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Abstract

A copula is a function that completely describes the dependence struc-
ture between the marginal distributions. One of the most important para-
metric family of copulas is the Farlie-Gumbel-Morgenstern (FGM) family.
We establish a stability property of the FGM copula with respect to the
⋆ operation.

A copula is a function that completely describes the dependence structure. It
contains all the information to link the marginal distributions to their joint
distribution. To obtain a valid multivariate distribution function, it suffices to
combine several marginal distribution functions with any copula function. Thus,
for the purposes of statistical modeling, it is desirable to have a large collection
of copulas at one’s disposal. Many examples of copulas can be found in the
literature, most are members of families with one or more real parameters.

One of the most important parametric family of copulas is the Farlie-Gumbel-
Morgenstern (FGM) family defined as

CFGM

θ (u, v) = uv + θuv(1 − u)(1 − v), u, v ∈ [0, 1], (1)

where θ ∈ [−1, 1]. The density function of FGM copulas is given by

∂2CFGM

θ
(u, v)

∂u∂v
= θ (2u − 1) (2v − 1) + 1, (2)

for any u, v ∈ [0, 1].

Members of the FGM family are symmetric, i.e., CFGM

θ
(u, v) = CFGM

θ
(v, u)

for all (u, v) in [0, 1]
2

and have the lower and upper tail dependence coefficients
equal to 0.

The copula given in (1) is PQD for θ ∈ (0, 1] and NQD for θ ∈ [−1, 0). In practi-
cal applications this copula has been shown to be somewhat limited, for copula
dependence parameter θ ∈ [−1, 1] , Spearman’s correlation ρ ∈ [−1/3, 1/3] and
Kendall’s τ ∈ [−2/9, 2/9] , for more details on copulas see, for example, [1].

To overcome this limited dependence, several authors proposed extensions of
this family.
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• Theoretical issues: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

• Applications: [20, 21, 22, 23, 24, 25]

Our main result is the following:

Theorem. Let C1 and C2 be two FGM copulas with associated parameters θ1

and θ2. Then, C1 ⋆ C2 is a FGM copula with associated parameter θ1θ2/3.

Proof. Let C = C1 ⋆C2 where the ⋆ operation is defined for instance in [1]. The
density associated to C can be computed as:

c(u, v) =

∫
1

0

c1(u, t)c2(v, t)dt

=

∫
1

0

[θ1 (2t − 1) (2v − 1) + 1][θ2 (2t − 1) (2v − 1) + 1]dt

= 1 + θ1 (2v − 1)

∫
1

0

(2t − 1) dt + θ2 (2u − 1)

∫
1

0

(2t − 1) dt

+ θ1θ2 (2u − 1) (2v − 1)

∫
1

0

(2t − 1)
2
dt

= 1 +
1

3
θ1θ2 (2u − 1) (2v − 1) ,

and the conclusion follows from (2).

As a consequence, it follows that the dependence coefficients of C1 ⋆ C2 can be
bounded as ρ ∈ [−1/9, 1/9] and τ ∈ [−2/27, 2/27] .
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