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Abstract

This paper provides a Central Limit Theorem (CLT) for a process {6,,n > 0}
satisfying a stochastic approximation (SA) equation of the form 6,1, = 6, +
Yn+1H (0, Xn+1); a CLT for the associated average sequence is also established.
The originality of this paper is to address the case of controlled Markov chain
dynamics {X,,n > 0} and the case of multiple targets. The framework also
accomodates (randomly) truncated SA algorithms.

Sufficient conditions for CLT’s to hold are provided as well as comments on
how these conditions extend previous works (such as independent and identically
distributed dynamics, the Robbins-Monro dynamic or the single target case). The
paper gives a special emphasis on how these conditions hold for SA with controlled
Markov chain dynamics and multiple targets; it is proved that this paper improves
on existing works.

Acknowledgements. 1 gratefully acknowledge Prof. P. Priouret for fruitful dis-
cussions.
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1 Introduction

Stochastic Approximation (SA) algorithms were introduced for finding roots of an
unknown function h (for recent surveys on SA, see e.g. [8, 26, 20, 6, 19]). SA
defines iteratively a sequence {6,,n > 0} by the update rule

9n+1 = an + 7n+15n+1 ) (1)

where {7,,n > 1} is a sequence of deterministic step-size and Z,,+1 is a random
variable (r.v.) standing for a noisy measurement of the unknown quantity h(6,,).

Our aim is to establish the rate of convergence of the sequence {6,,,n > 0} to
a limiting point 6, in the following framework.

Let © C R% the sequence {f,,,n > 0} is a ©-valued random sequence defined
on the filtered probability space (22, A, P, {F,,,n > 0}) and given by

9n+1 =0, + Tn+1 (h(an) +ent1+ 7nnJrl) 5 0o € O ;

where h : © — R? is a measurable function, {e,,n > 1} is a F,-adapted P-
martingale increment sequence and {r,,n > 1} is a vanishing F,,-adapted random
sequence. Such a general description covers many SA algorithms: as discussed
below (see Section 2.1), it covers the case when =, ; is of the form H(6,, X,+1)
where {X,,,n > 1} are independent and identically distributed (i.i.d.) r.v. such
that (s.t.) E[H(0,X)] = h(#); and the more general case when {X,,,n > 1} is an
adapted (non stationary) Markov chain with transition kernel driven by the current
value of the SA sequence {6,,,n > 0}. It also covers the case of fixed truncated and
randomly truncated SA algorithms i.e.situations when given a (possibly random)
sequence of subsets {K,,,n > 0} of ©, the update rule is given by

9 _ 0, + 7n+15n+1 s if 0, + 7n+15n+1 S ’CnJrl (2)
il 0o otherwise .

Such a truncated algorithm is used for example to solve optimization problem on
a constraint set © (in this case, K,, = © for any n), or to ensure stability of the
random sequence {6,,n > 0} in situations where the location of the sought-for
root is unknown (in this case, IC,, is an increasing sequence of sets, see [9] and [8,
Chapter 2]).

Our second aim is to extend the previous results to the case of multiple targets:
we provide asymptotic convergence rates of {6,,n > 0} to a point 6, given the
event {lim, 6, = 6,} for some 6, in the interior of ©. Note that this paper is
devoted to convergence rates so that sufficient conditions for the convergence is
out of the scope of the paper; for convergence, the interested reader can refer to
4, 11,3, 8, 2, 6.
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The originality of this paper consists in deriving rates of convergence in a new
framework characterized by (i) general assumptions on the noisy measurement
En+1 of h(0,,) which weaken the conditions in the literature and (4i) the multiple
targets problem. In Section 2.2, our framework will be carefully compared to the
literature.

We derive sufficient conditions on the step-size sequence {v,,n > 1}, on the
random sequences {e,,, r,,n > 1} and on the limiting point 6, so that %?1/2 (0, —04)
converges in distribution under the conditional probability P(-|lim, 6, = 6.). The
limiting distribution is a (mixture of) centered Gaussian distribution(s) and this
distribution is explicitly characterized. We also address the rate of convergence of
the associated averaged process {f,,n > 0} defined by

et 1
0, < > 0. (3)
k=0

n—+1

We prove that this averaged sequence reaches the optimal rate and the optimal
variance (in a sense discussed below); such a result was already established in the
literature in a more restrictive framework.

