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ABSTRACT

This chapter reviews several computational models of the ontogenetic and epigenetic mech-
anisms that contribute to the construction and to the functioning of the shared sensory-motor
circuits in the parieto-motor cortex. The primary role of these shared circuits, which include
the so-called mirror neurons system, is found to transform the sensorimotoractivity to deal
with the real-time interaction in the environment. However, many evidences indicate that
their role also pervade to social cognition, which makes them particularly important to
study regarding their contributions to infant’s motor and social development.We suggest
that the special organization of the shared maps in the parieto-motor cortex that are ca-
pable to integrate multiple modalities and to avoid timing discrepancies, may present the
characteristics of complex networks. Our simulations comfort the hypothesisthat (1) the
functional integration realized in those networks may be done by the reinforcement learning
mechanism of spike timing-dependent plasticity and that (2) its regulation role may permit
to understand the functions that sustain the neural representation of the bodily self –, like
self-perception and body representation,– and of inter-subjectivity, likeaction understand-
ing and self-other differenciation. Finally, these computational considerations may furnish
some arguments for a decentralized (non motor-centric) view of the brain advantageously
organized critically to allow functional integration within these circuits. Besides, any on-
togenetic or epigenetic dysfunctions at one of these different stages could have dramatic
consequence to later cognitive development as it is hypothesized to occurfor autism.
Key Words: spiking neural networks, mirror neurons, sensorimotor integration, self-other
representationAMS Subject Classification: 92C42, 92C20, 68T05, 68T40.

INTRODUCTION

This chapter reviews some neural models developed in our laboratory to replicate the on-
togenetic and the epigenetic construction of the sensorimotor circuits in the parieto-motor
lobes. The shared circuits in the monkey and the human’s parietal and motor areas are
formed from reciprocal and anatomical connections that work in parallelfor transforming
sensorimotor information [Ferrari et al., 2009, Murata and Ishida, 2007]. Although their
primary functions are aimed at interacting in the physical world by processing the mul-
timodal sensory information about objects into motor commands, modern neurosciences
attribute them a far broader role to engage oneself into the social world. The princi-
pal evidence comes from the finding by Rizzolatti and colleagues of a particular class of
neurons in the monkey F5 motor area, which is firing both when the monkey executes
one actionand when he is observing someone else executing it [Rizzolatti et al., 1996,
Gallese et al., 1996]. The metaphor of a mirroring mechanism between the sensory and
motor aparatus for generating one action and for understanding those ofothers has been re-
tained to name this special class of neurons found primarily in the motor circuits and then in
the parietal cortex: like the F5 pre-motor area, the ventral intraparietal (VIP) area in the pari-
etal cortex embeds also multimodal neurons that merge signals from visual, proprioceptive,
auditory and somatopic systems [Sakata et al., 1997, Caggiano et al., 2009]. These VIP
neurons are involved in the representation of the space within reach, the peripersonal space,
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which encodes a body image at the skin surface aimed at locating the relativeposition of the
body-parts and of the objects nearby in body-centered coordinates [Rizzolatti et al., 1997].
By extension, these mirror-like neurons describe not only how the body interactsphysi-
cally in the environment but also how the bodily-self bindssocially with others. These
features of the mirror neurons (MN) have deep implications as they may furnish some
grounds on how higher cognitive skills could have arisen from the neural extent of the
body representation itself as it is argued for empathy [Decety and Sommerville, 2003,
Decety and Jackson, 2004, Bufalari et al., 2007], “theory of mind” [Fogassi et al., 2005,
Fujii et al., 2008], the roots of language [Rizzolatti and Arbib, 1998] and even corporeal
awareness [Keysers and Gazzola, 2006, Rizzolatti and Fabbri-Destro, 2008]. One chal-
lenge for computational neuroscience is therefore to understand how these shared net-
works in the parieto-motor lobes have appeared and how they function to uphold the in-
tersubjective self: how sensory and motor systems permit to represent oneself actions and
to derive those of others? How they let oneself to perceive others as “like me”? Re-
versely, how structural dysfunctioning in parietal-motor connections arelinked to func-
tional impairments as it is hypothesized to occur for autism? This chapter will present
works on the modeling of the functional and structural organization of the mirror neurons
system [Pitti et al., 2008], its functioning for representating oneself actions and for under-
standing those of others [Pitti et al., 2009a], its possible development during infancy for
constructing infant’s agency [Pitti et al., 2009b] and infant’s body image [Pitti et al., 2010].

0.1. mirror neurons systems as complex networks

The neuro-anatomy of the cortical circuits presents some specific properties that can permit
us to figure out the neural mechanisms underlying their functioning, their development as
well as the causes of their impairing. Conversely, these properties can serve us for engi-
neering brain-like networks and to furnish as well some information theoretical considera-
tions about their overall organization and efficiency [Sporns et al., 2004, Sporns, 2009]. For
instance, the structural connectivity of the circuits in the parieto-motor lobesis found sur-
prisingly sparse and distributed over large neural populations [Bullmore and Sporns, 2009],
although they effectively integrate multimodal signals and support a broad range of cogni-
tive functions [Murata and Ishida, 2007]. At the neuron level, many neuro-anatomical ob-
servations report that the mirror neurons represent a very few proportion of motor neurons
with respect to the population of “pure motor neurons” that do not fire to action observation;
mirror neurons represent up to10% to30% of these pure motor neurons which are not multi-
modal. Nonetheless, the small proportion of mirror neurons does not preclude the motor cir-
cuits to respond accurately to bodily and environmental events. One might wonder then how
these networks achieve good responsiveness despite the scarcity of the mirror neurons (im-
balanced distribution) and the density of their connections? We suggest that the efficiency of
the MNS to respond so accurately to timely signals comes from acritical organization of its
neural connectivity with a topology somewhat similar with the neural organization of a com-
plex network [Sporns, 2010]. Our viewpoint may be supported by recent studies which indi-
cate a hierarchical organization of the motor repertoire [Graziano, 2006,Lestou et al., 2008]
and of the brain regions in general [Bullmore and Sporns, 2009]. Complex networks have
been demonstrated to have remarkable information processing capabilities –e.g., coordi-
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Figure 1. Proposed architecture for the functional organization and themultimodal inte-
gration in sensorimotor networks and in mirror neurons through Hebbian reinforcement
learning mechanism (spike timing-dependent plasticity, STDP). The parsimony of mirror
neurons with respect to their incredible ability to integrate multimodal signals suggests that
the networks on which they rely are organizedcritically, alike complex networks. Like
the mirror neurons, small-world networks display also high performance information pro-
cessing with an organization structured around very scarce but well-connected hub-like
elements.

nated dynamics organized over multiple sub-networks–becausethey exhibit efficiently
distributed connections within hierarchical architectures. Certain types ofcomplex net-
works, like small-world networks for instance, are found also to rely on a small frac-
tion of hubs, which are nodes in the network with a relatively high number of connec-
tions [Watts and Strogatz, 1998, Newman, 2003]. Given that these networks are also sen-
sitive to timing and that they are ubiquitous in the cerebral cortex, we think thatthey are
pertinent models to simulate the functional integration of shared circuits in the parieto-
motor cortices and that MNs-like circuits may encompass the common characteristics
of default-brain networks [Bullmore and Sporns, 2009, Newman, 2003]. This may pro-
vide some information theoretical arguments to criticisms about the MNS [Dinstein,2008,
Hickok, 2009] and to the traditional motor-centric view of the brain. Therefore, rather than
devising about the specific location and the numbers of MN (i.e., where the MNare), we
may look instead at their connectivity and centrality within the global network in which
they belong to (i.e., how well they are connected).

