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Abstract. The research addressed here is devoted to the generation of seismic accelerograms compatible with a 
given response spectrum and other associated properties. The time sampling of the stochastic accelerogram 
yields a time series represented by a random vector in high stochastic dimension. The probability density 
function (pdf) of this random vector is constructed using the Maximum Entropy (MaxEnt) principle under 
constraints defined by the available information. In this research, a new algorithm, adapted to the high stochastic 
dimension, is proposed to identify the Lagrange multipliers introduced in the MaxEnt principle to take into 
account the constraints. This novel algorithm is developed in the context of the methodology based on (1) the 
minimization of an appropriate convex functional and (2) the construction of the probability distribution defined 
as the invariant measure of an Itô Stochastic Differential Equation (belonging to the class of MCMC methods) in 
order to estimate the integrals in high dimension of the problem. The algorithm is validated through an 
application for which the available information is relative to the variance of each component of the random 
vector representing the accelerogram, statistics on the response spectrum such as the mean value and the 
envelopes, statistics on the Peak Ground Acceleration (PGA) and the velocity and displacement traces (behavior 
of the signals at the final time) . 
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1 INTRODUCTION 
 
This research is devoted to the generation of seismic accelerograms which are compatible with some 
design specifications such as the Velocity Response Spectrum, the Peak Ground Acceleration (PGA), 
etc. The Maximum Entropy (MaxEnt) principle (Kapur and Kevasan 1992) is a powerful method 
which allows us to construct a probability distribution of a random vector under some constraints 
defined by the available information. This method has recently been applied (Soize 2010) for the 
generation of spectrum-compatible accelerograms as trajectories of a non-Gaussian non-stationary 
centered random process represented by a high-dimension random vector for which the probability 
density function (pdf) is constructed using the MaxEnt principle under constraints relative to (1) the 
mean value, (2) the variance of the components and (3) the mean value of the Velocity Response 
Spectrum (VRS). 
The objective of this paper is to take into account additional constraints which characterize the natural 
features of a seismic accelerogram. To achieve this objective, the methodology proposed by (Soize 
2010) is extended to take into account constraints relative to statistics on (1) the end values for the 
velocity and the displacement, (2) the PGA, (3) the Peak Ground Velocity (PGV), (4) the envelop of 
the random VRS and (5) the Cumulative Absolute Velocity (CAV). The MaxEnt pdf is constructed and 
a generator of independent realizations adapted to the high-stochastic dimension of an accelerogram is 
proposed. Furthermore an adapted method for the identification of the Lagrange multipliers is 
developed.  
In Section 2, the MaxEnt principle is used to construct the pdf of the acceleration random vector under 
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constraints defined by the available information. In Section 3, the available information relative to 
seismic accelerograms is  presented. Finally, Section 4 is devoted to an application of the methodology 
for which the target VRS is constructed following the Eurocode 8. 
 
 
2 CONSTRUCTION OF THE PROBABILITY DISTRIBUTION 
 
The MaxEnt principle is a powerful method to construct the probability distribution of a random 
vector associated with a sampled stochastic process under some constraints defined by the available 
information. The random acceleration of the soil is modeled by a non-Gaussian second-order centered 
stochastic process . A time sampling, with ,  and , of 
this stochastic process is introduced yielding a time series  with  and for which 
the random vector  is associated with. Finally, we have to construct the probability 
distribution of random vector  such that 
 

 (1) 
 
in which  is a given function and where  is a target vector. Equation (1) can be rewritten as 

 
 (2) 

 
An additional constraint relative to the normalization of the pdf is introduced such that 

 
 (3) 

 
The entropy of pdf  is defined by 
 

 (4) 

 
Then the MaxEnt principle consists in constructing the pdf  as the unique pdf which maximizes the 
entropy. Then by introducing a Lagrange multiplier �associated with Eq. (2), it can be shown that the 
MaxEnt solution, if it exists, is defined by 

 
 (5) 

 
in which  is a normalization constant and where.,. denotes the Euclidean inner product. The 
Lagrange multiplier  is calculated by minimizing the following functional (Golan et al. (1996)) 

 
 (6) 

 
The optimal value is calculated iteratively using the Newton method 

 
 (7) 

 
in whichα  is an under-relaxation parameter and where  and  are respectively the gradient 
vector and the Hessian matrix of  with respect to , and are respectively written as  

 
 (8) 

 
 (9) 
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The calculation of  and  requires the estimation of integrals in high dimension. In general, 
these integrals cannot explicitly be calculated and cannot be discretized. In this research, these 
integrals are estimated using the Monte Carlo simulation method for which independent realizations of 
the random vector  are generated using an algorithm belonging to the MCMC class which is adapted 
to the high dimension, as proposed in (Soize 2010). This algorithm consists in constructing the pdf of 
random vector  as the density of the invariant measure associated with the stationary solution of a 
second-order nonlinear Itô Stochastic differential equation (ISDE).  
 
 
3 AVAILABLE INFORMATION RELATIVE TO SEISMIC ACCELEROGRAMS 
 
3.1. Mean Value 
 
The seismic accelerogram is modelled by a centered stochastic process. Therefore the vector  has to 
be centered. We then have the constraint 
 

 (10) 
 
3.2. Variance of the components 
 
This constraint allows the envelop of the accelerogram to be specified and therefore the strong motion 
duration to be fixed. Since random vector must be centered, it is equivalent to impose the variance of 
the components or their second-order moments. For , these constraints are defined by 
 

 (11) 

 
3.3. Mean value of the random VRS 
 
For  and , the random VRS  of stochastic 
process  is defined by (Clough and Penzien 1975) 
 

 (12) 

 
in which the stochastic process  is defined by 
 

 (13) 
 
where 
 

 (14) 

 
in which the function  is equal to  if  and is equal to  otherwise. Let 

 be a sampling of interval  (such that ) and let  be a 
sampling of interval . Let be . The discretization of Eqs. (12), (13) and (14) 
yields the random VRS vector  in which  is a nonlinear mapping such that 
 

 (15) 

 
in which 
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 (16) 
 
with 
 

 (17) 
 
and where  is a  real matrix defined by 
 

 (18) 

 
The available information relative to the mean value of the random VRS is defined, for all  in 

, by  
 

 (19) 

 
where  is the mean VRS which is chosen as the target. 
 
