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Abstract. On the basis of a multi-proxy approach and a strat-
egy combining lacustrine and marine records along a north–
south transect, data collected in the central Mediterranean
within the framework of a collaborative project have led to
reconstruction of high-resolution and well-dated palaeohy-
drological records and to assessment of their spatial and tem-
poral coherency. Contrasting patterns of palaeohydrological
changes have been evidenced in the central Mediterranean:
south (north) of around 40◦ N of latitude, the middle part of
the Holocene was characterised by lake-level maxima (min-
ima), during an interval dated to ca. 10 300–4500 cal BP to
the south and 9000–4500 cal BP to the north. Available data
suggest that these contrasting palaeohydrological patterns
operated throughout the Holocene, both on millennial and
centennial scales. Regarding precipitation seasonality, maxi-
mum humidity in the central Mediterranean during the mid-
dle part of the Holocene was characterised by humid win-
ters and dry summers north of ca. 40◦ N, and humid win-
ters and summers south of ca. 40◦ N. This may explain an
apparent conflict between palaeoclimatic records depending
on the proxies used for reconstruction as well as the syn-
chronous expansion of tree species taxa with contrasting cli-
matic requirements. In addition, south of ca. 40◦ N, the first
millennium of the Holocene was characterised by very dry
climatic conditions not only in the eastern, but also in the
central- and the western Mediterranean zones as reflected by
low lake levels and delayed reforestation. These results sug-
gest that, in addition to the influence of the Nile discharge
reinforced by the African monsoon, the deposition of Sapro-
pel 1 has been favoured (1) by an increase in winter precipi-
tation in the northern Mediterranean borderlands, and (2) by
an increase in winter and summer precipitation in the south-
ern Mediterranean area. The climate reversal following the
Holocene climate optimum appears to have been punctuated
by two major climate changes around 7500 and 4500 cal BP.

In the central Mediterranean, the Holocene palaeohydro-
logical changes developed in response to a combination
of orbital, ice-sheet and solar forcing factors. The maxi-
mum humidity interval in the south-central Mediterranean
started ca. 10 300 cal BP, in correlation with the decline
(1) of the possible blocking effects of the North Atlantic
anticyclone linked to maximum insolation, and/or (2) of
the influence of the remnant ice sheets and fresh water
forcing in the North Atlantic Ocean. In the north-central
Mediterranean, the lake-level minimum interval began only
around 9000 cal BP when the Fennoscandian ice sheet disap-
peared and a prevailing positive NAO-(North Atlantic Os-
cillation) type circulation developed in the North Atlantic
area. The major palaeohydrological oscillation around 4500–
4000 cal BP may be a non-linear response to the gradual de-
crease in insolation, with additional key seasonal and inter-
hemispheric changes. On a centennial scale, the successive
climatic events which punctuated the entire Holocene in the
central Mediterranean coincided with cooling events asso-
ciated with deglacial outbursts in the North Atlantic area

and decreases in solar activity during the interval 11 700–
7000 cal BP, and to a possible combination of NAO-type cir-
culation and solar forcing since ca. 7000 cal BP onwards.
Thus, regarding the centennial-scale climatic oscillations, the
Mediterranean Basin appears to have been strongly linked to
the North Atlantic area and affected by solar activity over the
entire Holocene.

In addition to model experiments, a better understand-
ing of forcing factors and past atmospheric circulation pat-
terns behind the Holocene palaeohydrological changes in the
Mediterranean area will require further investigation to es-
tablish additional high-resolution and well-dated records in
selected locations around the Mediterranean Basin and in ad-
jacent regions. Special attention should be paid to greater
precision in the reconstruction, on millennial and centen-
nial timescales, of changes in the latitudinal location of the
limit between the northern and southern palaeohydrological
Mediterranean sectors, depending on (1) the intensity and/or
characteristics of climatic periods/oscillations (e.g. Holocene
thermal maximum versus Neoglacial, as well as, for instance,
the 8.2 ka event versus the 4 ka event or the Little Ice Age);
and (2) on varying geographical conditions from the west-
ern to the eastern Mediterranean areas (longitudinal gradi-
ents). Finally, on the basis of projects using strategically lo-
cated study sites, there is a need to explore possible influ-
ences of other general atmospheric circulation patterns than
NAO, such as the East Atlantic–West Russian or North Sea–
Caspian patterns, in explaining the apparent complexity of
palaeoclimatic (palaeohydrological) Holocene records from
the Mediterranean area.

1 Introduction

At the interface between the European temperate and the
African tropical zones, the Mediterranean area appears to be
very sensitive to even low-amplitude variations in the hydro-
logical cycle. This transitional zone is influenced by tropi-
cal circulation cells within the subtropical anticyclone belt
and associated aridity, as well as by the mid-latitude west-
erlies and cyclogenesis (Tzedakis et al., 2009). This results
in a marked precipitation seasonality that is crucial for both
Mediterranean ecosystems and societies. Climate change
projections over the Mediterranean show a pronounced de-
crease in precipitation and an increase in temperature es-
pecially during the summer season (Giorgi and Lionello,
2008), with considerable impact on water resources and con-
sequently on biodiversity and human activities. Thus, there
is an urgent need for a deeper understanding of past climatic
changes and their associated palaeohydrological variations in
the Mediterranean area.

Over the last two decades, using various proxies and strate-
gies, several studies have attempted to reconstruct palaeo-
hydrological variations in the Mediterranean area over the
entire Holocene. A first synthesis was proposed in 1993 by
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Fig. 1. Holocene changes in lake-level status and humidity in the
Mediterranean as reconstructed by Harrison and Digerfeldt (1993)
(upper three diagrams) and Jalut et al. (2009). The date of Sapro-
pel 1 deposition in the Mediterranean was taken from Mercone et
al. (2000). LC: Lake Cerin; LSP: Lake Saint-Point. TR: Tunisian
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Harrison and Digerfeldt on the basis of lake-level fluctua-
tions. Using a compilation of various proxy data from the
literature, they reconstructed changes in lake status (high, in-
termediate, low) at 1000 yr intervals (Fig. 1). All together,
in this study the Holocene appears to be characterised by
two successive periods before and after ca. 6000 cal BP, i.e.
the first more humid than the second. Regarding the early
Holocene, the authors also pointed out an apparent opposi-
tion between relatively dry conditions in the eastern Mediter-
ranean and greater moisture availability in the west. This
general pattern was interpreted as a response to orbitally-
driven changes in insolation.

More recently, on the basis of a comparison of vari-
ous palaeoenvironmental (terrestrial and marine) data (e.g.
lake levels, fluvial activity, pollen records, Mediterranean
sea-water temperature and salinity, marine sedimentation),
Jalut et al. (2000) have proposed that, in the entire circum-
Mediterranean area, the Holocene can be divided into three
periods: a lower humid Holocene (11 500–7000 cal BP), a
transition phase (7000–5000 cal BP), and an upper Holocene
(5500 cal BP–present) characterised by an aridification. In
contrast to the multiproxy approach by Jalut et al. (2000),
Roberts et al. (2008) endeavoured to establish a syn-
thetic picture of the Holocene climate and hydrology in

the Mediterranean using a single proxy, i.e. stable iso-
topic records from lakes. They concluded that, in the early
Holocene, many east Mediterranean lakes were more de-
pleted isotopically than in recent millennia. This coincides
with marine sapropel formation, both chronologically and
geographically, and implies an increase in regional rainfall
responsible for lower isotopic values in lakes and marine
anoxia. In contrast, isotope records from western Mediter-
ranean lakes do not show such a pattern, suggesting a pos-
sible NW–SE bipolar contrast in climate history across the
Mediterranean during the Holocene. In more recent synthe-
ses of the mid-Holocene climatic transition in the Mediter-
ranean, Roberts et al. (2011, 2012) observed that both model
output and proxy data suggest an east–west division in
the Mediterranean climate history. Regarding the western
Mediterranean, they also noted that early Holocene changes
in precipitation were smaller in magnitude and less coher-
ent spatially, and that rainfall reached a maximum during the
mid-Holocene, around 6000–3000 cal BP, before declining to
present-day values.

Other recent studies are also of interest within the scope
of the present paper. A comparison of hydrological records
led Magny et al. (2003) to propose, as a working hypothesis,
that mid-latitudes between ca. 50◦ and 43◦ N underwent wet-
ter conditions in response to centennial-scale climate cooling
phases, whereas northern and southern Europe were marked
by shifts to drier climate. In this general hydrological tri-
partition of Europe, the latitudinal amplitude of the middle
zone could have varied in relation to the thermal gradient be-
tween the high and low latitudes. Later, Giraudi et al. (2011)
and Zanchetta et al. (2012) showed the key significance
of the palaeohydrological oscillation around 4000 cal BP in
the general climatic trajectory of the Holocene in the cen-
tral Mediterranean region. In addition to these palaeohydro-
logical studies, a thorough review by Tzedakis (2007) has
pointed out the increasingly complex climatic scenarios in-
voked by authors to reconcile apparently conflicting data
and interpretations. Among seven ambiguities in the Mediter-
ranean palaeoenvironmental narratives produced by the liter-
ature, he specifically questioned the notion of an accentuated
summer rain regime in the northern Mediterranean border-
lands during the boreal insolation maximum.

To contribute to a better understanding of Holocene
palaeohydrological changes in the Mediterranean area, this
study presents a tentative synthesis of data recently col-
lected in the central Mediterranean. This study forms part
of a collaborative effort by LAMA (“Holocene changes
in environment and climate, and histories of human soci-
eties in central Mediterranean as reflected byLakes and
Marines records”) working group members to establish well-
dated high-resolution records for the Holocene in the cen-
tral Mediterranean using both lacustrine and marine sedi-
ment archives. Study sites were strategically chosen along a
north–south transect favoured by the geographical morphol-
ogy of the Italian peninsula (Fig. 2). The investigations were
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developed using an integrated multi-proxy approach, based
on a range of biotic and abiotic indicators. In this paper, af-
ter methodological preliminaries (Sect. 2), we first establish
a synthesis of Holocene palaeohydrological changes as re-
flected by various proxies in the central Mediterranean. This
synthesis considers both millennial and centennial scales and
aims to identify regionally coherent patterns of changes in
this region with north–south palaeohydrological contrasts
(Sect. 3). Using a comparison with records established in ad-
jacent and more distant areas from North Africa to Scandi-
navia, we then discuss the possible climatic significance of
these palaeohydrological oscillations in terms of forcing fac-
tors and general patterns of atmospheric circulation (Sect. 4).