0.2. reinforcement learning of mirror neurons’ connections

One key to integrating different types of information into a cohesive neural representa-
tion appears to lie in the encoding of the temporal relationships of cell firing. From
a biological viewpoint, the regulation mechanism responsible for the functional inte-
gration in cortical neurons is the one of Spike Timing-Dependent Plasticity (STDP,
cf. [Bi and Poo, 1998, Abbott and Nelson, 2000]). Information processing in distributed
networks is performed with the precise timing due to STDP that reinforces the links of
the most congruous neurons. Over time, the most congruous neural pairs aggregate them-
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selves into coherent neural patterns whereas the less congruous ones delete their links.
Keysers first proposed that STDP could shape the specific connectivity and structural orga-
nization of the mirror neurons-like circuits to represent actions with millisecondorder pre-
cision [Keysers and Perrett, 2004]. In line with the learning hypothesis ofthe MN, we fur-
ther develop that the functional integration in the learnt sensorimotor circuitssustains then
the neural representation of the body in action [Lestou et al., 2008, Rizzolatti et al., 1996].
That is, various perceptual experiences in the environment will modulate differently the
levels of integration in the sensorimotor circuits whereas the disrupting of sensorimotor
integration will cause perceptual discrepancies. It follows that interacting with someone
else, understanding his actions or imitating them should reconfigure the MNS and change
the way it operates: experiences that differ from those typically encountered will re-activate
one subject’s own sensorimotor neurons branching from a different neural pathway whether
the same modalities are available or not [Heyes, 2010]. This biologically-inspired mech-
anism based on reinforcement mechanism may furnish some indications on how a shared
sensorimotor space is constructed to represent others and to engage withthem. Moreover,
it is in line with Gallese’s simulation theory [Gallese, 2005] and Meltzoff’s “Likeme” the-
ory [Meltzoff, 2007]). It supports furtherly the view that mirror neurons may be not innate
systems, but rather acquired from learned perceptual-motor links duringearly development
and that MN could have emerged from a mostly unstructured network of learning spiking
neurons.

0.3. cortico-hippocampal scenario for the development of mirror neurons

Although no one knows where the mirror neurons come from, it is believed that they are
acquired very early during development to endow infants with the necessary social abil-
ities to interact with others [Heyes, 2010]. Meltzoff demonstrated for instance that new-
borns are capable to imitate facial gestures off-the-shelf which suggeststhat the bonding
of human newborns is either innate or acquired from an early imprinting of thebody
image [Meltzoff and Moore, 1977]. He proposes that this mirroring mechanism may be
based on a supramodal representation constructed from intra-uterine motor babbling expe-
riences, which links the facial organs end-states contiguous with each others like tongue-
to-lips, tongue-between-lips, tongue-beyond-lips [Meltzoff, 1997]. The successful repli-
cating of neonatal imitation in monkeys by Ferrari argues furthermore for the common-
ality of an early recognition mechanism of self-other equivalences in mammals devel-
opment which may be based on “mouth mirror neurons” for facial and ingestive ac-
tions [Ferrari et al., 2009]. Heyes proposes that this mirroring mechanism could be based
on the reinforcement learning of sensorimotor contingencies which assumes that visual
(sensory) representations of action simultaneously seen and executed become linked to mo-
tor representations (encoding somatosensory information and motor commands) through
Hebbian learning [Brass and Heyes, 2005, Heyes, 2010]. Del Giudice and colleagues fur-
therly advance that the associative learning of sensorimotor circuits may involve the hip-
pocampus since EEG’s activity investigations on infants aged 2-11 months have revealed
an increase of theta synchrony – the natural rhythm of the hippocampus around6Hz– in
the parietal and premotor lobes during handling and reaching as well as during sucking and
gazing [Futagi et al., 1998, Del Giudice et al., 2008].
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Figure 2. Proposed framework for sensorimotor learning and basic structure of the parieto-
hippocampal model. The entorhinal region ECII retranscribes the amplitude’s variations of
the body signals into a temporal code and the cortical layer learns the associated postural
cells that it binds recurrently with the visual signals via Hebbian learning.

This current proposal has the advantage to agree with the previous hypothesis and with
other developmental theories which attribute also a prominent role to the hippocampal sys-
tem for cortical development during the first year [McClelland et al., 1995, Nelson, 1995].
Considering mammals consolidation learning, it is known for instance that the hippocam-
pus stores recent experiences in short-term memory and transfers theminto long-term
memory in the cortex for memory consolidation. The infant’s preferences for motion
contingency and sensory-motor binding could be explained then by the attentional sig-
nals coming from this subcortical area. It is known also that the neuromodulator acetyl-
choline (ACh) in the hippocampus contributes to the generation of the hippocampal theta
rhythm and to cortical development by supporting attention and the learning of new mem-
ories [Hasselmo, 2006]; e.g., for the acquisition of new motor skills. If we reckon that
the para-hippocampal system is an important center for processing spatial memory and
transforming body signals, and that theta-burst stimulation –i.e, mimicking the hippocam-
pal signals– is found to induce LTD-like plasticity in adult M1 for motor learningand
retention [Huang et al., 2005], then these observations may suggest thathippocampal dy-
namics map or support the long-term spatial representation of the body (i.e.,the body im-
age) and the motor repertoire into the cortical sensori-motor networks. Thus, in the same
way the entorhinal cortex transforms one body’s actions and constructs“place cells” in the
hippocampus for navigation purpose, we propose that the entorhinal cortex could shape
“reaching cells” in the parieto-motor cortices for body-place associationsand manipulation
tasks [Graziano, 2006, Save and Poucet, 2009].

In the following, we show through simulations that hebbian learning can indeed leads
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to the emergence of properties that resemble those of the MNS in networks mostly random
but embodied; that is, through perception and action loops [Pfeifer and Bongard, 2006].
We organize this chapter as follows. We will present first how one efficient neural organiza-
tion can emerge from mostly unstructured neural networks receiving bodily coherent inputs
from different modalities with a timely-based reinforcement learning [Pitti et al., 2008].
The biologically plausible mechanism of Spike Timing-Dependent Plasticity rulesout the
contingency detection between neurons so that robust clusters distributed among the sen-
sorimotor networks can assemble themselves during embodied interactions withinthe en-
vironment [Pitti et al., 2009a]. The associations between neurons of different modalities
can serve then to predict or to simulate expected signals from other modalities.This can
permit to reactivate one complete action pattern from partial information only, like dur-
ing the observation of one action. We propose that the social features ofthe MNs –e.g.,
the perception of oneself body ownership and agency– are also basedon these princi-
ples [Pitti et al., 2009b]. Moreover, we hypothesize that they may developfrom hippocam-
pal learning during early infancy which could structure the long-term spatial memory of the
body in the cortical maps [Pitti et al., 2010]. Any ontogenetic or epigenetic dysfunctions in
one of these particular stages could have then some dramatic consequences to later motor
and cognitive skills learning as it is hypothesized to occur for autism.

RESULTS

1. Neural structure anatomy

The remarkable properties of the mirror neurons to fire either to actions performed or
to actions observed and their attributed roles in social cognition question profoundly the
classical views on the motor system’s organization. Parallely, the many researches and
reviews done on the monkey MNS, its recent observation in the human nervous sys-
tem [Keysers and Gazzola, 2010, Mukamel et al., 2010] as well as the arguments addressed
lately [Hickok and Hauser, 2010, Rizzolatti and Sinigaglia, 2010] permit to dress an over-
all good picture of its characteristics and functionalities. Nonetheless, fewis known about
its underlying neural mechanisms and its functional organization, although many computa-
tional algorithms replicating its functions have been modeled [Oztop et al., 2006].

One genuine feature of MN we found worthy to investigate was its timing integra-
tion performance in regard to the rareness of this class of neurons: we mean by rareness
that the mirror neurons are a relative small portion in comparison with the larger popu-
lation of pure motor neurons –10 to 30 percents of motor neurons only present effective
MN-like visuo-motor congruency, [Dinstein, 2008]– and we mean by timing integration
performance or coherency performance that the mirror neurons population can be classified
into two groups either as strictly congruent neurons (30 percents) or asbroadly congruent
neurons (60 percents) depending on their responses to the observation and execution of ef-
fective actions [Gallese et al., 1996]; i.e., the congruency to the strict motoraction or to the
broader goal of the action is translated into a rate code. It is remarkable thatthese features
do not compromise their responsiveness either to executed and to observed actions, even
when the action sequence’s end is occluded. Instead, we suggest thatit is becausethey pos-
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sess those characteristics that they can perform well. We propose therefore that, in order to
rely on such an asymmetric distribution of neurons, the MNS must be critically organized as
a complex network [Watts and Strogatz, 1998, Barabasi and Albert, 1999, Newman, 2003,
Sporns, 2010]. Efficient neural connectivity may permit to supply critical neurons (i.e., the
mirror neurons) fulfilling the functional integration in a network.

