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ABSTRACT

This chapter reviews several computational models of the ontogenetipm@hetic mech-
anisms that contribute to the construction and to the functioning of the shearedrg-motor
circuits in the parieto-motor cortex. The primary role of these shared cirethish include
the so-called mirror neurons system, is found to transform the sensoriautity to deal
with the real-time interaction in the environment. However, many evidences faditat
their role also pervade to social cognition, which makes them particularly tanutoto
study regarding their contributions to infant's motor and social developnWatsuggest
that the special organization of the shared maps in the parieto-motor coatearéhca-
pable to integrate multiple modalities and to avoid timing discrepancies, may present th
characteristics of complex networks. Our simulations comfort the hypottiesigl) the
functional integration realized in those networks may be done by the reerfe@nt learning
mechanism of spike timing-dependent plasticity and that (2) its regulation rgleerenit
to understand the functions that sustain the neural representation ajdhe $elf —, like
self-perception and body representation,— and of inter-subjectivityatken understand-
ing and self-other differenciation. Finally, these computational condidagamay furnish
some arguments for a decentralized (non motor-centric) view of the braam&djeously
organized critically to allow functional integration within these circuits. Besidayg on-
togenetic or epigenetic dysfunctions at one of these different stagid lsave dramatic
consequence to later cognitive development as it is hypothesized tofocautism.

Key Words. spiking neural networks, mirror neurons, sensorimotor integratidihpteer
representatioAMS Subject Classification: 92C42, 92C20, 68T05, 68T40.

INTRODUCTION

This chapter reviews some neural models developed in our laboratorglicate the on-
togenetic and the epigenetic construction of the sensorimotor circuits in tie¢oparotor
lobes. The shared circuits in the monkey and the human’s parietal and me&sr are
formed from reciprocal and anatomical connections that work in parfali¢tansforming
sensorimotor information [Ferrari et al., 2009, Murata and Ishida, RO@Ithough their
primary functions are aimed at interacting in the physical world by procggkim mul-
timodal sensory information about objects into motor commands, modern oeEnmoss
attribute them a far broader role to engage oneself into the social worl@ piihci-
pal evidence comes from the finding by Rizzolatti and colleagues of a plarticlass of
neurons in the monkey F5 motor area, which is firing both when the monkeytese
one actionand when he is observing someone else executing it [Rizzolatti et al., 1996,
Gallese et al., 1996]. The metaphor of a mirroring mechanism between thergeand
motor aparatus for generating one action and for understanding thotteeo$ has been re-
tained to name this special class of neurons found primarily in the motor ciragithan in
the parietal cortex: like the F5 pre-motor area, the ventral intraparield) @rea in the pari-
etal cortex embeds also multimodal neurons that merge signals from visyaligueptive,
auditory and somatopic systems [Sakata et al., 1997, Caggiano et al., 2008%e VIP
neurons are involved in the representation of the space within reacteribefsonal space,
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which encodes a body image at the skin surface aimed at locating the rpladitien of the
body-parts and of the objects nearby in body-centered coordinatemo[&ti et al., 1997].
By extension, these mirror-like neurons describe not only how the bddyatsphysi-
cally in the environment but also how the bodily-self birgtscially with others. These
features of the mirror neurons (MN) have deep implications as they maisfusome
grounds on how higher cognitive skills could have arisen from the hextant of the
body representation itself as it is argued for empathy [Decety and Sommg2@ila,
Decety and Jackson, 2004, Bufalari et al., 2007], “theory of mindig@ssi et al., 2005,
Fujii et al., 2008], the roots of language [Rizzolatti and Arbib, 1998] anehecorporeal
awareness [Keysers and Gazzola, 2006, Rizzolatti and FabbrieD2608]. One chal-
lenge for computational neuroscience is therefore to understand hee Hmared net-
works in the parieto-motor lobes have appeared and how they functiorhtdduthe in-
tersubjective self: how sensory and motor systems permit to represesglbactions and
to derive those of others? How they let oneself to perceive others asrfii'? Re-
versely, how structural dysfunctioning in parietal-motor connectiondiaked to func-
tional impairments as it is hypothesized to occur for autism? This chapter wilkpte
works on the modeling of the functional and structural organization of theormieurons
system [Pitti et al., 2008], its functioning for representating oneself actiml for under-
standing those of others [Pitti et al., 2009a], its possible developmentgdinfiancy for
constructing infant’s agency [Pitti et al., 2009b] and infant’s body im#&ti [et al., 2010].

0.1. mirror neurons systems as complex networks

The neuro-anatomy of the cortical circuits presents some specific fiespirat can permit
us to figure out the neural mechanisms underlying their functioning, the@aement as
well as the causes of their impairing. Conversely, these properties pansefor engi-
neering brain-like networks and to furnish as well some information theatetimsidera-
tions about their overall organization and efficiency [Sporns et al4280orns, 2009]. For
instance, the structural connectivity of the circuits in the parieto-motor lisblesind sur-
prisingly sparse and distributed over large neural populations [Bullmradesaorns, 2009],
although they effectively integrate multimodal signals and support a besagerof cogni-
tive functions [Murata and Ishida, 2007]. At the neuron level, manya@matomical ob-
servations report that the mirror neurons represent a very fewogiop of motor neurons
with respect to the population of “pure motor neurons” that do not firetiomobservation;
mirror neurons represent up16% to 30% of these pure motor neurons which are not multi-
modal. Nonetheless, the small proportion of mirror neurons does ndtigesthe motor cir-
cuits to respond accurately to bodily and environmental events. One mighiewthen how
these networks achieve good responsiveness despite the scarcaynufithr neurons (im-
balanced distribution) and the density of their connections? We suggtttaledficiency of
the MNS to respond so accurately to timely signals comes froritiaal organization of its
neural connectivity with a topology somewhat similar with the neural orgdaizaf a com-
plex network [Sporns, 2010]. Our viewpoint may be supported byntestadies which indi-
cate a hierarchical organization of the motor repertoire [Graziano, 2@86u et al., 2008]
and of the brain regions in general [Bullmore and Sporns, 2009]. Cormglevorks have
been demonstrated to have remarkable information processing capabiligesceerdi-
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Figure 1. Proposed architecture for the functional organization anchthiégmodal inte-
gration in sensorimotor networks and in mirror neurons through Hebbiaforeement
learning mechanism (spike timing-dependent plasticity, STDP). The pargiofanirror
neurons with respect to their incredible ability to integrate multimodal signalsestgythat
the networks on which they rely are organizertically, alike complex networks. Like
the mirror neurons, small-world networks display also high performanoenvdtion pro-
cessing with an organization structured around very scarce but wetlected hub-like
elements.

nated dynamics organized over multiple sub-networseeausethey exhibit efficiently
distributed connections within hierarchical architectures. Certain typesmplex net-
works, like small-world networks for instance, are found also to rely omallsfrac-
tion of hubs which are nodes in the network with a relatively high number of connec-
tions [Watts and Strogatz, 1998, Newman, 2003]. Given that these nehaog also sen-
sitive to timing and that they are ubiquitous in the cerebral cortex, we thinkhkegtare
pertinent models to simulate the functional integration of shared circuits in ttetgpa
motor cortices and that MNs-like circuits may encompass the common chariécseris
of default-brain networks [Bullmore and Sporns, 2009, Newman, 2003jis may pro-
vide some information theoretical arguments to criticisms about the MNS [Din2@08,
Hickok, 2009] and to the traditional motor-centric view of the brain. Trenefrather than
devising about the specific location and the numbers of MN (i.e., where thadd)\ we
may look instead at their connectivity and centrality within the global network iichvh
they belong to (i.e., how well they are connected).

