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ABSTRACT

This paper presents the nonlinear dynamical post-bucldimagysis of an uncertain cylin-
drical shell. The proposed approach is adapted to the dy@hmnalysis of geometrically
nonlinear structures subjected to a stochastic grounéebamtion in the presence of both
system parameter uncertainties and model uncertaintressifucture is modeled by a large
finite element model using 3D elasticity theory. The grolmaded motion is represented
by a Gaussian centered non-stationary second-order stocipaocess. Then, a reduced-
order basis is constructed using the POD (Proper Orthodoeedbmposition) analysis of a
nonlinear static reference response combined with seldictear eigenmodes of vibrations.
The mean reduced-order nonlinear computational modeleis #xplicitly constructed. A
positive-definite operator involving the nonlinearfistess of the structure is defined, allow-
ing the nonparametric probabilistic approach to be useddostructing the uncertain non-
linear reduced-order computational model. The disperpamameter controlling the level
of stiffness uncertainty is a scalar which has been previouslyifeshexperimentally in a
nonlinear static context. Finally, the instantaneous spkdensity power of the dynamical
response is analyzed in order to quantify the influence df gebmetrical nonlinearities and
random uncertainties on the stochastic dynamical response

1. INTRODUCTION

The focus of this research is on the post-buckling dynanbedlavior of thin cylindrical
shells, which is currently a subject of interest, since aréigancy between the experimental
observations and the predicted observations can be olosetve to the particular sensitiv-
ity of thin cylindrical shell structures to the presencemfial imperfections. Note that for



cylindrical shells of very small thickness, the geomethyoaonlinear dfects induced by large
strains and large displacements must be taken into accdlurherous sensitivity analyses
to standard geometric imperfections can be found in thealitee, distinguishing several
classes of external loads such as axial compression [1r&jspre load [4, 5] and shear load
[6-10]. However, a generic sensitivity analysis of suchdtires with respect to any kind
of imperfections requires the introduction of adapted deterministic approaches to repre-
sent uncertainties. For example, nonlinear stochastiklimgcanalyses have recently been
conducted in which geometrical imperfections [11, 12] weradeled as Gaussian random
fields whose statistical properties are issued from availakperimental data. Such prob-
abilistic models of uncertainties will be referred to asgmaetric. More particularly, in the
investigation of unstfened composite cylinders carried out in [12], the knowleofgexisting
missing composite fibers justified the modeling of matengbérfections, which were taken
into account with chosen random properties. Despite therate modeling of the geomet-
rical imperfections, the buckling load calculated with trenlinear stochastic computational
model was overestimated suggesting that other uncedajntot considered in the analysis,
were present andi@cted the experimental measurements.

An alternative approach, referred to as the nonparamewlzgbilistic approach, has been
developed for situations in which the uncertainty cannosibgled out in one or a few pa-
rameters in the computational model. It allows the consitlen of both system-parameter
uncertainties and model uncertainties [13]. Note that th@parametric approach has been
extended to uncertain nonlinear reduced-order modelsahgtrically nonlinear structures
[14]. The development of such nonlinear reduced-order nsaequires first the selection of
an appropriate deterministic basis for the representatidhe response. This basis can be
obtained by one of several techniques such as the Propesdgorial Decomposition method
(POD method) [15-17]. One can also rely on selected lineatielmodes appropriately en-
riched, see [18] for a recent review. The parameters of tméimear reduced-order model
of the mean structure can then be either deduced using the $iideedure (which is based
on the smart non-intrusive use of standard commercial felément codes) [14, 18, 19] or
from explicit construction as shown in [20] in the contexttbfee-dimensional solid finite
elements. Having established the reduced-order modeleafntban structure, uncertainties
on the linear and on the nonlinear parts of th@ms#iss operator are introduced in the non-
parametric framework. This is accomplished through thestraction of a dedicated random
operator with values in the set of all positive-definite syatne real matrices whose mean
value involves all linear, quadratic and cubidfsteéss terms of the mean nonlinear reduced-
order model [14]. The resulting stochastic nonlinear cotatonal model is characterized
by a single scalar dispersion parameter, quantifying thel lef uncertainty in the dfiness
properties which can easily be identified with experimeiisperimental validations based
on this theory can be found in [20, 21] for slender elasticiesde.g. beams and in [22] for
cylindrical shells in the context of nonlinear statics.