As a final note regarding scope, this synthesis paper does
not have the ambition of carrying out an exhaustive review
and interpretation of all the palaeohydrological data avail-
able in the literature for the Mediterranean Holocene. More
reasonably, it aims at offering a synthesis of data collected in
the central Mediterranean on the basis of a specific strategy, a
multi-proxy approach, as far as possible homogeneous meth-
ods, and a comparison between strategically selected records
from both neighbouring and more distant regions.

2 Methodological preliminaries

Some preliminary remarks will be helpful to better outline
the methods and strategy behind the project LAMA. In addi-
tion to instrumental and historical data collected for the past
recent centuries, various proxy data have been used to recon-
struct and/or infer palaeohydrological changes which have

punctuated the Holocene in the Mediterranean area, i.e. flu-
vial activity and alluvial sedimentation (e.g. Miramont et al.,
2000; Giraudi, 2005a), lake-level fluctuations (e.g. Harrison
and Digerfeldt, 1993; Giraudi, 1998, 2004; Magny et al.,
2007), glacier variations (e.g. Orombelli and Mason, 1997;
Giraudi 2005b), isotope studies from speleothems (e.g. Frisia
et al., 2006; Drysdale et al., 2006; Zanchetta et al., 2007b),
and lake sediments (e.g. Baroni et al., 2006; Zanchetta et al.,
2007a; Roberts et al., 2008). Pollen data offer additional sup-
port for such reconstructions using (1) taxa considered as in-
dicators of more or less humid conditions (e.g. de Beaulieu et
al., 2005), (2) ratio between taxa to infer the establishment of
present-day Mediterranean climatic conditions (Jalut et al.,
2000) or the development of drier conditions less favourable
to the expansion of the Mediterranean forests (e.g. Fletcher
et al., 2013), and (3) quantitative approaches to estimate var-
ious climatic parameters (e.g. Davis et al., 2003; Kotthoff et
al., 2008; Peyron et al., 2011).

Roberts et al. (2011) distinguished between primary and
secondary climate proxies. While primary proxies provide
records which can be unambiguously attributed to climatic
forcing, secondary ones, such as pollen, geomorphological
evidence of river incision, alluviation and fire regimes, pro-
duce records which may reflect either climatic changes or hu-
man activity, or a combination of the two, without excluding
additional factors such as ecological dynamics. Thus, among
primary proxies, lake and cave isotopes are assumed to of-
fer one way to shed light on the causes of Holocene changes
in the Mediterranean landscapes. The remarks by Roberts et
al. (2011) call attention to the difficulties in disentangling
natural and anthropogenic factors in the Mediterranean re-
gion where the human impact associated with the expan-
sion of Neolithic societies appears to have come particu-
larly early. However, as explained by Zanchetta et al. (2007b)
and Develle et al. (2010), while being less sensitive to hu-
man impact than pollen or charcoal, isotop records offer a
complex picture of past climatic conditions, given that they
reflect changes in the isotopic composition of water result-
ing from complex interactions between the so-called source-,
amount-, and temperature effects. In addition, apparent con-
tradictions, on a regional scale, between isotope records
and other palaeoclimatic data such as lake-level and glacial
records (Baroni et al., 2006; Magny et al., 2007; Sarikaya et
al., 2008; Roberts et al., 2008; Develle et al., 2010; Wagner
et al., 2010; Milner et al., 2012) suggest an impact of sea-
sonal conditions, the reconstruction of which also appears to
be a central point for a better understanding of the Holocene
trajectories of Mediterranean ecosystems and societies.

Consequently, the strategy and methods used for the
present study may be summarised as follows:

– The study sites have been chosen along a north–south
transect in the central Mediterranean to better capture
possible influences of a latitudinal gradient. Thus, the
project LAMA includes the sediment sequences from
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Lakes Ledro in Trentino, northern Italy, Accesa in Tus-
cany, central Italy, Trifoglietti in Calabria, southern
Italy, Preola and Pergusa in Sicily, as well as the two
marine cores MD90-917 in the southern Adriatic Sea
and MD04-2797 in the Siculo-Tunisian strait (Fig. 2).

– The approach is based on an integrated multi-proxy
analysis with the aim of reconstructing precipitation
seasonality by independent but complementary means.
Thus, regarding the palaeohydrological changes, which
are the main topic of this paper, their reconstructions
are mainly based on lake-level fluctuations and pollen-
based quantitative estimates of climatic parameters, ac-
cording to specific techniques described in detail and
validated elsewhere (Overpeck et al., 1985; Guiot, 1990;
Magny, 1992, 1998, 2004, 2006; Peyron et al., 2011).
While the modern analogue technique (MAT) allows
seasonal precipitation to be inferred from pollen data,
the lake-level records established from variations in
lithology and carbonate concretion assemblages are as-
sumed to be mainly representative of summer moisture
conditions (Magny, 1992; Magny et al., 2012c). How-
ever, the palaeohydrological signal given by the lake-
level records probably also includes an influence of the
winter rainfall which may result in reinforced water vol-
ume in the lake basins before the summer dryness. This
is supported by correlations between changes in lake
level and NAO (North Atlantic Oscillation) indice over
the last millennium (Magny et al., 2011c). Micro- or
macro-charcoal and pollen data offer additional support
for identifying drought periods favourable to increased
frequency of fires as well as to forest declines or the
expansion of dry-tolerant plants (Vannière et al., 2008,
2011; Desprat et al., 2013; Combourieu Nebout et al.,
2009, 2013). In addition, in the case of Lake Ledro, sed-
imentological analyses of deep cores enabled us to es-
tablish a flood frequency record (Vannière et al., 2013).

– The approach is also based on the production of high-
resolution records to capture not only millennial trends
of past environmental and climatic changes, but also
centennial-scale events and possible abrupt changes.

– This is coupled with strong efforts to establish a robust
chronology, which is a prerequisite for inter-regional
correlations between records. Moreover, special atten-
tion has been paid to the identification of tephras,
which support precise long-distance correlations be-
tween palaeoclimatic records (Zanchetta et al., 2012).

Before concluding the methodological preliminaries, it is
worth noting the relative confusion which often characterises
the terminology used for the subdivision of the Holocene
in the Mediterranean area. Various terms are used from
early/late to lower/upper Holocene. While the most frequent
usage is a tripartite division of the Holocene (early, mid or

middle, and late), the literature reveals that this distinction
refers to various meanings both in terms of chronology and
palaeoclimate/palaeoenvironment. Thus, “early Holocene”
may correspond to the period’s very beginning phase, or also
include its maximum humidity phase, in contrast to “late
Holocene” characterised by drier climate conditions as soon
as they initiated, for instance ca. 7000–6000 cal BP, or when
they have already sufficiently developed, i.e. after ca. 5000–
4000 cal BP. The term “ late Holocene ” may also refer to
a period characterised by an increasing human impact on
the vegetation cover, in contrast to the early Holocene char-
acterised by absent or limited human imprint. The two us-
ages of term may converge chronologically but also show
differences that depend on the region considered. Walker et
al. (2012) have proposed formalising the tri-partition division
of the Holocene by reference to the 8.2 ka and the 4.2 ka cli-
matic events. Below, we will discuss how the data presented
in this paper may help to test how well this new formal sub-
division coincides (or not) with palaeoclimate records avail-
able for the central Mediterranean. So as to avoid any confu-
sion, in this paper we will use the terms “early part”, “mid-
dle/mid part” and “late part of the Holocene” to refer to time
intervals different from those precisely defined by Walker et
al. (2012). When used, the terms of “early Holocene”, “mid-
dle/mid Holocene” and “late Holocene” systematically refer
to the intervals 11 700–8200, 8200–4200 and 4200–0 cal BP
defined by Walker et al. (2012).

3 Contrasting patterns of Holocene palaeohydrological
changes in the central Mediterranean: a tentative
synthesis

3.1 Millennial trends

We chose four lake-level records along a north–south transect
from the Jura Mountains in west-central Europe (north of the
Alps) to the south-central Mediterranean to exemplify the
changes along a latitudinal gradient (Fig. 3). These records
have been established from littoral cores using the same sedi-
mentological approach, making the comparison easier. Lakes
Ledro in northern Italy and Saint-Point in the Jura Moun-
tains offer for comparison two additional palaeohydrologi-
cal records established from deep cores: (1) that from Lake
Ledro shows variations in flood frequency in general agree-
ment with the pattern of lake-level fluctuations reconstructed
from littoral cores in Lake Ledro (Magny et al., 2012b;
Vannìere et al., 2013), and (2) that from Lake Saint-Point
presents palaeohydrological variations based on the estima-
tion of detrital inputs into the lake using the ratio authigenic
carbonate deposits/silicate input that reflects the hydrological
activity of the lake inlets (Magny et al., 2013). In addition,
Fig. 3 shows oxygen-isotope data and pollen- and sediment-
inferred lake-level data from Lake Pergusa (Zanchetta et al.,
2007a, b; Sadori and Narcisi, 2001; Sadori et al., 2008), as
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well as oxygen-isotope data from Corchia Cave (Zanchetta
et al., 2007b).

Considered as a whole, Fig. 3 gives clear, overall evidence
of two opposing patterns in the central Mediterranean, with
a middle part of the Holocene characterised by (1) a minimal
wetness at Ledro and Accesa to the north, and (2) a maximal
humidity at Lake Preola to the south. The direct comparison
of the Lake Saint-Point and Preola records (Fig. 3h) gives
a more striking illustration of the opposition between the
Holocene palaeohydrological patterns that characterise two
distinct zones, north and south of ca. 40◦ N. Specific char-
acteristics of the outlet area of Lake Ledro probably explain
the generally low lake level prevailing from the early to the
mid-Holocene (Magny et al., 2012b).

As illustrated by Fig. 4, such an opposition is fully sup-
ported by the differences between the patterns of fire activity
reconstructed for the western Mediterranean by Vannière et
al. (2011), with a maximum (minimum) fire frequency dur-
ing the middle part of the Holocene to the north (south) of
ca. 40◦ N.

Regarding the chronology, the lake-level records presented
in Fig. 3 lead to a definition of three successive phases within
the Holocene as follows:

– Taken together, north of ca. 40◦ N, the lake-level records
of Accesa, Ledro and Cerin (Jura Mountains; Fig. 2)
suggest a distinction of two humid periods before ca.
9000 cal BP and after ca. 4500 cal BP. They were char-
acterised by relatively wet summer conditions, and sep-
arated by a middle phase marked by drier summer con-
ditions. The Ledro and the Accesa lake-level records
show strong similarities with the Lake Cerin record
north of the Alps in west-central Europe. This general
palaeohydrological subdivision is close to that estab-
lished by Moreno et al. (2011) at Lake Enol in northern
Spain (ca. 41◦ N).