0.2. reinforcement learning of mirror neurons connections

One key to integrating different types of information into a cohesive heemesenta-
tion appears to lie in the encoding of the temporal relationships of cell firingomF
a biological viewpoint, the regulation mechanism responsible for the furatioe-
gration in cortical neurons is the one of Spike Timing-Dependent PlasticifipPS
cf. [Bi and Poo, 1998, Abbott and Nelson, 2000]). Information pssing in distributed
networks is performed with the precise timing due to STDP that reinforces tke dih
the most congruous neurons. Over time, the most congruous neusabpgiegate them-
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selves into coherent neural patterns whereas the less congrucaisi@eee their links.
Keysers first proposed that STDP could shape the specific conityeatid structural orga-
nization of the mirror neurons-like circuits to represent actions with millisecoddr pre-
cision [Keysers and Perrett, 2004]. In line with the learning hypothegiseoMN, we fur-
ther develop that the functional integration in the learnt sensorimotor cisustains then
the neural representation of the body in action [Lestou et al., 2008, IRizz al., 1996].
That is, various perceptual experiences in the environment will moduldtratifly the
levels of integration in the sensorimotor circuits whereas the disrupting ebsearotor
integration will cause perceptual discrepancies. It follows that inteaetith someone
else, understanding his actions or imitating them should reconfigure the MiN8hange
the way it operates: experiences that differ from those typically eriecenhwill re-activate
one subject’s own sensorimotor neurons branching from a diffeezmahpathway whether
the same modalities are available or not [Heyes, 2010]. This biologicallyreasmech-
anism based on reinforcement mechanism may furnish some indicationsvoa $teared
sensorimotor space is constructed to represent others and to engatjeewithMoreover,
it is in line with Gallese’s simulation theory [Gallese, 2005] and Meltzoff’s “Like” the-
ory [Meltzoff, 2007]). It supports furtherly the view that mirror nensomay be not innate
systems, but rather acquired from learned perceptual-motor links deaithgdevelopment
and that MN could have emerged from a mostly unstructured network ofitepspiking
neurons.

0.3. cortico-hippocampal scenario for the development of mirror neurons

Although no one knows where the mirror neurons come from, it is believddtibg are
acquired very early during development to endow infants with the neagesesaial abil-
ities to interact with others [Heyes, 2010]. Meltzoff demonstrated for imstahat new-
borns are capable to imitate facial gestures off-the-shelf which sugpestthe bonding
of human newborns is either innate or acquired from an early imprinting obtuy
image [Meltzoff and Moore, 1977]. He proposes that this mirroring mdshamay be
based on a supramodal representation constructed from intra-uterioelrabbling expe-
riences, which links the facial organs end-states contiguous with eaetsdike tongue-
to-lips, tongue-between-lips, tongue-beyond-lips [Meltzoff, 1997he Buccessful repli-
cating of neonatal imitation in monkeys by Ferrari argues furthermore @®ctmmon-
ality of an early recognition mechanism of self-other equivalences in mamneatd-d
opment which may be based on “mouth mirror neurons” for facial and fivgeac-
tions [Ferrari et al., 2009]. Heyes proposes that this mirroring meamacdsild be based
on the reinforcement learning of sensorimotor contingencies which asstiraevisual
(sensory) representations of action simultaneously seen and exeeuatadélinked to mo-
tor representations (encoding somatosensory information and motor cosimaraligh
Hebbian learning [Brass and Heyes, 2005, Heyes, 2010]. Del Gudid colleagues fur-
therly advance that the associative learning of sensorimotor circuits malyénthe hip-
pocampus since EEG'’s activity investigations on infants aged 2-11 montbsrénealed
an increase of theta synchrony — the natural rhythm of the hippocampuisds$ H z— in
the parietal and premotor lobes during handling and reaching as weltiag ducking and
gazing [Futagi et al., 1998, Del Giudice et al., 2008].
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Figure 2. Proposed framework for sensorimotor learning and basatstewf the parieto-
hippocampal model. The entorhinal region ECII retranscribes the amgéituaigations of
the body signals into a temporal code and the cortical layer learns thdaesgguostural
cells that it binds recurrently with the visual signals via Hebbian learning.

This current proposal has the advantage to agree with the previouthbgEoand with
other developmental theories which attribute also a prominent role to the hippad sys-
tem for cortical development during the first year [McClelland et al., 1888son, 1995].
Considering mammals consolidation learning, it is known for instance that tpedam-
pus stores recent experiences in short-term memory and transfersintetong-term
memory in the cortex for memory consolidation. The infant’'s preferencesnfation
contingency and sensory-motor binding could be explained then by thdiattnsig-
nals coming from this subcortical area. It is known also that the neuroiaodwacetyl-
choline (ACh) in the hippocampus contributes to the generation of the hipypadaheta
rhythm and to cortical development by supporting attention and the learhimgromem-
ories [Hasselmo, 2006]; e.g., for the acquisition of new motor skills. If vekoe that
the para-hippocampal system is an important center for processingl spatizory and
transforming body signals, and that theta-burst stimulation —i.e, mimicking thedapp
pal signals— is found to induce LTD-like plasticity in adult M1 for motor learnargl
retention [Huang et al., 2005], then these observations may suggesigpatampal dy-
namics map or support the long-term spatial representation of the bodyh@ dnpdy im-
age) and the motor repertoire into the cortical sensori-motor networkss, Tihthe same
way the entorhinal cortex transforms one body’s actions and constplate cells” in the
hippocampus for navigation purpose, we propose that the entorhirtakamuld shape
“reaching cells” in the parieto-motor cortices for body-place associatindsnanipulation
tasks [Graziano, 2006, Save and Poucet, 2009].

In the following, we show through simulations that hebbian learning can thideels
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to the emergence of properties that resemble those of the MNS in networkg raaslom
but embodied that is, through perception and action loops [Pfeifer and Bongafi§]20
We organize this chapter as follows. We will present first how one efificieural organiza-
tion can emerge from mostly unstructured neural networks receivingytmwherent inputs
from different modalities with a timely-based reinforcement learning [Pittl.e2A08].
The biologically plausible mechanism of Spike Timing-Dependent Plasticity ouethe
contingency detection between neurons so that robust clusters distrioutng the sen-
sorimotor networks can assemble themselves during embodied interactionsttéttan-
vironment [Pitti et al., 2009a]. The associations between neurons efrdiff modalities
can serve then to predict or to simulate expected signals from other modalitisscan
permit to reactivate one complete action pattern from partial information onky,dik-
ing the observation of one action. We propose that the social featutbe dINs —e.g.,
the perception of oneself body ownership and agency— are also basttese princi-
ples [Pitti et al., 2009b]. Moreover, we hypothesize that they may de¥eaphippocam-
pal learning during early infancy which could structure the long-terniagaemory of the
body in the cortical maps [Pitti et al., 2010]. Any ontogenetic or epigenestueigtions in
one of these patrticular stages could have then some dramatic conseqitelader motor
and cognitive skills learning as it is hypothesized to occur for autism.

RESULTS

1. Neural structure anatomy

The remarkable properties of the mirror neurons to fire either to actiorierperd or
to actions observed and their attributed roles in social cognition questidoupidly the
classical views on the motor system’s organization. Parallely, the manyrchesaand
reviews done on the monkey MNS, its recent observation in the humanusesys-
tem [Keysers and Gazzola, 2010, Mukamel et al., 2010] as well asgheants addressed
lately [Hickok and Hauser, 2010, Rizzolatti and Sinigaglia, 2010] permiréssian over-
all good picture of its characteristics and functionalities. Nonethelesssfemown about
its underlying neural mechanisms and its functional organization, althougi computa-
tional algorithms replicating its functions have been modeled [Oztop et al.].2006

One genuine feature of MN we found worthy to investigate was its timing integra-
tion performance in regard to the rareness of this class of neurons: @ Inyerareness
that the mirror neurons are a relative small portion in comparison with ther|pagsu-
lation of pure motor neurons —10 to 30 percents of motor neurons onlgrgreffective
MN-like visuo-motor congruency, [Dinstein, 2008]— and we mean by timingynatigon
performance or coherency performance that the mirror neurondaimpucan be classified
into two groups either as strictly congruent neurons (30 percents)tmoasly congruent
neurons (60 percents) depending on their responses to the obseamdiexecution of ef-
fective actions [Gallese et al., 1996]; i.e., the congruency to the strict raction or to the
broader goal of the action is translated into a rate code. It is remarkabliésatfeatures
do not compromise their responsiveness either to executed and to ebsetions, even
when the action sequence’s end is occluded. Instead, we suggesisthatcausdhey pos-
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sess those characteristics that they can perform well. We propos#otedtet, in order to
rely on such an asymmetric distribution of neurons, the MNS must be criticgignored as
a complex network [Watts and Strogatz, 1998, Barabasi and Albert, MN€&9man, 2003,
Sporns, 2010]. Efficient neural connectivity may permit to supply ctitiearons (i.e., the
mirror neurons) fulfilling the functional integration in a network.