The paper is organized as follows. Section 2 summarizes #ie steps leading to the
mean non-linear reduced-order computational model folighe approach of [20]. Section
3 is devoted to the construction of the stochastic nonlimeanputational model using the
nonparametric probabilistic approach for modeling thedoan uncertainties. A Gaussian
non-stationary second-order stochastic process is dismlirced to represent the prescribed,
earthquake-induced ground-based motions. Finally, tidimear post-buckling dynamical
analysis of an uncertain cylindrical shell is subjectedhe prescribed ground motions is
carried out using the methodology presented.



2. REDUCED-ORDER COMPUTATIONAL MODEL USING 3D ELASTICITY | N
FINITE DISPLACEMENTS

The structure under consideration is composed of a lineatielmaterial and is assumed
to undergo large deformations inducing geometrical n@aliities. A total Lagrangian for-
mulation is chosen. Consequently, the dynamical equatoasvritten with respect to the
reference configuration. Lé&2 be the three-dimensional bounded domain of the physical
spaceR?® corresponding to the reference configuration taken as aalatiate without pre-
stress. The bounda@Q is such thabQQ = T'U Z withT' N X = @ and the external unit
normal to boundargQ is denoted bynr. The boundary paff experiences a rigid body dis-
placement induced by a prescribed based matidr, t) such thaur(x,t) = ur(t), Vx e T.
The boundary park is subjected to an external surface force field. x.&e the position of
a point belonging to domai2. The relative displacement field expressed with respedtgo t
reference configuration is denoted g, t). It should be noted that the surface force field
G(x,t) acting on boundarg and that the body force fielg(x, t) acting on domairf2 cor-
respond to the Lagrangian transport into the reference gumatfiion of the physical surface
force field and to the physical body force field applied on temed configuration.

Let C be the admissible space defined by

C = {ve Q, vsuiiciently regular, v = OonT} . (1)

Letp?(X), @ ={1,..., N}, be a finite family of an orthonormal vector basislpfor which

fﬁﬁw:%. @)
Q

The vectorq = (qy,...,0n) Of the generalized coordinates is introduced as a new set of
unknown variables by projecting the nonlinear respamne-) on the vector space spanned

by {¢l, - -, ©N}. Thus, the approximation™(x, t) of orderN of u(x, t) is then written as
N
wet) = > @G (3)
B=1

inwhichq,, @ = (1,...,N) are solution of the set of nonlinearfidirential equations
Mapts + Dog s + K305 + KOs Gy + K 5050 G = FS"+ F L (4)

with initial conditions

q0 =0 , q@O) =0 . (5)
In Eq.(4), details concerning the expression%@?, /cfﬁ)y, Icfgyé and F® can be found in
[14, 20]. We then have

Fome— — [ plnerox . ©)
Q
Mo = [ perdlox . ™)
The model of the reduced damping operalyg is chosen here as
Do = (K 8)

inwhich¢ is a positive constant. It should be noted that the dampingdgiivag can be changed
without difficulties.

The mean (or nominal) nonlinear reduced-order computatimodel is explicitly defined
once the projection basis is chosen. The construction isedaout in the context of the



three-dimensional finite element method. The finite elesmant isoparametric solid finite
elements with 8 nodes and the numerical integration iseduwut with 8 Gauss integration
points. The main steps of the procedure, which uses the syitypreperties of the reduced
operators, can be found in [20] and are summarized below:

e computation of the elementary contributions of each typmtarnal forces projected
on the vector basis

e finite element assembly of these elementary contributions

. —~(2

e computation of the operator§t,s, Des, K, o
reduced-order model

and c®

By oy Of the mean nonlinear

3. UNCERTAIN COMPUTATIONAL MODEL WITH STOCHASTIC EXCITATI  ON

In this Section, the nonparametric probabilistic approaichncertainties is used for model-
ing the uncertainties in the nonlinear computational maael the earthquake excitation is
modeled by a nonstationary stochastic process.

