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ABSTRACT

This paper presents the nonlinear dynamical post-bucklinganalysis of an uncertain cylin-
drical shell. The proposed approach is adapted to the dynamical analysis of geometrically
nonlinear structures subjected to a stochastic ground-based motion in the presence of both
system parameter uncertainties and model uncertainties. The structure is modeled by a large
finite element model using 3D elasticity theory. The ground-based motion is represented
by a Gaussian centered non-stationary second-order stochastic process. Then, a reduced-
order basis is constructed using the POD (Proper OrthogonalDecomposition) analysis of a
nonlinear static reference response combined with selected linear eigenmodes of vibrations.
The mean reduced-order nonlinear computational model is then explicitly constructed. A
positive-definite operator involving the nonlinear stiffness of the structure is defined, allow-
ing the nonparametric probabilistic approach to be used forconstructing the uncertain non-
linear reduced-order computational model. The dispersionparameter controlling the level
of stiffness uncertainty is a scalar which has been previously identified experimentally in a
nonlinear static context. Finally, the instantaneous spectral density power of the dynamical
response is analyzed in order to quantify the influence of both geometrical nonlinearities and
random uncertainties on the stochastic dynamical response.

1. INTRODUCTION

The focus of this research is on the post-buckling dynamicalbehavior of thin cylindrical
shells, which is currently a subject of interest, since a discrepancy between the experimental
observations and the predicted observations can be observed, due to the particular sensitiv-
ity of thin cylindrical shell structures to the presence of initial imperfections. Note that for



cylindrical shells of very small thickness, the geometrically nonlinear effects induced by large
strains and large displacements must be taken into account.Numerous sensitivity analyses
to standard geometric imperfections can be found in the literature, distinguishing several
classes of external loads such as axial compression [1–3], pressure load [4, 5] and shear load
[6–10]. However, a generic sensitivity analysis of such structures with respect to any kind
of imperfections requires the introduction of adapted non-deterministic approaches to repre-
sent uncertainties. For example, nonlinear stochastic buckling analyses have recently been
conducted in which geometrical imperfections [11, 12] weremodeled as Gaussian random
fields whose statistical properties are issued from available experimental data. Such prob-
abilistic models of uncertainties will be referred to as parametric. More particularly, in the
investigation of unstiffened composite cylinders carried out in [12], the knowledgeof existing
missing composite fibers justified the modeling of material imperfections, which were taken
into account with chosen random properties. Despite the accurate modeling of the geomet-
rical imperfections, the buckling load calculated with thenonlinear stochastic computational
model was overestimated suggesting that other uncertainties, not considered in the analysis,
were present and affected the experimental measurements.

An alternative approach, referred to as the nonparametric probabilistic approach, has been
developed for situations in which the uncertainty cannot besingled out in one or a few pa-
rameters in the computational model. It allows the consideration of both system-parameter
uncertainties and model uncertainties [13]. Note that the nonparametric approach has been
extended to uncertain nonlinear reduced-order models of geometrically nonlinear structures
[14]. The development of such nonlinear reduced-order models requires first the selection of
an appropriate deterministic basis for the representationof the response. This basis can be
obtained by one of several techniques such as the Proper Orthogonal Decomposition method
(POD method) [15–17]. One can also rely on selected linear elastic modes appropriately en-
riched, see [18] for a recent review. The parameters of the nonlinear reduced-order model
of the mean structure can then be either deduced using the STEP procedure (which is based
on the smart non-intrusive use of standard commercial finiteelement codes) [14, 18, 19] or
from explicit construction as shown in [20] in the context ofthree-dimensional solid finite
elements. Having established the reduced-order model of the mean structure, uncertainties
on the linear and on the nonlinear parts of the stiffness operator are introduced in the non-
parametric framework. This is accomplished through the construction of a dedicated random
operator with values in the set of all positive-definite symmetric real matrices whose mean
value involves all linear, quadratic and cubic stiffness terms of the mean nonlinear reduced-
order model [14]. The resulting stochastic nonlinear computational model is characterized
by a single scalar dispersion parameter, quantifying the level of uncertainty in the stiffness
properties which can easily be identified with experiments.Experimental validations based
on this theory can be found in [20, 21] for slender elastic bodies, e.g. beams and in [22] for
cylindrical shells in the context of nonlinear statics.