– South of ca. 40◦ N, the Preola lake-level record gives
evidence of very dry summer conditions during the
early part of the Holocene, with an absence of the
lake until ca. 10300 cal BP, more humid conditions be-
tween ca. 10300 and 4500 cal BP, and an increase in
summer dryness (in addition to a possible decrease in
winter precipitation) after ca. 4500 cal BP. In addition,
wide lake-level fluctuations characterise two transition
phases ca. 10 300–9000 and 6400–4500 cal BP. This
pattern is consistent (1) with oxygen-isotope data and
lake-level changes inferred from sedimentological and
pollen data at Lake Pergusa in Sicily (Fig. 3g; Zanchetta
et al., 2007a, b; Sadori and Narcisi 2001; Sadori et al.,
2008), and (2) with the maximum discharge of the Sele
River in southern Italy (ca. 40◦ N) between 10 800 and
6900 cal BP, reconstructed from a marine core in the
Gulf of Salerno (Naimo et al., 2005).

Due to the absence of carbonate lake marl (metamorphic
rocks in the catchment area), the sediment sequence of Lake
Trifoglietti in Calabria did not allow a similar sedimentolog-
ical method to reconstruct past Holocene lake-level changes
in southern Italy. Nevertheless, variations in the water depth
in the lake basin have been reconstructed using pollen data,
i.e. a specific ratio between hygrophilous and terrestrial taxa
(Joannin et al., 2013) (see Fig. 5). The results suggest rela-
tively shallow water before 11 000 cal BP, a maximum water
depth between 11 000 and 6500 cal BP (deep water between
11 000 and 9000 cal BP, intermediate water depth between
9000 and 6500 cal BP), and a decreasing water depth after
6500 cal BP. While the Lake Trifoglietti water-depth record
partly reflects the progressive infilling and the overgrowth of
this small lake basin, the general pattern shown by Lake Tri-
foglietti appears to be in general agreement with a humidity
maximum during the middle part of the Holocene in south-
ern Italy (Naimo et al., 2005) and shows similarities with
the Lake Dojran record in the Balkan region (Francke et al.,
2013).

While some differences for the palaeohydrological transi-
tion chronology appear between the early and middle parts of
the Holocene, all the records presented in Fig. 3 clearly show
the key importance of the oscillation around 4500 cal BP
in initiating relatively abrupt changes towards more humid
(drier) summer conditions north (south) of ca. 40◦ N. How-
ever, it is worth noting that the Preola record also shows that
a trend towards lowering began as early as ca. 6500 cal BP,
in good agreement with the record of Lake Trifoglietti (see
Fig. 5).

3.2 Centennial-scale events

A series of successive centennial-scale events punctuated the
entire Holocene (Figs. 3 and 5). Regarding the north-central
Mediterranean, the Ledro and Accesa lake-level records ben-
efit from a robust chronology: that of Accesa is based on
43 radiocarbon dates and four tephra layers (Magny et al.,
2007), and that of Ledro is based on 51 radiocarbon dates
(Magny et al., 2012b). On both sites, the study of several lit-
toral cores made it possible to well constrain the magnitude
and chronology of the lake-level fluctuations.

Keeping in mind the age uncertainties inherent in ra-
diocarbon dating, the centennial-scale events evidenced at
Accesa and Ledro offer a consistent pattern not only on
the regional scale of the north-central Mediterranean, but
also in comparison to the west-central European record es-
tablished north of the Alps (Magny, 2013). Thus, all to-
gether, these records display phases of increasing humidity
around 10 200, 9300, 8200, 7300, 6200, 5700–5300, 4800,
4400–3800, 3300, 2700–2300, 1700, 1200 and 300 cal BP.
Regarding the 11 500–11 000 cal BP interval, differences ap-
pear with a more complex pattern of lake-level variations
at Ledro and Accesa (a lowstand bracketed between high-
stand episodes; Figs. 3 and 5). Instead, the west-central
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European lakes show a major lake-level highstand around
11 350–11 100 cal BP (Magny, 2013). In general, the phases
of higher lake-level conditions in west-central Europe have
been shown to coincide with cooling events in the North

Atlantic area (Bond et al., 2001; Magny, 1999, 2004, 2006,
2013).

In the south-central Mediterranean, it seems more diffi-
cult to define a series of centennial-scale events from Lake
Preola. Although the two cores (LPA and LPBC) studied
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at Preola display a general agreement for the millennial
trends and the abrupt fall in lake level around 4500 cal BP,
they show discrepancies in the details for the period after
4500 cal BP due to possible influence of overgrowth pro-
cess (Magny et al., 2011b). Regarding the period before
4500 cal BP, the littoral core LPA gives evidence of major
lowstands at around 10 100, 9500, 8500–8200, 7500, 6400–
6000, and 5500–5000 cal BP. Core LPBC taken in the centre
of the lake basin gives nearly similar results except for the
lowstand dated to 8900–8600 instead of 8500–8200 cal BP
in core LPA (Magny et al., 2011b).

To enlarge the documentation for the south-central
Mediterranean, Fig. 5 presents pollen data obtained from ma-
rine core MD04-2797 in the Siculo-Tunisian strait (Desprat
et al., 2013). In close agreement with the palaeohydrologi-
cal pattern given by the Preola lake-level record, the general
background is characterised first by a dominance of steppic
taxa (dry climatic conditions), followed by an extension of
temperate trees and shrubs between 10 100 and 6600 cal BP
(wetter conditions), and finally by a development of Mediter-
ranean plants from ca. 6600 cal BP onwards (increasing dry-
ness). Superimposed on this general background supported
by mineralogical and geochemical analyses of core MD04-
2797 (Bout-Roumazeilles et al., 2013), recurrent episodes
of Mediterranean forest reduction or changes in the herba-
ceous layer such as an increase in semi-desert plants (indi-
cator of dryness) and/or a decrease in Cyperaceae (indicator
of humidity), which are synchronous with alkenone-inferred
cooling phases, give evidence of successive dry centennial-
scale events marked by cooler and drier climatic conditions
at ca. 11 300, 10 100, 9300, 8200, 7000, 6200, 5500 and
4200 cal BP (Fig. 5). This series of centennial-scale events
finds an equivalent in episodes of forest declines recon-
structed from core MD90-917 in the southern Adriatic Sea
(Combourieu Nebout et al., 2013).

This suggests that, in response to centennial-scale cool-
ing events, drier climatic conditions developed in the south-
central Mediterranean, while an opposite pattern prevailed in
the north-central Mediterranean with wetter climatic condi-
tions. As illustrated in Fig. 5, the water-depth record of Tri-
foglietti (ca. 39◦ N) supports these conclusions with phases
of shallower water around 5500 and 4000 cal BP. As dis-
cussed by Joannin et al. (2013), if we take into account the
radiocarbon age uncertainty (standard deviation), the low-
ering which developed between 2500 and 1800 cal BP may
be equivalent to the well-known phase identified around
2700–2500 cal BP at the Subboreal–Subatlantic transition
(van Geel et al., 1996). Another relevant interpretation, if we
consider the relatively northern latitudinal location of Lake
Trifoglietti at more than 39◦ N, may be to infer a possible
slight migration south to 40◦ N of the boundary between the
north- and the south-central Mediterranean sectors charac-
terised by contrasting palaeohydrological patterns.

Farther in the western Mediterranean, but still south of
40◦ N, pollen data from sites of Siles in southeastern Spain

(ca. 38◦ N) reveal successive desiccation episodes ca. 9300,
8400, 5200, 4100, 2900, 1900, 600–300 cal BP, in general
agreement with data obtained at similar latitudes in the south-
central Mediterranean except for phases around 2900 and
1900 cal BP (Carríon, 2002). A pollen record from marine
core MD95-2043 in the Alboran Sea, at the extremity of the
western Mediterranean around 36◦ N (Fletcher et al., 2013)
displays a series of successive episodes of forest decline
as shown by Fig. 5. It is noteworthy that no dry event ap-
pears around 4000 cal BP in the MD95-2043 pollen record,
in contrast to core MD04-2797, but the temporal resolu-
tion of the record around this time interval is relatively
poor. Using a smoothed curve of Mediterranean forest taxa,
Fletcher et al. (2013) proposed to synchronise the forest de-
cline episodes with phases of mid-European lake-level high-
stands during the interval 10 500–7000 cal BP, and to the
contrary, with phases of mid-European lake-level lowstands
for the interval 7000–1000 cal BP. However, Magny (2013)
has shown how the mid-European record of lake-level high-
stands is more representative of past palaeohydrological
changes in the European mid-latitudes and should preferably
be used as being reference for the lake-level changes in west-
central Europe, whereas a reference limited to lowstands may
be a source of confusion and mistakes. Moreover, as dis-
cussed in detail below (see Sect. 4.3), the comparison of the
MD95-2043 record with data from adjacent areas (Carrión,
2002; Combourieu Nebout et al., 2009) suggests a possibly
more complex interpretation, likely due to a fluctuating limit
between the southern and the northern palaeohydrological
Mediterranean sectors.

Though human impact may have provoked vegetation
change in the late Holocene, the two successive peaks of
Mediterranean tree taxa, dated to ca. 2700 and 2300 cal BP
in the MD95-2043 pollen record, reflect wetter climatic
conditions (Fletcher et al., 2013), in good agreement with
the Siles record in which a more humid interval devel-
oped between two desiccation phases dated to ca. 2900 and
1900 cal BP (Carríon, 2002). This suggests a migration south
to 40◦ N of the boundary between the opposing north and
south Mediterranean hydrological sectors at the edge of the
western Mediterranean around 2500 cal BP. The same inter-
pretation does not appear to be pertinent to high values of
Mediterranean tree taxa around 4400–3800 cal BP since the
hypothesis of a migration of the boundary between northern
and southern Mediterranean hydrological sectors southwards
to ca. 36◦ N is inconsistent with the dry conditions recon-
structed at Siles (ca. 38◦ N) for the same period. This sug-
gests that new records with higher temporal resolution are
needed for a better understanding of climatic conditions in
this region around 4400–3800 cal BP. Later, during the Little
Ice Age (LIA), this boundary may have been located north of
ca. 38◦ N in southern Spain as suggested by dry conditions at
Siles (Carríon, 2002).
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3.3 Contrasting patterns of precipitation seasonality
between the north- and the south-central
Mediterranean

As discussed in Sect. 3.1., lake-level and fire event data pro-
vide robust and consistent records to shed light on the sum-
mer moisture availability. When not determined by anthro-
pogenic activities, fire frequency depends on the duration
and intensity of the dry season (Pausas, 2004; Vannière et
al., 2011), while the main proxies used for lake-level recon-
struction in this study are characteristic of the warm season
(Magny, 2006). The fire records shown in Fig. 4 confirm
the contrasting patterns between the north- and the south-
western Mediterranean for the mid-Holocene (Vannière et
al., 2011), with higher frequency of fires to the north (sum-
mer dryness) and less frequent fires to the south (more hu-
mid summers). The fire record of Lake Eski Acigöl in central
Turkey at ca. 38◦ N (Turner et al., 2008) fully supports this
general pattern with minimum fire frequency between 9000
and 7000 cal BP.

