Assuming that the fluid is perfect (inviscid and incompressible) and irrotational, we can apply here the impulse-momentum theory of fluid dynamics due to Kelvin and Kirchhoff [START_REF] Lamb | Hydrodynamics, D. Publication[END_REF]. Moreover, considering the aspect ratio of wings, we obtain the kinetic momenta balance:

L = 1 2 ρ air c j C L ||V Cp(ξ) || 2 v , D = 1 2 ρ air c j C D ||V Cp(ξ) || 2 u , where V Cp(ξ) is the linear velocity of C p , v = V Cp(ξ) /||V Cp(ξ) ||, u = v × (t × v) , ρ
f a,j = M a,j ηj + β a,j ,
where we introduced the following definitions:

• M a,j is the (6 × 6) tensor of added inertia of the fluid accelerated by B j :

M a,j = M a,j -M S a,j M S a,j I a,j = l 0 m a -m a Ôj C p m a Ôj C p -m a Ôj C p Ôj C p dξ ,
which only depends on the cross sectional added inertia tensors m a = ρ air πc 2 j w.w T ; • β a,j is the (6 × 1) vector of the added mass forces produced by the volume of fluid accelerated by the Coriolis and centrifugal accelerations of B j :

β a,j = -Ω j × (M S a,j Ω j ) + Ω j × (M a,j V j ) Ω j × (I a,j Ω j ) + M S a,j (Ω j × V j ) + 0 V j × (M a,j V j )
.

Finally, ( 14) can be written as follows:

f ext,j = f g,j + M a,j ηj + β a,j + f s,j . (15) 
Let us note that in [START_REF] Willmott | The mechanics of flight in the hawkmoth manduca sexta. i. kinematics of hovering and forward flight[END_REF], f ext,j is a function of ηj which is still unknown when ( 15) is evaluated by the hybrid algorithm. To overcome this problem, we replace ( 10) and ( 11) by: M * j = M j + M a,j and β * j = β j + f g,j + β a,j + f s,j , respectively. In order to illustrate the hybrid algorithm of section III, we realised a flapping flight simulator using the description of section IV-A and the numerical parameters of Table I. For this simulation, the hybrid algorithm has been programmed under MATLAB R . The developed simulator uses the predictor-corrector method (with a fourth-order explicit method for the prediction step and a fifth-order implicit method for the correction step) for the time integration (with a time step of 1 × 10 -4 s) together with the Gaussian quadrature method (at 6 points) for the spatial integration of the external force model defined in section IV-B. With this model, these parameters and these numerical tools, we can simulate the dynamics of a flapping-wing insect-like robot during one period of stroke, i.e. for T = 2π/ω = 0.04 s, in 17 s on a laptop (CPU Intel R Core I7 @2.66GHz). Finally, the initial conditions have been chosen to obtain the periodicity of the hovering flight. Fig. 6 shows, under a set of snapshots taken at regular time steps along the motion of the simulated robot during one stroke cycle (see the video at [START_REF] Porez | Hovering flight simulation[END_REF]). On the snapshots numbered 0-1 and 5-6, we observe that during the transition between the downstroke and the upstroke (and vice-versa), thanks to their flexibility, the wings twist around the leading edge and bend in the opposite direction of the stroke. These twisting and bending deformations are characteristic of the flapping flight and are similar to those observed in the sphinx moth Manduca sexta (see [START_REF] Willmott | The mechanics of flight in the hawkmoth manduca sexta. i. kinematics of hovering and forward flight[END_REF] and the video attached with [START_REF] Hedrick | Flight control in the hawkmoth manduca sexta: the inverse problem of hovering[END_REF]). As regards the net motion of the robot, the linear motions of the thorax along the vectors n e and a e have amplitudes of ±2 mm and ±0.5 mm respectively while the angular pitch motion has an amplitude of ±7 deg. Moreover, we have plotted on Fig. 7 the linear and angular speeds of B 0 in the sagittal plan of the robot.