MN may suggest,prima facie, that few neurons are necessary to represent actions.
However, such reasoning can only make sense if MN are understood parts of a larger net-
work and belonging to many neural clusters merging different modalities. Wepropose that
each of these clusters may generalize the spatio-temporal structure of oneaction sequence
and the organization of these clusters could form the motor repertoire. In addition, they
can be organized in a hierarchical manner at different description levels as observations of
the motor system indicate it [Graziano and Aflalo, 2007, Lestou et al., 2008]. We can un-
derstand then that these mirror neurons must be efficiently connected withinthis network
to support timing integration. Reversely, their damages can cause the degradation of the
network performance and of its functional integration, which is considered one hypothesis
of the cause for autism [Just et al., 2007].

Altogether, these considerations suggest us that, in order to exhibit pragmatic neural
representations exhibiting the tight links between perception and action, the MNS should
follow a complex systems architecture exhibiting(i) a robust and redundant information
processing relying critically on time,(ii) one asymmetric density distribution of the neu-
rons connectivity, and(iii) a hierarchical and distributed representations. Those properties,
summarized in table 1, are also an hallmark of scale-free and small-world networks (SWN,
see Fig. 1). These networks have a characteristic nodes connectivity distribution which per-
mit an efficient information propagation and synchronization at differenttime scales (i.e.,
hierarchical and scale-free dynamics). In these networks, the majority of units possesses
few and short path lengths connections with their neighbors whereas a minority possesses
many of them with long path lengths permitting to aggregate distant clusters with each oth-
ers. These special neurons represent hub connectors that link the small-worlds to each other.
Here, information exchange is particularly fast because of the hierarchical organization that
combine centralization to the hubs and distribution from them, which makes the network
robust to fault tolerance [Albert et al., 2000].

1.1. Neural mechanisms

The ability of the MN to bind various modalities exhibits in counterpart their sensitiv-
ity to timing in order to synchronize the modalities. To this respect, the mechanism of
Spike Timing-Dependent Plasticity (STDP, [Bi and Poo, 1998, Song et al.,2000]) that dy-
namically regulates the synaptic plasticity for memory storage almost everywherein the
cerebral networks, is a rather good candidate to organize the MN connectivity as it has
been suggested by [Keysers and Perrett, 2004]. STDP is based on a bidirectional mech-
anism of long-term potentiation (LTP) and long-term depression (LTD) that readjusts the
synaptic weights to the precise timing interval between the initiating and the targetingneu-
rons [Abbott and Nelson, 2000]. The time delay∆t = tpost−tpre between the pre-synaptic
neuron spikingtpre and the post-synaptic neuron firingtpost corresponds to the interval
range of activation of their synaptic plasticity and weight adaptation∆w, see Fig. 3.
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Mirror neurons system Small-world networks

Mirror neurons merge different
modalities and any problem in
the global integration of modal
processes can be dramatic. The
impairing of the mirror neurons
has been suggested as one of a
cause of autism.

Hub Connectors
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but critical units integrating
globally the local processes for
which any defects can destroy
the functional integrity of the
ensemble.

Motor neurons distribution:

Pure motor neurons (60%)

Mirror neurons (30%)

MNS distribution:

60% broadly congruent

30% strictly congruent

Power Law

Connectivity distribution of the
units in complex networks fol-
low a power-law curve.

The motor system represents ac-
tions at different description lev-
els. The tight coupling between
perception and action requires
accurate timing.

Scale-free dynamics & Critical timing

Information is represented in hi-
erarchies at multiple time scales
and phase synchronization phe-
nomena can be observed.

Table 1. Qualitative and quantitative comparisons between the properties ofthe mirror
neuron systems and of small-world networks.

The regulation of the neurons’ weights depends directly on timing. Each time a post-
synaptic neuron fires, its synaptic weightswpre,post are decreased byA− (LTD), and each
time a synapse receives an action potential, its synaptic weightwpre,post is incremented
by an amountA+ (LTP). The equations and the variables values used in our original pa-
pers [Pitti et al., 2009a, Pitti et al., 2009b] are reproduced below:

wpre,post(t+ 1) = wpre,post(t) + ∆w (1)

∆w =

{

A+ exp ( ∆t/τ+) if ∆t < 0
−A− exp (−∆t/τ−) if ∆t ≥ 0

(2)
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Figure 3. Mechanism of STDP. (a) Each time a post-synaptic neuron fires, its synaptic
weights are decreased byA−, and each time a synapse receives an action potential, its
synaptic weight is incremented by an amountA+. (b) Based on this mechanism, different
neural pairs can assemble themselves into asynchronous neuronal groups (polychronized
groups c.f., [Izhikevich, 2006]). (c) Thescriptsdo not only passively detect the contingency
of external stimuli, but also activate new ones, anticipating further rewards.

The neurons dynamics of the spiking neuron can be defined with the integrate-and-fire
neuron model proposed by Izhikevich [Izhikevich, 2003]:

v′ = 0.04v2 + 5v + 140− u+ I
u′ = a(bv − u)

(3)

with v representing the membrane potential of the neuron inmV andu a membrane recov-
ery variable –v′ andu′ their respective temporal derivatives. The neurons are externally
triggered by the signalI and their dynamics are reseted after any spiking

if v ≥ +30mV, then

{

v ← c
u← u+ d.

(4)

The variables set{a, b, c, d} defines the neurons attributes whether excitatory
(a; b) = (0.02; 0.2) and (c; d) = (−65; 8), or inhibitory; (a; b) = (0.02; 0.25) and
(c; d) = (−65; 2). Further details in [Izhikevich, 2003, Izhikevich et al., 2004]. The
external currentI is the weighted sum of all the delayed incoming currentIpre from the
presynaptic neurons that fired plus the external signal from one input(Iext ∈ [0, 20]):
I =

∑

wpreIpre + Iext.
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We can envision the neural pairs{i, j} as contingency detectors which can serve to
encode local temporalscripts:
if NN i fires at time ti, then NN j fires at time tj = ti +∆t.

This mechanism, although simple and local at the neurons level, can generatevery
complex dynamics as the neural pairs can aggregate themselves into long-range spatio-
temporal clusters; see, Fig. 3 b), a phenomenon known as polychronization and by coined
by Izhikevich [Izhikevich et al., 2004, Izhikevich, 2006]. Since thesescripts activate also
new ones in advance on the external signals, they are not passive systems, they can predict
and anticipate future rewards, see Fig. 3 c).

In sensorimotor networks, we propose that these spatio-temporal patterns constitute a
repertoire of commands or action primitives, for which the small scripts are thebuilding
blocks. Organized properly, the numerous scripts can furnish then a robust and redundant
information of the sensorimotor coherency at the network level. In our experiments, the
(mis)match between the external stimuli with these rules will modulate the level of senso-
rimotor coordination and therefore, any perceptual skills associated with them.

1.2. Neural dynamics & networks statistics

We analyze the networks statistics for the experiments performed in [Pitti et al.,2009a,
Pitti et al., 2009b] and presented in section 2. The networks are typically a uniformly orga-
nized structure of thousands of excitatory and inihibitory neurons with random connections
in average of30 synaptic links. The links have variable lengths randomly chosen between
1ms to 20ms delays and equally weighted before learning. Each excitatory neurons re-
ceive a unimodal signal from the sensors (visual, somatic) or from the motors (proprioce-
tion) whereas the inhibitory neurons, which represent one third of the excitatory neurons,
are all inter-neurons; that is, they receive indirectly the input signals from the excitatory
neurons. In this section, we analyze in particular the networks characteristics with respect
to the neural connectivity and the clusters distribution when the network’s organization
evolves and changes during learning: the functional integration within andbetween the uni-
modal circuits in terms of neural connectivity. The details of the experiences are given in
Section 2.