Quantitative estimates inferred from pollen data offer use-
ful complementary data (indirect proxy following Roberts
et al., 2011) to reconstruct the precipitation seasonality
in the central Mediterranean. Figure 4 presents quantita-
tive estimates of winter and summer precipitation for the
Holocene in the north- and the south-central Mediterranean
using MAT from pollen data of Lakes Accesa (Peyron et
al., 2011) and Pergusa (Sadori and Narcisi, 2001; Magny
et al., 2012c). First, the values obtained for the summer
precipitation show general trends in good agreement with
the lake-level records, i.e. they support the assumption that
the south-central Mediterranean underwent a phase of max-
imum summer wetness between ca. 10 500 and 4500 cal BP,
while the north-central Mediterranean was marked by a max-
imal summer dryness between ca. 9500 and 4500 cal BP.
Regarding the winter season, pollen-inferred estimates sug-
gest that both the northern and the southern areas under-
went a precipitation maximum during the middle part of
the Holocene, and more particularly during the interval
10 000/9500–7500/7000 cal BP, i.e. broadly during the depo-
sition of Sapropel 1 (Mercone et al., 2000). The quantitative
estimates show that the summer precipitation was more af-
fected by the climate drying than the annual and the win-
ter precipitation. Thus, the mid- to late Holocene transition
corresponds to a mean lowering by ca. 10–8 % for annual
and winter precipitation whereas the decrease in wetness
reaches more than 30 % in summer. This progressively leads
to a stronger seasonal contrast in precipitation, typical of the
current Mediterranean climate of the région (Magny et al.,
2012c). Comparisons with climatic data obtained in north-
ern Greece in the Boras mountains (Lawson et al., 2005) and
from Tenaghi Philippon in northern Greece (Peyron et al.,
2011) as well as marine cores in the Aegean Sea suggest that
the climate trends and the north–south contrasts observed in

the central Mediterranean show strong similarities with those
identified in the Balkans (Peyron et al., 2013).

According to Magny et al. (2007, 2011b, 2012c), such
a combination of differences and similarities between the
north- and the south-central Mediterranean during the middle
part of the Holocene, depending on the season under consid-
eration, may explain the apparent conflict between palaeo-
climatic records, depending on the proxy used for the re-
constructions. For example, the stable isotope record from
a speleothem of Corchia Cave in north-central Italy reveals
enhanced rainfall between ca. 8900 and 7300 cal BP, which
probably reflects an increase in the winter precipitation orig-
inating from the North Atlantic Ocean (Zanchetta et al.,
2007b). All together, these data also support the discussion
by Tzedakis (2007) who (1) questioned the notion of an ac-
centuated summer rain regime in the northern Mediterranean
borderlands contributing to a freshening of the Mediter-
ranean Sea during the boreal insolation maxima, and (2) hy-
pothesised a summer aridity at that time. Such a contrasting
seasonality in the Mediterranean during the Holocene inter-
glacial has recently been reconstructed for the Eemian in-
terglacial by Milner et al. (2012). To sum up, in addition to
the monsoon-related enhanced Nile discharge (Revel et al.,
2010), the deposition of Sapropel 1 has been favoured by an
increase (1) in winter precipitation in the northern Mediter-
ranean borderlands, and (2) in winter and summer precipita-
tion in the southern Mediterranean area.

Moreover, reference to contrasting patterns of precipita-
tion seasonality reconstructed for the central Mediterranean
has shed new light on the Holocene development and vege-
tation trajectories in the western Mediterranean. Palaeoecol-
ogists have proposed various hypotheses about the possible
factors driving the increase in broadleaf evergreen vegeta-
tion during the Holocene, i.e. wildfires (e.g. Carcaillet et al.,
1997), human impact (e.g. Lang, 1994), or summer drought
(Jalut et al., 2000). As discussed by Colombaroli et al. (2009)
for the central Mediterranean, analyses suggest that the ex-
pansion ofQuercus ilex developed as a response to contrast-
ing hydrological conditions in the north.Quercus ilex ex-
panded as early as 8500 cal BP at Accesa and replaced decid-
uous forests when the climatic conditions became drier. This
is well illustrated by synchronousQ. ilex peaks and lake-level
lowstands at Accesa (Magny et al., 2007). In the south, it be-
gan to expand only at 7000 cal BP at Preola (Tinner et al.,
2009; Cal̀o et al., 2012) and Biviere di Gela in low-elevated
coastal areas of southern Sicily, but as early as 9000 cal BP
at the higher elevation site of Pergusa (Sadori and Narcisi,
2001), where it replaced maquis or steppe vegetation when
climatic conditions became moister. In addition, precipita-
tion seasonality may help to explain synchronous expansion
of taxa with apparent opposite requirements in humidity.
Thus, the contemporaneous maxima ofAbies andQ. ilex at
Accesa in the mid-Holocene may be explained by a combi-
nation of maximal (minimal) winter (summer) humidity.
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3.4 Climato- and tephro-stratigraphies

Several lacustrine and marine sediment sequences stud-
ied within the LAMA project have revealed tephra layers
(Figs. 3 and 5) which offer the opportunity to better constrain
correlations between palaeoclimatic/palaeohydrological- and
tephro-stratigraphies. Inter-regional correlations between
records on a centennial scale are often limited due to chrono-
logical uncertainties linked to inaccuracies inherent in the ra-
diocarbon dating (calibration time-window, marine reservoir
effect) (Zanchetta et al., 2011). In this general context, tephra
layers offer key time-marker horizons to physically correlate
different records. From this point of view, the sediment se-
quence of Lake Accesa and that of core MD90-917 provide
important contributions to establishing possible correlations
between climato- and tephro-stratigraphies as set out below.

Three tephra layers have been identified in the Holocene
sediment sequence of core AC03-04 of Lake Accesa (Magny
et al., 2007, 2009; Fig. 3):

– The Agnano–Monte Spina (AMST) and the Avellino
(AVT) tephras, from the Phlegrean Fields and from the
Vesuvius respectively, offer key horizons for the be-
ginning of the Neoglacial in the central Mediterranean
around 4500–3800 cal BP. As summarised by Zanchetta
et al. (2012), major environmental changes, such as rise
in lake level at Accesa and glacier advance in the Gran
Sasso Massif (central Italy), occurred just after the de-
position of the AMST and predate that of the AVT.
Moreover, a second distinct layer (Pr1) corresponding to
the end phase of the Avellino event (interplinian events
AP2–AP4; Wulf et al., 2004; Rolandi et al., 1998) was
deposited during a short-lived lowstand between the two
successive high lake-level phases which characterise the
starting Neoglacial at Lake Accesa (Magny et al., 2007,
2009).

At Lake Preola, core LPBC gives evidence of a tephra
layer dated ca. 7300 cal BP from the age-depth model
(Magny et al., 2011b). It corresponds to an eruption
from Pantelleria Island and was deposited during a max-
imal dryness phase marked by a lake-level lowering and
an accumulation of eolian sand (Fig. 3).

In core MD90-917, Siani et al. (2010, 2013) have iden-
tified several tephras of interest for correlation between
tephro- and climato-stratigraphies (Fig. 5).

– The Palinuro tephra from Seamount Palinuro was de-
posited just at the Younger Dryas/Holocene transition
(Siani et al., 2006). It is dated 9990± 90 14C yr BP (i.e.
ca. 11 460 cal BP).

– The E1 tephra (Paterne et al., 1998; Fontugne et al.,
1989) is correlated with the Gabellotto-Fiumebianco
eruption from the Lipari Islands. It marks the top of the
interval S1a, just before the interruption of Sapropel 1

deposition that corresponds to the 8.2 ka event in the
Mediterranean.

– In agreement with the terrestrial records from Central
Italy (Zanchetta et al., 2012), the AMST predates the be-
ginning of a cooling event that developed around 4300–
3800 cal BP, while the Astroni tephra from the Phle-
grean Fields marks its final part.

Further to the east, in the Balkan region, the Mercato tephra
constrains the age of the 8.2 cooling event (Aufgebauer et
al., 2012; Vogel et al., 2010; Wagner et al., 2009), while the
FL tephra constrains the age of a dry and cold period around
4000 cal yr BP at Lake Ohrid (Wagner et al., 2009, 2012;
Vogel et al., 2010), and the AD472/512 tephra constrains the
onset of the MWP at lakes Ohrid and Prespa (Aufgebauer et
al., 2012; Wagner et al., 2009, 2012; Vogel et al., 2010).

4 Forcing factors and past atmospheric circulation
patterns

4.1 Preliminary remarks

As noted by Tzedakis (2007), the wealth of palaeoenviron-
mental/palaeoclimatic data collected from the Mediterranean
area has led to increasingly complex (sometimes conflicting)
scenarios which reflect the possible complexity of climatic
mechanisms that have operated in a region at the interface
between high- and low-latitude influences as well as between
western (North Atlantic Ocean) and eastern (Eurasia, Indian
Ocean) interactions.

Given that the Mediterranean region is located at the tran-
sition between the temperate and tropical zones, it is in-
fluenced by the dynamics of both the tropical circulation
cells and the mid-latitude westerlies. Today, the mechanisms
which control the marked seasonal precipitation contrasts
in the Mediterranean area offer a possible modern analogue
for palaeoclimatic studies (Tzedakis et al., 2009). While the
northward migration of the Intertropical Convergence Zone
(ITCZ) across the Equator determines the development of the
rainy season in the Tropics (monsoonal systems) in the boreal
summer, it brings the Mediterranean under the influence of
the subtropical anticyclone belt and, as a result, widespread
aridity. In contrast, its southward migration in winter al-
lows the influences of mid-latitude westerlies to penetrate
the Mediterranean basin. This also results in a north–south
humidity gradient in the Mediterranean with the dry summer
season lasting less (more) than five months north (south) of
ca. 40◦ N (Quézel and Medail, 2003).