The paper is organized as follows. Section 2 summarizes the main steps leading to the
mean non-linear reduced-order computational model following the approach of [20]. Section
3 is devoted to the construction of the stochastic nonlinearcomputational model using the
nonparametric probabilistic approach for modeling the random uncertainties. A Gaussian
non-stationary second-order stochastic process is also introduced to represent the prescribed,
earthquake-induced ground-based motions. Finally, the nonlinear post-buckling dynamical
analysis of an uncertain cylindrical shell is subjected to the prescribed ground motions is
carried out using the methodology presented.



2. REDUCED-ORDER COMPUTATIONAL MODEL USING 3D ELASTICITY I N
FINITE DISPLACEMENTS

The structure under consideration is composed of a linear elastic material and is assumed
to undergo large deformations inducing geometrical nonlinearities. A total Lagrangian for-
mulation is chosen. Consequently, the dynamical equationsare written with respect to the
reference configuration. LetΩ be the three-dimensional bounded domain of the physical
spaceR3 corresponding to the reference configuration taken as a natural state without pre-
stress. The boundary∂Ω is such that∂Ω = Γ ∪ Σ with Γ ∩ Σ = ∅ and the external unit
normal to boundary∂Ω is denoted byn. The boundary partΓ experiences a rigid body dis-
placement induced by a prescribed based motionuΓ(x, t) such thatuΓ(x, t) = uΓ(t) , ∀x ∈ Γ.
The boundary partΣ is subjected to an external surface force field. Letx be the position of
a point belonging to domainΩ. The relative displacement field expressed with respect to the
reference configuration is denoted asu(x, t). It should be noted that the surface force field
G(x, t) acting on boundaryΣ and that the body force fieldg(x, t) acting on domainΩ cor-
respond to the Lagrangian transport into the reference configuration of the physical surface
force field and to the physical body force field applied on the deformed configuration.

Let C be the admissible space defined by

C = {v ∈ Ω , v sufficiently regular, v = 0 onΓ} . (1)

Let�α(x) , α = {1, . . . ,N}, be a finite family of an orthonormal vector basis ofC, for which
∫

Ω

ϕαi ϕ
β

i dx = δαβ . (2)

The vectorq = (q1, . . . , qN) of the generalized coordinates is introduced as a new set of
unknown variables by projecting the nonlinear responseu(x, ·) on the vector space spanned
by {�1, · · · ,�N}. Thus, the approximationuN(x, t) of orderN of u(x, t) is then written as

uN(x, t) =
N∑

β=1

�β(x) qβ(t) , (3)

in which qα , α = (1, . . . ,N) are solution of the set of nonlinear differential equations

Mαβ q̈β + Dαβ q̇β + K
(1)
αβ

qβ + K
(2)
αβγ

qβ qγ + K
(3)
αβγδ

qβ qγ qδ = F
stat
α + F

dyn
α , (4)

with initial conditions
q(0) = 0 , q̇(0) = 0 . (5)

In Eq.(4), details concerning the expressions ofK
(1)
αβ

, K(2)
αβγ

, K(3)
αβγδ

andF stat
α can be found in

[14, 20]. We then have

F
dyna
α = −

∫

Ω

ρ (üΓ)i ϕ
α
i dx , (6)

Mαβ =

∫

Ω

ρ ϕαi ϕ
β

i dx . (7)

The model of the reduced damping operatorDαβ is chosen here as

Dαβ = ζ K
(1)
αβ
, (8)

in whichζ is a positive constant. It should be noted that the damping modeling can be changed
without difficulties.

The mean (or nominal) nonlinear reduced-order computational model is explicitly defined
once the projection basis is chosen. The construction is carried out in the context of the



three-dimensional finite element method. The finite elements are isoparametric solid finite
elements with 8 nodes and the numerical integration is carried out with 8 Gauss integration
points. The main steps of the procedure, which uses the symmetry properties of the reduced
operators, can be found in [20] and are summarized below:

• computation of the elementary contributions of each type ofinternal forces projected
on the vector basis

• finite element assembly of these elementary contributions

• computation of the operatorsMαβ, Dαβ, K
(1)
αβ

, K̂
(2)

αβγ andK(3)
αβγδ

of the mean nonlinear
reduced-order model

3. UNCERTAIN COMPUTATIONAL MODEL WITH STOCHASTIC EXCITATI ON

In this Section, the nonparametric probabilistic approachof uncertainties is used for model-
ing the uncertainties in the nonlinear computational modeland the earthquake excitation is
modeled by a nonstationary stochastic process.