MN may suggestprima facie that few neurons are necessary to represent actions.
However, such reasoning can only make sense if MN are understodgpa larger net-
work and belonging to many neural clusters merging different modalitieqpréfemse that
each of these clusters may generalize the spatio-temporal structure adtwresequence
and the organization of these clusters could form the motor repertoiredditicam, they
can be organized in a hierarchical manner at different descriptiofslageobservations of
the motor system indicate it [Graziano and Aflalo, 2007, Lestou et al., 2008]can un-
derstand then that these mirror neurons must be efficiently connected thithimetwork
to support timing integration. Reversely, their damages can cause thalaégnaof the
network performance and of its functional integration, which is considene hypothesis
of the cause for autism [Just et al., 2007].

Altogether, these considerations suggest us that, in order to exhibinptizgneural
representations exhibiting the tight links between perception and action, M& s¥iould
follow a complex systems architecture exhibitifiga robust and redundant information
processing relying critically on timdji) one asymmetric density distribution of the neu-
rons connectivity, andii) a hierarchical and distributed representations. Those properties,
summarized in table 1, are also an hallmark of scale-free and small-worldnkst{@WN,
see Fig. 1). These networks have a characteristic nodes connedstitgution which per-
mit an efficient information propagation and synchronization at diffetiems scales (i.e.,
hierarchical and scale-free dynamics). In these networks, the majérnityits possesses
few and short path lengths connections with their neighbors whereas aitynpmssesses
many of them with long path lengths permitting to aggregate distant clusters witltotac
ers. These special neurons represent hub connectors that limkaliexgrlds to each other.
Here, information exchange is particularly fast because of the hiecatarganization that
combine centralization to the hubs and distribution from them, which makes thernketw
robust to fault tolerance [Albert et al., 2000].

1.1. Neural mechanisms

The ability of the MN to bind various modalities exhibits in counterpart their sensiti
ity to timing in order to synchronize the modalities. To this respect, the mechanism of
Spike Timing-Dependent Plasticity (STDP, [Bi and Poo, 1998, Song éG00Q]) that dy-
namically regulates the synaptic plasticity for memory storage almost everyihdre
cerebral networks, is a rather good candidate to organize the MN ctivityeas it has
been suggested by [Keysers and Perrett, 2004]. STDP is basedidimeztibnal mech-
anism of long-term potentiation (LTP) and long-term depression (LTDY) rieadjusts the
synaptic weights to the precise timing interval between the initiating and the targeting
rons [Abbott and Nelson, 2000]. The time delay = t,,s; —t,. between the pre-synaptic
neuron spikingt,. and the post-synaptic neuron firig,s; corresponds to the interval
range of activation of their synaptic plasticity and weight adaptatian see Fig. 3.
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Wpre,post (t + 1) = Wpre,post (t) + Aw

=

Apexp (- At/ry)
—A_exp (—At/T_)

if At <0
if At >0

Table 1. Qualitative and quantitative comparisons between the propertibg ofirror
neuron systems and of small-world networks.

The regulation of the neurons’ weights depends directly on timing. Each tinosta p
synaptic neuron fires, its synaptic weighis,. ,...: are decreased by_ (LTD), and each
time a synapse receives an action potential, its synaptic weight,.; is incremented
by an amountd, (LTP). The equations and the variables values used in our original pa-
pers [Pitti et al., 2009a, Pitti et al., 2009b] are reproduced below:

(1)

(@)



Neural Models for Shared Parieto-Motor Circuits 9

pre. ——tm—>
post — < % A+
LTP
A o7 A+ 67 R
L
0 t
LTD "
a) A-
Longest path

Neuron #1

Neuron #2

Neuron #3

Neuron #4

Time span

b) i | C) "t

Figure 3. Mechanism of STDP. (a) Each time a post-synaptic neuron ifisesynaptic
weights are decreased by, and each time a synapse receives an action potential, its
synaptic weight is incremented by an amount. (b) Based on this mechanism, different
neural pairs can assemble themselves into asynchronous neuromas$ gpolychronized
groups c.f., [Izhikevich, 2006]). (c) Trexriptsdo not only passively detect the contingency
of external stimuli, but also activate new ones, anticipating further resvard

The neurons dynamics of the spiking neuron can be defined with the iteegrd-fire
neuron model proposed by Izhikevich [Izhikevich, 2003]:

=0.0402 + 50+ 140 —u + I
= a(bv — u)

/
v
¢ 3
with v representing the membrane potential of the neuronlifhandu a membrane recov-
ery variable —' andw’ their respective temporal derivatives. The neurons are externally
triggered by the signal and their dynamics are reseted after any spiking

vi-c
u<— u+d.

ifv>4+30mV, then{ 4)
The variables set{a,b,c,d} defines the neurons attributes whether excitatory
(a;b) = (0.02;0.2) and (¢;d) = (—65;8), or inhibitory; (a;b) = (0.02;0.25) and
(¢;d) = (—65;2). Further details in [Izhikevich, 2003, Izhikevich et al., 2004]. The
external current is the weighted sum of all the delayed incoming currgpt from the
presynaptic neurons that fired plus the external signal from one idput € [0, 20)):

I= Z wprelpre + Lot



10 Alexandre Pitti, Yasuo Kuniyoshi

We can envision the neural paifs, j} as contingency detectors which can serve to
encode local temporakripts
if NNifires at tinmet;, thenNN_jfires at tinmet; =t + At.

This mechanism, although simple and local at the neurons level, can gewnenate
complex dynamics as the neural pairs can aggregate themselves into hgegs@atio-
temporal clusters; see, Fig. 3 b), a phenomenon known as polychiionizad by coined
by Izhikevich [Izhikevich et al., 2004, Izhikevich, 2006]. Since thesgpts activate also
new ones in advance on the external signals, they are not pasdigmsythey can predict
and anticipate future rewards, see Fig. 3 c).

In sensorimotor networks, we propose that these spatio-temporal gattaratitute a
repertoire of commands or action primitives, for which the small scripts aréuléing
blocks. Organized properly, the numerous scripts can furnish thelbustrand redundant
information of the sensorimotor coherency at the network level. In oueraxents, the
(mis)match between the external stimuli with these rules will modulate the levehsbse
rimotor coordination and therefore, any perceptual skills associated \eith. th

1.2. Neural dynamics & networks statistics

We analyze the networks statistics for the experiments performed in [Pitti 208Pa,
Pitti et al., 2009b] and presented in section 2. The networks are typicatlif@amly orga-
nized structure of thousands of excitatory and inihibitory neurons witthaieinconnections
in average oB0 synaptic links. The links have variable lengths randomly chosen between
1ms to 20ms delays and equally weighted before learning. Each excitatory neugens r
ceive a unimodal signal from the sensors (visual, somatic) or from thersmoprioce-
tion) whereas the inhibitory neurons, which represent one third of tbiéagory neurons,
are all inter-neurons; that is, they receive indirectly the input signals fthe excitatory
neurons. In this section, we analyze in particular the networks chastictemwith respect
to the neural connectivity and the clusters distribution when the networganation
evolves and changes during learning: the functional integration withitbetveeen the uni-
modal circuits in terms of neural connectivity. The details of the expergeace given in
Section 2.

