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Shortest paths for the Dubins’ vehicle in heterogeneous envanments

Bruno Heris€, Romain Pepy

Abstract—In this paper, the problem of finding minimum and backward were derived [9]. In [1], [13], similar results
length paths for a Dubins’ vehicle that can only move forward  were recovered using Pontryagin’s maximum principle [8].
in an heterogeneous environment is considered. An hybrid In [2], the derivative of the curvature is controlled and

version of the Pontryagin’s maximum principle is used to
derive necessary conditions for optimality. Unlike in the case of assumed to be bounded. In [5], [6], the effect of a constant

homogeneous environments, it is deduced that heterogeneity of Wind is ana'}’ZEd for Unmaﬂned aerial vehicles \{Vith th?
the environment implies that optimal paths can contain reflec- same dynamics as the Dubins’ car. In [3], an anisotropic

tions. A subclass of environments is analyzed more specifically environment is considered, that is the maximum curvature
in order to obtain additional necessary conditions. Based on depends on the orientatighof the vehicle.

these results, two concrete application cases are detailed to
demonstrate the usefulness of the approach in practice. The .
first example concemns a mobile robot and the second example ~As far as the authors know, only one previous work
concerns a glider. addresses the optimal problem for a Dubins’ vehicle in

an heterogeneous environment. In [10], the environment
. INTRODUCTION consists of two half-planes where the robot has two dif-
The purpose of this paper is to characterize shortest pattegent velocities and where it can maneuver with the same
for a vehicle moving only forward in an heterogeneous 2turning rate. A generalized refraction law is derived from
dimensional Cartesian plane. The environment is heterogde characterization of minimum time paths. The problem
neous in the sense that the minimum turning radius that thesented here is different from [10] since it addresses the
robot can perform depends on the vehicle position along osortest path problem. Moreover, in [10], the vehicle moves
axis of the plane. Thus, the vehicle dynamics are governdal a terrain with heterogeneous velocity while in the présen
by (see Fig. 1) paper, this is the maneuverability of the vehicle that is
heterogeneous along the terrain. In addition, the enviestim

& =wvcost is not restricted to only two media in the present paper,
Z=wvsinb (1) the maximum curvature (z) can be discontinuous for an
0=vc(z)u, |ul<1, unlimited number of positions.

In this paper, since discontinuous environments are also
where (z,2) € R? is the vehicle positionf € R is the considered, the classical Pontryagin’s maximum principle
angle between the vehicle and the x-axis,> 0 is the cannot be used. A more general version of the maximum
vehicle velocity,u € R is the control input¢ € [-1,1])  principle [12], suitable for hybrid control problems, iseds
and c(z) € Ry is the maximum curvature the robot canto derive necessary conditions for optimality. From these
perform at vertical position. The dynamics of the forward conditions, some features of optimal paths are deduced.
velocity v is not specified, the analysis in this paper onlyshortest paths are shown to be a concatenation of line
considers the shortest path problem. segmentsS and arcsC' of maximum curvature. Moreover,

When the maximum curvature is constant,i.e. the jt is shown that shortest paths can contain reflectioms,
environment is homogeneous, the vehicle verifying (1) ipaths containing two different line segments with opposite
known as the Dubins’ car and finding the shortest patBrientation angles are candidates for optimality. The case
between two configurations:, z, #) is known as the Dubins’ \here the maximum curvaturez) is a monotonic function
problem [4]. This problem was solved in [4] using onlyof - is analyzed. In that case, it is proved that optimal paths
geometric arguments. It states that shortest paths arereitl&omaining line segments are either of typsC or CSCSC
of type CCC or CSC, that is a concatenation of threeif hoth line segments have opposite orientation angles.
arcs of a circle with radius /c or a concatenation of an Based on these results, two application cases are presented
arc of a circle with radius /¢, a line segment and anotherFjrst, a mobile robot is considered. The terrain consists of
arc of a circle with radiud /c. Later, Dubins’ results were two half-planes with two different coefficients of friction
proved using Pontryagin's maximum principle [1]. The 3Dimplying two maximum steering angles to ensure rolling
extension of Dubins’ paths was considered in [11]. without slipping. Second, a glider moving in the vertical
Dubins’ work gave rise to many other similar problemspjane is considered. Due to the exponential decreasing of
For example, shortest paths for a robot moving forwargtmospheric pressure with altitude, the maximum lift force
B. Héris¢ and R. Pepy are with Onera - The French Aerospac(leS also exponentially decreas!ng with aItItUd?'
Lab,' F-91761 Palaiséau, France (emait:uno. heri sse@nera.fr, The body of the paper consists of four sections followed by
romai n. pepy @nera. fr) a conclusion. Section Il presents the problem and notations



