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Abstract In this article we construct bivariate discrete distribution in Z2.
We make use of a generalized trivariate reduction technique. The special case
leading to bivariate Skellam distributions is studied in detail. Properties of the
derived models as well as estimation are examined. Real data application is
provided. Discussion of extensions to different models is also mentioned.
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1 Introduction

Working with discrete valued data has found a huge number of real appli-
cations. Noticeably, it is more common to work with positive counts rather
than integers that can take values in Z. In recent days there has been renewed
interest for discrete valued models defined in Z, i.e. in both the positive and
negative integers. Such data occur naturally in several circumstances in diverse
range of different scientific field.

Examples of such data refer to financial applications where price changes
for assets are given in certain ranges, known as ticks. Hence, when the number
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of ticks for an asset during trading is need to be modeled, this can go upwards
or downward a specific number of ticks and thus it takes values in Z. In sports
applications and in particular in soccer, the interest lies on modelling the
score as the difference of the goals scored by each team. This can be of special
interest for betting purposes since for example composite bets are used like
the result in the first half and at the end of the game. In biostatistics interest
lies on modelling outcomes before and after a treatment is applied, given that
the outcome is a discrete random variable like the number of coughs or the
number of epileptic seizures. Then the before-after outcome is defined on Z.
Furthermore in image analysis, the intensity in each pixel can take discrete
values so the difference of the intensities between adjacent pixels takes values
in Z. Finally in discrete time series analysis in order to achieve stationarity
we may need to take first order differences, leading again to data in Z. In all
the above examples clearly one needs to develop appropriate models in order
to make inference.

Recently there are papers that deal with such data defined in Z but in
almost all of them the interest lies on the univariate case. The aim of the
present paper is to define and propose models in the bivariate (multivariate)
case and, hence, to define interesting bivariate (multivariate) distributions in
Z2 and above.

To work to this direction we will make use of a generalized trivariate (mul-
tivariate) reduction technique. Trivariate reduction have been widely used to
define bivariate models (see, e.g. Sarabia and Gomez-Deniz (2008)). The cen-
tral idea is to start by independent random variables and mix them using
particular functional forms so as to end up with marginal distribution with
specific properties and some correlation structure. Of course this is not the
only way to define bivariate (multivariate) models but trivariate reduction
can produce easy to interpret models with useful and flexible properties. In
particular in this paper we extend the idea so as to be able to define more
flexible models.

In particular we make use of Rademacher distribution, which is a natu-
ral extension of the Bernoulli distribution from {0, 1} to {−1, 1}. This allows
to naturally define models in Z and hence create flexible models based on
standard approaches. The models proposed here can have interesting interpre-
tation as mixtures of simpler ones, taking very flexible shapes and hence being
useful for real data modelling. We investigate this potential with a particular
model in section 4.

The remaining of the paper is as follows: in section 2 we present some useful
results that we will use later on. We also review existing univariate models and
provide the reader the necessary information to follow our derivations. Section
3 presents our findings. New models are developed and their properties are
examined. In particular we investigate estimation for a particular model and
comparison between different estimates. In section 4 one can find a real data
application on soccer data. Finally discussions on possible extensions can be
found in section 5.
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2 Useful results

In this section we briefly review existing results and provide the necessary
definitions so as to derive in the next section our main findings.

The literature on discrete distributions defined on Z is limited. Such models
are derived mainly via two avenues: the first one is by considering discretized
versions of existing continuous distributions, as for example the discrete nor-
mal Kemp (1997); Roy (2003) or some other continuous distributions, (see,
e.g. Inusah and Kozubowski (2006); Kozubowski and Inusah (2006)). The sec-
ond avenue derives the distributions as the difference of two positive discrete
random variables. An important member of this class, both from historical
perspective but also for its application potential, is the so called Skellam dis-
tribution introduced by Skellam (1946). This distribution has found some ap-
plications recently, (see Karlis and Ntzoufras 2006, 2009; Alzaid and Omair
2010). Note that some other distributions can be also derived as the difference
of two discrete variables are given in Ong et al. (2008) and Szablowski (2001).
We will focus mainly to the second idea as differentiating can be related to
the trivariate reduction technique we plan to apply.