Network structuring During enactive interaction in the environment — i.e., when the
embedded network is experiencing sensorimotor coordination— the incorgimgssfrom
the sensors combined with the reinforcement mechanism of STDP influegethdo the
spontaneous activity of the neural dynamics so that the contingentreefirimg within
At = 40 ms latency are wiring together. Since temporal congruency is the princip@irfa
for linking the neurons from each other and not their location per se,gtmns can have
either short-range and long-range connections. Therefore, thermsecan form coherent
pairs and clusters associated to the particular sensorimotor experiencgthétmeurons
belonging to the same map or to others with different modalities. The functidegkation
across the modalities is analyzed in Fig. 4 where Fig. 4 a) displays the evobitibe
synaptic weights distribution during the learning stage and Fig. 4 b) desdtileelevel
of segregation and integration between and across the maps. This seeasdre tries
to capture quantitatively how the network organization evolves structuriig level of
specialization inside each netwotk,,;.,, is measured as the number of (strong) synaptic
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Figure 4. Network structuring. Evolution of the network synaptic weightgitigtion.
(a) Histogram of the synaptic weights. The neural network achievesliterganization
by strengthening the most robust neural groups (weights’ val$g, and by deleting the
inaccurate ones (weights’ values 1). (b) Evolution of the variableg;,;-, and I;yer
computed the number of synaptic links between neurons within to same map ngibelo
to different ones.

links between neurons within the same map whereas the level of integratioadretiae
networks, I;:.-, iS measured as the number of (strong) synaptic links between neurons
belonging to different maps. On the one hand, the network level of intidahiiategration,
Lintra, COrresponds to the information exchanged between the neurons ingldoghe
same maps (i.e., the number of synaptic links). On the other hand, the netwalrtflmter-
modal integration/;,:., corresponds to the information exchanged between the neurons
belonging to different maps (i.e., the number of synaptic links).

Before any learning, the uniform distribution of the neurons’ synaptighs with
arbitrary connections between the neurons warrants that the netwogigization is ini-
tially random. During learning, this situation typically changes when the netvemdives
contingent sensorimotor signals (e.g., visuo-somatosensory signals liketinrs2.1. and
Section 2.2. or visuo-motor signals like in Section 2.3. and Section 2.4.). Inttuse,s
STDP synchronizes the neural dynamics that receive signals froaratiff modalities and
starts to structure the network, see Fig. 4 a). The process of specialiaattiin the maps
is observed by the evolution of the variablg;.,, and the one of integratioacrossthe
maps is observed by the evolution of the variahlg.,- in Fig. 4 b). These two processes
indicates that the network self-organizes itself from a random map into aleemgtwork
with a hierarchical architecture: two processes are taking place in paoake'horizontal”,
inside the maps and the other “vertical”, between them.

Clusters statisticsWe extract from the network’s connectivity matrix the clusters con-
sistent with Izhikevich’s definition of polychronized groups which aretitine-locked firing
patterns [Izhikevich, 2006]. Fig. 5 summarizes the clusters’ analysiswbere one cluster
is defined as a neural group with a time span and a path length measureitsflongest
neural path colored in red in Fig. 5 a). Fig. 5 (b) plots the density distributidhe neu-
rons connectivity inside the network which means the proportion of newonnected to
[1, 2, ..., N] neurons whereas Fig. 5 (c) displays the clusters’ group length distnibutio
and Fig. 5 (d) shows the relation between the clusters’ group length ainditine length.
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Figure 5. Clusters statistics. Density distribution of the neurons connedtiityprdered
by the length of the clusters (c) and by their time span (d) [resp. the lopgtsbf cluster
defined and their time span in (a)]. The density of the neurons connedtilibyvs the
characteristic power-law curve typical of small-world networks. The odtwroduces
scale-free dynamics.

Taken together, these measures describe the network functionattgrepor instance, a
significant feature is the power-law curves displayed in b) and c) -eotisply. the clus-
ters group length and the neurons connectivity— which indicates a seal@ifganization
inside the network, characteristic to complex systems. The power-law medrievthunits
densily integrate the network and drive its activity whereas the majority is tggatto its
functioning [Buzsaki, 2006]. The density distribution of the neuronseativity in b) indi-
cates that ninety percents of the neurons possess really few consesiibrheir siblings,
lesser than 3 links. Besides, the 10 percents most connected neuwemadra than fifteen
strong synaptic connections. These few neurons are particularly imptotaonnect the
small clusters with each others. Therefore, thb&g of neurons are the most critical neu-
rons within the network, they correspond to the hub connectors. Thegeséength of the
neural clusters is of 2 or 3 neurons (small clusters) and few clusteesdoastituted of five
or more neurons (long clusters). Depending on their length, the ndustrs have a time
span varying from few milliseconds to 250 milliseconds. The longer the chjster more
coherent is the neural response with respect to the external dynamics.

We propose that MNS follows the organization of complex networks which de
velop small-world connections and are found to generate efficient ie¢gommal commu-
nication, enhanced signal propagation speed, computational powksyachronizabil-
ity [Watts and Strogatz, 1998].
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Figure 6. Network Performance. The network robustness varies tcathawheither
the most connected neurons (the most critical ones) are pruned éisttgd line) or if the
neurons are pruned in a random sequential order (continuous line).

We analyze the network’s tolerance when confronted to an attack (i.egmgepruning)
which can permit to identify the centrality of the neuron within the network or its mpo
tance and to model also the impairing caused during the developmental sidég.sé.
We hypothesize that the#)% most connected neurons may correspond to the “strictly con-
gruent” MN neurons within the network, which can be robust againshdam pruning
of its neurons but weak against a non-arbitrary pruning. For theafeseandom pruning
(continuous line), the network’s performance decreases linearly whesuppress neurons
one by one selected in an aleatory order and the overall features oétiverk are pre-
served. For the case of pruning the most connected neurons (i.e., ih@haectors in
dashed line), the network’s performance falls drastically and the pesioce of the net-
work when7% of the most connected neurons are suppressed corresponds to atiersitu
of suppressing7.5% of the neurons randomly selected in the first case. Thus, each neuron
does not have the same importance within the network and a relatively fewensirsis-
tain the network functional integrity. This result can give some argument®tpdimt that
mirror neurons can be statistically few relative to pure motor neurons bunhagontrast
much well connected (multimodality): the scarcity of the hub connectors nitarthe net-
work’s efficiency for information processing because they are aldboaenected within
the global network. We have shown how an apparent hierarchicatsteupossessing some
of the characteristics of the MNS can emerge from hebbian learning inpamexg random
reccurent network. We apply in the following this mechanism for modelingiti@griunc-
tions exhibited by mirror neuron-like systems for visuo-tactile integration atidipation,
contingency perception and agency perception and spatial repriseofethe body.
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2. Cognitive functions

After comparison of the quantitative properties of the mirror neurons resept in this sec-
tion the cognitive functions that illustrate their qualitative aspects, realizezhisosimotor
networks: cross-modal association and contingency perception ionamderstanding,
agency perception and spatial representation of the body. Beyond stotiplling mo-

tion, mirror neurons reflect how the body relates to others, physicallysanlly. We

propose that this is done through temporal contiguity, at the neural lgvekgoiting the

efficent organization in complex sensorimotor networks.

2.1. visuo-tactileintegration during grasping

The experiences conducted by Rizzolatti on action representation ghiogvgght coupling
that exists between perception and action, between neurons in the motan syig¢hose
from other modalities in the sensory networks. We investigate the conditiossdb situ-
ation to occur in embedded networks of spiking neurons between vistite twd motor
modalities and regulated by STDP, to perceive oneself actions as well ses dhothers.
The details of the experimental setup are detailed in [Pitti et al., 2009a] bahibe ex-
plained as follows. We would like to simulate the multimodal integration during the act
of grasping between somatosensory information and visual information wiithinetwork

Tactile sensors on object surface

Vision Filtering

A

Mma mop iﬁﬁﬁi
Vil mop {MMW
= U

Figure 7. Schematic of the grasping experiment. The experiencing of@oent visuo-
tactile perception during grasping (in the upper-left corner) by the rm&t@mttom-right
corner) is done by receiving the incoming information from the cameraramd the pres-
sure sensitive device.