IIl. OPTIMALITY CONDITIONS
A. The general case

The problem stated in Section Il is similar to the classical
Dubins’ problem and can also be solved using classical
optimal control theory [1] provided that the system (2)
is sufficiently regular [8]. Assumption 2.1 prevents from
using this version of the Pontryagin’s maximum principle.
In the followings, the more general version of the maximum
Fig. 1. Vehicle model. principle described in [12] is used. Notice that this prpiei
was first used in [10] to analyze an analogous problem.

Before enumerating necessary conditions for optimality,

In Section Il diti f timalit todi curvilinear abscissae where the system crosses a disconti-
E ection h ' CO?} ttions for opimality are enumeratedian , i, ajong the pathi.e. curvilinear abscissae where(z)
the case where the maximum curvatare) is a monotonic o o discontinuity, have to be defined.

function of z is detailed. Sections IV and V present the two Definition 3.1: A switching curvilinear absciss& along

examples of application for the problem addressed in th'? path is defined as a curvilinear abscissa verifying the

paper. following condition: there existg € Q such thatz(S) = z,
Il. PROBLEM STATEMENT and there exists > 0 such thatz (s € [S — ¢, 5)) # z,.
Applying the maximum principle presented in [12] to the op-

In this paper, a Dubins’ vehicle moving forward with imal control problem described in Section I, the followin
bounded curvature across a 2D heterogeneous environmegy it is obtained.

is conside_red. A coor_d_inate systefm, z,0) € R? is used Proposition 3.2: Consider a solutioré = (z,z,0)7 to

to determine the positiorz, z) of the center of mas€:  he shortest path problem for the system (2) with control
and the orientatio of the vehicle in this environment (seeinput w and minimum lengths ;. Assume that the number
Fig. 1). The robot dynamics are given by (1). The maximurgs syitching curvilinear abscissae i&— 1, J € N*. Then,
curvaturec (z) in (1) is assumed to satisfy the two following here exists\, € R and.J absolutely continuous functions
conditions: o _ o N o [sj,8541) — R, j € [0,J — 1] such that

Assumption 2.1¢ (z) is discontinuous for a finite number 1) Ao >0 0r N £0, Vj e [0,] —1];

N € N of positionsz,, ¢ € Q = [1, N]. 2V W e [0, — 1] ’ ’ '

Assumption 2.21f N # 0, c(z) is C! in each of the ’ ’
intervals(—oo, z1], [24, 24+1], ¢ € [1, N—1] and[zx, +00). (/\j)/ _ _Lﬂj
Itis C' in R otherwise. ot "’

The problem addressed in the paper is to characterize
trajectories of minimum length for the system (1) given ‘ ‘ A A
initial and final statez, zo,6y) and (z ¢, zs,0;), that is H7 = Xg+ M cosf + A\jsinf + M (2) u
trajectories minimizing the functional and (/\jlv, /\]2-7 Aé)T;

; :/tfvdt 3) Vj € [0,J —1], Vs € [sj,s;41], H (s) if);
=, 4) If J>2,Vj€[0,J—2], X(sj+1) = A} (sj41) and