3.1 Nonparametric stochastic modeling of uncertainties

The main idea of the nonparametric probabilistic approach is to replace each of the matri-
ces of a given mean reduced computational model by a random matrix whose probability
model is constructed from the maximum entropy principle using the available information
[13, 23]. In the present geometrical nonlinear context, thenonlinear equations involve non-
linear stiffness operators. LetP = N(N + 1). A (P × P) real symmetric positive-definite

matrix [K], whose entries are expressed as a function of operatorsK
(1)
αβ

, K̂
(2)

αβγ andK
(3)
αβγδ

is introduced (see [14] for the details) and then allows the nonparametric probabilistic ap-
proach, initially introduced in the linear context for positive-definite symmetric operators,
to be extended to the geometrically nonlinear context. The mean reduced matrices [M],
[D], [K] are then replaced by the random matrices [M], [D], [K] defined on the probabil-
ity space (Θ , T , P) such thatE{[M]} = [M], E{[D]} = [D], E{[K]} = [K] in which E

is the mathematical expectation. The random matrices [M], [D], [K] are then written as
[M] = [LM ]T [GM(δM)] [LM ], [D] = [LD]T [GD(δD)] [LD], [K] = [LK ]T [GK(δK)] [LK ] in
which [LM ], [LD] and [LK ] are (N × N), (N × N) and (P × P) real upper matrices such that
[M] = [LM]T [LM], [D] = [LD]T [LD] and [K] = [LK ]T [LK]. Further, [GM], [GD] and [GK]
are full random matrices with values in the set of the positive-definite symmetric (N × N),
(N × N) and (P × P) matrices. The probability distributions and the random generators of
random matrices [GM(δM)], [GD(δD)] and [GK(δK)] are constructed in [13]. The level of un-
certainty is quantified by the dispersion parameterd = (δM , δD, δK) defined on a subset∆ ofR3.

3.2 Stochastic excitation

From here on, it is assumed that the ground-based motion is along a given direction. Con-
sequently, the acceleration field in Eq.(6) can be written asüΓ(x, t) = w0 γ(t), in which w0

is the unit vector ofR3 characterizing the direction of the ground-based motion, and where
{γ(t), t ≥ 0} is a real-valued scalar function. We then can writeF

dyna(t) = −[LM ]T [LT ] γ(t),
in which [LT ] is theRN-vector solution of

{[LM]T [LT ]}α =
∫

Ω

ρ (w0)i ϕ
α
i dx . (9)



Note that matrix [LM ] is known and invertible. Consequently, Eq.(9) uniquely defines
the vector [LT ]. In the earthquake engineering context, the accelerationg(t) induced by the
ground-based motion is replaced by the random quantityG(t) with values inR. Note that
F

dyna(t) depends on the structural mass distribution of the structure. Given the fact that there
exists uncertainty on this distribution, the vector [LM ] [LT ] should not be considered as a
deterministic quantity. Consistently with the modeling ofthe mass matrix, the dynamical
loadF dyna(t) is modeled by the random vector

F
dyna(t) = −[LM ]T [GM(δM)] [LT ] G(t) , (10)

with values inRN. The acceleration{G(t), t ≥ 0} is modeled here by a Gaussian, non-
stationary, centered, second-order stochastic process defined on a probability space (Θ′, T ′,P ′)
which is different from probability space (Θ, T,P). Consequently, the stochastic processG is
completely defined by its autocorrelation functionRG(t, t′) = E{G(t)G(t′)}. The following
usual representation [24] ofG for earthquake accelerogramms is adoptedG(t) = g(t)b(t) , (11)

in which the functiong(t) is the envelope function whose representation can be foundin
[24–26]. Further,{b(t), t ∈ R} is a real-valued Gaussian, stationary, centered, second-order
stochastic process for which the power spectral density function Sb(ω) can be written as a
rational function [27]. We then have

RG(t, t′) = g(t) g(t′) Rb(t − t′) , (12)

whereRb(t − t′) is the autocorrelation function of stochastic processb(t) such that