Geographical characteristics may reinforce this general
complexity. The Mediterranean Basin is composed of two
distinct basins separated by the Italian Peninsula and Sicily,
with a western basin located at more northerly latitudes
between ca. 45◦and 35◦ N and closer to the influences of
the North Atlantic Ocean, and an eastern basin located at
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more southerly latitudes between ca. 40◦and 30◦ N, farther
away from the North Atlantic Ocean but more exposed to
influences from continental Europe such as the Siberian
High (Rohling et al., 2002; Pross et al., 2009), or to possi-
ble interactions with the African and south Asian monsoon
(Staubwasser and Weiss, 2006).

The Mediterranean area is also affected by atmospheric
circulation patterns responsible for regionally contrasting hy-
drological conditions. Many studies have demonstrated that
the North Atlantic Oscillation (NAO) coupled with the Arc-
tic Oscillation (AO) is the most prominent mode of variabil-
ity of the North Atlantic and Mediterranean region winter
climate (e.g. Hurrell, 1995; Wanner et al., 2001; Xoplaki,
2002). In winter, the atmospheric circulation in this area is
characterised by a strong north–south pressure contrast (ex-
pressed by the NAO index) between the Icelandic low and
the Azores high. This pressure gradient drives the strength
of the westerly flow bringing more (positive NAO) or less
(negative NAO) mild moist air to north-western Europe. Re-
garding the Mediterranean area, the NAO provokes marked
regional hydrological contrasts. Thus, under positive NAO,
the Mediterranean northern borderlands experience dry con-
ditions when the southern Mediterranean benefits from in-
creasing precipitation like in north-western Europe (see be-
low) (Marshall et al., 2001; D̈unkeloh and Jacobeit, 2003).
Opposite contrasts develop under negative NAO conditions.
It is worth noting that the boundary between the two opposite
hydrological sectors of the Mediterranean may be affected
by latitudinal fluctuations. Thus, in recent times, depending
on the reference period considered, northern Morocco and
the region of the Gibraltar Strait to the west, and southern
Turkey to the east, may or may not both be included in the
northern Mediterranean sector (Marshall et al., 2001; Lamy
et al., 2006; Lionello et al., 2006). As noted by Dünkeloh
and Jacobeit (2003), the so-called Mediterranean Oscilla-
tion (MO), associated with similar hydrological contrasts be-
tween north-western and south-eastern Mediterranean sec-
tors, must not be seen as independent large-scale circulation
modes since they correlate significantly with the Northern
Hemisphere modes of the AO/NAO, and may be considered
as the Mediterranean expression of the NAO in terms of pre-
cipitation variability.

In addition to the NAO, various (secondary) circulation
patterns acting over the Mediterranean area (such as the
East Atlantic–West Russian and North Sea–Caspian patterns)
have been identified by means of recent time series of mete-
orological data (e.g. Xoplaki, 2002). Interestingly, Dünkeloh
and Jacobeit (2003) have established maps of precipitation
anomalies associated in the Mediterranean Basin to main
circulation patterns distinguished for the period 1948–1998.
These maps reveal the complex hydrological patchworks
which may result on regional scale from these different at-
mospheric circulation patterns. This may be a source of addi-
tional difficulties in identifying regionally coherent patterns
from palaeoclimatic data.

A further complexity originates from changes which affect
boundary conditions during the Holocene interglacial. This
includes orbitally-driven changes in insolation and its sea-
sonal as well as interhemispheric distribution (Berger, 1978;
Berger and Loutre, 1991; Wanner et al., 2011). The inso-
lation maximum coincided with a northward migration of
ITCZ and a reinforcement of the African and Indian mon-
soons (Tzedakis et al., 2009; Revel et al., 2010; Fleitmann
et al., 2007), as well as a prevailing positive mode of the
NAO (Gladstone et al., 2005; Davis and Brewer, 2009; Dyck
et al., 2010). The deglaciation is also responsible for sub-
stantial changes in the boundary conditions with the suc-
cessive disappearance of the Fennoscandian and Laurentide
ice sheets around 9500–9000 and 7500–7000 cal BP respec-
tively (Lundqvist and Saarnisto, 1995; Renssen et al., 2009;
Carlson et al., 2008). At a centennial scale, rapid deglaciation
freshwater outbursts were still associated during the early
Holocene with successive abrupt cold events in the North At-
lantic area, such as the well-known 8.2 ka event (Alley et al.,
1997).

Last (but not least), a final difficulty may be seen in
the wide variety of proxies used for the establishment of
palaeoenvironmental/palaeoclimatic records from both ma-
rine and terrestrial cores in the Mediterranean basin. This
leads to a plethora of palaeodata which theoretically may
favour the reconstruction of various (seasonal) aspects of past
changes in environmental/climatic conditions. But this also
may be responsible for difficulties in cross-correlations be-
tween records due to differences in the signal recorded by
proxies (or in their sensitivity threshold), resulting in pos-
sible leads and lags between proxies and apparently in no
synchronous changes in the records.

Taking into account the main features and the complexity
which characterise the Holocene in the Mediterranean area,
Figs. 6, 7, 8 and 9 present a comparison of selected records to
place the Mediterranean in a more general context and help
to identify possible key factors, on both millennial and cen-
tennial scales, responsible for hydrological changes in this
area over the last 11 700 yr.

4.2 Millennial trends

To place the palaeohydrological records from the Mediter-
ranean in a large-scale context, they may be compared with
selected records from northern Africa to northern Europe, as
illustrated by Figs. 6 and 7. In Fig. 6, the lake-level records
from Preola, Accesa and Cerin have been reconstructed by
Magny et al. (2007, 2011a, b). The record established at
Jostedalsbreen by Nesje et al. (2000) displays variations in
precipitation in western Norway, while the annual precipita-
tion record at Lake Svanåvatnet (northern Norway) has been
produced by Bjune and Birks (2008) using pollen-inferred
quantitative estimates. Finally, the upper panel of Fig. 6
shows records indicating general climatic conditions in the
Finnish Lapland as reflected by (1) the altitude of the highest
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pine megafossil in 200-yr intervals and (2) a chironomid-
inferred temperature record ( Seppä et al., 2008). In Fig. 7,
the Fe record from core MS27PT off the Nile Delta has been
established by Revel et al. (2010) and reflects the sediment
input from the Blue Nile resulting from the African mon-
soon. The lake-level pattern of the northern part of Africa has
been established using various data from the region between
8◦ and 28◦ N (Hoelzmann et al., 1998; Gasse and Roberts,
2004). The Ti record from Lake Tana in Ethiopia has been
established by Marshall et al. (2011) to infer variations in ef-
fective precipitation in the area of the source of the Blue Nile.
The oxygen-isotope record from Soreq Cave gives evidence
of variations in the wetness in the south-eastern Mediter-
ranean (Bar-Matthews et al., 1998). Finally, the Preola lake-
level record has been added in the upper panel of Fig. 7
to facilitate the comparison between the palaeohydrological
records from the south-central and eastern Mediterranean.

Taken together, Figs. 6 and 7 reveal several mean features
as follows.

– The palaeohydrological records show (1) a general
increase in humidity during the middle part of the
Holocene in tropical North Africa, in the south-central
Mediterranean and in Norway, and (2), in contrast, drier
conditions (lake-level minimum) in the north-central
Mediterranean and in west-central Europe.

– Like the lake-level records from Lakes Tanganyika,
Turkana and Chew Bahir in equatorial Africa (Marshall
et al., 2011; Garcin et al., 2012; Foerster et al., 2012),
the MS27PT record off the Nile Delta shows a max-
imum of humidity (monsoon rainfall) as early as the
beginning of the Holocene, which prolongs a strong
Late Glacial Bølling-Allerød increase interrupted by the
dry Younger Dryas event (Revel et al., 2010). In con-
trast, the other palaeohydrological records presented in
Figs. 6 and 7 give evidence of increasing time lags of
the hydrological signal towards northern latitudes, with
a maximum (or a minimum in the north-central Mediter-
ranean and in west-central Europe) of humidity starting
around 10 500 cal BP in North African lakes (in agree-
ment with Ĺezine et al., 2011), at Lake Preola and at
Soreq Cave, around 9000 cal BP at Lakes Accesa and
Cerin, and finally at ca. 7500 cal BP at Jostedalsbreen
and Stan̊avatnet in northern Norway. This suggests a
shortening of the duration of the Holocene climatic op-
timum from the southern to the northern latitudes.

– Regarding the mid- to late Holocene, the palaeohydro-
logical records in Figs. 6 and 7 highlight two phases
of major changes around 8000–7000 cal BP and 4500–
4000 cal BP.

The data presented in Figs. 6 and 7 suggest that palaeohydro-
logical changes reflect a combination of two major forcing
factors, i.e. orbitally-driven insolation and deglaciation:

– According to Davis and Brewer (2009), the maximal
strength of the African monsoon shows a close relation-
ship with the peak of summer insolation near the Equa-
tor in the North African tropics. This is in agreement
with the early maximum of sediment input (i.e. Blue
Nile discharge) observed off the Nile Delta by Revel et
al. (2010) and the early Holocene maximum of humidity
shown by the lake-level records from equatorial Africa
(Marshall et al., 2011; Garcin et al., 2012; Foerster et
al., 2012).