3.1 Nonparametric stochastic modeling of uncertainties

The main idea of the nonparametric probabilistic approado ireplace each of the matri-
ces of a given mean reduced computational model by a randamxmédnose probability

model is constructed from the maximum entropy principlexgdhe available information
[13, 23]. In the present geometrical nonlinear context,rbelinear equations involve non-
linear stitness operators. L& = N(N + 1). A (P x P) real symmetric positive-definite

matrix [K], whose entries are expressed as a function of operatfs Ef;y and KO ;

is introduced (see [14] for the details) and then allows tbeparametric probabilistic ap-
proach, initially introduced in the linear context for pig-definite symmetric operators,
to be extended to the geometrically nonlinear context. Tleamreduced matrices\],
[D], [K] are then replaced by the random matricad], [D], [ K] defined on the probabil-
ity space @, 7, P) such that&{[M]} = [M], E{[D]} = [D], E{[K]} = [K] in which &£

is the mathematical expectation. The random matridet],[[ D], [/K] are then written as
[M] = [Lm]" [Gm(m)][Lu], [D] = [Lo]" [Go(dp)][Lol, [K] = [Lk]" [Gk(6k)I[Lk] in
which [Ly], [Lp] and [Lk] are N x N), (N x N) and P x P) real upper matrices such that
[M] = [Lm]" [Lu], [D] = [Lo]" [Lo] and [K] = [Lk]" [L«]. Further, Gw], [Gp] and [Gk]
are full random matrices with values in the set of the posittefinite symmetricN x N),
(N x N) and P x P) matrices. The probability distributions and the randomegators of
random matricesGu(dm)], [Gp(6p)] and [Gk(6k)] are constructed in [13]. The level of un-
cg:rtainty is quantified by the dispersion paramétef (6, dp, k) defined on a subset of
R

3.2 Stochastic excitation

From here on, it is assumed that the ground-based motioomga given direction. Con-
sequently, the acceleration field in Eq.(6) can be writtefifés, t) = wqy(t), in whichwg
is the unit vector ofR® characterizing the direction of the ground-based motioud, &here
{y(t),t > O} is a real-valued scalar function. We then can wiit&"t) = —[Ly]" [L1] (1),
in which [L+] is the RN-vector solution of

(L] [Lelle = f p(Woli gl dx . ©)

Q



Note that matrix Ly] is known and invertible. Consequently, Eq.(9) uniquelyirts
the vector [1]. In the earthquake engineering context, the accelerai{tninduced by the
ground-based motion is replaced by the random quaitity with values inR. Note that
FY"4t) depends on the structural mass distribution of the strac@iven the fact that there
exists uncertainty on this distribution, the vectag][Lt] should not be considered as a
deterministic quantity. Consistently with the modelingtbé mass matrix, the dynamical
load F¥"(t) is modeled by the random vector

FYAt) = —[Lw]" [Gum(om)][Lr]T(®) . (10)

with values inRY. The acceleratiofI'(t),t > 0} is modeled here by a Gaussian, non-
stationary, centered, second-order stochastic procéassden a probability spac®(, 7', P ')
which is diferent from probability spac&) 7, P). Consequently, the stochastic procEss
completely defined by its autocorrelation functiBa(t,t’) = E{T'(t) I'(t")}. The following
usual representation [24] &T for earthquake accelerogramms is adopted

L'(t) = gt)pE) . (11)

in which the functiong(t) is the envelope function whose representation can be faund
[24-26]. Further{3(t),t € R} is a real-valued Gaussian, stationary, centered, secatat-0
stochastic process for which the power spectral densitytiom Sg(w) can be written as a
rational function [27]. We then have