Rb(t − t′) =
∫R Sb(ω) eiω(t−t′) dω . (13)

Let � be the (nt × 1) vector defined by� = (Γ(t1), . . .Γ(tnt )
)
. We introduce the time

samplingti = (i − 1)∆t , i = {1, . . . , nt}, of [0,T] with T = nt ∆t. Then denote by [R�] =
E{��T} the correlation matrix of�, which can be evaluated fromRb(t) of Eq.(13), by Fast
Fourier Transform (FFT). The random vector� can accordingly be written as� = [L] Z , (14)

in which [L] is such that [R�] = [L]T [L]. Further,Z = (Z1, . . .Znt) is a Gaussian random
vector such thatE{Z j} = 0, E{Z2

j } = 1 andZ1, . . . ,Znt are statistically independent. Note
that Eq.(14) allows a generator of independent realizationsZ(θ′) of Z to be constructed.

3.3 Stochastic nonlinear computational model with random uncertainties

Let {U(x, t) , x ∈ Ω , t ≥ 0} be theRn-valued, non-stationary in time, second-order stochastic
process, defined on the product of probability spaces (Θ, T,P) and (Θ′, T ′,P ′). For t ≥ 0,
for all θ in Θ and for allθ′ in Θ′, a realization of the stochastic response is represented byits
approximationUN(x, t; θ, θ′) of orderN such that

UN(x, t; θ, θ′) =
N∑

β=1

�β(x) Qβ(t; θ, θ
′) , (15)

in which Q(t; θ, θ′) = (Q1(t; θ, θ
′), · · · ,QN(t; θ, θ′)) is the solution of the following nonlinear

differential equation



Mαβ(θ) Q̈β(t; θ, θ
′) + Dαβ(θ) Q̇β(t; θ, θ

′) +

K
(1)
αβ

(θ) Qβ(t; θ, θ
′) +K(2)

αβγ
(θ)Qβ(t; θ, θ

′) Qγ(t; θ, θ
′) +

K
(3)
αβγδ

(θ)Qβ(t; θ, θ
′) Qγ(t; θ, θ

′) Qδ(t; θ, θ
′) = Fα(t; θ, θ

′) , (16)

with initial conditions

Q(0;θ, θ′) = 0 , Q̇(0;θ, θ′) = 0 . (17)

In Eq.(16), the quadratic stiffness term is written as

K
(2)
αβγ

(θ) =
1
2
(
K̂

(2)

αβγ(θ) + K̂
(2)

βγα(θ) + K̂
(2)

γαβ(θ)
)
. (18)

Note that the random linear, quadratic and cubic stiffness termsK(1)
αβ

, K̂
(2)

αβγ andK
(3)
αβγδ

are easily deduced from the random matrix [K] using the reshaped operations described in
[14]. With regard to the numerical solver used for computingthe nonlinear coupled differ-
ential equation, a Newmark method is used [28], which employs the averaging acceleration
scheme known to be unconditionally stable. With this solver, a set of nonlinear algebraic
equations must be solved at each sampling time. This computation is addressed by the fixed-
point method or by the Crisfield arc-length method [29] (the fixed-point is favored but if not
convergent, it is replaced by the Crisfield algorithm).

4. NUMERICAL APPLICATION

The methodology is applied on a thin cylindrical shell, which is modeled here using three-
dimensional solid finite elements. In the present context, despite the very small thickness
of the investigated structure, the choice of 3D solid finite elements is preferred to the more
natural choice of shell finite elements for the following reasons:

• It is more exact to use a 3D nonlinear elasticity theory than athin shell nonlinear
elasticity theory.

• In the context of the construction of a reduced-order model,it is easier to compute the
terms constituting Eq.(4).

• Finally, the computational cost increase, associated withthe larger number of DOFs, is
not a real obstacle, given the current computational capabilities and the possibility of
using parallel computations.