2.1 Skellam disrtribution

In this subsection we briefly review the Skellam distribution. Let us consider
two variables X and Y in Z+ = {0, 1, 2, . . .} and their difference Z = X − Y .
The probability function of the difference Z is a discrete distribution defined
on the set of integer numbers Z.

If X and Y follow independently Poisson distributions with parameters
λ1 ≥ 0 and λ2 ≥ 0 respectively (note that a Poisson variate with λ = 0 implies
a degenerate at 0 distribution) then the random variable Z = X − Y has
probability function given by

fPD(z|λ1, λ2) = P (Z = z|λ1, λ2) = e−(λ1+λ2)

(
λ1
λ2

)z/2
I|z|

(
2
√
λ1λ2

)
for all z ∈ Z, λ1, λ2 ≥ 0 where Ir(x) is the modified Bessel function of order r
(see Abramowitz and Stegun 1974, pp. 375) defined by

Ir(x) =
(x

2

)r ∞∑
k=0

(
x2

4

)k
k!Γ (r + k + 1)

.

The mean and the variance are E(Z) = λ1 − λ2 and V ar(Z) = λ1 + λ2,
respectively. This can be used in order to reparameterize the distribution with
a mean variance parametrization. We will denote the distribution as Sk(λ1, λ2)

Clearly, V ar(Z) ≥ |E(Z)|. The skewness is determined by the sign of
λ1− λ2. The distribution is symmetric only when λ1 = λ2. For large values of
the λ1 + λ2 the distribution can be sufficiently approximated by the normal
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distribution. If λ2 is 0, then the distribution tends to a Poisson distribution.
If the parameter λ1 is 0, then the distribution is the negative of a Poisson
distribution. The Skellam distribution is unimodal.

Let us consider two random variables say Z1 ∼ Sk(λ1, λ2) and Z2 ∼
Sk(λ3, λ4). Then the sum S2 = Z1 + Z2 follows a Sk(λ1 + λ3, λ2 + λ4) distri-
bution, while the difference D2 = Z1 −Z2 follows a Skellam distribution with
parameters λ1 + λ4 and λ2 + λ3.

Note that Skellam is not necessarily the distribution of the difference of
two uncorrelated Poisson random variables (see, Karlis and Ntzoufras (2006)).
This implies that we can derive the Skellam distribution as the difference of
other distributions as well which motivates its usage in various cases.

Skellam distribution also arises in applying wavelets to discrete data. Haar
wavelet and filterbank transform coefficients of Poisson data are distributed
as sums and differences of Poisson countsthe sums being again Poisson, and
the differences taking the Skellam distribution (Hirakawa and Wolfe (2012)).

To our knowledge extension to more dimensions are limited. Bulla et al.
(2012a) used a trivariate reduction approach, while Karlis and Ntzoufras (2012)
defined a bivariate distribution using copulas. A bivariate Skellam is also used
in a time series model in Bulla et al. (2012b). Our models derived in the next
section generalize some of the models in a certain extend.

2.2 Rademacher distribution

We will make use of the so called Rademacher distribution. This is a gener-
alization of simple Bernoulli distribution by allowing the random variable to
take values in {−1, 1} instead of {0, 1}. Indeed, the Rademacher distribution
is a recoding of the Bernoulli distribution, where 1 still indicates success, but
failure is coded as −1. Namely we will denote as R ∼ R(α) if the for the ran-
dom variable R holds that P (R = 1) = α = 1 − P (R = −1). In other words,
if B is a Bernoulli(α) random variable, then R = 2B − 1 is a Rademacher(α)
random variable. Such variables will be important for our derivations since
they allow to define random variable in Z. Note that Rademacher distribution
was often used in the literature under the assumption α = 1

2 . Especially, the
Rademacher( 1

2 ) is an essential tool for the symmetrization technique used in
empirical process and statistical learning theory, see ,e.g., Koltchinskii (2001)
and Massart (2003). The Rademacher( 1

2 ) distribution has been also used in
bootstrapping, see, e.g., Liu (1988). Moreover, the simple random walk on
Z can be defined by using the Rademacher

(
1
2

)
. Explicitly, if Ri are i.i.d.