Rp(t.t) = g o) Re(t-t) , (12)

whereRg(t — t') is the autocorrelation function of stochastic prod@d$ such that

Ra(t—t) = fR Sg(w) €V dw . (13)

Let [ be the ¢ x 1) vector defined by = (I'(ty),...I(t,)). We introduce the time
samplingt; = (i— DAt, i = {1,...,n}, of [0, T]with T = n;At. Then denote byRr] =
E(T I} the correlation matrix of, which can be evaluated froRs(t) of Eq.(13), by Fast
Fourier Transform (FFT). The random vecfocan accordingly be written as

r=[L]Zz |, (14)

in which [L] is such thatRr] = [L]" [L]. Further,Z = (Z,,...Z,) is a Gaussian random
vector such that{Z;} = O, S{ZJ?} = 1 andZ,,...,Z, are statistically independent. Note
that Eq.(14) allows a generator of independent realizat@df’) of Z to be constructed.

3.3 Stochastic nonlinear computational model with random ucertainties

Let {U(x,t),x € Q, t > 0} be theR"-valued, non-stationary in time, second-order stochastic
process, defined on the product of probability spa®g(P) and @', 7’,P’). Fort > 0,

for all in ® and for all¢’ in ®’, a realization of the stochastic response is representéd by
approximatiorld™(x, t; 6, @) of orderN such that

N
UNX.66,6) = ) (0 Qut;6.6) (15)
p=1

inwhichQ(t; 6,0) = (Q4(t;0,0),---,Qu(t; 0,80)) is the solution of the following nonlinear
differential equation



Ms(0) Qu(t; 6,6) + Dus(6) Qu(t; 6,6)  +
KO0 Qut; 0,0) + K2 (0)Qu(t: 6,6) Q,(t: 6,6) +
K 5O)Q4(t:0,6) Q,(t; 6,6 Qs(t; 6, 6) = Fol(t; 0,6), (16)

with initial conditions

Q(0;6,0) =0 , Q(0;6,¢) =0 . (17)
In EqQ.(16), the quadratic $iness term is written as

1-0 —=(2) =2
K060) = 55 (6) + Ky (6) + Kyp(6) (18)

Note that the random linear, quadratic and cubiéfratiss termsctd, K.y, and K s
are easily deduced from the random mat#¥] using the reshaped operations described in
[14]. With regard to the numerical solver used for computimg nonlinear coupled fier-
ential equation, a Newmark method is used [28], which engptbg averaging acceleration
scheme known to be unconditionally stable. With this sgleeset of nonlinear algebraic
equations must be solved at each sampling time. This cortipuia addressed by the fixed-
point method or by the Crisfield arc-length method [29] (tixedi-point is favored but if not

convergent, it is replaced by the Crisfield algorithm).

4. NUMERICAL APPLICATION

The methodology is applied on a thin cylindrical shell, whis modeled here using three-
dimensional solid finite elements. In the present conteaspide the very small thickness
of the investigated structure, the choice of 3D solid finierreents is preferred to the more
natural choice of shell finite elements for the followingseas:

e It is more exact to use a 3D nonlinear elasticity theory thahia shell nonlinear
elasticity theory.

¢ In the context of the construction of a reduced-order matel easier to compute the
terms constituting Eq.(4).

e Finally, the computational cost increase, associatedthéharger number of DOFs, is
not a real obstacle, given the current computational céipabiand the possibility of
using parallel computations.