4.1 Finite element model

The three-dimensional structure is modeled by a circular cylindrical shell of heighth =
0.144m, mean radius 0.125mand thickness 2.7×10−4 m. Its bottom experiences a rigid body
displacement and the upper ring is rigid with three DOFs in translation. The isotropic linear
elastic material properties and the mass density have been experimentally measured [9, 30]
to beE = 1.8 × 1011 N.m−2, ν = 0.3 andρ = 8 200Kg × m−3. The structure is subjected
to a constant traction point loadF stat applied alonge3 at x3 = h. Since a concentrated mass
M′ = 80Kg is added at the free node located at the top of the shell along directione2, the
dynamical loadF dyna(t) has its main contribution at the top of the shell along direction e2.
This allows to reproduce the experimental conditions as described in [9, 30]. From that, it
can be deduced that the use of the static POD basis, which strongly depends on the choice of



the static shear load, for the present dynamic case is appropriate because the dynamic shear
load induced by the ground motion and the static shear load used in [9] belong to the same
loading class.

The finite element model is a regular mesh composed of (nr − 1) × nθ × (n3 − 1) = 1 ×
7 500× 9599 = 712 500 8-nodes solid finite elements with 8 Gauss integration points. The
mean computational model thus has 4 230 003 degrees of freedom. should be noted that, for
the given class corresponding to the use of 8 nodes solid finite elements, a sensitivity analysis
has been made in [22] in the static nonlinear context with respect to thicknesse, to the choice
of boundary conditions, and to parametersnθ andn3 controlling the precision of the mesh.
The present choice of the parameters corresponds to the closest situation with respect to the
experimental data available in [8].

The observation is the displacement of the nodeobs, corresponding to the location of the
experimental observation alonge2 (the direction of the shear point load) and is denoted by
uobs(s).

u
..

Γ

F
stat

e1

e2

e3

Zoom

Figure 1: Left part: 3D representation of the cylindrical shell with boundary conditions (◦
denotes the only free node of the upper bound of the cylindrical shell, corresponding to the
nodeobs). Right part : zoom of the mesh.

A geometrical perturbation taken as the linear buckling mode shape calculated for a critical
shear load located at the top of the shell along directione2 is added to the structure with a
maximum amplitude of 2.7×10−4 m[9]. It thus allows the buckling to be numerically induced.

The random operators of the stochastic nonlinear computational model, defined on prob-
ability space (Θ , T , P) are constructed as explained in the previous Section. Uncertain-
ties on the mass distribution is negligible and uncertainties concerning damping are small.
The results concerning a previous static experimental identification of the nonlinear stochas-
tic computational model are used [22], so that the stiffness uncertainty level is fix ed to
δK = δ

opt
K = 0.45. The dynamic loading conditions consist in a seismic horizontal motion

applied to the base of the cylindrical shell. Since the mass is assumed to be certain, the cor-
responding shear load is a stochastic process indexed byR+ and defined on probability space
(Θ′, T ′,P ′). Consequently, the stochastic physical response is modeled byRn-random non-
linear stochastic process{U(t), t ∈ R+} defined on the product of probability spaces (Θ , T , P)
and (Θ′, T ′,P ′).



4.2 Definition of the stochastic excitation and of the frequency band of analysis

The stochastic excitation is simulated as explained in Section 3.1. For the present application,
the power spectral densitySβ(ω) of the stochastic processb(t) is chosen as

Sβ(ω) = s
ω

4
+ 4ξ

2
ω

2
ω2

(ω2 − ω
2)2 + 4ξ

2
ω

2
ω2

, (19)

in which s = 1.15× 10−4 m2.s−3, ω = 785.4 rad.s−1 andξ = 0.02. The frequency band of
analysis isBν = [0 , 160]Hz. The time sampling isδ t = 5 × 10−4 s, the total time duration
T = 1.27s and therefore, the number of time steps isnt = 2546. The frequency resolution
is δ ν = 0.78Hz corresponding to a frequency band [0, 1000]Hz (the sampling frequency
is νe = 2000Hz). The envelope function is a piecewise continuous functiondefined by
g(t) = 25t2/4 if t < 0.4 s, g(t) = 1 if t ∈ [0.4 , 0.7] s andg(t) = e−10(t−0.7) if t > 0.7 s.
Figure 2 displays a typical realizationG(θ′, t) of the stochastic processG(t). The stochastic
excitation is then obtained using Eq.(10).
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Figure 2. Realization of stochastic processG(t)

4.3 Construction of the mean nonlinear reduced-order computational model

For the considered nonlinear elasto-dynamic problem, there are two notable strategies for
constructing the projection basis of the mean nonlinear reduced-order computational model.
A first one uses the POD method and thus requires full computations of the elasto-dynamical
reference response with the nonlinear computational model. A second strategy consists in
solving the usual generalized eigenvalue problem of the linearized computational model and
selecting a set of its linear eigenmodes of vibration as projection basis. Once this basis is
built according to either of the above strategies, the mean nonlinear reduced operators are
constructed by the methodology of Section 2.