Rademacher( 1
2 ) random variables, the sequence S2, S2, . . . is a random walk,

where Sn = X1 + . . . + Xn. In this paper we make use of a more general
case by allowing α ∈ (0, 1). It can be easily checked that E(R) = 2α − 1 and
V ar(R) = 4α(1− α). A useful result for the sequel is the following:

Let R ∼ R(α) and Z ∼ Sk(λ1, λ2) then the random variable Z∗ = RZ is
a mixture of two Skellam random variables, of the form αSk(λ1, λ2) + (1 −
α)Sk(λ2, λ1).
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2.3 Trivariate Reduction

This trivariate reduction method is a popular and old technique used for con-
structing dependent variables. It has been used for both continuous and dis-
crete cases. The method consists of building a pair of dependent random vari-
ables starting from three (or more) independent (usually) random variables.
The functions that connect initial variables are generally elementary func-
tions, or are given by the structure of the variables that we want to generate.
A general approach is the following: Consider random variables X1, X2 and
X3. Then we may define a new pair of variables using Y1 = g1(X1, X3) and
Y2 = g2(X2, X3) where gi(·), i = 1, 2 are some functions. The central idea
is that since Y ’s share the common X3 they are correlated, the correlation
structure is determined by the functions(s) g. Typical choices are for example
g(X,Y ) = X + Y which is used to derive the bivariate Poisson distribution
if the X’s follow Poisson distributions, and g(X,Y ) = min(X,Y ) for bivari-
ate exponential distributions if the X’s follow exponential distributions. The
method can be very flexible, while the choice of the functions g determine the
correlation properties and perhaps put restrictions on them. For example the
usage of g1 = g2 = X + Y leads to necessarily positive correlation. Note that
such reduction schemes can have other interesting interpretations as discussed
in Lai (1995).

In a recent article Bulla et al. (2012a) constructed bivariate Skellam dis-
tributions by a simple trivariate reduction scheme with additive functions.
Here we expand this by considering a more general scheme involving also
Rademacher random variables which makes the functions g to be more gen-
eral and hence to allow for more flexible correlation structure.

3 The proposed models

In this section we define our new bivariate models based on a generalized
trivariate reduction technique.

3.1 Definition

Definition 1 (Z2-distribution) Let R1, R2, R3, R4, U0, U1 and U2 be in-
dependent random variables such that

– Ri ∼ R(αi), i.e.,

P(Ri = −1) = 1− αi, P(Ri = 1) = αi,

where αi ∈ (0, 1) for any i ∈ {1, 2, 3, 4},
– supp(Uj) ⊆ Z for any j ∈ {0, 1, 2}.

We say that (X,Y ) follows the Z2-distribution if and only if

X
d
= R1U1 +R2U0, Y

d
= R3U2 +R4U0.
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3.2 Properties

In this section, we study some properties of the Z2-distribution. We set µj =
E(Uj) and σ2

j = V(Uj) assuming that they exist.

Expectations. We have

E(X) = (2α1− 1)µ1 + (2α2− 1)µ0, E(Y ) = (2α3− 1)µ2 + (2α4− 1)µ0.

Variances. We have

V(X) = V(R1U1) + V(R2U0) = σ2
1 − 4α1(α1 − 1)µ2

1 + σ2
0 − 4α2(α2 − 1)µ2

0

and

V(Y ) = V(R3U2) + V(R4U0) = σ2
2 − 4α3(α3 − 1)µ2

2 + σ2
0 − 4α4(α4 − 1)µ2

0.

Covariance.

Cov(X,Y ) = Cov(R2U0, R4U0) = (2α2 − 1)(2α4 − 1)σ2
0 .

Moments. We have

E(Xn) =

n∑
k=0

(
n

k

)
E(Rk1)E(Rn−k2 )E(Uk1 )E(Un−k0 )

and

E(Y n) =

n∑
k=0

(
n

k

)
E(Rk3)E(Rn−k4 )E(Uk2 )E(Un−k0 ).

Distribution of X. We have

P(X = x)

= α1α2P(U1 + U0 = x) + (1− α1)α2P(−U1 + U0 = x)

+ α1(1− α2)P(U1 − U0 = x) + (1− α1)(1− α2)P(−U1 − U0 = x).

Distribution of Y . We have

P(Y = y)

= α3α4P(U2 + U0 = y) + (1− α3)α4P(−U2 + U0 = y)

+ α3(1− α4)P(U2 − U0 = y) + (1− α3)(1− α4)P(−U2 − U0 = y).