Network structuring. During enactive interaction in the environment – i.e., when the
embedded network is experiencing sensorimotor coordination– the incoming signals from
the sensors combined with the reinforcement mechanism of STDP influence together the
spontaneous activity of the neural dynamics so that the contingent neurons firing within
∆t = 40ms latency are wiring together. Since temporal congruency is the principal factor
for linking the neurons from each other and not their location per se, the neurons can have
either short-range and long-range connections. Therefore, the neurons can form coherent
pairs and clusters associated to the particular sensorimotor experience withother neurons
belonging to the same map or to others with different modalities. The functional integration
across the modalities is analyzed in Fig. 4 where Fig. 4 a) displays the evolutionof the
synaptic weights distribution during the learning stage and Fig. 4 b) describes the level
of segregation and integration between and across the maps. This secondmeasure tries
to capture quantitatively how the network organization evolves structurally.The level of
specialization inside each network,Iintra, is measured as the number of (strong) synaptic
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Figure 4. Network structuring. Evolution of the network synaptic weights distribution.
(a) Histogram of the synaptic weights. The neural network achieves its self-organization
by strengthening the most robust neural groups (weights’ value> 9), and by deleting the
inaccurate ones (weights’ values< 1). (b) Evolution of the variablesIintra and Iinter
computed the number of synaptic links between neurons within to same map or belonging
to different ones.

links between neurons within the same map whereas the level of integration between the
networks,Iinter, is measured as the number of (strong) synaptic links between neurons
belonging to different maps. On the one hand, the network level of intra-modal integration,
Iintra, corresponds to the information exchanged between the neurons belonging to the
same maps (i.e., the number of synaptic links). On the other hand, the network level of inter-
modal integration,Iinter, corresponds to the information exchanged between the neurons
belonging to different maps (i.e., the number of synaptic links).

Before any learning, the uniform distribution of the neurons’ synaptic weights with
arbitrary connections between the neurons warrants that the network’sorganization is ini-
tially random. During learning, this situation typically changes when the networkreceives
contingent sensorimotor signals (e.g., visuo-somatosensory signals like in Section 2.1. and
Section 2.2. or visuo-motor signals like in Section 2.3. and Section 2.4.). In this stage,
STDP synchronizes the neural dynamics that receive signals from different modalities and
starts to structure the network, see Fig. 4 a). The process of specialization within the maps
is observed by the evolution of the variableIintra, and the one of integrationacrossthe
maps is observed by the evolution of the variableIinter in Fig. 4 b). These two processes
indicates that the network self-organizes itself from a random map into a complex network
with a hierarchical architecture: two processes are taking place in parallel, one “horizontal”,
inside the maps and the other “vertical”, between them.

Clusters statistics. We extract from the network’s connectivity matrix the clusters con-
sistent with Izhikevich’s definition of polychronized groups which are thetime-locked firing
patterns [Izhikevich, 2006]. Fig. 5 summarizes the clusters’ analysis done where one cluster
is defined as a neural group with a time span and a path length measured fromits longest
neural path colored in red in Fig. 5 a). Fig. 5 (b) plots the density distributionof the neu-
rons connectivity inside the network which means the proportion of neurons connected to
[1, 2, . . ., N ] neurons whereas Fig. 5 (c) displays the clusters’ group length distribution
and Fig. 5 (d) shows the relation between the clusters’ group length and their time length.



12 Alexandre Pitti, Yasuo Kuniyoshi

a)
5.53"Time span

Longest path

b)

d
e

n
s
. 

d
is

tr
ib

u
ti
o

n

0.1

0.6

1.0

403020100
neurons connectivity

c)
0 5 10 15 20

0

2

4

6x 10
4

group length (longest path)

co
un

t

d)
0 10 20

0

100

200

300

group length

tim
e 

sp
an

 [m
s]

Figure 5. Clusters statistics. Density distribution of the neurons connectivity(b), ordered
by the length of the clusters (c) and by their time span (d) [resp. the longestpath of cluster
defined and their time span in (a)]. The density of the neurons connectivityfollows the
characteristic power-law curve typical of small-world networks. The network produces
scale-free dynamics.

Taken together, these measures describe the network functional properties. For instance, a
significant feature is the power-law curves displayed in b) and c) – respectively. the clus-
ters group length and the neurons connectivity– which indicates a scale-free organization
inside the network, characteristic to complex systems. The power-law means that few units
densily integrate the network and drive its activity whereas the majority is less critical to its
functioning [Buzsaki, 2006]. The density distribution of the neurons connectivity in b) indi-
cates that ninety percents of the neurons possess really few connections with their siblings,
lesser than 3 links. Besides, the 10 percents most connected neurons have more than fifteen
strong synaptic connections. These few neurons are particularly important to connect the
small clusters with each others. Therefore, those10% of neurons are the most critical neu-
rons within the network, they correspond to the hub connectors. The average length of the
neural clusters is of 2 or 3 neurons (small clusters) and few clusters have constituted of five
or more neurons (long clusters). Depending on their length, the neural clusters have a time
span varying from few milliseconds to 250 milliseconds. The longer the clusters, the more
coherent is the neural response with respect to the external dynamics.

We propose that MNS follows the organization of complex networks which de-
velop small-world connections and are found to generate efficient inter-regional commu-
nication, enhanced signal propagation speed, computational power, and synchronizabil-
ity [Watts and Strogatz, 1998].
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Figure 6. Network Performance. The network robustness varies dramatically wheither
the most connected neurons (the most critical ones) are pruned first (dashed line) or if the
neurons are pruned in a random sequential order (continuous line).

We analyze the network’s tolerance when confronted to an attack (i.e., neurons pruning)
which can permit to identify the centrality of the neuron within the network or its impor-
tance and to model also the impairing caused during the developmental stage, see Fig. 6.
We hypothesize that the10% most connected neurons may correspond to the “strictly con-
gruent” MN neurons within the network, which can be robust against a random pruning
of its neurons but weak against a non-arbitrary pruning. For the caseof a random pruning
(continuous line), the network’s performance decreases linearly whenwe suppress neurons
one by one selected in an aleatory order and the overall features of the network are pre-
served. For the case of pruning the most connected neurons (i.e., the hub connectors in
dashed line), the network’s performance falls drastically and the performance of the net-
work when7% of the most connected neurons are suppressed corresponds to the situation
of suppressing37.5% of the neurons randomly selected in the first case. Thus, each neuron
does not have the same importance within the network and a relatively few numbers sus-
tain the network functional integrity. This result can give some arguments to the point that
mirror neurons can be statistically few relative to pure motor neurons but are in contrast
much well connected (multimodality): the scarcity of the hub connectors warrants the net-
work’s efficiency for information processing because they are also well connected within
the global network. We have shown how an apparent hierarchical structure possessing some
of the characteristics of the MNS can emerge from hebbian learning in an apparent random
reccurent network. We apply in the following this mechanism for modeling cognitive func-
tions exhibited by mirror neuron-like systems for visuo-tactile integration and anticipation,
contingency perception and agency perception and spatial representation of the body.
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2. Cognitive functions

After comparison of the quantitative properties of the mirror neurons, we present in this sec-
tion the cognitive functions that illustrate their qualitative aspects, realized in sensorimotor
networks: cross-modal association and contingency perception for action understanding,
agency perception and spatial representation of the body. Beyond simplycontrolling mo-
tion, mirror neurons reflect how the body relates to others, physically andsocially. We
propose that this is done through temporal contiguity, at the neural level, by exploiting the
efficent organization in complex sensorimotor networks.