In [20], the POD projection basis obtained from the nonlinear static reference calculation
of a structure was used as the projection basis for constructing the mean nonlinear reduced-
order computational model of the structure. Such method hasalso been used in [22] for
the nonlinear static analysis of the present cylindrical shell. It would be interesting to reuse
such POD projection basis obtained in the context of a nonlinear static case for the present
nonlinear dynamic case. Since the convergence rate of the solution constructed with such



a projection basis strongly depends on the external appliedloads, it is appropriate only if a
similar loading class is used. With the presence of the concentrated massM′ at the top of
the structure, the shear load induced by the ground-based motion is largest at the top of the
structure. This excitation, in addition to the external constant traction load, is compatible with
the loading used for the nonlinear static case in [22]. Specifically, letR(N) = {�1, . . . ,�N} be
the family composed of theN basis vectors�1, . . . ,�N related to the first larger eigenvalues
of such static POD basis. In [22], the convergence analysis yields N = 27. Note that the
family R

(27) is not expected to be sufficient to describe the nonlinear dynamical response
of the shell; it needs to be completed by additional basis vectors that we select as linear
elastic modes. A usual modal analysis of the linearized dynamical computational model with
the predeformation discussed in Section 4.1 is then performed of which some results are
summarized in Table 1.

frequency (Hz) modal shape
Mode 1 121.10 global
Mode 2 124.16 global
Mode 3 897.02 local
Mode 4 897.06 local

Table 1. Eigenfrequencies and type of elastic modes

Owing to the slight predeformation of the structure, according to the first linear buckling
mode, the structure is not perfectly axisymmetric and pairsof distinct eigenfrequencies are
obtained as seen in Table 1. An analysis of the first 40 eigenfrequencies and mode reveals
that the first two modes̃�1 and�̃2 describe global bending modes of the structure as shown
in Fig. 3, see Table 1.

Figure 3. Elastic mode related to eigenfrequenciesf1 = 121.10Hzand f2 = 124.16Hz

Further, a high modal density is observed, starting with eigenfrequencyν3 = 897.01Hz.
There are 38 local elastic modes belonging to frequency band[897, 1123]Hz. The ground
motions characterized by the power spectral density of Eq.(19) would strongly excite the
first two elastic modes but only weakly the ensuing ones. Thusthe projection basis of the
stochastic nonlinear reduced-order model must closely represent the first two elastic modes
but not necessarily the ensuing ones. To assess this issue, the representation of elastic mode�̃β, β ∈ {1, 2} onR

(27) has been determined. It can be shown that elastic mode�̃1 is poorly
represented onR(27) and that although the error related to elastic mode�̃2 is smaller, due to
the coexistence of local and global contributions, it was deemed too large to be neglected.
As a consequence, these two elastic modes were selected in order to enrichR(27). The final



projection basis is the familyS(29) = R
(27) ⋃{�28,�29}, in which the vectors�α, for α ∈

{28, 29} are defined as�α = �α
||�α|| , �α = �̃α−27

−

α−1∑

i=1

(�i)T �̃α−27

||�i ||2
�i , (20)

according to a partial Gram-Schmidt orthonormalization procedure. Note that this projection
basis verifies Eq. (2). The mean reduced-order computational model is then obtained using
the enriched projection basis composed by the familyS

(29). It should be noted that the first
eigenfrequency is computed with the linearized computational model projected onS(29), are
ν′1 = 121.19Hz < ν′2 = 124.57Hz < ν′3 = 1602.96Hz < ν′4 = 1768.25Hz. As expected,
ν′1 andν′2 are close to their original counterpartsν1 andν2, see Table 1. The reduced dissipa-
tion matrix is constructed according to Eq.(8) by choosingζ = 4.44× 10−5. This leads to a
critical dissipation rateξ ≃ 0.017 for the two first elastic modes.