) , . . M(sje1) =X (s501);
wheret; is the final time assumed to be free (free interval 7 3 i
optimal control problem) and; is the length of the path. 5) V(s,j), u = —sgn (/\3)v wheresgn (z) = z/ ||,V €
Since we are interested in minimum length trajectories R* andsgn (0) = 0.
(the dynamics of the forward velocity is not specified), it Notice that in Proposition 3.2, switching curvilinear aissc
is convenient to make a change of variable from titme Sae are every;, j € [1,J — 1] (J > 2) ands; = s,. First
curvilinear abscissa(t) = fot v (u) du. Thus, dynamics can item of Proposition 3.2 follows from non-triviality condin

Vs € [s5,541]

where

be re-written as follows: of the maximum principle. Item 2 is the adjoint equation.
de Item 3 is due to the Hamiltonian value condition and the
= 5= cos fact that a free interval optimal control problem is addeelss
d» in this paper. Item 4 is a direct application of the switching
7= 75 — s (2)  condition described in [12]. As for Item 5, it follows from
do Hamiltonian minimization.
0 = T c(z)u, Jul <1 Corollary 3.3: From Proposition 3.2, the followings can
8 be deduced:

Therefore, the problem consists in minimiziag, the path
length. Notice that in the case when the forward veloeity
is constant, minimizing the path leng#} is equivalent to N7 _ _ L
minimizing the final timet;. (/\{) = 01N [s;,5;41] and X (sj41) = M7 (s41)

e Vj € [0,J —1], ) = \, is a constant. The proof is
straightforward using ltems 2 and 4: fore [0, J — 1],



at switching curvilinear abscissag,+, j € [0, — 2] .
(J >2);

Item 5 implies that optimal paths are a concatenation
of line segmentsS (when A} = 0 on a subinterval of
[sj,s541]) and arcs of maximum curvatur€ (when

X} # 0);

If the optimal path contains a line segment with orien-
tation & = «, then there can exist another line segment °
with orientationd = —a (modulo 27) along the path.
This follows from the fact that\, can vary along the
path,i.e. A} (j € [0,J — 1]) can vary inl[sf,sﬂl]

and X} (s;j41) is not necessarily equal & (s;11)

at switching curvilinear abscissag;, j € [0, J — 2]

(J > 2). This type of optimal path containing two line
segments with opposite orientation angles will be said
to contain reflections; 4

ltems 3 and 4 imply that if\(s;;,) = 0 and

sin (0(sj41)) # 0, j € [0,J —2] (J > 2), then

M (sj11) = X (s;41). This implies that the orienta-
tion of a line segment cannot change when the system
crosses a discontinuity.

Proof: The third point of Corollary 3.3 is proved here.

Assume that the optimal pathcontains a line segment with
orientationf = «. Then, there existg € [0, — 1] such
that A} = 0 on a subintervall of [s;, s;j+1]. From Items 2
and 3 of Proposition 3.2, it is straightforward to show that

M

= — o cos(a) and X, = —\gsin(a) in Z. From Item 1,

it can be deduced that, # 0. Moreover, since/\{ =\
is a constant, if there exists another line segment along the
path with orientatiord = g then cos(8) = cos(«), hence

8=

Existence of reflections in optimal paths is the main

+a (modulo 27). [ ]

result obtained here. There cannot exist such reflections
for the classical Dubins’ vehicle with a constant maximum Two cases are now analyzed:
curvature. In [10], only optimal paths with one switching e
curvilinear abscissa are described, therefore, reflectare

not outlined.

The result stated below considers more specific systems

characterized by the fact thatz) is a monotonic function
of z. This will be used in the two examples presented in the
next two sections.

B. The monotonic case

Theorem 3.4:Assume that (z) is a monotonic function

of z. Then, any optimal path§ containing a line segment
can contain at most one other line segment with opposite
orientation angle.