4.1 Finite element model

The three-dimensional structure is modeled by a circuléindsical shell of heighth =
0.144m, mean radius A25mand thickness.Z x 10-* m. Its bottom experiences a rigid body
displacement and the upper ring is rigid with three DOFsangtation. The isotropic linear
elastic material properties and the mass density have bgmtimentally measured [9, 30]
to beE = 1.8x 10""N.m2, v = 0.3 andp = 8200Kg x m3. The structure is subjected
to a constant traction point lodels® applied alonge; at x; = h. Since a concentrated mass
M’ = 80Kg is added at the free node located at the top of the shell alsagtidne,, the
dynamical loadF ¥"t) has its main contribution at the top of the shell along dicece,.
This allows to reproduce the experimental conditions asridesd in [9, 30]. From that, it
can be deduced that the use of the static POD basis, whialgstrdepends on the choice of



the static shear load, for the present dynamic case is apgt®because the dynamic shear
load induced by the ground motion and the static shear load ums[9] belong to the same
loading class.

The finite element model is a regular mesh composeaof L) x ny x (N3 — 1) = 1x
7500x 9599 = 712500 8-nodes solid finite elements with 8 Gauss integrgtants. The
mean computational model thus has 4 230 003 degrees of freestould be noted that, for
the given class corresponding to the use of 8 nodes solid Bigiments, a sensitivity analysis
has been made in [22] in the static nonlinear context witheesto thickness, to the choice
of boundary conditions, and to parametegsandn; controlling the precision of the mesh.
The present choice of the parameters corresponds to thestkisuation with respect to the
experimental data available in [8].

The observation is the displacement of the nodg corresponding to the location of the
experimental observation alorg (the direction of the shear point load) and is denoted by

Uobs(S).

Figure 1: Left part: 3D representation of the cylindricaékhvith boundary conditionso(
denotes the only free node of the upper bound of the cyliatiskell, corresponding to the
nodeoby. Right part : zoom of the mesh.

A geometrical perturbation taken as the linear buckling enxslthpe calculated for a critical
shear load located at the top of the shell along direotiois added to the structure with a
maximum amplitude of Zx10*m[9]. It thus allows the buckling to be numerically induced.

The random operators of the stochastic nonlinear compui@tmodel, defined on prob-
ability space @, 7, P) are constructed as explained in the previous Section. ithioe
ties on the mass distribution is negligible and uncertasmtdoncerning damping are small.
The results concerning a previous static experimentaliiiigation of the nonlinear stochas-
tic computational model are used [22], so that th&rstss uncertainty level is fixed to
ok = 6°K'°t = 0.45. The dynamic loading conditions consist in a seismic hotiabmotion
applied to the base of the cylindrical shell. Since the masssumed to be certain, the cor-
responding shear load is a stochastic process index&d byd defined on probability space
(@, 7’,P"). Consequently, the stochastic physical response is rddsiR"-random non-
linear stochastic proce¢d(t), t € R} defined on the product of probability spacés (7, P)
and @, 7',P’).



4.2 Definition of the stochastic excitation and of the frequecy band of analysis

The stochastic excitation is simulated as explained ini@e8t1. For the present application,
the power spectral densig(w) of the stochastic procegit) is chosen as

— —=2__
o'+ 4¢ 0w?

(w? — @) + AE B w?

Sp(w) =3 : (19)

inwhichs = 1.15x 10“*n?.s3, @ = 7854rad.s ' and¢ = 0.02. The frequency band of
analysis isB, = [0, 160]Hz The time sampling it = 5 x 10™* s, the total time duration
T = 1.27sand therefore, the number of time steps;is= 2546. The frequency resolution
isév = 0.78Hzcorresponding to a frequency band, [D000]Hz (the sampling frequency
isve = 2000HZ). The envelope function is a piecewise continuous functiefined by
g(t) = 25t%/4ift < 0.4s,g(t) = 1ift € [0.4, 0.7]sandg(t) = e 0D jft > 0.7s.
Figure 2 displays a typical realizatidi(¢’, t) of the stochastic proced¥t). The stochastic
excitation is then obtained using Eq.(10).
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Figure 2. Realization of stochastic proc&Xs)

4.3 Construction of the mean nonlinear reduced-order comptational model

For the considered nonlinear elasto-dynamic problemgethee two notable strategies for
constructing the projection basis of the mean nonlineanged-order computational model.
A first one uses the POD method and thus requires full compuatadf the elasto-dynamical
reference response with the nonlinear computational mo#ledecond strategy consists in
solving the usual generalized eigenvalue problem of thealized computational model and
selecting a set of its linear eigenmodes of vibration asggt@n basis. Once this basis is
built according to either of the above strategies, the mearimear reduced operators are
constructed by the methodology of Section 2.