Characteristic function of (X,Y ). We have

ϕ(s, t) = E
(
eisX+itY

)
= E

(
eisR1U1+itR3U2+iU0(sR2+tR4)

)
= E

(
eisR1U1

)
E
(
eitR3U2

)
E
(
eiU0(sR2+tR4)

)
= ((1− α1)ϕU1

(−s) + α1ϕU1
(s)) ((1− α3)ϕU2

(−t) + α3ϕU2
(t))×

((1− α2)(1− α4)ϕU0
(−s− t) + α2(1− α4)ϕU0

(s− t) + (1− α2)α4ϕU0
(−s+ t) + α2α4ϕU0

(s+ t))
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Joint Probability mass function of (X,Y ): sum version. We have that ac-
cording to the combinations of signs of the R’s we can derive the joint
probability function as a mixture of several components (in fact up to
16 components). This can be simplified upon restrictions in the α’s. The
general from is given by:

P({X = x} ∩ {Y = y})
= α1α2α3α4

∑
k∈Z

P(U1 = x− k)P(U2 = y − k)P(U0 = k)

+ (1− α1)α2α3α4

∑
k∈Z

P(U1 = k − x)P(U2 = y − k)P(U0 = k)

+ α1(1− α2)α3α4

∑
k∈Z

P(U1 = x+ k)P(U2 = y − k)P(U0 = k)

+ α1α2(1− α3)α4

∑
k∈Z

P(U1 = x− k)P(U2 = k − y)P(U0 = k)

+ α1α2α3(1− α4)
∑
k∈Z

P(U1 = x− k)P(U2 = y + k)P(U0 = k)

+ (1− α1)(1− α2)α3α4

∑
k∈Z

P(U1 = −x− k)P(U2 = y − k)P(U0 = k)

+ (1− α1)α2(1− α3)α4

∑
k∈Z

P(U1 = k − x)P(U2 = k − y)P(U0 = k)

+ (1− α1)α2α3(1− α4)
∑
k∈Z

P(U1 = k − x)P(U2 = y + k)P(U0 = k)

+ α1(1− α2)(1− α3)α4

∑
k∈Z

P(U1 = x+ k)P(U2 = k − y)P(U0 = k)

+ α1(1− α2)α3(1− α4)
∑
k∈Z

P(U1 = x+ k)P(U2 = y + k)P(U0 = k)

+ α1α2(1− α3)(1− α4)
∑
k∈Z

P(U1 = x− k)P(U2 = −y − k)P(U0 = k)

+ (1− α1)(1− α2)(1− α3)α4

∑
k∈Z

P(U1 = −x− k)P(U2 = k − y)P(U0 = k)

+ α1(1− α2)(1− α3)(1− α4)
∑
k∈Z

P(U1 = x+ k)P(U2 = −y − k)P(U0 = k)

+ (1− α1)α2(1− α3)(1− α4)
∑
k∈Z

P(U1 = k − x)P(U2 = −y − k)P(U0 = k)

+ (1− α1)(1− α2)α3(1− α4)
∑
k∈Z

P(U1 = −x− k)P(U2 = y + k)P(U0 = k)

+ (1− α1)(1− α2)(1− α3)(1− α4)
∑
k∈Z

P(U1 = −x− k)P(U2 = −y − k)P(U0 = k).

This equation can be used to determine the likelihood function and estimate
unknown parameters.



8 Christophe Chesneau et al.

3.3 Study of a particular case

In this section we study the particular case where

– R1, R2, R3, R4 are i.i.d. with Ri ∼ R(α) where α ∈ (0, 1) for any i ∈
{1, 2, 3, 4}

– Uj ∼ P(λj) where λj > 0, i.e.,

P(Uj = k) = e−λj
λkj
k!
, k ∈ N,

where λj > 0 for any j ∈ {0, 1, 2}.

We recall the Z2-distribution of (X,Y ) is defined by

X
d
= R1U1 +R2U0, Y

d
= R3U2 +R4U0.

(In the sequel, we adopt the convention
∑j
k=i ak = 0 for j < i).