– On the basis of western- and central Mediterranean
records it has been suggested that dry conditions dur-
ing the early Holocene in the (southern) Mediterranean
may have resulted from the strong Hadley cell activ-
ity in response to the orbitally-driven summer insola-
tion maximum (Tinner et al., 2009). This is corrobo-
rated by our new compilation, which shows that dry
conditions prevailed south of ca. 40◦ N during the early
part of the Holocene along a west–east transect in the
Mediterranean (Magny et al., 2011b), as reflected by the
lake-level record of Preola but also by those of Med-
ina in southern Spain (Reed et al., 2001), Xinias in
Greece (Digerfeldt et al., 2007), and Gölhisar in south-
western Turkey (Eastwood et al., 2007), as well as by
the Soreq isotope record (Bar-Matthews et al., 1998).
The latter records show that this explanation may also
be applied to the eastern Mediterranean, which is also
influenced by the Asian monsoon. However, the African
and Asian monsoons are strongly coupled (Fleitmann et
al. 2008) through the Hadley cell activity. Indeed, us-
ing sensitivity experiments trough a General Circulation
Model, Gaetani et al. (2007, 2011) have shown how an
intense African monsoon reinforces the Hadley circula-
tion, and consecutively strengthens the North Atlantic
anticyclone (with a wider extension of the descending
branch of the Hadley cell) and its blocking effect for
the western (Atlantic) wet air flow towards the Mediter-
ranean. This interpretation is supported by data obtained
from marine core ODP site 658 C off Mauritania, which
shows the effects of the declining summer insolation
maximum as early as ca. 10 000 cal BP at ca. 20◦ N in
the eastern North Atlantic area (deMenocal et al., 2000;
Berger and Loutre, 1991). Links between a strong mon-
soon system and an increased summer dryness are also
supported by recent observations for the last two mil-
lennia in the eastern Mediterranean (Jones et al., 2006).
It is worth noting that even the North African lake-
level record (Hoelzmann et al., 1998; Damnati, 2000;
Gasse and Roberts, 2004; Lézine et al., 2011) shows
such a slightly delayed humidity maximum as do the
Preola and Soreq records. In addition, model experi-
ments have shown how the presence of remnant ice
sheets (with associated fresh water input into the North
Atlantic Ocean and lake drainage episodes) may have
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Fig. 8. Positive NAO-like palaeohydrological/palaeoclimatic pat-
tern during the Holocene climatic optimum as suggested by milder
(black letters) and wetter (blue letters) versus drier (red letters) cli-
matic conditions around the Mediterranean Basin and in Western
Europe. (A) Lake Accesa in central Italy (Magny et al., 2007); Al:
core MD95-2043 in Alboran Sea (Fletcher et al., 2013); (B) Boras
Mountains in northern Greece (Lawson et al., 2005); (C) Lake Cerin
(Magny et al., 2011a); EA: Lake Eski Acigöl in central Turkey
(Turner et al., 2008); FL: Finnish Lapland (Seppä et al., 2008); Go:
Lake G̈olhisar in south-western Turkey (Eastwood et al., 2007); J:
Jostedalsbreen in western Norway (Nesje et al., 2000); JB: Jebel
Gharbi in north-western Libya (Giraudi et al., 2012); L: Lake Ledro
in northern Italy (Magny et al., 2012b); LE: Lake Enol in northern
Spain (Moreno et al., 2011); LT: Lake Toskaljavri, Finland (Seppä
et al., 2008); M: Lake Medina in southern Spain (Reed et al., 2007);
P: Lake Pergusa in Sicily (Magny et al., 2011b); Pr: Lake Pre-
ola in Sicily (Magny et al., 2011b); S: Lake Svanåvatnet, north-
ern Norway (Bjune and Birks, 2008); Si: Siles in southern Spain
(Carrión, 2002); So: Soreq Cave in southern Israel (Bar-Matthews
et al., 1998); Sr: Sele River in southern Italy (Naimo et al., 2005);
ST: core MD04-2797 in the Siculo-Tunisian strait (Desprat et al.,
2013); T: central Tunisian rivers (Ziehlhofer and Faust, 2008); TP:
Tenaghi Philippon in northern Greece (Kotthoff et al., 2008); X:
Lake Xinias in northern Greece (Digerfeldt et al., 2007). (Dotted)
arrow indicates westerlies in positive (negative) NAO-type circula-
tion in response to weaker (stronger) LTG. The present day areas
affected by increasing (decreasing) humidity in response to positive
(negative) NAO are represented by dark (light) grey zones (from
Lamy et al., 2006; Marshall et al., 2001).

been responsible for a southward shift of the monsoon
rain belt, as discussed by Lézine et al. (2011) regard-
ing Holocene palaeohydrological records from the Sa-
hara and Sahel, and provoked dry conditions during the
early part of the Holocene. Such an evolution of com-
bined orbital and ice-sheet forcing may have favoured
the general delay of the forest expansion observed in the
pollen records from Trifoglietti (Joannin et al., 2013),

core MD04-2797 in the Siculo-Tunisian Strait (Desprat
et al., 2013; Bout-Roumazeilles et al., 2013) and core
MD95-2043 in the Alboran Sea (Fletcher et al., 2013),
as well as in the eastern Mediterranean region (Roberts
et al., 2001; Valsecchi et al., 2012), with west–east and
north–south gradients probably due to an increasing dis-
tance from the North Atlantic Ocean and from the north-
ern mid-latitude westerlies.

– As discussed above in Sect. 3, contrasting hydrologi-
cal patterns have been identified in the central Mediter-
ranean south and north of 40◦ N. Interestingly, Davis
and Brewer (2009) have shown that at the mid-Holocene
the latitude around 40◦ N also corresponds to a tem-
perature limit with negative temperature anomalies (cli-
mate cooling) to the south and positive values to the
north. This may have favoured a positive water balance
to the south and a negative one to the north, in agree-
ment with the lake-level records presented in Fig. 3.
Furthermore, the final steps of the deglaciation in a gen-
eral context of high insolation provoked a decrease in
the latitudinal temperature gradient (LTG) (not directly
in phase with the maximum insolation), and favoured
the installation of a positive NAO-type circulation in the
North Atlantic area (Davis and Brewer, 2009). Thus, the
initiation of the lake-level minimum at Lakes Accesa
and Cerin around 9000 cal BP coincided with the dis-
appearance of the Fennoscandian ice sheet (Magny et
al., 2011a) and a first installation of a general atmo-
spheric circulation, which mimics a positive NAO-type
circulation (Gladstone et al., 2005; Wanner et al., 2008;
Dyck et al., 2010). In the south-central Mediterranean,
the wide amplitude of the lake-level fluctuations dur-
ing the unstable transition period 10 300–9000 cal BP
(see above, Sect. 3.1) may reflect a diminished influ-
ence of the Fennoscandian deglaciation period. Finally,
the second major step of the deglaciation, with a rapid
melting of the Laurentide ice sheet (LIS) between 8000
and 7000 cal BP, punctuated by a marked increase in
sea-level rise around 7600 cal BP (Carlson et al., 2008),
led to the expansion of a predominant positive NAO-
type circulation towards higher latitudes (weaker LTG;
Davis and Brewer, 2009). This resulted in warm/humid
air advection into northern Europe (northward move-
ment of westerlies), as reflected by the increasing hu-
midity observed in western Norway and the rapid tree-
line rise in Finnish Lapland around 7500 cal BP (Fig. 6;
Bjune and Birks, 2008; Nesje et al., 2000; Seppä et al.,
2008). On the basis of palaeoclimatic data, the map
in Fig. 8 presents an illustration of the possibly pre-
vailing positive NAO-type circulation over Europe and
the Mediterranean and its contrasting palaeohydrologi-
cal pattern for the middle part of the Holocene. While
a decrease in the LTG favoured a northward migration
of westerlies which brought milder and wetter climate
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conditions over northern Europe, the development of
more humid conditions in the Mediterranean during the
middle part of the Holocene may have resulted from
(1) orbital conditions, i.e. decreased summer insola-
tion and reduced blocking effect of the North Atlantic
anticyclone for the western (Atlantic) wet air flow to-
wards the Mediterranean; (2) the development of lows
induced by stronger sea–land temperature contrasts in
winter along the relief of the northern and southern
Mediterranean coastlines (Trigo et al., 2002; Harding et
al., 2009); (3) sub-Saharan cyclones over the western-
central Mediterranean (Knippertz, 2005) favoured by
a more northerly position of ITCZ during the insola-
tion maximum, as well as rainstorms originating from
the Tropics over the eastern Mediterranean (Ziv et al.,
2005); and (4) a substantial increase in precipitation
in response to generally higher sea-surface temperature
(SST) (Marchal et al., 2002).

However, the prevailing positive NAO-type circulation dur-
ing the middle part of the Holocene remains a matter of
debate. The winter mid-latitude circulation and associated
storms reaching Europe may have been determined by a com-
plex interplay between the mid-latitude temperature gradient,
the tropical convection and the surface contrast at the North
American East coast, which have varied along the Holocene
due to changes in insolation and ice-sheet extent (Brayshaw
et al., 2011). In particular, in order to explain an increased
winter precipitation during the 10000-7000 cal BP interval,
Desprat et al. (2013) pointed to a possible southern location
of the mid-latitudes jet, strengthening the Mediterranean cy-
clogenesis, in agreement with model simulations in response
to a weaker boreal winter insolation (Brayshaw et al., 2011)
and to a rapid LIS melting associated with a suppression of
the deep convection in the Labrador Sea and a cooling the
eastern North Atlantic (Carlson et al., 2008).

– After ca. 7500 cal BP, the LTG began to increase (Davis
and Brewer, 2009) and favoured (1) both the southward
migration of the ITCZ and monsoon system, in agree-
ment with the Cariaco record (Haug et al., 2001); and
(2) that of the westerlies. However, the records pre-
sented in Figs. 6 and 7 suggest that, in response to
the progressive decline in insolation and LTG, the cli-
mate reversal may have been characterised by abrupt
climatic changes. As early as ca. 7500 cal BP, a major
climate reversal occurred, as suggested (1) to the south
by an abrupt fall in the Nile discharge (Revel et al.,
2010; Fig. 7f), and a peak in the eolian dust record of
Kilimanjaro due to enhanced aridity (Thompson et al.,
2002); and (2) to the north by the development of colder
SST in the Norwegian Sea (Fronval and Jansen, 1996)
and the beginning of a drying trend at Jostedalsbreen in
western Norway (Nesje et al., 2000; Fig. 6, panel e).
In the southern Mediterranean, the lake-level records
from Preola in Sicily, Medina in Spain, and Xinias

in Greece, as well as the oxygen-isotope record from
Gölhisar in Turkey, show a marked negative anomaly
around 7500 cal BP followed by a general decline in
humidity after ca. 6000 cal BP (see Fig. 10 in Magny
et al., 2011b). In addition, the Preola sediment se-
quence gives evidence of a provisional resumption of
eolian sand deposition during the dry phase around
7300 cal BP (Fig. 7b), while the Soreq Cave record
marks an abrupt fall in wetness after ca. 7500 cal BP.
However, the comparison of the Preola and North
African lake-level records (Fig. 7f) suggests that the
African lakes were more affected by the climatic oscil-
lation around 7500 cal BP than the Mediterranean ones,
while they show nearly synchronous rises in water ta-
ble around 10 500 cal BP. In the northern Mediterranean
(Lake Accesa) and in west-central Europe (Lake Cerin),
the period around 7500 cal BP coincided with the be-
ginning of a trend toward higher lake-level conditions,
while marine core MD90-917 in the southern Adriatic
Sea shows a marked decline in salinity around 7500–
7000 cal BP probably due to increased discharge from
the Po River in northern Italy (Combourieu Nebout et
al., 2013; Siani et al., 2013).