In [20], the POD projection basis obtained from the nonliretatic reference calculation
of a structure was used as the projection basis for constguttte mean nonlinear reduced-
order computational model of the structure. Such methodales been used in [22] for
the nonlinear static analysis of the present cylindricallsht would be interesting to reuse
such POD projection basis obtained in the context of a nealistatic case for the present
nonlinear dynamic case. Since the convergence rate of theaoconstructed with such



a projection basis strongly depends on the external apfdeadk, it is appropriate only if a
similar loading class is used. With the presence of the quraied mas$/’ at the top of
the structure, the shear load induced by the ground-basédnms largest at the top of the
structure. This excitation, in addition to the externalstant traction load, is compatible with
the loading used for the nonlinear static case in [22]. Sipedly, letR™ = (¢!, ..., N} be
the family composed of thN basis vectorg?, .. ., N related to the first larger eigenvalues
of such static POD basis. In [22], the convergence analysidsyN = 27. Note that the
family R?”) is not expected to be fiicient to describe the nonlinear dynamical response
of the shell; it needs to be completed by additional basisovedhat we select as linear
elastic modes. A usual modal analysis of the linearized ayoa computational model with
the predeformation discussed in Section 4.1 is then peddrof which some results are
summarized in Table 1.

frequency (Hz)| modal shape
Mode 1 121.10 global
Mode 2 124.16 global
Mode 3 897.02 local
Mode 4 897.06 local

Table 1. Eigenfrequencies and type of elastic modes

Owing to the slight predeformation of the structure, acoagydo the first linear buckling
mode, the structure is not perfectly axisymmetric and pafidistinct eigenfrequencies are
obtained as seen in Table 1. An analysis of the first 40 eiggo&ncies and mode reveals
that the first two mode®* and@? describe global bending modes of the structure as shown
in Fig. 3, see Table 1.

Figure 3. Elastic mode related to eigenfrequenéies 12110Hzandf, = 12416Hz

Further, a high modal density is observed, starting witleeigequency; = 897.01Hz
There are 38 local elastic modes belonging to frequency g8 1123]Hz. The ground
motions characterized by the power spectral density of1B{.(vould strongly excite the
first two elastic modes but only weakly the ensuing ones. Thegrojection basis of the
stochastic nonlinear reduced-order model must closelesemt the first two elastic modes
but not necessarily the ensuing ones. To assess this isguepresentation of elastic mode
&, B € {1,2) on R?” has been determined. It can be shown that elastic rgdds poorly
represented o ?” and that although the error related to elastic m@@és smaller, due to
the coexistence of local and global contributions, it wasnded too large to be neglected.
As a consequence, these two elastic modes were selectedeintorenrichR®”. The final



projection basis is the familg® = R | J{¢?, ¢}, in which the vectorsp?, for a €
{28, 29} are defined as

)T ~a—27

o _ rll”_a a _ ~a 27 (QP i
e 0 YT Z R (20)

according to a partial Gram-Schmidt orthonormalizatiorcgdure. Note that this projection
basis verifies Eg. (2). The mean reduced-order computatioadel is then obtained using
the enriched projection basis composed by the fa@fy. It should be noted that the first
eigenfrequency is computed with the linearized computafimodel projected 05, are

= 12119Hz < v, = 12457Hz < v, = 160296Hz < v, = 176825Hz As expected,
vy andy;, are close to their original counterpartsandv,, see Table 1. The reduced dissipa-
tion matrix is constructed according to Eq.(8) by choosing 4.44 x 10°°. This leads to a
critical dissipation rat& ~ 0.017 for the two first elastic modes.