Expectations. We have

E(X) = (2α− 1)(λ1 + λ0), E(Y ) = (2α− 1)(λ2 + λ0).

Variances. We have

V(X) = λ1 + λ0 − 4α(α− 1)(λ21 + λ20)

V(Y ) = λ2 + λ0 − 4α(α− 1)(λ22 + λ20).

Covariance.
Cov(X,Y ) = (2α− 1)2λ0.

Distribution of X. We have

P(X = x) = α2e−(λ0+λ1)
(λ0 + λ1)x

x!

+ (1− α)αe−(λ0+λ1)

 ∞∑
k=max(x,0)

λk−x1

(k − x)!

λk0
k!

+

∞∑
k=max(−x,0)

λx+k1

(x+ k)!

λk0
k!


+ (1− α)2e−(λ0+λ1)

(λ0 + λ1)−x

(−x)!
.

Distribution of Y . We have

P(Y = y) = α2e−(λ0+λ2)
(λ0 + λ2)y

y!

+ (1− α)αe−(λ0+λ2)

 ∞∑
k=max(y,0)

λk−y2

(k − y)!

λk0
k!

+

∞∑
k=max(−y,0)

λy+k2

(y + k)!

λk0
k!


+ (1− α)2e−(λ0+λ2)

(λ0 + λ2)−y

(−y)!
.
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Remark 1 One can recognize that the marginal distributions are a mixture
of Skellam distributions. Namely it has four components: two of them are
Skellam, one of them is a simple Poisson and one negative Poisson. Since
Poisson and negative Poisson can be considered as special cases of Skellam
with one parameter equal to 0, the marginals are finite mixtures of Skel-
lam. This gives a better insight as several results from finite mixtures are
applicable. In figure 1 we have plotted the marginal distribution for X for
a combination of parameters. One can see that the distribution can have
as many as three modes. When α = 0.5 the distribution is symmetric.

Characteristic function of (X,Y ). We have

ϕ(s, t) = E
(
eisX+itY

)
= E

(
eisR1U1+itR3U2+iU0(sR2+tR4)

)
= E

(
eisR1U1

)
E
(
eitR3U2

)
E
(
eiU0(sR2+tR4)

)
=
(

(1− α)e−λ1(s+1) + αeλ1(s−1)
)(

(1− α)e−λ2(t+1) + αeλ2(t−1)
)
×(

(1− α)2e−λ0(s+t+1) + α(1− α)eλ0(s−t−1) + (1− α)αeλ0(−s+t−1) + α2eλ0(s+t−1)
)
.
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Distribution of (X,Y ). We have

P({X = x} ∩ {Y = y})

= α4e−(λ0+λ1+λ2)

min(x,y)∑
k=0

λx−k1

(x− k)!

λy−k2

(y − k)!

λk0
k!

+ (1− α)α3e−(λ0+λ1+λ2) ×( y∑
k=max(x,0)

λk−x1

(k − x)!

λy−k2

(y − k)!

λk0
k!

+

y∑
k=max(−x,0)

λx+k1

(x+ k)!

λy−k2

(y − k)!

λk0
k!

+

x∑
k=max(y,0)

λx−k1

(x− k)!

λk−y2

(k − y)!

λk0
k!

+

x∑
k=max(−y,0)

λx−k1

(x− k)!

λy+k2

(y + k)!

λk0
k!

)
+ (1− α)2α2e−(λ0+λ1+λ2) ×(min(−x,y)∑

k=0

λ−x−k1

(−x− k)!

λy−k2

(y − k)!

λk0
k!

+

∞∑
k=max(x,y,0)

λk−x1

(k − x)!

λk−y2

(k − y)!

λk0
k!

+

∞∑
k=max(−y,x,0)

λk−x1

(k − x)!

λy+k2

(y + k)!

λk0
k!

+

∞∑
k=max(y,−x,0)

λx+k1

(x+ k)!

λk−y2

(k − y)!

λk0
k!

+

∞∑
k=max(−y,−x,0)

λx+k1

(x+ k)!

λy+k2

(y + k)!

λk0
k!

+

min(x,−y)∑
k=0

λx−k1

(x− k)!

λ−y−k2

(−y − k)!

λk0
k!

)
+ (1− α)3αe−(λ0+λ1+λ2) ×( −x∑

k=max(y,0)

λ−x−k1

(−x− k)!