3.4. Variability of the random VRS 
 
The constraint defined in Section 3.3, which concerns the mean value of the random VRS, does not 
allow us to control the statistical fluctuations of the random VRS around its mean value. In this 
section, the variability of the random VRS is controlled by introducing a constraint relative to the 
probability that the random VRS belongs to a region delimited by two given envelops. The VRS upper 
envelope is defined by the vector  and the VRS lower envelope is defined by the 
vector . We then introduce the following constraint 
 

 (20) 
 
which can be rewritten as 
 

 (21) 

 
3.5. Variance of the end-velocity and the end-displacement 
 
This constraint is introduced in order to control the end-velocity and the end-displacement which are 
assumed to be zero. In this paper, this correction is directly taken into account in the construction of 
the pdf. Let  and  be the velocity and the displacement stochastic processes indexed by . 
Assuming that  almost surely, it can easily be proven that 
 

           (22) 
 
Performing an integration by parts in the right-hand side of Eq. (22) yields, 
 

 (23) 

 
Using the time sampling  for  and the corresponding sampling , the 
following discretization of Eq. (22) is then introduced, 
 

 (24) 
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 (25) 

 
in which . The zero end-velocity,  and the zero end-displacement, 

, are then specified in writing  and . These properties should be 
verified almost surely, which means that all the simulated trajectories of the acceleration stochastic 
process should verify this property. In this paper, these constraints are imposed in the mean-square 
sense and not almost surely. Since random vector  is centered, then random variables  and 

 are also centered. We then introduce the following constraint, 
 

 (26) 
 
3.6. Mean value of the random PGA and mean value of the random PGV 
 
The PGA characterizes the maximum amplitude of the accelerogram. The random PGA, relative to 
acceleration process , is defined by 
 

 (27) 

 
In the regulation codes, this value is used to construct the target VRS. Nevertheless, even if the mean 
VRS of the simulated accelerograms matches perfectly the target VRS, the mean PGA of the simulated 
accelerograms does not match the PGA which has been used to construct the target VRS. In this 
section, we propose to enforce this matching. Using the time sampling of Eq. (27), the following 
constraint is introduced, 
 

 (28) 
 
in which  is the target value for the mean value of the PGA. 
Concerning the random PGV, which is defined by , its mean value is 
controlled by imposing the following constraint 
 

 (29) 
 
in which  is the target value for the mean value of the PGV and where  is defined by Eq. 
(24). 
 
3.7. Mean value of the random CAV 
 
The random CAV is defined as the integral of the absolute value of the random acceleration over time 
range , 
 

 (30) 

 
The CAV is usually used for the risk assessment of nuclear power-plants. Using a discretization of 
Eq.(30)  the corresponding constraint 
 

 (31) 
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in which  is the target value for the mean value of the random CAV. 
 
 
4 APPLICATION 
 
The acceleration stochastic process is sampled such that the final time 20=T s. The time step is 

0.0125=∆T s. We then have 1600=N (we assume 0)0( =A ms-2 almost surely). The available 
information is relative to the variance of the components of the random vectorA , the mean value of 
the VRS, the envelop of the VRS, the variance of the end value of the velocity and displacement 
random vectors (resulting from two successive numerical integrations of the acceleration random 
vector A ). The methodology for the construction of the MaxEnt pdf introduced in the previous section 
is applied. 
Figure 1 compares the target standard deviation of the components with the estimated one.  

 
Figure 1. Standard deviation: Target (thick dashed line) and estimation (thin solid line). 

The target VRS in constructed following the Eurocode 8. There are two constraints relative to the 
VRS. The first one concerns the mean value and the second one concerns the probability for the 
acceleration trajectories of being between two envelops (target VRS +/- 50%). The results are plotted 
in Fig .2. 

. 

 

Figure 2.  Random VRS. Left figure: mean value (the target) (dashed line) and estimation (mixed line). Right 
figure: 100 trajectories (thin lines), lower and upper envelops (thick lines). 

For the velocity and displacement trajectories, the end values are controlled by constraining the 
variance of the end value of the velocity and displacement random vectors (obtained by two 
successive numerical integrations) to be zero. Figure 3 shows a simulated accelerogram and the 
corresponding velocity time series and displacement time series. 
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Figure 3. A realization of the random acceleration, of the random velocity and of the random displacement.
  

Finally the mean value for the PGA, the PGV and the CAV are also constrained. The results are 
reported on Table 1.  

 

 
Figures 1 to 3 and Table 1 show a good matching of the estimated values with the target values.  
 
 
5 CONCLUSION 
 
A new methodology has been presented for the generation of accelerograms compatible with a given 
VRS and other properties. If necessary, additional constraints could easily be taken into. The 

Table 1. For the PGA, the PGV and the CAV: comparison of the estimated mean value with the target value 

Constraint Target Estimation 
Mean PGA (ms-2) 5 5.08 
Mean PGV (ms-1) 0.45   0.46 
Mean CAV (ms-1) 20   19.99 

 



A. Batou,  C. Soize / VEESD 2013  8 

application shows a good matching between the estimated values and the target values. 
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