2.1. visuo-tactile integration during grasping

The experiences conducted by Rizzolatti on action representation showed the tight coupling
that exists between perception and action, between neurons in the motor system with those
from other modalities in the sensory networks. We investigate the conditions for such situ-
ation to occur in embedded networks of spiking neurons between visuo, tactile and motor
modalities and regulated by STDP, to perceive oneself actions as well as those of others.
The details of the experimental setup are detailed in [Pitti et al., 2009a] but it can be ex-
plained as follows. We would like to simulate the multimodal integration during the act
of grasping between somatosensory information and visual information withinthe network

Figure 7. Schematic of the grasping experiment. The experiencing of co-occurent visuo-
tactile perception during grasping (in the upper-left corner) by the network (bottom-right
corner) is done by receiving the incoming information from the camera and from the pres-
sure sensitive device.
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Figure 8. Spike rate and neural dynamics in the visual and tactile maps duringphysical
interactions (resp. top and bottom). The whole action sequence is exposedfrom seeing,
reaching the cup, the time to contact, then touching and grasping (see also Fig. 9). In
red (resp. cyan), the synaptic activation from the neurons of the visionmap (resp. tactile
map). Processes done in the network are constituted from the parallel neural firings between
the two maps. The visuo-haptic patterns are not randomly activated but synchronized and
functionally assembled.

receiving those two modalities. The tactile sensors covering the surface ofan object are
sent to their respective somatosensory neurons in the neural network so that those neurons
trigger when they receive external input. In parallel, the visual information coming from
the fixed camera is sent to the visual map after being binarized with a motion detection
filtering. The somatosensory neurons represent 1000 of the excitatoryneurons within the
network and the visual neurons represent 5400 of them, to which 1000 more inhibitory
neurons are added. Each neuron is allocated with 30 synaptic links connected randomly to
other neurons with random lengths and delays below20ms. The network is initialized with
a uniform synaptic weight distribution so that its organization is mostly unspecific from the
beginning; see Fig. 7.

The perceptual experiences consist of the execution of visually perceived actions (i.e.,
seeing and touching one object) during which the network learns to associate the somatosen-
sory signals and vision modalities via hebbian learning and STDP. The learning period
within the network is similar to the situation presented in Section 1.2. and the network
evolves into a complex network structure by reinforcing the links between theneurons that
are correlated and by pruning the others, see Fig. 4. Over time, a specificorganization is
shaped through multimodal integration with a log-curve neurons connectivityindicating a
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Figure 9. Neural dynamics of the visuo-tactile maps during physical interactions. In red
(resp. in cyan) the synaptic activation from the neurons of the vision map (resp. the tactile
map). At time-to-contact (t = t1), the retinaanticipatesonly the temporal changes about
the hand motion in the direction of the cup: the spatial information about the cup isfil-
tered. When grasping the object (t = t2), joint detection of hand motion contingent to the
cup motion and the haptic activity corresponding to a coordination in the neural dynamics
(synchronization among the maps).

small-world network hierarchy and the presence of hub-like neurons, see Fig. 5. The associ-
ations learnt between the networks will permit to anticipate (or simulate) the neural activity
in one modality from the basis of another, like it is the case during action observation when
no tactile information is received.

The neural activity in the vision and tactile maps during grasping is plotted in Fig.8
where the black line att = 2.3 sec. indicates the precise time-to-contact. The super-
imposed synaptic links in red correspond to the neural activity generated by the neurons
from the vision map and the links in cyan represent the one generated by theneurons from
the tactile map. The firing rate of each variable is plotted at the top.

Despite the very broad activity in the network, one can see some strong inter-modal
interactions between the maps at the time-to-contact, which indicates that the two maps
intensively exchange information from each other. It is not clear whether or not functional
integration and efficient neural connectivity are effective. However, the whole network



Neural Models for Shared Parieto-Motor Circuits 17

behaves as a kind of contingency detector due to the STDP links: the analysis of the neural
activity before and after the time-to-contactt ∈ [t1; t2] in Fig. 9 shows that the visual
neurons triggerbeforethe time-to-contact and anticipate the future tactile information at
the time of contact. Hence, the neural pairs do not detect passively the contingent signals,
instead they actively estimate and anticipate expected signals, even from other modalities.
A situation calledanticipated contactby [Berthoz, 1997] which is a form of spatial-visual
proximity with the area of the body that will be touched [Rizzolatti and Sinigaglia,2006].
At the time-to-contact, it is the turn of the somatosensory neurons to trigger a different
pattern of activity by triggering a burst of neurons synchronized in the tactile map and in
the visual map. As it has been shown in [Siri et al., 2007], the recurrentnetwork is sensitive
to the input pattern due to its small-world connectivity organized by the strongest synapses.
We can envision therefore these neural scripts as a repertoire of highlysensitive contingency
detectors, always re-activating the learnt combinations from external stimuli. By doing so,
they emphasize also the importance of timing and synchronization which are important to
identify oneself actions by anticipating the rewards and to estimate those of others.

2.2. Action understanding and retrieval as re-activation

The associative and anticipatory skills acquired by the neural network and showed in Fig. 9
can serve for example to reconstruct one missing modality (or to reactivate it)from other
modalities that are available; e.g., when we are observing actions performedby others and
simulate the perceptual sensation of the other. In this situation, vision is enoughto sense
and simulate the missing tactile and proprioceptive information, or when we manipulate
objects in hidden conditions and we reconstruct its shape mentally (i.e., simulationof the
missing visual information).

We propose to reproduce Rizzolatti’s experiment exhibiting the MN ability to trigger
with precise timing to observed actions [Rizzolatti et al., 1996]. We consider tothis end
to reconduct the grasping experience in the same experimental conditions as the one previ-
ously done with the same device to be grasped, the same position on the visual field with the
same camera angle and with an overall similar execution speed, but this time withno tactile
information sent to the network. We display in Fig. 10 the neural activity during action
observation with the same color code as used in the previous section, the time-to-contact is
at t = 2.5 sec (plain line). Aftert > 2.8 sec and despite the missing modality, the neural
maps do reproduce similar dynamics as during enaction, when all modalities were avail-
able (to compare with Fig. 8). The visual patterns in red activate the neurons belonging
to the tactile map from the previously learnt associations. Reversely, the tactileneurons
in cyan fire back the vision neurons as if the tactile information was effectively provided.
The massively parallel and bidirectional connections between the two maps intertwine the
two modalities, reproducing the similar qualitative features of the mirror neurons system to
simulate the missing modality as a virtual perception. This is achieved by the detection of
particular visual cues to which the network has learnt to be sensitive to.
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Figure 10. Reconstruction of the tactile modality from the observed action of grasping at
the time-to-contact. The network anticipates the tactile stimulation at the precise time to
contact. During handling att > 2.8 sec., the visual patterns permit to simulate and to
reconstruct the missing tactile perception. Links from the tactile to the visual mapin cyan
show that perception is an active process inside the system emerging fromthe mirroring
between the two maps, whether physical (stimuli-based) or virtual (not stimuli-based).

2.3. Contingency perception and agency index at the neural level

The parietal cortex has been found to subserve agency perception and body-ownership,
which are respectively the senses that I am the cause or author of the move-
ment and that I conform the spatial extent of my physical body [Jeannerod, 2007,
Schwabe and Blanke, 2007]. It has been hypothesized that comparator models in the pari-
etal cortex, such as coincidence detectors, integrate efferent information (motor) with af-
ferent ones (proprioception) during action contexts to represent coherent experiences of
the body [Tsakiris et al., 2007]. We propose that the synchronization mechanism of STDP,
which is responsible to pro-actively detect and anticipate contingency among a large neural
population, can serve as a biologically plausible mechanism of the compliance inthe pari-
etal networks supporting these functions. A possible mechanism of agency at the neural
level in the parietal lobe can be the computing of the predictive power of STDP neural pairs
with respect to afferent signals. The calculation of its accuracy level using a score function
can be then a quantitative measure of agency in sensorimotor networks, likethe F-measure
introduced in information retrieval theory [van Rijsbergen, 1979].