Theorem 3.4 means that an optimal path can contain one ore
two line segments and that an optimal path containing two
line segments is necessarily a path with a unique reflection.
Proof: Assume that (z) is a decreasing function af. The
result is similar for an increasing function.

First, we show that\, is decreasing. To this purpose,

switching curvilinear abscissae and intervals where ttge sy
tem is continuous are analyzed separately. The proof fsllow
from Items 2 and 3 of Proposition 3.2.

= —\jdey,

AN/
Vj S IIO,J_ 1]], Vs € [8j78j+1}! ()‘%) 3dz

Sinceu = —sgn ()\g) this implies that
N /| dc
J — J1 2= <
(¥) = |z <o

Therefore,\} is decreasing;
vj € [0,J — 2], for every curvilinear abscissae =
Sj41,

cJ:

)\g+1 sin (9j+1) — ’/\éﬂ‘ Jtl

A sin (07) — X

where 07 = 0(s;) and ¢/ = c(s;). Therefore, since
A, =M1 andgd = g9+,

(/\%+1 — )\é) sin (Gj) =—

It is straightforward to see that €in6/ # 0, then
sin (67) is of the same sign a&? — ¢/*1). It follows
that \J ™' < .

In addition, using Item 3 of Proposition 3.2, it follows
that

N (¢ - )

MEOA Mo+ Acos @t — ¢
citl o

3
Therefore, sincesing’ = 0 implies \; = —)\q (Item

3 of Proposition 3.2), ikin¢? = 0 then ;™ /ci*! =
N, /¢, Furthermore,

[X5(5)]e(s) = Aj(s) sin(6(s))

whensin 6 tends tod, this implies that\j is of the same
sign assin (6 (s)) for s arounds; ;. Hencex,™ < X}
for all 67.

cl sin 67 cJeitl

Assume that the optimal path contains a line seg-
ment with orientationd = « € [0,7]. Then, Ao =
—Xpsin(a) <0 (Ao > 0) along this line segment. Since
Ao is decreasing along the whole path, there cannot
exist any curvilinear abscissae along this path such that
A2 = Agsin(a) > 0. Therefore, the path cannot contain
any reflections. Moreover, if the path contains another
line segment with the same orientation this means
that A\ remains constant between these two segments.
Thus, from Dubins’ results [4], [1], the path between the
two line segments is a whole circle. That kind of path
is not optimal. Therefore, the optimal paghcontains
only one line segment.

Assume that the optimal pathcontains a line segment
with orientation = « € [—7,0]. Then, Ao =
—Xgsin(a) > 0 (Ap > 0) along this line segment.
Since )\, is decreasing along the whole path, there can
exist a curvilinear abscissa along this path such that
A2 = Agsin(a) < 0. Therefore, the path can contain
a reflection. Using the same previous argument from
Dubins’ results, the optimal path can contain at most
two line segments with both orientationsand —a.
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Fig. 2. Example 1 - CSC path withy = 0 and0y = & 6 z 2

Fig. 3. Example 1 - CSCSC paths

Notice that the two line segments of an optimal p#th

containing a reflection are necessarily joined by a unique apetween the robot and the ground is different. As the vehicle
C. This means that there is no inflection point between thgoves at a constant speed and is assumed to roll without
line segments. This is due to the fact thatcannot vanish skidding nor sliding, it implies that the maximum steering
between the two line segments. The pl’OOf is straightforwarghgka that the robot can perform differs between the two
using Item 3 of Proposition 3.2 and the fact that is @ half-planes. Therefore, the maximum curvature different
decreasing function but the details are a little tediouséo Ior the two half-planes.
presented here. The glider presented in next section V verifies the same
Furthermore, using symmetry arguments for the reflectton, kind of model if densities of the fluid in both half planes
can easily be shown that the derivative of the third adjoirdre different. For example, if the first half plane considts o
variable A3 necessarily vanishes wheim ¢ = 0 along the water and the second half plane consists of air, the derssity i
arc C' joining the two line segments. Thus, using Item 2 ofjifferent for the two half-planes then the maximum curvatur
Proposition 3.2, also vanishes whesin 6 = 0 along this ¢ is different for the two half-planes.
arc. B |n the followings, the maximum curvature of the first half-