The event around 7500–7000 cal BP could be a non-
linear response of the climate system to the grad-
ual decrease in insolation. The period around 8000–
7000 cal BP appears to be synchronous with a prolonged
period of decrease in residual atmospheric14C devel-
oped between ca. 8200 and 7200 cal BP (Stuiver et al.,
1998). This interval also coincided with a major final
step of the deglaciation, as pointed out by Törnqvist
and Hijma (2012), with the glacial lakes of Labrador-
Ungava outburst events (Jansson and Kleman, 2004).
Thus, the large magnitude of the event around 7500–
7000 cal BP may have resulted from a combination of
three factors, i.e. the orbital forcing (decline in the sum-
mer insolation), the final deglaciation, and a change in
solar activity.

– The records presented in Figs. 6 and 7 point to a sec-
ond major event around 4500–4000 cal BP, which marks
another key step in the climate reversal following the
Holocene climate optimum. It may be considered as the
end of the general dominance of positive NAO-type cir-
culation, as suggested by the end of the humid inter-
val in western Norway (Bjune and Birks, 2008), with
the marked decline in temperature and in timberline
in northern Scandinavia (Fig. 6; Seppä et al., 2008),
i.e. all indicators of a southward migration of west-
erlies and their associated influence for mild/wet cli-
matic conditions. To the south, in Northern Africa, the
interval 4500–4000 cal BP coincided with a major fall
in temperature in the Kilimanjaro region (Schmiedl et
al., 2010), and corresponded to the most salient event
(double peak) in the Holocene eolian dust record of
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Kilimanjaro (Thompson et al., 2002), and to the end of
the high lake-level period in the North African lakes
(Hoelzmann et al., 1998; Gasse and Roberts, 2004;
Kröpelin et al., 2008). In the southern Mediterranean, an
abrupt decrease in wetness at Lake Preola and at Soreq
Cave developed south of 40◦ N. In the northern Mediter-
ranean and in west-central Europe, Lakes Accesa and
Cerin show an accentuated rise in lake level. Such an
abrupt change in environmental and climatic conditions
around 4500 cal BP has been reconstructed in central
Italy (Zanchetta et al., 2012; Ramrath et al., 1999), at
Lake Maliq (Magny et al., 2009; Fouache et al., 2010)
and at Lakes Prespa and Dojran (Wagner et al., 2010;
Francke et al., 2013) in the Balkans. As observed for
the climate reversal at ca. 7500–7000 cal BP, this sec-
ond major climate reversal around 4500–4000 cal BP,
which marks the transition between the middle and late
Holocene (Walker et al., 2012), may be a non-linear re-
sponse to a gradual decrease in insolation (Zhao et al.,
2010) and LTG. It is worth noting that it also coincided
with a key period of seasonal and interhemispheric
changes in insolation (Fig. 7) and with a reorganisa-
tion of the general atmospheric circulation underlined
by a pronounced southward shift of ITCZ in the Trop-
ics (Haug et al., 2001; Magny et al., 2012b). Marchant
and Hooghiemstra (2004) and Booth et al. (2005) have
shown how this severe climatic anomaly may have been
global in extent. In the northern Mediterranean, the ris-
ing lake levels probably reflect the increasing influence
of westerlies, and instead of drier conditions developed
in the southern Mediterranean and the Tropics in re-
sponse to climate cooling, i.e. lower sea-surface tem-
perature and weaker evaporation (Magny et al., 2003;
Mayewski et al., 2004).

4.3 Centennial-scale events

According to Davis and Brewer (2009), the LTG controls
the location of the main climate zones, as well as the po-
sition of the Hadley cell and the ITCZ. Every year, the
Hadley cell moves northwards (southwards) in summer (win-
ter) when the LTG is weak (strong). These annual migra-
tions offer modern analogues for mechanisms associated
with high-latitude Holocene cooling events and their conse-
quences in terms of wetter (drier) conditions in the subtrop-
ics and in northern latitudes when the systems migrate north-
wards (southwards). In addition to the effects of the system
migrations, cooling events also favour a decrease in wetness
in southern latitudes due to lower sea-surface temperature
and weaker evaporation.

It is well known that the early Holocene has been punc-
tuated by a series of freshwater outbursts from deglacial
lakes in northern Europe and in North America, resulting
in successive cooling events in the North Atlantic area at
ca. 11 300 (Preboreal oscillation), 10 200, 9200, 8200 and

7500–7000 cal BP (Alley et al., 1997; Björck et al., 1997,
2001; Fleitmann et al., 2008; Magny et al., 2001; Magny and
Bégeot, 2004; Jansson and Kleman, 2004; Yu et al., 2010).
Authors have also shown how these events may have been as-
sociated with cooling in the North Atlantic and have resulted
from a possible combination of freshwater outbursts and de-
crease in solar activity (Magny, 1999, 2004, 2006; Bond et
al., 2001; Bj̈orck et al., 2001; van der Plicht et al., 2004;
Magny and B́egeot, 2004). Palaeohydrological data collected
in Europe suggest that the cooling events have coincided at
mid-latitudes with wetter climate conditions in response to
an increasing strength of the Atlantic westerly jet (increasing
LTG), while latitudes south of ca. 40◦ N experienced drier
climate conditions (Magny et al., 2003). The cold and dry
conditions associated with the interruption of Sapropel 1 dur-
ing the 8.2 ka event offer a well-known illustration for these
mechanisms (Kotthoff et al., 2008; Pross et al., 2009).

Previous studies have revealed possible imprints of
deglacial cooling events in the western and central Mediter-
ranean from marine and terrestrial (lacustrine) cores (e.g.
Cacho et al., 2001; Asioli et al., 2001; Magny et al., 2006a;
Fletcher et al., 2010). Data collected within the LAMA
project clearly show how these cooling events in the central
Mediterranean corresponded to wetter conditions marked by
higher lake levels to the north of ca. 40◦ N and to drier con-
ditions to the south. The drier conditions south of ca. 40◦ N
are marked by a retreat of forest taxa in core MD04-2097 at
ca. 11 300, 10 100, 9300, 8200, and 7000 cal BP (Desprat et
al., 2013) (Fig. 5), in good agreement with phases of forest
retreat identified from core MD95-2043 in the Alboran Sea
(Fletcher et al., 2013).

Regarding the mid- to late Holocene period, Fig. 9
presents a comparison between selected records around the
Mediterranean (Fig. 9, upper panel) to test the hypothe-
sis of a possible impact of NAO-type circulation in driv-
ing centennial-scale climatic events, as proposed by Lamy
et al. (2006). Lake-level records present phases of higher
water table (wetter conditions) reconstructed in west-central
Europe and in the north-central Mediterranean (Magny,
2013; Magny et al., 2007, 2012b). Records from cores
GeoB7622 and GeoB5804-4 have been established by Lamy
et al. (2006). Core GeoB7622 in the south-western Black
Sea off the Sakarya River mouth gives evidence of vari-
ations in the frequency of clay layers which reflect vari-
ations in rainfall in northern Anatolia. Core GeoB5804-
4 in the Gulf of Aqaba (northern extremity of the Red
Sea) provides a record of terrigenous sand accumulation
as a marker of the eolian input (dryness) from neighbour-
ing deserts. Cores GA-112/GA110 off southern Israel have
been studied by Schilman et al. (2001) and give evidence
of Nile flood fluctuations on the basis of variations in east-
ern Mediterranean productivity over the last 3500 yr. Three
pollen records (1) from marine cores MD04-2797 in the
Siculo-Tunisian strait (Desprat et al., 2013), (2) MD95-2043
in the Alboran Sea (Fletcher et al., 2013), and (3) from Lake
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Siles in southern Spain (Carrión, 2002) document drought
phases in the south-central and south-western Mediterranean.
Finally, Fig. 9 shows a series of dry events identified in Cen-
tral Tunisia from major peaks in fluvial activity linked to a
decrease in vegetation cover (Zielhofer and Faust, 2008).

The general picture which emerges from Fig. 9 is that of
a succession of centennial-scale climatic oscillations which
punctuated the mid- to late Holocene period in the Mediter-
ranean and are associated with contrasting hydrological pat-
terns characteristic of NAO-type circulation, as first hypoth-
esised by Lamy et al. (2006). Thus, within the radiocarbon
age uncertainty, phases of increasing wetness in the north-
central Mediterranean and in northern Anatolia appear to be
broadly synchronous with phases of increasing dryness in the
southern Mediterranean borderlands and reduced Nile flood
frequencies. Taken together, these data show a regional pat-
tern coherent with that of the negative phase of NAO. Despite
the relatively weak temporal resolution of core MD95-2043
for the late Holocene, this general pattern is supported by
the well-dated high-resolution record of Siles, near the Alb-
oran Sea. Davis and Brewer (2009) have shown close rela-
tionships between winter LTG across Europe and AO dur-
ing the 20th century, with positive (negative) AO-type cir-
culation linked to weaker (stronger) LTG. This is consistent
with Wanner et al. (2001) and Trouet et al. (2009), which
show that during negative NAO phases, the Azores high is
weakened, resulting in a southward move of westerlies and
an increase in moisture transported over the European mid-
latitudes. This is supported by the reconstruction of Holocene
storm activity in the north-western Mediterranean (Sabatier
et al., 2012), in addition to a 200 yr time series of recent
Po River discharges, which confirms the link between neg-
ative NAO, higher Po discharge and stronger precipitation
in northern Italy (Zanchettin et al., 2008). These results, hy-
pothesising a possible major impact of NAO (MO) on the
Holocene climate in the Mediterranean, support interpreta-
tions from previous studies of the climate oscillation around
4500–4000 cal BP in the central Mediterranean (Magny et
al., 2009) or concerning the last millennium in the Mediter-
ranean (Roberts et al., 2011). This points out similar mech-
anisms such as those described for millennial trends (see
above, preceding Sect. 4.2), with cooling events responsi-
ble (1) for wetter conditions over the northern Mediterranean
more affected by a southward migration of westerlies due
to a stronger LTG, and (2) for drier conditions in the south-
ern Mediterranean and the Tropics in response to cooler sea-
surface temperature and weaker evaporation (Magny et al.,
2003; Mayewski et al., 2004).

Moreover, on the basis of spectral analyses, Lamy et
al. (2006) have suggested that the marine records from cores
GeoB7622 and GeoB5804-4 show a likely solar origin for the
AO-NAO like atmospheric variability in the Mediterranean
during the mid- to late Holocene. This is supported by corre-
lations identified between (1) phases of high lake-level (or in-
creasing flood frequency) in the north-central Mediterranean

and west-central Europe, (2) IRD events in the North Atlantic
Ocean, and (3) peaks in atmospheric residual14C (Bond et
al., 2001; Magny, 1999, 2013; Magny et al., 2003, 2007,
2012b; Vannìere et al., 2013). Such a relationship is consis-
tent with model studies (Shindell et al., 2001). All together,
in agreement with Lamy et al. (2006), this suggests a promi-
nent role of NAO-type circulation and solar forcing in the
centennial-scale climate variability in the Mediterranean area
during the last seven millennia.