Fig. 11 explains the basic mechanism of contingency detection and predictive anticipa-
tion in a pair of neurons#1 and#2. Contingency detection means that the activation of
neuron#2 matches with the reception of an external input stimulus#2 and neuron#1’s
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Figure 11. Contingency detection and predictive anticipation. The sense of agency arises
from the matching between afferent (proprioception) and efferent information (motor pre-
diction). In our model, it corresponds to the synchronization between the pre-synaptic neu-
ron#1 and the incoming input stimulus#2 that activate in the same time the neuron#2.
To fire contingently with the input, the pre-synaptic neuron#1 must trigger in advance.

activity potential (i.e., contingency matching), see Fig. 11 a). Predictive anticipation means
that each firing neuron pro-actively triggers other neurons based onthe learnt synaptic links
they acquired, activating therefore contingency detectors for future signals, see Fig. 11 b).
We can compute the agency index at current timet in a neural population as the number
of correctly predicted stimuli divided by the number of all returned predictions done at
time t either correct or false (the “precision”) and the number of correctly predicted stimuli
divided by the number of predictions that should have been returned (the“recall”):

precision =
nb correctly predicted

nb predicted

recall =
nb correctly predicted

size current input

agency idx =
2.precision.recall

(precision+ recall)

where thesize current input corresponds to the current dimensionality of the incoming
signals. We normalize the agency index such that the lowest values (e.g.,agency idx =
0) correspond to complete mismatch between sensory inputs and motor predictions (no
agency) whereas the highest ones correspond to perfect contingency prediction (maximum
level of agency).

We propose to study how agency arises in visuo-motor networks embeddedin a head-
like robot with cameras, see Fig. 12. The details of the experimental setup is done
in [Pitti et al., 2009b]. As in the previous experiment, a global network composed of neu-
rons from different modalities is initialized with random connections. This time, motor
neurons replace the somatosensory neurons and control the cameras angles in the occular
and pan axis. They represent2× 256 of the excitatory neurons within the network and the
motor value is read at as a rate code in the motor population. The visual neurons represent
2× 4900 neurons receiving the pixels output from the two cameras and tranformedin log-
polar coordinates. In addition, inhibitory inter-neurons were added representing20% of the
population of excitatory neurons to stabilize the system. Each neuron is allocated with 30
synaptic links connected randomly to other neurons with random lengths anddelays below
20ms.
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There, the network is fully constrained by sensorimotor activity and hebbian learn-
ing. During enaction, the sensorimotor maps integrate their dynamics and learnsimple
perceptuo-motor patterns between the current motors state (eyes and neck orientation) and
the visual scene. In Figure 12 on the right, we superimpose the synaptic links between
neurons on the neural dynamics. The lines in cyan correspond to the linksactivated by the
neurons in the vision map and the red lines correspond to the links activated by the neurons
in the motor maps. The signals on the top correspond to their respective firingrate.

These links constitute contingency detectors which can serve to compute the network’s
agency level. The correctness of the predictions ensures the integrity in sensori-motor net-
works. Fig. 13 a) displays the agency index computed from the synaptic links and the input
patterns from Fig. 12 with the agency index formula given previously. Thisgraph reveals
that the agency level is not static but dynamic and can rapidly switch within seconds. Its
values are on average above0.15, which corresponds to the system’s agency reference level.
It indicates a certain confidence level of the predictions on the sensorimotor inputs when
the device moves: its actions afford its agency. Since the “signature” of live enaction cor-
responds to a certain agency index, it follows that perturbating contingency can affect also
the system’s agency level like during visual illusions with mirrors or with feedback delays.

To expose the incidence of temporal delays on our system, we delay the visual infor-
mation with respect to the proprioceptive information, see Fig. 13 b). The delays in the
sensorimotor networks mismatch the synaptic links and decrease the level of agency index.
Its level falls down below0.1 revealing discrepancy between the system dynamics and the
inputs. Although agency changes, it cannot be accounted as a discrete0 or 1 mental state.
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Figure 12. Visuo-motor integration in sensorimotor networks embedded in a head-like robot
(left). The superimposed lines on the neural dynamics represent the mostrobust anatomi-
cal synaptic links between pre-synaptic and post-synaptic neurons between the vision and
motor maps.
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Figure 13. Agency index during enaction. The agency index between is calculated as the
distance between the visuo-motor input patterns and their prediction by the neural maps.
The system’s action produces the change of its own degree of agency. Its averaged value
represents the reference level for coherent sensorimotor information.Agency index for
different interval range delays between proprioceptive and visual feedbacks. Each value
correspond to the temporal delay of visual feedback. Delays decrease the agency index
and a drastic fall occurs around500ms indicating sensorimotor mismatching (functional
visuo-motor discrepancy).

Other perceptual experiences, like scrutinizing a mirror or interacting with others, are
special cases of sensorimotor interaction which involves double synchronization between
afferent (sensor) and efferent information (motor). In the case of self-perception in front of a
mirror, both internal and external dynamics are perturbing each other and conflict. Interact-
ing with others, on the other hand, triggers more information exchange fromthe external to
the internal dynamics, which rises then the agency level. In a sense, oneself agency level can
leverage itself by interacting with others. Hence, rather than strict self-other distinction, the
agency index measures the fuzziness of the dynamical limit of the bonding that can emerge
between oneself and others. The first condition for developing the self inrelation to oth-
ers (c.f., social resonance [Nadel et al., 2005, Hiraki, 2006, Decetyand Sommerville, 2003,
Decety and Chaminade, 2003]).

All in all, Fig. 14 a) summarizes the agency indices for the three studied casesbut
this time by separating the quantities relative to afferent to efferent information (S → M ,
red circles) and to efferent to afferent information (M → S, blue crosses). Their amount
and ratio vary depending on the type of perceptual experiences. During interaction with
others, the visuomotor circuits are entrained by external signals (S > M ) which differs
from the case of self-motion where it is the motor events that guide the visuomotor circuits
(M > S). The case of mirror is interesting, since motor events and sensory eventsare
conflicting from each other since the two are affected at the same time by the dynamics of
the other (M ↔ S). Beside, Fig. 14 b) resumes the relative mean scores of the three agency
indices after being averaged and zero-centered. It shows that oncethe embedded network
learns the visuomotor associations during self-motion, it becomes then more sensitive to the
external inputs and to perturbations. It follows that visual external inputs can easily entrain
or conflit with the visuomotor circuits and drive agency.



22 Alexandre Pitti, Yasuo Kuniyoshi

a)

0.1

0.2

0.3

0.4

0.5

ag
en

cy
 in

de
x

 

 

 

 

 

 

time[sec]
 

 mirror othersself motion

M<SM↔SM>S

b) −0.2

−0.1

0

0.1

0.2

<
a
g
e
n
cy

in
d
e
x

>

mirror others
self−motion

agency measure from

sensor to motor motor to sensor  +

Figure 14. (a) Summary of the agency indices of the three cases studied separating the
relative quantity from afferent to efferent information (S → M , red circles) and from
efferent to afferent information (M → S, blue crosses). (b) Mean scores of agency in the
three situation studied after being averaged and centered (in blue). The red vertical lines
indicate their variance.

We suggest then a sensorimotor account of social engagement in line
with [Nadel et al., 2005, Prince and Hollich, 2005], based on STDP contingency de-
tection at the neural level (c.f. [Keysers and Perrett, 2004]). In a developmental viewpoint,
the spike-timing dependent plasticity might provide the sufficient neural basis for ba-
bies to sense contingency, what [Watson, 1994] hypothesized to be the premises for
future body representation, self-perception and the discrimination between self and
others, the conditions for developing social capabilities [Rochat, 1998, Rochat, 2003,
Nadel et al., 2005, Hiraki, 2006, Shimada and Hiraki, 2006]. In this line, we hypothetize
that the present neural architecture might support some principles for cognitive devel-
opment and social competences necessary for communication by means of gesture and
language [Falck-Ytter et al., 2006].