λk−y2

(k − y)!

λk0
k!

+

−y∑
k=max(−x,0)

λx+k1

(x+ k)!

λ−y−k2

(−y − k)!

λk0
k!

+

−y∑
k=max(x,0)

λk−x1

(k − x)!

λ−y−k2

(−y − k)!

λk0
k!

+

−x∑
k=max(−y,0)

λ−x−k1

(−x− k)!

λy+k2

(y + k)!

λk0
k!

)

+ (1− α)4e−(λ0+λ1+λ2)

min(−x,−y)∑
k=0

λ−x−k1

(−x− k)!

λ−y−k2

(−y − k)!

λk0
k!
. (1)

Remark 2 In Figure 2 we have depicted some joint distributions for this
family to show the wide range of shapes it can take. The plots are image
plots, the darker the color the larger the probability. We have used various
values of α namely 0.5, 0.3, 0.8, 0.97 and λ0 = 2, λ1 = 0.5, λ2 = 1. Since
λ0 determines the covariance but also relates to the marginal means we
used a higher value for this than the other λ’s. Plots are very interesting
showing the potential. For the down-right α is close to 1, which means
that with high probability we get positive R’s the joint density is very
close to a standard bivariate Poisson one, that is why it is concentrated
at the positive orthant. When α = 0.5 then we got 1 and -1 with equal
chance leading to a multimodal distribution with a let say X shape. More-
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over, in this case, we have zero covariance/correlation but one can observe
that there exists clearly a dependence between the observations. Now, for
α = 0.3 (resp. 0.8), we see higher concentrations in the negative (resp.
positive) orthants. Finally the conditional expectations are linear due to
the generalized trivariate reduction used.

3.4 Parametric estimation

Using the setting described in the section above, we investigate the esti-
mation of the unknown parameters (α, λ0, λ1, λ2) from a sample of size n,
(X1, Y1), . . . , (Xn, Yn) of (X,Y ).
Method of Moments. We can express (λ0, λ1, λ2) in terms of α, Cov(X,Y ),

E(X) and E(Y ) as 

λ0 =
Cov(X,Y )

(2α− 1)2
,

λ1 =
E(X)

2α− 1
− Cov(X,Y )

(2α− 1)2
,

λ2 =
E(Y )

2α− 1
− Cov(X,Y )

(2α− 1)2
.

Therefore, using the expression V(X) = λ1 + λ0 − 4α(α − 1)(λ21 + λ20)
(resp. V(Y )) and the above equations, one can write α in terms of E(X),
V(X) (resp. E(Y ), V(Y )) and Cov(X,Y ). Furthermore, by replacing the
empirical estimators of these previous quantities, we end up with the
following equation which has to be solved:

f(α) =
x

(2α− 1))
−4α(α−1)

(
x2

(2α− 1)2
− 2

x CX,Y
(2α− 1)3

+ 2
C2
X,Y

(α− 1)4
− S2

X

)
= 0

where,

x =
1

n

n∑
i=1

Xi, S2
X =

1

n− 1

n∑
i=1

(Xi−X)2, CX,Y =
1

n− 1

n∑
i=1

(Xi−X)(Yi−Y ).

This is a nonlinear equation for α with an asymptote at α = 0.5. For
the sake of clarity, in Figure 3 we plot the f(α) function, based on the
real data example used in section 4. Clearly there is an asymptote in
α = 0.5 which may create difficulties when solving the equation. Also
note that perhaps there exists several solutions. An easy way to select
the solution but also the interval to search for the solution is to select
the interval so as to match the sign of the covariance.
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Solving this one can obtain a consistent moment estimate α̂. Estima-
tions of the other parameters follow from a plug-in method:

λ̂0 =
Cov(X,Y )

(2α̂− 1)2
,

λ̂1 =
E(X)

2α̂− 1
− Cov(X,Y )

(2α̂− 1)2
,

λ̂2 =
E(Y )

2α̂− 1
− Cov(X,Y )

(2α̂− 1)2
.

Standard errors can be derived using standard asymptotic results based
on the delta method (see, e.g. Lehmann and Casella (1998), however
in practice bootstrap standard errors are more easy to derive. Note
that the estimate near 0.5 can have very inefficient behavior since the
equation is too steep and hence small changes in the moments can lead
to large changes in the estimated values.