C. Results and Discussions

As far as the wing deformations are concerned, Fig. 8 shows them. We observe that the maximum twisting strain appears (in the middle of Fig. 8) when the stroke angle is equal to zero (i.e. when the wings are aligned with the thorax) while the maximum bending arises (on top of Fig. 8) after the stroke reversals (when the wings rotate and change direction). By adding all the relative stain angles, the twisting rotation of each wing tip has ±79 deg in amplitude Fig. 8. For one stroke cycle, the time evolution of: on the top, the bending strain; in the middle, the twisting strain; at the bottom, the stroke torque. and a phase lag with respect to the stroke of 58 deg. For the bending strain, each wing tip rotates at ±68 deg in amplitude with a phase lag of 36 deg. These numerical results are closed to the observations from experimental biology [START_REF] Willmott | The mechanics of flight in the hawkmoth manduca sexta. i. kinematics of hovering and forward flight[END_REF]. From the view point of the actuation, as illustrated at the bottom in Fig. 8, the proposed hybrid algorithm allows to compute the torques required to ensure the desired stroke motion. For a stroke cycle, the maximal torque is 12.1 mNm and this peak appears after the stroke reversals. The mean power, during one stroke cycle, is equal to 0.42 W per wing and the total specific mechanical power is closed to 120 W/Kg which is less than the value measured for the sphinx moth Manduca sexta by [START_REF] Casey | Flight energetics of sphinx moths: power input during hovering flight[END_REF]. Finally, Fig. 9 shows the linear components of the external forces in the sagittal plan. The vertical component of the external force, image of the lift, is maximal when the wings are aligned with the thorax and minimal when the wings change of direction. These observations are in agreement with the literature.

V. CONCLUSIONS

In this paper, we have presented a hybrid algorithm dedicated to the modeling of a Mobile Multibody Mystem with a tree-like structure having both active and passive joints. Based on the Newton-Euler approach of robots dynamics [START_REF] Khalil | Dynamic modeling and simulation of 3-d serial eel-like robot[END_REF], [START_REF] Boyer | Recursive inverse dynamics of multibody systems with joints and wheels[END_REF], [START_REF] Boyer | Locomotion dynamics for bio-inspired robots with soft appendages: application to hovering flight and passive swimming[END_REF], the proposed approach can solve the forward and inverse problems through a unique hybrid algorithm. Moreover, in the context of the soft robots locomotion bioinspired from animals, this algorithm allows to compute, through a model of the contact forces with the environment: 1 • ) the net motion; 2 • ) the torques produced by the muscles or the actuators; 3 • ) the body shape, i.e. the deformations of soft appendages after then discretisation into serially connected rigid bodies. As illustrated in section IV-C, on the case of the flapping flight, the given solution is computationally efficient with observations of experimental biology [START_REF] Dickinson | Wing rotation and the aerodynamic basis of insect flight[END_REF], [START_REF] Willmott | The mechanics of flight in the hawkmoth manduca sexta. i. kinematics of hovering and forward flight[END_REF], [START_REF] Hedrick | Flight control in the hawkmoth manduca sexta: the inverse problem of hovering[END_REF]. In particular, we have been able to numerically recover the characteristic wing deformations of the sphinx moth Manduca sexta when the stroke reversals.
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 5 Fig. 5. Schematic view of the flapping-wing insect-like robot. On top: the left wing; in the middle: the thorax; at the bottom: the right wing.

  air is the density of the air while C L and C D are the coefficients of the lift and the drag respectively obtained from experiments[START_REF] Dickinson | Wing rotation and the aerodynamic basis of insect flight[END_REF]:C L = 1.8 sin 2β , and C D = 1.92 -1.55 cos 2β , with β = atan2(-w T .v, -t T .v) the incidence angle of the ξ-cross-section and the air flow speed.
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 6 Fig. 6. Sagittal view and coronal view of the flapping-wing insect-like robot for one stroke cycle.
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 7 Fig. 7. The time evolution of the linear and angular speeds of B 0 in the sagittal plan of the robot for one stroke cycle.
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 9 Fig. 9. The time evolution, for one stroke cycle, of the axial (on top) and the vertical (at the bottom) components of the external forces.
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