2.4. Construction of the peripersonal space from body-places associations

Shared networks are not only employed for interacting physically within the environment,
they are also a window to higher cognitive skills for interacting socially with others and for
perceiving oneself agency [Decety and Sommerville, 2003, Decety and Chaminade, 2003].
They achieve to perform dynamically self-other contagion or discrimination through the
temporal extent of sensorimotor activity. This dynamical mechanism is considered to occur
also for representing the spatial extent of the body in the parietal lobes [Tsakiris et al., 2007,
Schwabe and Blanke, 2007, Shimada et al., 2005]; i.e., the location of the body parts and
of the nearby objects, the body image. As for agency perception where contingency de-
tection notifies in real-time the sensorimotor activity, we propose that the same comparator
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model at the neural level informs about the spatial extent of the bodyif sensorimotor syn-
chrony (mis)matches. Sensorimotor contingency gives rise to perceptual effects of spatial
expansion of the body image as it occurs during the famous experiment of the rubber-
hand illusion or during tool-use when (fake) synchrony is sustained in sensorimotor sig-
nals [Botvinick and Cohen, 1998, Murata and Ishida, 2007, Shimada et al., 2009].

Interestingly, the way infants perceive the space around them (i.e., infants’ spatial rep-
resentation) relies on two different mechanisms that mature separately during the first
year [Bremner et al., 2008]. Accordingly, theearlier-developingmechanism achieves a
spatial correspondence of default body parts and thelater-developingone remaps dynam-
ically the position of the limbs. Piaget theorized that this developmental shift of spatial
cognition during infancy corresponds to a stage-like transition from an egocentric represen-
tation to an allocentric one [Piaget, 1936]. We propose to model how such binding between
the body dynamics and the external spatial cues emerges in shared neural networks.

We note that EEG’s activity investigations on infants aged 2-11 months revealed an
increase of theta synchrony – the natural rhythm of the hippocampus around 6Hz– in
the parietal and premotor lobes during handling and reaching as well as during suck-
ing and gazing [Futagi et al., 1998, Del Giudice et al., 2008]. Indeed, the hippocam-
pus is known to play an important role for processing the allocentric spatial informa-
tion [O’Keefe and Burgess, 2005] and some developmental studies attribute the spatial im-
provements of infants to the maturation of the hippocampal system and its surrounding
cortex [Nelson et al., 2006]. These observations may suggest(i) that the hippocampal sys-
tem could play a central role during the first year for constructing the spatial representation
of the body into the sensori-motor networks (i.e., the body image) and(ii) that its theta
rhythm could be involved in infant’s preference for motion contingency andsensory-motor
binding. The hippocampal processing of one body’s action using the thetarhythm could
shape the parietal cortex for body-place associations in the same way it shapes the hip-
pocampal “place cells” for navigation purpose, by creating parieto-motor“reaching cells”
for manipulation task [Graziano, 2006, Save and Poucet, 2009], see Fig. 15.

In contrast to more traditional memory systems,theta phase coding as done in
the hippocampus is argued to facilitate the online memory storage of continuous sig-
nals [Hasselmo et al., 2009, Sato and Yamaguchi, 2009]. Theta phase coding forms asso-
ciations between continuous states and continuous actions with the use of oscillations for
encoding temporal intervals, a neural mechanism particularly useful forupdating the body
posture in a continuous manner. Since motion coincidences between perceived actions
and motor programs are hypothesized to be learnt through hebbian learning during self-
observation [Del Giudice et al., 2008], we suggest that this later mechanism provides the
ground for contingency detection and learning of ones body dynamics.

Based on these assumptions, we simulate the activity of the infant’s hippocampal system
to represent movements in continuous space and to learn the body image into thecortical
network. The details of the experiments are presented in [Pitti et al., 2010] but the idea
is that during sensory-motor exploration, the specific phase relation produced between the
entorhinal cells – that is, the contingency matching across signals– organizes the cortical
memory into a map of “reachable regions” cells via Hebbian learning. Then, the visual cells
finish to merge the neighbouring cells from each others and to refine their locations into the
map, see Fig. 15.
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Figure 15. Proposed framework of the parieto-hippocampal body/space transformation.
ECII retranscribes the amplitude’s variations of the body signals into a temporal code and
the cortical layer learns the associated “postural cells” that it binds recurrently with signals
from other modalities to merge “reach cells” via Hebbian learning.

More concretely, the construction of reach places within the parieto-hippocampal sys-
tem is done in two steps: (1) the enthorinal system transforms the input signals (e.g., the
body posture) into a temporal code, (2) the parietal circuits stores this temporal code as a
topological memory, see Fig. 17. On the one hand, the ECII layer composedof individual
cells, generates a phase code. On the other hand, the parietal system, which differs from
the ECII layer by the recurrent connections it has between its units, encodes the reach cells
from the current temporal code of the body posture. The recurrent connections between the
parietal reach cells are reinforced via a Hebbian-like learning rule suchthat the gronuous
postural cells (and the afferent reaching location) are more likely to wire.

The ECII layer is composed of individual cells that generate the phase code via a phase
modulation of an external signal [Hasselmo et al., 2009]. individual entorhinal cells are
composed of a soma and a dendrite cell which provide respectively the baseline frequency
fS and the carrier signalfD. In our experiments, the soma has the frequencyfS = 6.42Hz
and the dendrites frequencyfD = fS + s(t)B, whereB is a constant. There, the speed
signals(t) of an external input modulates the frequency of the dendrite and therefore its
phaseφD whereas the baseline phase of the somaφS increases constantly at each time step:

{

∆φD = 2πfD(t)∆ t,
∆φS = 2πfS∆ t

(5)

Using the temporal information from its two units, the cells can then efficiently repre-
sent the signals variations by embedding within their phase the phase difference between
the modulated frequency of the dendrite and the static frequency of the soma. The cell
functiong(t) is defined as follows:

gECII(t) = ΘD[cos(φD) + cos(φS)] (6)
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a) b)

Figure 16. Overview of the infant model. (a) Body part name of the infantmodel with198
muscles. In this paper, we control only the left and right arms (the hand, the forearm, the
upper arm and the shoulder) which are constituted each by37 muscles and4 joint angles.
(b) eye view and third person view of the infant model.

whereΘ represents the Heaviside step function for any value above the thresholdD set to
1.4. There, the cellg(t) fires everytime the dendrite and the soma are near in phase, which
achieves the read out into a discrete code. The amplitude variation of the muscle –e.g., its
contraction or its elongation– can be translated as a temporal code in advance or in retard to
the baseline frequency in the soma, see Fig. 15 and Fig. 17. The dendrite frequency follows
the variations of the signal speed and an interference pattern in the cell is produced every
time the dendritic phase goes near the soma’s one. The advance or retard inphase relative
to φS retranscribes the signal’s amplitude.

We perform our experiments on a computer simulation presenting the common charac-
teristics of a 9 month-old infant with an accurate model of its musculo-skeleton system and
of its spinobulbar system [Kuniyoshi and Sangawa, 2006, Kinjo et al., 2008], see Fig. 16.
We constrain nonetheless our study to the body signals coming from the arms’muscles
spindles, the joint angles from the shoulder-elbow-wrist system (37 degrees of freedom for
each arm) and the eye’s vision cells. Section 2.5. explains how the entorhinal cells trans-
form the muscle limbs signals into a temporal code and how the parietal neuronsencode
this temporal code and other signals into a spatial body image using hebbian learning. Sec-
tion 2.6. explains how spatial locations can then be reached from motor commands.

2.5. Calibrating the body image, encoding motor coordination

The encoding is realized in two steps: the entorhinal cortex remaps first thebody signals
into a phase code that the parietal cortex learns and combines after with the other sensory
signals; see also Fig. 17. The relative advance or retard in phase to the baseline theta rhythm
retranscribes the correct length of the spindles –thus, the actual arm’s posture– which can
then be learnt as a spatial code by the parietal system. These temporal relations, which
represent a postural code, can then be learnt by the parietal system as a spatial code.

During sensory-motor exploration, central pattern generators self-organize the motion
behavior of the infant’s arms (c.f., [Kinjo et al., 2008]). Over time, the muscles are contract-
ing their dynamics to prefered configurations of the motor commands. As novellocations
are reached, novel temporal codes emerge in ECII. We plot in Fig. 17 different temporal
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Figure 17. Parieto-hippocampal interface for coding spatial memory. Theparietal system
receives the temporal codes from the ECII layer (left), which trigger its associated “reach
cells” above a certain threshold and every theta cycles (right). The recurrent links between
the reach cells reinforced via the asymmetric Hebbian learning create a map.

codes marked with different color codes. The occurence of one specific temporal pattern
in the ECII dynamics, computed by a distance measure and filtered above a certain thresh-
old, triggers its corresponding reaching cell in the parietal map. If the ECII temporal code
corresponds to a new posture, then the new postural cell is added to the parietal map.