Maximum likelihood estimation. This method considers the estimators:

(α̂, λ̂0, λ̂1, λ̂2) = argmax

n∏
i=1

P({X = Xi} ∩ {Y = Yi}),

where P({X = Xi} ∩ {Y = Yi}) is given by (1).

Standard numerical methods can be used to derive the estimates. We have
used simple code in R which worked without problems. Standard errors can be
derived from the Hessian as usual (see, e.g. Lehmann and Casella (1998)).

3.5 Some simulation comparison

In order to gain an idea on the estimation methods, we have conducted a small
simulation experiment for the two methods. We have used two configurations
(α = 0.2, λ0 = 1, λ1 = 0.5, λ2 = 1) and (α = 0.4, λ0 = 0.5, λ1 = 0.5, λ2 = 1).
For each one, we run 5000 replications. Simulation is straightforward based
on the definition, as Rademacher’s random variables simulation is simplistic.
We have used three sample sizes namely n = 100, 500, 1000. For each sample
we estimated the parameters with moment and ML methods. Note that for
moment method a large number of times, we derived inadmissible estimates
(e.g. negative λ’s ). Such samples were excluded, however for small sample sizes
this can be as large as 30% of the replications. the reported values are based
on 5000 replication where the estimates existed for both methods. Figures 4
and 5 depict boxplots of both methods (dark grey is the moment method,
light grey the ML method) for all sample sizes. The horizontal line is the true
values used for the simulations. Boxplots obviously show the superiority of the
ML methods. Moment estimates while as mentioned above can fail for a large
number of times, they lead to biased estimates especially for small sample
sizes but also with much larger variances as the length of the boxplot show.
On the contrary ML estimates are unbiased with much less variability, leading
to much better behavior.
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4 Application

In this section, we use the football data from the Italian Series A championship.
There are 20 teams playing matches in both home and guest. In total 380
matches were played. We have data for 379 of them as one match never finished.
Our data consist of the scores in the final (X) and the half time (Y ). We
take the difference between the home team and the guest team, positive scores
imply the win of the home team while negative the win of the guest team. Data
were downloaded from www.stat-football.com. We have that x̄ = 0.358, ȳ =
0.2031 while S2

X = 2.807, S2
Y = 1.172, CX,Y = 1.151, implying strong positive

correlation (τ = 0.634) as expected.
Data are depicted in Figure 6. The size of the circle is proportional to the

frequency of this. It is clear a positive correlation between the half time and
the final scores.

In the sequel we fitted the bivariate distribution defined in 1, as well as
other candidates like the distribution in Bulla et al. (2012a) and the one in
Karlis and Ntzoufras (2012). For our model moment estimates failed leading
to negative estimates. ML estimates can be seen in the table below, where
the last line also show the log-likelihood from the competing models. The new
model provides much better fit judged by the smaller log-likelihood. It is also
interesting that it has less parameters but also better fit.

parameter std
α 0.6158 0.0200
λ0 0.6884 0.0539
λ1 0.9200 0.0567
λ2 0.0882 0.0578

Log-likelihood
Model Log-Lik Parameters

New -1247.995 4
Bulla -1273.889 3

Copula -1254.919 5

Table 1 shows the observed and fitted frequencies of the Italian soccer data
using the estimated parameters. The resemblance in the center of the data is
very good. Also the marginals are very close, indicating that the proposed
model can capture the general characteristics.
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Y
-4 -3 -2 -1 0 1 2 3 4 Total

-5 obs 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
expec 0.04 0.10 0.13 0.10 0.16 0.15 0.21 0.16 0.06 1.10

-4 obs 0.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 3.00
expec 0.10 0.22 0.42 0.43 0.84 0.67 0.68 0.36 0.17 3.89

-3 obs 0.00 1.00 5.00 1.00 3.00 0.00 0.00 0.00 0.00 10.00
expec 0.07 0.59 0.95 1.45 3.61 2.29 1.54 0.98 0.14 11.61

-2 obs 0.00 1.00 6.00 10.00 17.00 7.00 0.00 0.00 0.00 41.00
expec 0.04 0.41 2.61 3.58 11.64 5.66 4.28 0.74 0.08 29.04