4.4 Results

The response of the shell is monitored as the same position and in the same direction than
above, see Section 4.2. This random observation, denoted byUobs(t), is a stochastic process
indexed by [0,T] and defined on the product of probability spaces (Θ , T , P) and (Θ′, T ′,P ′).
It can then be written as

Uobs(t) = uobs(t) + Uc
obs(t) , (21)

in which uobs(t) is the deterministic function characterizing the mean of the stochastic non-
linear dynamical response i.e.

uobs(t) = E{Uobs(t)} =
∫

Θ

∫

Θ′
Uobs(t, θ, θ

′) dP(θ) dP ′(θ′) , (22)

and whereUc
obs(t) is a centered non-stationary stochastic process. In the sequel,Uobs(t, θ, θ′)

is denoted byUobs(t; �), where� = (θ, θ′).
Four analysis cases (see Table 2) are investigated, analyzed and compared.

Stiffness Stiffness External load
Case 1 linear deterministic stochastic
Case 2 linear stochastic stochastic
Case 3 nonlinear deterministic stochastic
Case 4 nonlinear stochastic stochastic

Table 2. Description of the analysis cases

Figure 4 displays the graphs oft 7→ Uc
obs(t, �) (gray line) andt 7→ uobs(t) (black line) for

the four analysis cases and for a specific realization of the ground motions related to Fig. 2.
It is seen thatuobs(t) is a centered oscillating function for the linear cases as expected given
the zero mean character of the excitation. However, a small negative mean is observed for
the nonlinear cases. Superimposing all cases, it is seen, for this present realization, that the
geometric nonlinear effects occur first attnonlin = 0.16s for a displacement level greater
than 1.8 × 10−4 m, or 2

3 of the shell thickness. Comparing cases 1 and 2 with cases 3 and
4 respectively, it is seen that the effect of the geometrical nonlinearities is to decrease the
intensity of the response. Moreover, this effect increases with the presence of model and
system-parameter uncertainties in the stochastic computational model. Comparing case 1
with case 2, it is seen that the presence of random uncertainties significantly spreads the
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Figure 4: Graphs of functionst 7→ Uc
obs(t, �) (gray line) andt 7→ uobs(t) (black line) for cases

1 and 2 (upper graphs) and for cases 3 and 4 (lower graphs)

stochastic linear response allowing displacements of 1.7× 10−3 m, or 6 thicknesses, to occur.
A similar conclusion does not seem to hold in the nonlinear case : when comparing case 3
with case 4, the presence of random uncertainties only seemsto slightly modify the nonlinear
dynamical response.

The complex instantaneous spectral density functionsUc
obs

(ν, t) of the nonstationary stochas-
tic process{Uc

obs(t) , t ∈ [0 , T]} is defined as

sUc
obs

(ν, t) =
1
2π

∫ T

0
e−2 iπνt′ rUc

obs
(t′, t) dt′ , (23)

in which rUc
obs

(t, t′) = E{Uc
obs(t) Uc

obs(t
′)} is the autocorrelation function of stochastic process

Uc
obs(t). It should be noted that the numerical estimation ofsUc

obs
(ν, t) can be carried out

by using the periodogram method with a Tukey-Hanning time window combined to FFT
[31, 32]. Then,

sUobs(ν, t) =
1
2π

ûobs(ν) uobs(t) + sUc
obs

(ν, t) , (24)

with ûobs(ν) =
∫ T

0
e−2 iπν t′ uobs(t

′) dt′.

The analysis is next focused on the fixed timet0 = 0.5T and in the frequency band
[80 , 160]Hz around the resonances. Figure 5 shows the graphν 7→ log10(|sUobs(ν, t0)|) for
the linear case (left graph) and for the nonlinear case (right graph). The presence of random
uncertainties spreads the resonance in the linear case whereas no such effect is noticed in
the nonlinear case. Comparing the peak frequencies of cases1 and 3, a shift of the reso-
nance from 120Hz until 113Hz is observed, which shows that the presence of geometrical
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Figure 5: Graphs ofν 7→ log10(|sUobs(ν, t0)|) without and with random uncertainties (thin line
and thick dashed line): linear case (left graph) and nonlinear case (right graph).