We display in Fig. 18 a) the raster plot of the parietal reach cells (top) that retranscribes
the trajectory in space of the left hand and of the left arm (bottom). In the right, we super-
imposed with different colors the spatial area of four reach cells. One can see that each cell
fills out one specific region in space that sometimes overlaps with other regions: cell 1 in
green fills the region on the top whereas cell 6 in cyan fills the region on the bottom. The
proprioceptive information taken from the body limbs and translated into a temporal code
by the entorhinal cells can serve then to create a spatial map in the parietal circuit.

The relationship between the reach cells can be learnt via hebbian learningand STDP of
the link transitions –see Section 1.1.. Here, the hebbian learning can providethe statistical
relations and topological distance between the cells. The statistical relations between the
reach cells can serve then to shape the overall structure of the parietal system into a topolog-
ical map, where the neighbouring reach cells have a higher probability to fire contingently
than those from farthest reaches: the figure in Fig. 18 b) is a reconstructed graph extracted
from the weight matrix of the learnt link transition between the reach cells. In comparison
with the map in Fig. 18 a), the graph shows that cell 1 region in green is effectively close to
cell 4 in yellow, and that cell 1 is more distant from cell 10 in red and cell 6 in cyan. The
weight matrix can transcribe then a spatial relation between the reach from the weights:
a strong synaptic weight retranscribes a close distance to the reaching cell (the reachable
region from that cell) whereas a weak synaptic weight will retranscribe aweak spatial re-
lation and a far distance to the cell (an unreachable region from that cell).This topological
graph constructed from proprioceptive information can be refined with other modalities like
vision or somatosensory sensation. This can serve to the construction of amultimodal body
image useful for a reaching task based on visual cues.



Neural Models for Shared Parieto-Motor Circuits 27

a)

10 15 20
0

5

10

15

time [sec]

re
ac

h 
ce

lls
 [i

dx
]

10 15 20
−0.2

0

0.2

0.4

time [sec]

L 
ha

nd
 p

os
 X

Y
Z

 [m
]

−0.2 −0.1 0

0.25

0.3

0.35

0.4

0.45

Y [m]

Z
 [m

]

b)

Cell 1

Cell 4

Cell 5

Cell 2

Cell 6

Cell 3

Cell 10

Figure 18. Reach Cells. In a), raster plot of the reach cells relative to thespatial trajectory
of the left hand. The superimposed colours indicate when the reach cells are firing in
the upperleft raster plot and to which spatial regions they correspond towhen the hand is
moving around. In b), sub-graph reconstructed from the weights matrix between the cells.

2.6. Evaluating the body position from vision, reaching and retrieving visuo-
motor associations

As explained in the previous paragraph, the neural map learns the body-place associations
by detecting the contingencies between the proprioceptive signals. Its structure can be
refined by re-estimating the body location in the visual field and by merging the redundant
cells, see Fig. 19 a). During hand regard, for example, the vision cells can reinforce their
links with the contingent reach cells. The reach cells, which are not-yet wired, can then be
binded from the vision information; e.g., those which are close in the peripersonal space
but distant in the postural space.

These associations can permit then to estimate the location of the arm and its limbs
configuration from the visual stimuli only as it is the case during reaching when an object
is entering inside a particular region. The reactivation of a specific phasecode is done with
the equations set below that synchronizes the phase of one specific reach cellj to the one of
its pre-synaptic ECII neuroni [Izhikevich, 1999] relative to its synaptic conduction delay
ηi,j and synaptic strengthwi,j , such that if the celli fires, then we have:

{

Hi,j = φi
D(t)− 2πfS ηi,j − φj

D(t),

∆φj
D = ∆φS + wi,jHi,j .

(7)

whereHi,j is the phase distance between the two cells. Over time,φj
D(t) synchronizes

to a certain period and the body signalxj from the joint angle can be retrieved back then by
demodulation using the formula:

xj(t) =
φj
D(t)− φS(t)

2πB
(8)
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Figure 19. Activation of one selected reach cell from visual inputs att = 3.0 sec and
retrieval of the arms joint angles and hand position. In a), schematic mechanism of reaf-
ferentiation. In b), time series of the visual inputs and of the hand position. In c), the
superimposed hand location trajectory on the baby simulation.

It follows that the stimulation of the vision cells located in the left-side of the vision
field triggers the associated reach cells, see Fig. 19 b). Slowly, the compound network
converges to a specific phase code in few hundreds of milliseconds and the hand stabilizes
to a specific configuration and spatial location, see Fig. 19 c).

All in all, we suggest that the mechanism of phase precession in the para-hippocampal
cells could be essential for sensory-motor transformation and the construction of the spatial
representation of the body in the parieto-motor circuits. The hippocampus dynamics could
shape then the parieto-motor cortices that include the mirror neurons system,as it has been
suggested recently [Del Giudice et al., 2008], and the visual receptivefields, which remap
dynamically the frames of reference of the peripersonal space: the reachable space around
the body. Furthermore, the ability to perceive the spatial boundaries ofoneselfbody parts
can serve to experience how the self relates to others physically and socially. The body
image can serve to identify agency and inter-subjectivity and other cognitive skills like
social engagement and imitation, which require the imitator to solve the correspondence
problem by mapping visual information into his own body space.
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CONCLUSION

This section closes the chapter dedicated to neural networks models of the mirror neurons
system for motor and social development. Although the neural mechanisms underlying
their organization are still in debate, as well as their primary functions, mirrorneurons
furnish an appealing explanation how social skills could emerge from the neural extent of
the body physics, to recognize others actions and others intentions, to perceive oneself and
others agency, to represent the personal space.

In line with the few proponents that support the learning hypothe-
sis [Keysers and Perrett, 2004, Heyes, 2010], we propose that these skills may be
learnt from multimodal experiences (vision and somatosensation in Section 2.1.) and
sensorimotor experiences (vision and motor systems in Section 2.3. and 2.4.) during early
development and that the MNS organization may emerge from a mostly unstructured
network of learning spiking neurons. We have shown that the idea of hebbian learning
and of spike-time dependent plasticity, that has been proposed over 6 years ago, actually
works, and leads to the emergence of somatosensory-visual and visuo-motor connections
that resemble those that visuo-motor mirror neurons have. The learnt networks present the
properties of complex systems to be organized sparsely and hierarchicallyand to rely on
specific units, efficiently connected, that rule out the overall neural activity. These neurons
function like hub connectors that fuse unimodal signals into multimodal information.

The primary role attributed to sensorimotor networks, to transform sensorysignals into
motor commands, can serve then to construct the body image, to represent actions and to
identify self-produced body signals (i.e., agency). Learning to combine the various kinds of
body signals can serve to intrust the position of the body limbs, to authentify oneself actions
and to transform the whole-body activity into spatial coordinates. Besides, the intertwining
between perception and action may permit to anticipate and predict associations within and
across modalities even in the case of missing modalities as it occurs when we interact with
others. These properties may serve to simulate others actions from the basisof our own sen-
sorimotor system, and work as a window to social abilities [Gallese, 2005, Meltzoff, 2007].

For instance, we showed that the learnt neural associations from live enaction between
tactile and visual patterns can serve to reconstruct one missing modality from partial in-
formation, like during the observation of someone else actions. The level ofsynchrony in
sensorimotor networks can serve then to quantify the agent’s agency. Meanwhile, inter-
acting with other agents can modulate the level of sensorimotor integration, which can be
interpreted then as authentifying others agency. A failure in this mechanism may cause
troubles in agency perception and social development.

Finally, the ability to perceive the spatial boundaries ofoneselfbody parts can serve also
to delimit the social boundaries with others for self-perception, self-otherdifferentiation and
to higher cognitive skills in general such as social interaction and imitation, which require
the imitator to solve the correspondence problem by mapping visual informationinto his
own body space.
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