Neural Models for Shared Parieto-Motor Circuits 15

Enacti on

spk/100ms  _

o

o o
[—

vision

Figure 8. Spike rate and neural dynamics in the visual and tactile maps chnysical
interactions (resp. top and bottom). The whole action sequence is exfposedeeing,
reaching the cup, the time to contact, then touching and grasping (see als®).Film
red (resp. cyan), the synaptic activation from the neurons of the visam (resp. tactile
map). Processes done in the network are constituted from the paraliel fings between
the two maps. The visuo-haptic patterns are not randomly activated kehreyized and
functionally assembled.

receiving those two modalities. The tactile sensors covering the surfeame albject are
sent to their respective somatosensory neurons in the neural netwitktdhose neurons
trigger when they receive external input. In parallel, the visual informatmming from
the fixed camera is sent to the visual map after being binarized with a motiortidetec
filtering. The somatosensory neurons represent 1000 of the excitaargns within the
network and the visual neurons represent 5400 of them, to which 100 imubitory
neurons are added. Each neuron is allocated with 30 synaptic linksatedrrandomly to
other neurons with random lengths and delays b&ow.s. The network is initialized with

a uniform synaptic weight distribution so that its organization is mostly unspéaifin the
beginning; see Fig. 7.

The perceptual experiences consist of the execution of visually ipedcactions (i.e.,
seeing and touching one object) during which the network learns to aksthE@aomatosen-
sory signals and vision modalities via hebbian learning and STDP. The Igaoeniod
within the network is similar to the situation presented in Section 1.2. and the network
evolves into a complex network structure by reinforcing the links betweendhmons that
are correlated and by pruning the others, see Fig. 4. Over time, a speg#icization is
shaped through multimodal integration with a log-curve neurons connedtidigating a
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Figure 9. Neural dynamics of the visuo-tactile maps during physical irtterec In red
(resp. in cyan) the synaptic activation from the neurons of the vision neap.(the tactile
map). At time-to-contactt(= t1), the retinaanticipatesonly the temporal changes about
the hand motion in the direction of the cup: the spatial information about the dilp is
tered. When grasping the obje¢t=£ ), joint detection of hand motion contingent to the
cup motion and the haptic activity corresponding to a coordination in the Indymamics
(synchronization among the maps).

small-world network hierarchy and the presence of hub-like neureassig. 5. The associ-
ations learnt between the networks will permit to anticipate (or simulate) thalreativity
in one modality from the basis of another, like it is the case during action\wdgar when
no tactile information is received.

The neural activity in the vision and tactile maps during grasping is plotted in8Fig.
where the black line at = 2.3 sec. indicates the precise time-to-contact. The super-
imposed synaptic links in red correspond to the neural activity genergtéuelneurons
from the vision map and the links in cyan represent the one generated bguhens from
the tactile map. The firing rate of each variable is plotted at the top.

Despite the very broad activity in the network, one can see some strongriatii
interactions between the maps at the time-to-contact, which indicates that the pgo ma
intensively exchange information from each other. It is not clear whetheot functional
integration and efficient neural connectivity are effective. Howetle whole network
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behaves as a kind of contingency detector due to the STDP links: the igralitse neural
activity before and after the time-to-contacte [¢;t2] in Fig. 9 shows that the visual
neurons triggebeforethe time-to-contact and anticipate the future tactile information at
the time of contact. Hence, the neural pairs do not detect passively ttiagent signals,
instead they actively estimate and anticipate expected signals, even franmaitialities.
A situation calledanticipated contacby [Berthoz, 1997] which is a form of spatial-visual
proximity with the area of the body that will be touched [Rizzolatti and Sinigag0iag].
At the time-to-contact, it is the turn of the somatosensory neurons to triggifesedt
pattern of activity by triggering a burst of neurons synchronized in tbdéléamap and in
the visual map. As it has been shown in [Siri et al., 2007], the recunegtork is sensitive
to the input pattern due to its small-world connectivity organized by the stebsgrapses.
We can envision therefore these neural scripts as a repertoire of sigyditive contingency
detectors, always re-activating the learnt combinations from exteirmalls By doing so,
they emphasize also the importance of timing and synchronization which aretamptar
identify oneself actions by anticipating the rewards and to estimate those of.othe

2.2. Action understanding and retrieval asre-activation

The associative and anticipatory skills acquired by the neural netwarklzwed in Fig. 9
can serve for example to reconstruct one missing modality (or to reactivétenit)other
modalities that are available; e.g., when we are observing actions perfosnatters and
simulate the perceptual sensation of the other. In this situation, vision is etosghse
and simulate the missing tactile and proprioceptive information, or when we niatgipu
objects in hidden conditions and we reconstruct its shape mentally (i.e., simuéatioa
missing visual information).

We propose to reproduce Rizzolatti’'s experiment exhibiting the MN ability to eérigg
with precise timing to observed actions [Rizzolatti et al., 1996]. We consid#drigcend
to reconduct the grasping experience in the same experimental condgithres@ne previ-
ously done with the same device to be grasped, the same position on the eisuaith the
same camera angle and with an overall similar execution speed, but this timeoaittile
information sent to the network. We display in Fig. 10 the neural activity duaiction
observation with the same color code as used in the previous section, the {hoetaot is
att = 2.5 sec (plain line). Aftert > 2.8 sec and despite the missing modality, the neural
maps do reproduce similar dynamics as during enaction, when all modalitiesawait-
able (to compare with Fig. 8). The visual patterns in red activate the nelr@onging
to the tactile map from the previously learnt associations. Reversely, the taetifens
in cyan fire back the vision neurons as if the tactile information was effégtuevided.
The massively parallel and bidirectional connections between the two mapisvine the
two modalities, reproducing the similar qualitative features of the mirror nswsypstem to
simulate the missing modality as a virtual perception. This is achieved by the detettio
particular visual cues to which the network has learnt to be sensitive to.
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Figure 10. Reconstruction of the tactile modality from the observed actioraspmg at

the time-to-contact. The network anticipates the tactile stimulation at the precise time to
contact. During handling at > 2.8 sec., the visual patterns permit to simulate and to
reconstruct the missing tactile perception. Links from the tactile to the visuainmam@n

show that perception is an active process inside the system emergingheomirroring
between the two maps, whether physical (stimuli-based) or virtual (not stbaséd).

2.3. Contingency perception and agency index at the neural level

The parietal cortex has been found to subserve agency perceptiobody-ownership,
which are respectively the senses that | am the cause or author of the- mov
ment and that | conform the spatial extent of my physical body [Jeadn2007,
Schwabe and Blanke, 2007]. It has been hypothesized that compaadels in the pari-
etal cortex, such as coincidence detectors, integrate efferent infomganotor) with af-
ferent ones (proprioception) during action contexts to represerd@renhexperiences of
the body [Tsakiris et al., 2007]. We propose that the synchronizatiohamém of STDP,
which is responsible to pro-actively detect and anticipate contingency@elamge neural
population, can serve as a biologically plausible mechanism of the compliative fxari-
etal networks supporting these functions. A possible mechanism of yagériee neural
level in the parietal lobe can be the computing of the predictive power oFPSidiral pairs
with respect to afferent signals. The calculation of its accuracy lewed@sscore function
can be then a quantitative measure of agency in sensorimotor networkigikemeasure
introduced in information retrieval theory [van Rijsbergen, 1979].