nonlinearities induces a softening effect. Moreover, the presence of geometrical nonlineari-
ties yields a peak broadening and a decrease of the resonancemagnitude from−8.3dB until
−9.16dB. Comparing case 2 (or 4) with case 1 (or 3), it is seen that the presence of uncertain-
ties have a moderate effect on the response. For the linear case, the presence of uncertainties
shifts the peak of response from 120Hz to 118Hzand reduces its magnitude by 0.2dB. This
small effect can be explained as follows: in case 2, the random linear (N×N) reduced stiffness
operator is extracted from the (P× P) random reshaped stiffness operator [K], for which the
dispersion parameterδ has been identified to 0.45. LetδLIN be the effective dispersion param-
eter related to this random linear (N×N) reduced stiffness operator. SinceN ≪ P = N(N+1),
it can be shown thatδLIN = 0.025. Consequently, the random response of the linearized sys-
tem with uncertainties is computed with a small level (δLIN = 0.025) of uncertainties. This
small level of the dispersion parameter is then coherent with the observed slight impact of the
random uncertainties on the linear dynamical response. In the nonlinear case, only a change
of 0.03dB can be observed in the peak response magnitude. For both nonlinear and linear
cases, the complex instantaneous spectral density function appears weakly sensitive to ran-
dom uncertainties. This can be explained by the fact that this quantity of interest is issued
from a statistical averaging of the random observation overthe two statistical sources of the
randomness (the excitation and the variability induced by uncertainties).

From here on, fort ∈ [0 , T], for θ ∈ Θ and forθ′ ∈ Θ′, a realization of the stochastic
processUobs(t) is denoted byUobs(t; θ, θ′). To better understand and analyze the effects of
random uncertainties on the nonlinear stochastic response, a spectral analysis of the nonsta-
tionary observationUobs(t) is next. To this end, let

SUobs(ν, t; θ) =
1
2π

∫ T

0
e−2iπνt′ RUobs(t

′, t; θ) dt′ , (25)

be a sample of the complex-valued random instantaneous spectral density function forν inBν, for t in [0 , T] and forθ in Θ. In this equation, for all fixedt andt′, θ 7→ RUobs(t, t
′; θ) is
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Figure 6: Confidence region: graph ofν 7→ log10(E{|SUobs(ν, t0)|}) (thick line) and graph of
the confidence region ofν 7→ log10(|SUobs(ν, t0)|) (grey region). Linear case (left graph) and
nonlinear case (right graph).

the real-valued random variable defined by

RUobs(t, t
′; θ) =

∫

Θ′
Uobs(t; θ, θ

′) Uobs(t
′; θ, θ′) dP ′(θ′) . (26)

Therefore,{SUobs(ν, t), ν ∈ Bν, t ∈ [0,T]} is a second-order stochastic process defined on
probability space (Θ, T,P).

Figure 6 shows the graph of the confidence region calculated with a probability levelPc =

0.95 of the random stochastic processν 7→ log10(|SUobs(ν, t0)|) for the linear case (left graph)
and for the nonlinear case (right graph). Note that the computations have been carried out
for 77 × 77 = 5929 realizations (θ, θ′). It should be noted that the figure only gives a
global trend of the results, since the confidence region remain not smooth enough to state
that convergence with respect to the number of simulations is reached. It can be seen that
the peak response corresponding to the nonlinear case occurs for a lower frequency and with
a smaller magnitude than its linear counterpart. Furthermore, the confidence region related
to the nonlinear case is broader, demonstrating that the nonlinear case is less robust than the
linear one with respect to uncertainties. Note that such result was expected because of the
high energy transfer induced by the nonlinearities.

CONCLUSION

The paper has presented an advanced computational method for analyzing the nonlinear dy-
namic post-buckling behavior of a geometrically nonlinearthin shell structure in presence
of uncertainties. The nonlinear stochastic computationalmodel has been used for predicting
the nonlinear dynamical post-buckling response, under a stochastic excitation induced by a
ground-based motion of the structure. The influence of geometrical nonlinearities has been
analyzed through instantaneous spectral density functions. It is concluded that the presence
of geometrical nonlinearities modifies the dynamical behavior (1) by inducing a local soften-



ing effect and a decrease of the resonance magnitude; (2) by decreasing the robustness of the
response predictions with respect to uncertainties.
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[32] C. Soize.Méthodes mathématiques en analyse du signal. Masson, 1993.