-1 obs 0.00 0.00 3.00 17.00 23.00 6.00 2.00 0.00 0.00 51.00
expec 0.02 0.22 1.92 9.84 25.53 15.70 3.36 0.42 0.03 57.04

X 0 obs 0.00 0.00 1.00 20.00 61.00 14.00 0.00 0.00 0.00 96.00
expec 0.01 0.15 1.65 10.44 70.35 16.68 2.90 0.29 0.02 102.48

1 obs 0.00 0.00 0.00 7.00 45.00 28.00 8.00 0.00 0.00 88.00
expec 0.02 0.23 2.08 14.61 40.80 23.34 3.77 0.44 0.03 85.31

2 obs 0.00 0.00 0.00 1.00 19.00 21.00 10.00 1.00 0.00 52.00
expec 0.04 0.46 4.22 7.82 18.88 12.40 6.98 0.88 0.08 51.77

3 obs 0.00 0.00 0.00 0.00 6.00 8.00 11.00 3.00 0.00 28.00
expec 0.09 0.98 2.38 3.40 5.90 5.37 3.88 1.64 0.17 23.80

4 obs 0.00 0.00 0.00 0.00 0.00 2.00 3.00 2.00 0.00 7.00
expec 0.17 0.55 1.08 1.03 1.38 1.62 1.74 0.91 0.30 8.78

5 obs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
expec 0.10 0.25 0.33 0.24 0.26 0.37 0.53 0.41 0.16 2.64

6 obs 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 2.00
expec 0.04 0.08 0.08 0.04 0.04 0.07 0.12 0.12 0.07 0.67

Total obs 1.00 3.00 16.00 56.00 175.00 86.00 35.00 6.00 1.00 379.00
expec 0.74 4.23 17.84 52.96 179.37 84.31 29.99 7.35 1.33 378.13

Table 1 Observed and fitted frequencies of the Italian data. The resemblance in the center
of the data is very good. Also the marginals are very close

5 Discussion

There are some natural extensions of the work presented in the current paper.
First of all, the generalized reduction method can be used to derive multivari-
ate analogues. We did not pursue this in the present paper to avoid complicat-
ing notations and expositions. Also, a slight reparameterization could allow
for possible covariates in the mean of the models and hence to allow more
flexibility for modelling purposes.

More importantly, in Definition 1, we introduce a new distribution on
Z2 based on generalized trivariate (multivariate) reduction technique and the
Rademacher distribution. One of possible extensions of this distribution, can
be achieved by replacing the multiplication in the equations of X and Y , by
a thinning operator. Explicitly,

X
d
= R1 � U1 +R2 � U0, Y

d
= R3 � U2 +R4 � U0,
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with U0, U1 and U2 are non-negative integer-valued i.i.d. random variables,
and for all i ∈ {1, 2, 3, 4}, j ∈ {0, 1, 2},

Ri � Uj =

Uj∑
k=1

ξk,i

where (ξk,i) is a sequence (called counting sequence) of i.i.d. Rademacher(αi)
and independent of Uj . It is understood that the counting sequences associated
to each operator are mutually independent. Note that the above operator is
none other than a particular case of the signed thinning operator, for details
please see Latour and Truquet (2008) and Kachour and Truquet (2011). On
the other hand, one can see the � operator as a generalization of the random
walk on Z, where the number of steps is also an non-negative integer-valued
random variable.
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Fig. 1 Plot of the marginal distribution for several parameter combinations. It is interesting
the wide range of shapes of the distributions derived.
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Fig. 2 The joint probability mass function for various values of α and λ0 = 2, λ1 =
0.5, λ2 = 1.
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Fig. 3 The plot of function f(α), which is used to calculate the moments estimators, for
the data on Italian football.
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Fig. 4 Boxplots from the simulations using (α = 0.2, λ0 = 1, λ1 = 0.5, λ2 = 1). 1000
replications were used, cases when the moment estimates failed were excluded.
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Fig. 5 Boxplots from the simulations using (α = 0.4, λ0 = 0.5, λ1 = 0.5, λ2 = 1). 1000
replications were used, cases when the moment estimates failed were excluded.
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Fig. 6 Plots of Italian data used. The size of the point relates to the observed frequency.