Fig. 11 explains the basic mechanism of contingency detection and predidtiipa-
tion in a pair of neurongt1 and#2. Contingency detection means that the activation of
neuron#2 matches with the reception of an external input stimyghi2sand neuron#1’s
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Figure 11. Contingency detection and predictive anticipation. The sdragency arises
from the matching between afferent (proprioception) and effereatnmdtion (motor pre-
diction). In our model, it corresponds to the synchronization betweenréisymaptic neu-
ron #1 and the incoming input stimulug2 that activate in the same time the neuss2.
To fire contingently with the input, the pre-synaptic neugghmust trigger in advance.

activity potential (i.e., contingency matching), see Fig. 11 a). Predictitreipation means
that each firing neuron pro-actively triggers other neurons bas#tedaearnt synaptic links
they acquired, activating therefore contingency detectors for futgnals, see Fig. 11 b).
We can compute the agency index at current tinie a neural population as the number
of correctly predicted stimuli divided by the number of all returned predistidone at
timet either correct or false (the “precision”) and the number of correctigioted stimuli
divided by the number of predictions that should have been returnetf¢ie!”):

nb_correctly_predicted

recision =
P nb_predicted
nb_correctly_predicted
recall = ; ;
size_current_input
) 2.precision.recall
agency_idx =

(precision + recall)

where thesize_current_input corresponds to the current dimensionality of the incoming
signals. We normalize the agency index such that the lowest valuesdggqy _ide =

0) correspond to complete mismatch between sensory inputs and motor predictimn
agency) whereas the highest ones correspond to perfect corgyngeadiction (maximum
level of agency).

We propose to study how agency arises in visuo-motor networks embeddduad-
like robot with cameras, see Fig. 12. The details of the experimental setupne d
in [Pitti et al., 2009b]. As in the previous experiment, a global network camgmf neu-
rons from different modalities is initialized with random connections. This time&omo
neurons replace the somatosensory neurons and control the camglessia the occular
and pan axis. They represenk 256 of the excitatory neurons within the network and the
motor value is read at as a rate code in the motor population. The visuahsaegresent
2 x 4900 neurons receiving the pixels output from the two cameras and tranfdmieg-
polar coordinates. In addition, inhibitory inter-neurons were adde@septing20% of the
population of excitatory neurons to stabilize the system. Each neuron istatiow@gh 30
synaptic links connected randomly to other neurons with random lengthdedens below
20ms.
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There, the network is fully constrained by sensorimotor activity and hale&rn-
ing. During enaction, the sensorimotor maps integrate their dynamics andsiegpte
perceptuo-motor patterns between the current motors state (eyes &matieatation) and
the visual scene. In Figure 12 on the right, we superimpose the synaptcHetiveen
neurons on the neural dynamics. The lines in cyan correspond to theatitikated by the
neurons in the vision map and the red lines correspond to the links actiyatied beurons
in the motor maps. The signals on the top correspond to their respectiveréiting

These links constitute contingency detectors which can serve to computetiarkis
agency level. The correctness of the predictions ensures the integrégsors-motor net-
works. Fig. 13 a) displays the agency index computed from the synaptscdimd the input
patterns from Fig. 12 with the agency index formula given previously. gtaph reveals
that the agency level is not static but dynamic and can rapidly switch withondsc Its
values are on average abdxe5, which corresponds to the system’s agency reference level.
It indicates a certain confidence level of the predictions on the sensorimgias when
the device moves: its actions afford its agency. Since the “signature”eéfnaction cor-
responds to a certain agency index, it follows that perturbating contiggemcaffect also
the system’s agency level like during visual illusions with mirrors or with feettdelays.

To expose the incidence of temporal delays on our system, we delay ttad vifar-
mation with respect to the proprioceptive information, see Fig. 13 b). Tleyslén the
sensorimotor networks mismatch the synaptic links and decrease the legehafandex.

Its level falls down below).1 revealing discrepancy between the system dynamics and the
inputs. Although agency changes, it cannot be accounted as a didaelemental state.
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Figure 12. Visuo-motor integration in sensorimotor networks embedded idaltke robot
(left). The superimposed lines on the neural dynamics represent theabast anatomi-

cal synaptic links between pre-synaptic and post-synaptic heurongéretive vision and
motor maps.



Neural Models for Shared Parieto-Motor Circuits 21

live enaction vi si on feedback del ay
0.15 | | | |
0.3
% 0.25| &
2 02 2 01
) )
S 0.15[/" <
(] (O]
g 0.1 §0.05
0.05
5 10 15 20 0O 05 1 15 2 25
a) time [s] b) visual feedback delays [s]

Figure 13. Agency index during enaction. The agency index betweeaidslated as the
distance between the visuo-motor input patterns and their prediction by tinal meaps.
The system’s action produces the change of its own degree of ages@uelaged value
represents the reference level for coherent sensorimotor informafigency index for
different interval range delays between proprioceptive and vigealldacks. Each value
correspond to the temporal delay of visual feedback. Delays decthasagency index
and a drastic fall occurs arours®0 ms indicating sensorimotor mismatching (functional
visuo-motor discrepancy).

Other perceptual experiences, like scrutinizing a mirror or interacting witars, are
special cases of sensorimotor interaction which involves double symizhtmn between
afferent (sensor) and efferent information (motor). In the caselbferception in front of a
mirror, both internal and external dynamics are perturbing each otdezaanilict. Interact-
ing with others, on the other hand, triggers more information exchangetfreexternal to
the internal dynamics, which rises then the agency level. In a sense|fagency level can
leverage itself by interacting with others. Hence, rather than strict sedf-dtktinction, the
agency index measures the fuzziness of the dynamical limit of the bonditncpthamerge
between oneself and others. The first condition for developing the sedfdtion to oth-
ers (c.f., social resonance [Nadel et al., 2005, Hiraki, 2006, DexetySommerville, 2003,
Decety and Chaminade, 2003]).

All in all, Fig. 14 a) summarizes the agency indices for the three studied tages
this time by separating the quantities relative to afferent to efferent informégic—~ M,
red circles) and to efferent to afferent informatiovf (— S, blue crosses). Their amount
and ratio vary depending on the type of perceptual experiences. domtigraction with
others, the visuomotor circuits are entrained by external sigisals (M) which differs
from the case of self-motion where it is the motor events that guide the visupoiatoits
(M > S). The case of mirror is interesting, since motor events and sensory arents
conflicting from each other since the two are affected at the same time by lhenibys of
the other / « S). Beside, Fig. 14 b) resumes the relative mean scores of the thregsagenc
indices after being averaged and zero-centered. It shows thatlumesnbedded network
learns the visuomotor associations during self-motion, it becomes then meravao the
external inputs and to perturbations. It follows that visual externaltgypan easily entrain
or conflit with the visuomotor circuits and drive agency.
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Figure 14. (a) Summary of the agency indices of the three cases stugiactieg the
relative quantity from afferent to efferent informatiof (— M, red circles) and from
efferent to afferent informatiom{ — S, blue crosses). (b) Mean scores of agency in the
three situation studied after being averaged and centered (in blue).e@hertical lines
indicate their variance.

We suggest then a sensorimotor account of social engagement in line
with [Nadel et al., 2005, Prince and Hollich, 2005], based on STDP agetticy de-
tection at the neural level (c.f. [Keysers and Perrett, 2004]). Invaldpmental viewpoint,
the spike-timing dependent plasticity might provide the sufficient neurak bas ba-
bies to sense contingency, what [Watson, 1994] hypothesized to bere¢hgisps for
future body representation, self-perception and the discrimination betwel and
others, the conditions for developing social capabilities [Rochat, 1998h&, 2003,
Nadel et al., 2005, Hiraki, 2006, Shimada and Hiraki, 2006]. In this line,wpothetize
that the present neural architecture might support some principlesofpritive devel-
opment and social competences necessary for communication by meaestufegand
language [Falck-Ytter et al., 2006].