4.4 Results

The response of the shell is monitored as the same positibinaime same direction than
above, see Section 4.2. This random observation, denoteldJay), is a stochastic process
indexed by [0T] and defined on the product of probability spad@s ¢, P)and @', 7, P ).

It can then be written as

Uobs(t) = Uppe(t) + Ugpdt) (21)

in which u, (t) is the deterministic function characterizing the meanhef $tochastic non-
linear dynamical response i.e.

) = WUk = [ [ Usdt.0.0) 8PP (@) 22

and whereJ¢, (t) is a centered non-stationary stochastic process. In tiuges&) ,(t, 0, 6)
is denoted byJ,u4t; 6), whereb = (6, 8').
Four analysis cases (see Table 2) are investigated, adayzkecompared.

Stiffness| Stiffness | External load
Case 1| linear | deterministic| stochastic
Case 2| linear stochastic stochastic
Case 3| nonlinear| deterministic| stochastic
Case 4| nonlinear| stochastic stochastic

Table 2. Description of the analysis cases

Figure 4 displays the graphs bf> U¢ (t,0) (gray line) and — u_, (t) (black line) for
the four analysis cases and for a specific realization of tbargl motions related to Fig. 2.
It is seen that , (t) is a centered oscillating function for the linear casesxpeeted given
the zero mean character of the excitation. However, a snegttive mean is observed for
the nonlinear cases. Superimposing all cases, it is seethigopresent realization, that the
geometric nonlinearfeects occur first atyonin = 0.16s for a displacement level greater
than 18 x 10*m, or % of the shell thickness. Comparing cases 1 and 2 with casesl 3 an
4 respectively, it is seen that thé&ect of the geometrical nonlinearities is to decrease the
intensity of the response. Moreover, thi$eet increases with the presence of model and
system-parameter uncertainties in the stochastic cormpuoéh model. Comparing case 1
with case 2, it is seen that the presence of random unceesisignificantly spreads the
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Figure 4: Graphs of functiorts— Ug, (t,0) (gray line) and — u_, (t) (black line) for cases
1 and 2 (upper graphs) and for cases 3 and 4 (lower graphs)

stochastic linear response allowing displacementszk .03 m, or 6 thicknesses, to occur.
A similar conclusion does not seem to hold in the nonlineaecawhen comparing case 3
with case 4, the presence of random uncertainties only seesfightly modify the nonlinear
dynamical response.

The complex instantaneous spectral density funcdipn(v, t) of the nonstationary stochas-
tic procesqUg, (), t € [0, T]} is defined as

A L
Sug, (1) = o f e ryg (U0 U (23)
0

inwhichrye (t,t) = &{Ug (1) Ugp(t')} is the autocorrelation function of stochastic process
Ug,{t). It should be noted that the numerical estimationsgf (v.t) can be carried out
by using the periodogram method with a Tukey-Hanning timedew combined to FFT
[31, 32]. Then,

(") Ugp D) + sug, (1) (24)

1.
SUobs(V’ t) 27.[ obs

§
with @, () = [ e2™'u, (t)dt.

The analysisois next focused on the fixed titge= 05T and in the frequency band
[80, 160]Hz around the resonances. Figure 5 shows the graph 100:0(]Su,,.(v. to)l) for
the linear case (left graph) and for the nonlinear caset(ggiph). The presence of random
uncertainties spreads the resonance in the linear caseagap suchfiect is noticed in
the nonlinear case. Comparing the peak frequencies of daaed 3, a shift of the reso-
nance from 12®z until 113Hz is observed, which shows that the presence of geometrical
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Figure 5: Graphs of — 109, 4(|/Su,,.(7. to)) without and with random uncertainties (thin line
and thick dashed line): linear case (left graph) and noalicase (right graph).