If ¢ (z) is a monotonic function, Theorem 3.4 implies thatplane will be considered superior to the maximum curvature
optimal paths are of typ€™:S,C"2, C"S_,CS,C"™ or ¢, of the second half-plane.
a degenerated form of these, whe?® (n € N) denotes  Results of Section Ill can be used. In particular, Theorem
a concatenation of. arcs of maximum curvature joined at 3.4 implies that optimal paths with line segments can cantai
inflection points 43 = 0) and S, denotes a line segment reflections,i.e. optimal paths can contain two line segments
with orientationa € [—, 7]. Maximum values for; andns  with opposite orientation angles. To perform a reflectitw, t
are not obvious to determireepriori. Therefore, a geometric robot needs to cross the discontinuity two times with opjgosi
analysis need to be conducted on a case by case basis. Basgshtation angles. Using Equation (3) for both switching
on results for the Dubins’ vehicle, the authors believe thaiyrvilinear abscissae, it can be shown that the absoluteval

ni = 1 andny = 1, otherwise the path is not optimal. |¢,| of switching orientation angles verifies

However, this remains an open problem.

Besides, analogously to Dubins’ results, there can exist sin |04 sin || = (1 — cos |04] cos ||

optimal paths without any line segmeni®. there can exist

optimal paths of type>™. For Dubins’ paths, it was shown recalling that|«| is the absolute value of the orientation

that n cannot be superior t8. In the case where(z) is a angle of both line segments. Notice that a reflection can be

monotonic function, this remains an open question_ optimal onIy if both line segments lie in the half—plane with
In next two sections, some optimal paths of typethe greater curvaturee. the half-plane with curvature, in

CS_,CS,C and CS,C are presented for two concretethis example (see proof of Theorem 3.4 for more details).

Coy — C1
)7

application cases. Considering Bellman’s principle of optimality, notice tha
Dubins’ results must be verified in each half-plane, any
IV. EXAMPLE 1: A DISCONTINUOUS ENVIRONMENT pieces of an optimal path lying in a single half-plane is
In this section, the vehicle considered is a mobile robatecessarily of typ&'CC or CSC.
which dynamics verify (1) withe (z) = tan 0.5 /L, Where Figures 2 and 3 present some optimal paths with line
dmax IS the maximum value of the steering angle ahds segments choosing; = 7cs. The first half-plane with

the distance between front and rear wheels. The environmanaximum curvature; is represented in blue on these figures.
consists of two half-planes where the coefficient of friotio Moreover, any changes of control inpute {—1,0,1} is



marked by a black dot along the path. Figure 2 presents
a CSC optimal path starting from the first half-plane with
initial orientation angled, = 0 and ending in the second
half-plane with final orientation anglé, = = /6. Figure 3
presents twaC'SCSC optimal paths starting and ending in
the second half-plane. For these two paths, notice thaeif th
environment were homogeneous with maximum curvature
co, the optimal path would be of typ€'CC due to the
fact that initial and final positions are close to each other ol
compared to the minimum turning radius. However, taking 6

20+

altitude (km)

advantage of the greater curvature in the first half-plane, 10
CSCSC paths are shorter here. | Gy