2.4. Construction of the peripersonal space from body-places associations

Shared networks are not only employed for interacting physically withintkizament,
they are also a window to higher cognitive skills for interacting socially withrsthed for
perceiving oneself agency [Decety and Sommerville, 2003, Decety hathiBade, 2003].
They achieve to perform dynamically self-other contagion or discriminatiosugh the
temporal extent of sensorimotor activity. This dynamical mechanism is anesido occur
also for representing the spatial extent of the body in the parietal lokegifis et al., 2007,
Schwabe and Blanke, 2007, Shimada et al., 2005]; i.e., the location of thepaots and
of the nearby objects, the body image. As for agency perception wbatangency de-
tection notifies in real-time the sensorimotor activity, we propose that the samgacator
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model at the neural level informs about the spatial extent of the Bosignsorimotor syn-
chrony (mis)matches. Sensorimotor contingency gives rise to perceffeabeaf spatial
expansion of the body image as it occurs during the famous experimene otilther-
hand illusion or during tool-use when (fake) synchrony is sustainedrisosemotor sig-
nals [Botvinick and Cohen, 1998, Murata and Ishida, 2007, Shimada 20a9].

Interestingly, the way infants perceive the space around them (i.e.tsh&patial rep-
resentation) relies on two different mechanisms that mature separatelyg dharfirst
year [Bremner et al., 2008]. Accordingly, thearlier-developingmechanism achieves a
spatial correspondence of default body parts andatez-developingone remaps dynam-
ically the position of the limbs. Piaget theorized that this developmental shifpaifas
cognition during infancy corresponds to a stage-like transition from aoesyric represen-
tation to an allocentric one [Piaget, 1936]. We propose to model how sudimibetween
the body dynamics and the external spatial cues emerges in sharebetwaks.

We note that EEG's activity investigations on infants aged 2-11 monthsleevea
increase of theta synchrony — the natural rhythm of the hippocampusichoH z— in
the parietal and premotor lobes during handling and reaching as well ragy dsuck-
ing and gazing [Futagi et al., 1998, Del Giudice et al., 2008]. Indeed, hippocam-
pus is known to play an important role for processing the allocentric spafi@ima-
tion [O’Keefe and Burgess, 2005] and some developmental studies tdttitispatial im-
provements of infants to the maturation of the hippocampal system and itsisdimg
cortex [Nelson et al., 2006]. These observations may sudebat the hippocampal sys-
tem could play a central role during the first year for constructing theésdpapresentation
of the body into the sensori-motor networks (i.e., the body image)(@nthat its theta
rhythm could be involved in infant’s preference for motion contingencysam$ory-motor
binding. The hippocampal processing of one body’s action using the timwgtfam could
shape the parietal cortex for body-place associations in the same wagpissthe hip-
pocampal “place cells” for navigation purpose, by creating parieto-nfotaching cells”
for manipulation task [Graziano, 2006, Save and Poucet, 2009], seg%-ig

In contrast to more traditional memory systems,theta phase coding as done in
the hippocampus is argued to facilitate the online memory storage of continiggus s
nals [Hasselmo et al., 2009, Sato and Yamaguchi, 2009]. Theta phasg ons asso-
ciations between continuous states and continuous actions with the usellatioss for
encoding temporal intervals, a neural mechanism particularly usefupidating the body
posture in a continuous manner. Since motion coincidences betweenvpdregtions
and motor programs are hypothesized to be learnt through hebbian tpauning self-
observation [Del Giudice et al., 2008], we suggest that this later mechanisvides the
ground for contingency detection and learning of ones body dynamics.

Based on these assumptions, we simulate the activity of the infant’s hippolcarstzan
to represent movements in continuous space and to learn the body image iototite
network. The details of the experiments are presented in [Pitti et al., 2QtGhé idea
is that during sensory-motor exploration, the specific phase relatiompeddetween the
entorhinal cells — that is, the contingency matching across signals— cegahiz cortical
memory into a map of “reachable regions” cells via Hebbian learning. Therjghal cells
finish to merge the neighbouring cells from each others and to refine thairdos into the
map, see Fig. 15.
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Figure 15. Proposed framework of the parieto-hippocampal bodydsjpansformation.
ECII retranscribes the amplitude’s variations of the body signals into a teinpmide and
the cortical layer learns the associated “postural cells” that it bindsnezutly with signals
from other modalities to merge “reach cells” via Hebbian learning.

More concretely, the construction of reach places within the parieto-bgppal sys-
tem is done in two steps: (1) the enthorinal system transforms the inputssigng., the
body posture) into a temporal code, (2) the parietal circuits stores this tahgmale as a
topological memory, see Fig. 17. On the one hand, the ECII layer compdsedividual
cells, generates a phase code. On the other hand, the parietal sysiemdiffars from
the ECII layer by the recurrent connections it has between its unitsdeadbe reach cells
from the current temporal code of the body posture. The recurosmtactions between the
parietal reach cells are reinforced via a Hebbian-like learning rule thattthe gronuous
postural cells (and the afferent reaching location) are more likely to wire.

The ECII layer is composed of individual cells that generate the phake\ia a phase
modulation of an external signal [Hasselmo et al., 2009]. individual bimtal cells are
composed of a soma and a dendrite cell which provide respectively thérigaBequency
fs and the carrier signgip. In our experiments, the soma has the frequefacy: 6.42H =
and the dendrites frequendy, = fs + s(t)B, whereB is a constant. There, the speed
signal s(¢) of an external input modulates the frequency of the dendrite and therig$o
phasepp whereas the baseline phase of the sgmancreases constantly at each time step:

{ A¢p =2 fp(t)At, (5)
A¢pg =2mfsAt

Using the temporal information from its two units, the cells can then efficientlserep
sent the signals variations by embedding within their phase the phase mtiiebetween
the modulated frequency of the dendrite and the static frequency of the sbheacell
functiong(t) is defined as follows:

gPC(t) = Oplcos(ép) + cos(dg)] (6)
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Figure 16. Overview of the infant model. (a) Body part name of the infeodel with198
muscles. In this paper, we control only the left and right arms (the haadptkarm, the
upper arm and the shoulder) which are constituted eadvhyguscles and joint angles.
(b) eye view and third person view of the infant model.

where® represents the Heaviside step function for any value above the threBts@tto
1.4. There, the cely(t) fires everytime the dendrite and the soma are near in phase, which
achieves the read out into a discrete code. The amplitude variation of théerasg., its
contraction or its elongation— can be translated as a temporal code in adrancetard to
the baseline frequency in the soma, see Fig. 15 and Fig. 17. The dereljisiecy follows
the variations of the signal speed and an interference pattern in the ceddisged every
time the dendritic phase goes near the soma’s one. The advance or rgihesd@relative
to ¢g retranscribes the signal’s amplitude.

We perform our experiments on a computer simulation presenting the commmat-cha
teristics of a 9 month-old infant with an accurate model of its musculo-skelesterayand
of its spinobulbar system [Kuniyoshi and Sangawa, 2006, Kinjo et 208R&ee Fig. 16.
We constrain nonetheless our study to the body signals coming from the enussles
spindles, the joint angles from the shoulder-elbow-wrist syst&haégrees of freedom for
each arm) and the eye’s vision cells. Section 2.5. explains how the enioarhilsatrans-
form the muscle limbs signals into a temporal code and how the parietal neemoade
this temporal code and other signals into a spatial body image using hebbiginde&ec-
tion 2.6. explains how spatial locations can then be reached from motor caeman

2.5. Calibrating the body image, encoding motor coordination

The encoding is realized in two steps: the entorhinal cortex remaps firbbthesignals
into a phase code that the parietal cortex learns and combines after witthémesensory
signals; see also Fig. 17. The relative advance or retard in phase tasd@le theta rhythm
retranscribes the correct length of the spindles —thus, the actual avstis@— which can
then be learnt as a spatial code by the parietal system. These temporahselatiich
represent a postural code, can then be learnt by the parietal systespatial code.
During sensory-motor exploration, central pattern generators sgiare the motion
behavior of the infant’s arms (c.f., [Kinjo et al., 2008]). Over time, the mussate contract-
ing their dynamics to prefered configurations of the motor commands. As lomations
are reached, novel temporal codes emerge in ECIl. We plot in Fig. fiétetit temporal
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Figure 17. Parieto-hippocampal interface for coding spatial memory.p@hetal system
receives the temporal codes from the ECII layer (left), which triggerdstoeiated “reach
cells” above a certain threshold and every theta cycles (right). Theremtlinks between
the reach cells reinforced via the asymmetric Hebbian learning create a map.

codes marked with different color codes. The occurence of ondfigpemnporal pattern
in the ECII dynamics, computed by a distance measure and filtered aboxaia teresh-
old, triggers its corresponding reaching cell in the parietal map. If theé &@lporal code
corresponds to a new posture, then the new postural cell is added tartbabmap.