nonlinearities induces a softeninffect. Moreover, the presence of geometrical nonlineari-
ties yields a peak broadening and a decrease of the resomagretude from-8.3dB until
-9.16dB. Comparing case 2 (or 4) with case 1 (or 3), it is seen thatitbggmce of uncertain-
ties have a moderatéfect on the response. For the linear case, the presence otainties
shifts the peak of response from 1A@to 118Hz and reduces its magnitude by2@B. This
small gfect can be explained as follows: in case 2, the random lileaN) reduced sttness
operator is extracted from th® « P) random reshaped fiiness operatoi{], for which the
dispersion parametérhas been identified ta4b. Lets"'N be the &ective dispersion param-
eter related to this random linedt X N) reduced sffness operator. Sindé < P = N(N+1),

it can be shown that'"N = 0.025. Consequently, the random response of the linearized sy
tem with uncertainties is computed with a small lev&Y = 0.025) of uncertainties. This
small level of the dispersion parameter is then cohereittthié observed slight impact of the
random uncertainties on the linear dynamical responsénemonlinear case, only a change
of 0.03dB can be observed in the peak response magnitude. For botimeanénd linear
cases, the complex instantaneous spectral density funagpears weakly sensitive to ran-
dom uncertainties. This can be explained by the fact thatgbantity of interest is issued
from a statistical averaging of the random observation dvetwo statistical sources of the
randomness (the excitation and the variability inducedrgeutainties).

From here on, fot € [0, T], for 6 € ® and for¢ € ©®’, a realization of the stochastic
procesdJqh4t) is denoted byJqp4(t; 6, 8"). To better understand and analyze tifie&s of
random uncertainties on the nonlinear stochastic resparsgectral analysis of the nonsta-
tionary observatiotyngt) is next. To this end, let

1 (7 w
SUobs(V’ t’ 9) = E f e_ZIﬂVt RUobs(t/a t1 9) dt/ s (25)
0

be a sample of the complex-valued random instantaneougapeensity function fow in
B,, fortin [0, T] and foré in ®. In this equation, for all fixed andt’, 6 — Ry (t,1’; 6) is

obs
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Figure 6: Confidence region: graphwf— logio(E{|Su,,.(v. to)l}) (thick line) and graph of
the confidence region of — 10g10(/Su,..(v, to)l) (grey region). Linear case (left graph) and
nonlinear case (right graph).

the real-valued random variable defined by

Rua(t130) = [ Uadti0.0) Unlt0.0) 3P /@) (26)
Therefore,{Sy, (v t),v € B,,t € [0,T]} is a second-order stochastic process defined on
probability spaced, 7, P).

Figure 6 shows the graph of the confidence region calculatiédasprobability leveP, =
0.95 of the random stochastic processs 109:0(|Su,,.(v. to)l) for the linear case (left graph)
and for the nonlinear case (right graph). Note that the cdatjmns have been carried out
for 77 x 77 = 5929 realizations& ¢’). It should be noted that the figure only gives a
global trend of the results, since the confidence region iremat smooth enough to state
that convergence with respect to the number of simulatismeached. It can be seen that
the peak response corresponding to the nonlinear casesdoca lower frequency and with
a smaller magnitude than its linear counterpart. Furtheemihe confidence region related
to the nonlinear case is broader, demonstrating that thineain case is less robust than the
linear one with respect to uncertainties. Note that sucthltegss expected because of the
high energy transfer induced by the nonlinearities.

CONCLUSION

The paper has presented an advanced computational methaxklgzing the nonlinear dy-
namic post-buckling behavior of a geometrically nonlingan shell structure in presence
of uncertainties. The nonlinear stochastic computationadel has been used for predicting
the nonlinear dynamical post-buckling response, undeoehsstic excitation induced by a
ground-based motion of the structure. The influence of g&wraénonlinearities has been
analyzed through instantaneous spectral density furgtilins concluded that the presence
of geometrical nonlinearities modifies the dynamical bétrald) by inducing a local soften-



ing efect and a decrease of the resonance magnitude; (2) by deg#asrobustness of the
response predictions with respect to uncertainties.
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