V. EXAMPLE 2: A CONTINUOUS ENVIRONMENT 0

) ) ) ) ) . o 71t?|oriz;)5ntal d(iJstancZ (km10 " °
In this section, the vehicle considered is a glider of mass

flying in the 2D vertical plane. The vehicle forward velocity Fi

v is assumed to be high enough in order to neglect the

gravitational force during the flight. Typically, a missitan

be assimilated to an hypersonic glider after its propulsionz) C, type of curve ifAB < 0,

stage. Thus, only the force of liff, contributes to maneuver
the aerial vehicle. This can be written as follows: B B
A 1 s + arctan 1 Co

g. 4. Example 2 - Arcs of maximum curvature

tanh

@t =\/|5

fi = 50 () SO
This type of curve is illustrated in Figure 4. Notice
where p(z) is the air density depending on the current that this type of curve has asymptotes.
altitude, S is the reference area of the glider ang is
the lift coefficient depending on the angle of attack. Using 3) C; type of curve ifA = 0,
the fact that the rotational velocity verifigs= f;/mo, the 1 1
dynamics of the glider satisfy equations (1) witlfz) = = — — Bs
7= (2) S(CL) max- The environment is heterogeneous since Gls) G
p(z) depends on the altitude. In the followings, it is modeled
as an exponentially decreasing function of altitugdé:) =
Po €Xp (fi) with z,. = 7500m.
To derive arcs of maximum curvature, the control input Ca(s) =Co+ 4s
is chosen such thau| = 1. Differentiating 8" with respect
to s, this yields:

4) C4 type of curve if B =0,

1
0" = ——0@ sinf 0, x and z can be deduced from the expression (ofas
#r follows:
Thus, closed-form solutions fdt, x and z can be obtained. 0 (¢) = 2arctan ¢
6

Let define( = tan (%) and differentiate it. After some

straightforward but tedious calculations, one obtains 2 (¢) = w0 + 2 (0(C) = 0o) =z (A+ B)s(C)

/ 2 Z(C)Zzo—zln(l—’—gg A+BC2>
¢'=A+ B¢, " A+ B¢ 1+¢2
A= = (2-6( — cos by + 1), Once again, Theorem 3.4 applies. Therefore, optimal paths
r can be of typeC'SC and CSCSC, C denoting one of the
B=A— i, four types of arcs presented above. For this applicatioa,cas
r a reflection can be renamed a rebound.

Therefore, four types of curves can be deduced dependingFigures 5, 6 and 7 present some paths with line segments
on values of4 and B: that are candidates for optimality. The maximum curvature

1) ¢, type of curve ifAB > 0, at altitude zero is chosen a§0) = 0.0015m~1, it depends
on the glider parameters. Figure 5 present§ & C; path

A B B starting close to the ground with initial orientation an@le=

Gi(s) = \/;taﬂ A\/;3+arCtan (\/;CON 0 and ending at an altitude greater thapkm with final
orientation anglé; = = /12. Figure 6 presents@,SC- path

This type of curve is illustrated in Figure 4. starting and ending at high altitude with initial orientati
angledy, = —n/3 and final orientation anglé; = m/3.




25

20+

altitude (km)

=
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-10 -5

0 5
horizontal distance (km)

Fig. 5. Example 2 - CSC path withy = 0 and0y = 15

wf 1 &o &r
[3]
251
[4]
=27
s (5]
£ 5t
G
10+ 1 [6]
[71
R T R o 5 10 15
horizontal distance (km)
Fig. 6. Example 2 - CSC path witfy = —% andfy = % (8]
[9]
Figure 7 presents tw@'SCSC paths starting and ending at
high altitude. (10]

VI. CONCLUDING REMARKS

This paper presented the problem of minimizing patr[11
length in an heterogeneous environment for a Dubins’ vehicl
moving forward and steering with a maximum curvature that?!
depends on the vehicle position. Some necessary conditions
for optimality were deduced applying optimal control theor [13]
These provide practical conditions to build optimal paths f
such a system as well as an interesting result that genesaliz
reflection law to the system considered. Two examples of
application are described to illustrate the approach and to
demonstrate its usefulness for practical implementatoic
as path planning in complex environments [7].
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