We display in Fig. 18 a) the raster plot of the parietal reach cells (top)elranscribes
the trajectory in space of the left hand and of the left arm (bottom). In ti, nige super-
imposed with different colors the spatial area of four reach cells. Omse@athat each cell
fills out one specific region in space that sometimes overlaps with other segieh 1 in
green fills the region on the top whereas cell 6 in cyan fills the region on tihenboThe
proprioceptive information taken from the body limbs and translated into a texihgade
by the entorhinal cells can serve then to create a spatial map in the parietil cir

The relationship between the reach cells can be learnt via hebbian leanu&IDP of
the link transitions —see Section 1.1.. Here, the hebbian learning can ptbeidtatistical
relations and topological distance between the cells. The statistical relagbmedn the
reach cells can serve then to shape the overall structure of the pays&ahdnto a topolog-
ical map, where the neighbouring reach cells have a higher probabilityetoditingently
than those from farthest reaches: the figure in Fig. 18 b) is a recotesirgraph extracted
from the weight matrix of the learnt link transition between the reach cellsormparison
with the map in Fig. 18 a), the graph shows that cell 1 region in green idigéfcclose to
cell 4 in yellow, and that cell 1 is more distant from cell 10 in red and cell 6/anc The
weight matrix can transcribe then a spatial relation between the reach feometights:
a strong synaptic weight retranscribes a close distance to the reacHiftheeeachable
region from that cell) whereas a weak synaptic weight will retranscrilveak spatial re-
lation and a far distance to the cell (an unreachable region from that €kif) topological
graph constructed from proprioceptive information can be refined whikranodalities like
vision or somatosensory sensation. This can serve to the constructionuitimodal body
image useful for a reaching task based on visual cues.
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Figure 18. Reach Cells. In a), raster plot of the reach cells relative tepthteal trajectory
of the left hand. The superimposed colours indicate when the reach oelfgiag in

the upperleft raster plot and to which spatial regions they correspowti¢a the hand is
moving around. In b), sub-graph reconstructed from the weights mattixden the cells.

2.6. Evaluating the body position from vision, reaching and retrieving visuo-
motor associations

As explained in the previous paragraph, the neural map learns thepbach/associations
by detecting the contingencies between the proprioceptive signals. Iltdustrican be
refined by re-estimating the body location in the visual field and by mergingethendant
cells, see Fig. 19 a). During hand regard, for example, the vision cellsetaforce their
links with the contingent reach cells. The reach cells, which are not-yetiwian then be
binded from the vision information; e.g., those which are close in the pediparspace
but distant in the postural space.

These associations can permit then to estimate the location of the arm and its limbs
configuration from the visual stimuli only as it is the case during reachingnvem object
is entering inside a particular region. The reactivation of a specific ptweis done with
the equations set below that synchronizes the phase of one spedficedg to the one of
its pre-synaptic ECIl neuroh[lzhikevich, 1999] relative to its synaptic conduction delay
n;,; and synaptic strength; ; , such that if the cell fires, then we have:

{ Hl,j = QSZD(t) —2nfs g — ¢]D(t)v (7)
Aqb]D = Agf)s + wi7jHZ-7j.

whereH; ; is the phase distance between the two cells. Over tzifvﬁét) synchronizes
to a certain period and the body signalfrom the joint angle can be retrieved back then by
demodulation using the formula:

J(t) = 2o = 0s0) ©
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Figure 19. Activation of one selected reach cell from visual inputs at 3.0 sec and
retrieval of the arms joint angles and hand position. In a), schematic meohah reaf-
ferentiation. In b), time series of the visual inputs and of the hand positiore),Ithe
superimposed hand location trajectory on the baby simulation.

It follows that the stimulation of the vision cells located in the left-side of the vision
field triggers the associated reach cells, see Fig. 19 b). Slowly, the comhpmmiwork
converges to a specific phase code in few hundreds of millisecondsehdrnhl stabilizes
to a specific configuration and spatial location, see Fig. 19 c).

All'in all, we suggest that the mechanism of phase precession in the jpp@ebhmpal
cells could be essential for sensory-motor transformation and the cotistrof the spatial
representation of the body in the parieto-motor circuits. The hippocampusrdgs could
shape then the parieto-motor cortices that include the mirror neurons spstérnas been
suggested recently [Del Giudice et al., 2008], and the visual recdjsids, which remap
dynamically the frames of reference of the peripersonal space: tblealgla space around
the body. Furthermore, the ability to perceive the spatial boundariesesfelfbody parts
can serve to experience how the self relates to others physically andlyso€ize body
image can serve to identify agency and inter-subjectivity and other cogrskids like
social engagement and imitation, which require the imitator to solve the conespoe
problem by mapping visual information into his own body space.
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CONCLUSION

This section closes the chapter dedicated to neural networks models of tbe merons
system for motor and social development. Although the neural mechanisteslying
their organization are still in debate, as well as their primary functions, mirearons
furnish an appealing explanation how social skills could emerge from thahextent of
the body physics, to recognize others actions and others intentionsceveeoneself and
others agency, to represent the personal space.

In line with the few proponents that support the learning hypothe-
sis [Keysers and Perrett, 2004, Heyes, 2010], we propose thae thlés may be
learnt from multimodal experiences (vision and somatosensation in Sectignakd
sensorimotor experiences (vision and motor systems in Section 2.3. andW2idg elarly
development and that the MNS organization may emerge from a mostly unsgdictu
network of learning spiking neurons. We have shown that the idea dii@nebearning
and of spike-time dependent plasticity, that has been proposed over$ago, actually
works, and leads to the emergence of somatosensory-visual andmwtoo-connections
that resemble those that visuo-motor mirror neurons have. The learrankstpresent the
properties of complex systems to be organized sparsely and hierarclandllyp rely on
specific units, efficiently connected, that rule out the overall neutaligc These neurons
function like hub connectors that fuse unimodal signals into multimodal informatio

The primary role attributed to sensorimotor networks, to transform sesggrgls into
motor commands, can serve then to construct the body image, to repretiens and to
identify self-produced body signals (i.e., agency). Learning to combaeatious kinds of
body signals can serve to intrust the position of the body limbs, to authenggetfractions
and to transform the whole-body activity into spatial coordinates. Bedigemtertwining
between perception and action may permit to anticipate and predict assaiatibim and
across modalities even in the case of missing modalities as it occurs when veetimigh
others. These properties may serve to simulate others actions from theflagiswn sen-
sorimotor system, and work as a window to social abilities [Gallese, 2005, dffe2D07].

For instance, we showed that the learnt neural associations frormigtien between
tactile and visual patterns can serve to reconstruct one missing modality &udial fin-
formation, like during the observation of someone else actions. The legghchrony in
sensorimotor networks can serve then to quantify the agent's agengnwide, inter-
acting with other agents can modulate the level of sensorimotor integratior) wduicbe
interpreted then as authentifying others agency. A failure in this mechanigncause
troubles in agency perception and social development.

Finally, the ability to perceive the spatial boundariesiéselfbody parts can serve also
to delimit the social boundaries with others for self-perception, self-alifferentiation and
to higher cognitive skills in general such as social interaction and imitatioitjweaquire
the imitator to solve the correspondence problem by mapping visual informatmmhis
own body space.
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