In addition, data presented in Fig. 9 suggest possible lat-
itudinal changes in the limit between the contrasting hydro-
logical sectors in the Mediterranean in response to chang-
ing NAO. Thus, during the LIA, fluvial data from Tunisian
rivers (Zielhofer and Faust, 2008) and pollen data from the
Spanish site of Siles (Carrión, 2002) suggest drier condi-
tions, though pollen data from Pergusa in Sicily (Sadori et al.,
2013) give evidence of more humid conditions. During the
interval 2700–2300 cal BP, the regions of southern Spain and
the Alboran Sea may have been included in the northern hy-
drological sector characterised by more humid conditions in
response to negative NAO as shown by the records from Siles
and marine core MD95-2043. This is supported by pollen-
inferred quantitative estimates at Pergusa, Sicily (Sadori et
al., 2013) and by the Trifoglietti water-depth record dis-
cussed above in Sect. 3.2 (Joannin et al., 2013b), while, in
contrast, the Tunisian area belongs to the southern hydrolog-
ical sector marked by drier conditions (Zielhofer and Faust,
2008). Taken together, available data suggest a southward
migration of the limit between the northern and the south-
ern hydrological sectors during the intervals 2700–2300 and
500–200 cal BP (i.e. the LIA) in the central Mediterranean.

Looking at the climate oscillation pattern, the double
peaks that appear around 2500 cal BP in cores GeoB5804-
4, MD95-2043 and GeoB7622 may find an equivalent in
the two successive lake-level highstands identified in west-
central Europe during this interval (Magny, 2004, 2013).
The possible complexity of the oscillation around 4300–
3700 cal BP, well illustrated by the lake-level records of
Lakes Ledro and Accesa and of west-central Europe (Magny
et al., 2009, 2012a), is also supported by the records from
Lake Dojran (Francke et al., 2013) core GeoB7622 in the
Black Sea and core GeoB5804-4 in the Red Sea (Lamy
et al., 2006), and by a double peak of eolian dust in the
Kilimanjaro record (Thompson et al., 2002). However, the
pollen data from Siles and core MD95-2043 appear to be
conflicting (dryness at Siles and higher humidity in the
Alboran Sea region). The lake-level records from Ledro,
Accesa and west-central Europe (Magny et al., 2006b) re-
veal a possible complexity of the oscillation around 5700–
5200 cal BP with three successive events. The pollen- and
sediment-records from cores MD04-2797 and GeoB5804-4
also show a possible tripartite pattern but, in core MD04-
2797, the second retreat of Mediterranean tree taxa and the
second and third sand peaks in core GeoB5804-4 are weakly
marked. Thus, clearly, the schema outlined in Fig. 9 must be
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tested through further investigations to establish additional
high-resolution and well-dated records in selected locations
around the Mediterranean basin.

5 Conclusions

On the basis of a multi-proxy approach and a strategy com-
bining lacustrine and marine records along a north–south
transect, data collected in the central Mediterranean within
the framework of the LAMA project have led to the re-
construction of palaeohydrological records with specific ef-
forts to establish robust chronologies and attain high tempo-
ral resolutions. Several conclusions and working hypotheses
emerge from these investigations as follows.

– Lacustrine and marine sediment sequences studied
within the LAMA project offer a new contribution
to better constrained correlations between tephro- and
palaeohydrological/palaeoclimatic stratigraphies.

– South of ca. 40◦ N, the first millennium of the Holocene
was characterised by very dry climatic conditions, not
only in the eastern Mediterranean, but also in the central
and the western Mediterranean as reflected by low lake
levels and delayed afforestation.

– Contrasting patterns of palaeohydrological changes
have been evidenced in the central Mediterranean: north
(south) of around 40◦ N, the middle part of the Holocene
was characterised by lake-level minima (maxima), dur-
ing an interval dated to ca. 10 300–4500 cal BP to the
south and 9000–4500 cal BP to the north. Available data
suggest that these contrasting palaeohydrological pat-
terns operated during the entire Holocene, both on mil-
lennial and centennial scales.

– The use of a multi-proxy approach supports the recon-
struction of contrasting precipitation seasonality. Thus,
the maximum humidity in the central Mediterranean
during the middle part of the Holocene was charac-
terised by humid winters and dry summers north of ca.
40◦ N, and humid winters and summers south of 40◦ N.
This may explain an apparent conflict between palaeo-
climatic records depending on the proxies used for the
reconstruction, as well as a synchronous expansion of
tree species with contrasting climatic requirements.

Thus, instead of a west–east opposition often proposed by
previous studies, the results obtained within the project
LAMA point to north–south contrasts in the Mediterranean
Basin. From this point of view, the latitudes around 40◦ N
appear to be particularly important but, in the details, the
precise location of this limit between north and south hy-
drological sectors in the Mediterranean area may have fluc-
tuated in time and space. Moreover, the results presented in
this paper suggest that the deposition of Sapropel 1 has been

favoured by an increase (1) in winter precipitation in the
northern Mediterranean borderlands, and (2) in winter and
summer precipitation in the southern Mediterranean area.

– The climate reversal following the Holocene climate op-
timum appears to have been punctuated by two major
climate oscillations around 7500 and 4500 cal BP. In ad-
dition to previous studies about the 4.2 ka event in the
eastern Mediterranean and Tropics, the high-resolution
palaeohydrological reconstructions established within
the project LAMA reveal a pronounced climatic change
around 4500–4000 cal BP in the central Mediterranean,
with contrasting changes in the hydrological cycle
(drought trend to the south, and more humid conditions
to the north). Thus, these new data show the clear cli-
matic (palaeohydrological) significance, for the central
Mediterranean, of the formal distinction between the
middle and the late Holocene proposed by Walker et
al. (2012). However, even if useful, the reference to the
8.2 ka event to distinguish between the early and the
middle Holocene does not find a major climatic sig-
nificance in the central Mediterranean where the max-
imum (minimum) of summer humidity started around
10500 cal BP (9000 cal BP) in the south- (north-) cen-
tral Mediterranean.

– Regarding the possible forcing factors, the palaeohy-
drological changes reconstructed in the central Mediter-
ranean appear to have occurred in response to a com-
bination of orbital, ice-sheet and solar forcing factors.
Considering palaeohydrological records along a latitu-
dinal gradient, increasing time lags are evidenced from
the Tropics to northern Europe, with maximum (or min-
imum) of humidity starting as early as the beginning
of the Holocene in equatorial Africa and not before
7500 cal BP in northern Norway. Within this general
framework, the interval of the humidity maximum in the
south-central Mediterranean started at ca. 10 300 cal BP,
in correlation with the decline of (1) the blocking ef-
fects of the North Atlantic anticyclone linked to the
maximum of summer insolation and (2) the influence
of the remnant ice sheets and fresh water forcing in the
North Atlantic Ocean. Its duration until ca. 4500 cal BP
broadly coincides with that observed for the high lake-
level status of North African lakes between 8◦ and
28◦ N. In the north-central Mediterranean, the interval
of lake-level minimum began only around 9000 cal BP
when the Fennoscandian ice sheet disappeared and a
prevailing positive NAO-type circulation developed in
the North Atlantic area. The major palaeohydrologi-
cal oscillation around 4500–4000 cal BP may be a non-
linear response to the gradual insolation decrease in
addition to key seasonal and interhemispheric changes
in insolation. At a centennial scale, the successive cli-
matic events which punctuated the entire Holocene in
the central Mediterranean coincided with cooling events
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associated with decreases in solar activity and deglacial
outbursts in the North Atlantic area during the inter-
val 11 700–7000 cal BP, and to a possible combination
of NAO-type circulation and solar forcing from ca.
7000 cal BP onwards.

Further investigations are still needed to test the conclusions
proposed in this paper. It is clear that the hypothesis of a pos-
sible influence of a NAO-type circulation operating on a cen-
tennial scale appears to be a relevant way to explain contrast-
ing palaeohydrological patterns in the Mediterranean Basin
as suggested by available data. However, in addition to pos-
sible local effects which bias the climatic signal, the inter-
regional correlations between records and their interpreta-
tion in terms of past atmospheric circulation patterns like
NAO are often hampered by insufficient temporal resolution
and/or chronological controls of the records. These observa-
tions should encourage developing new investigations to es-
tablish additional palaeohydrological/environmental records
based on high-resolution analyses and a robust chronology,
and using a strategy favouring a careful selection of study
sites locations. In particular, future studies should outline
with greater precision, on both millennial and centennial time
scales, changes in the latitudinal location of the limit between
the northern and southern palaeohydrological Mediterranean
sectors, depending (1) on the intensity and/or characteristics
of climatic periods/oscillations (e.g. Holocene thermal maxi-
mum versus Neoglacial, as well as the 8.2 ka event versus the
4 ka event or Little Ice Age), and (2) on varying geographical
conditions from the western to the eastern Mediterranean re-
gions. Finally, on the basis of projects using strategically lo-
cated study sites, there is a need to develop the exploration of
possible influences of other general atmospheric circulation
patterns than NAO, such as the East Atlantic–West Russian
or North Sea–Caspian patterns, in explaining the apparent
complexity of palaeoclimatic (palaeohydrological) Holocene
records from the Mediterranean area.

Acknowledgements. Financial support for this study was provided
by the French ANR within the project LAMA (MSHE Ledoux,
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précipitation changes over the last millennium from pollen and
lake-level data at Lake Joux, Swiss Jura Mountains, Quaternary
Res., 75, 45–54, 2011c.

Magny, M., Arnaud, F., Billaud, Y., and Marguet, A.: Lake-level
fluctuations at Lake Bourget (eastern France) around 4500–3500
cal. a BP and their palaeoclimatic and archaeological implica-
tions, J. Quaternary Sci., 26, 171–177, 2012a.

Magny, M., Joannin, S., Galop, D., Vannière, B., Haas, J. N.,
Bassetti, M., Bellintani, P., Scandolari, R., and Desmet, M.:
Holocene palaeohydrological changes in the northern Mediter-
ranean borderlands as reflected by the lake-level record of Lake
Ledro, northeastern Italy, Quaternary Res., 77, 382–396, 2012b.

Magny, M., Peyron, O., Sadori, L., Ortu, E., Zanchetta, G.,
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