The paper is organized as follows. Section 2 (resp. Section 3) is devoted
to the SA sequence {f,,n > 0} (resp. the averaged SA sequence {f,,n > 0}).
We successively introduce the assumptions, comment these conditions, compare
our framework to the literature and state a Central Limit Theorem (CLT). In
Section 4, our results are applied to a randomly truncated SA algorithm with
controlled Markov chain dynamics; since our conditions are quite weak, we are
able to obtain better convergence rates than the rates obtained in Delyon [10]. All
the proofs are postponed in Section 5.

2 A Central Limit Theorem for Stochastic Approximation

2.1 Assumptions

Let © C R%. We consider the R%valued sequence satisfying for n > 0,

Ont1 = On + Ynt1h(0n) + Yntr1€nt1 + Ynt1Tntl th € O ; (4)

and we establish a Central Limit Theorem along sequences {6,,,n > 0} converging
to some point 6, € © which is a root of the function h. We assume the following
conditions on the attractive target 6.

C1l (a) 0, is in the interior of © and h(f,) = 0.
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(b) The mean field A : © — R? is measurable and twice continuously
differentiable in a neighborhood of 6,.

(¢) The gradient Vh(6,) is a Hurwitz matrix. Denote by —L, L > 0, the
largest real part of its eigenvalues.

Let {e,,m > 1} be a Revalued random variables defined on the filtered space
(Q, AP, {Fn,n > 0}). We will denote by | - | the Euclidean norm on R%; and by
2T the transpose of a matrix z. By convention, vectors are column-vectors. For a
set A, 14 is the indicator function. It is assumed

C2

(a) {en, n > 1} is a F,-adapted P-martingale-increment sequence i.e.E [e,|F,—1] =
0 P-almost surely.

(b) For any m > 1, there exists a sequence of measurable sets { A, x,k > 0}
such that A,, ;, € 7} and there exists 7 > 0 such that

supE [|6k+1|2+T1Am,k] <00 .

k>0
In addition, for any m > 1, limy 14, , llim, 6,6, = 14,, Llim, 6,=¢, and
the limiting set satisfies lim,, P(A,,|lim, 0, = 0,) = 1.

(c) E [ek+1e£+1‘fk:| =U, + D,(;) + DIEJQ) where U, is a symmetric positive
definite (random) matrix and

D,(Cl) 250, on the set {lim, 60, = 0.}
I |37, DP| 1y la,| =0; (5)
1My, Yn Zk:l k limg 04=0+1 A )

the sequence {A,,, m > 1} is defined in C2b.

2

We will show (see remark 5.3 in Section 5) that the condition on the r.v. {Dl(c ), k>
1} can be replaced with: D,(f) = D,(f’a) + D,(f’b)

lim~, E
n

+ 1 A,, Lim, eqe*] =0, Vm=>1,

(6)

i D](f’b)

k=1

n
27
Z Dl(c “ LA, 1y,
k=1

where {A;,k > 1} is any Fjp-adapted sequence of sets satisfying limg1,, =
lim, 0,=0,; and A, is given by C2b.

For a sequence of Ri-valued r.v. {Z,,n > 0}, we write Z, = Opp1.(1) if
sup,, |Z,| < oo w.p.1; and Z,, = orr(1) if lim, E[|Z,|P] = 0. Let {r,,n > 1} be a
R<-valued random variables defined on the filtered space (Q, A, P, {F,,n > 0}).
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C3 r, is F,-adapted. 7, = rg) + 7“,(12) with, for any m > 1,

{ v ) Nimg 0,=0, 14, = Owp1(1)ori(1),
VI D= 7"122) Limg 0,=0,14,, = Owp1(1)opi(1) .
The sequence {A,,, m > 1} is defined in C2b.
The last assumption is on the step-size sequence.
C4 One of the following conditions is satisfied:
(a) Do vk = 400, >4 7 < 00 and log(ve—1/7%) = o(7k)-

(b) Sk = +00,>x 72 < oo and there exists v, > 1/(2L) such that
log (Ye—1/7k) ~ /-

2.2 Comments on the assumptions

The framework described by (4) and the conditions C1 to C4 is general enough to
cover many scenarios studied in the literature and to address new ones.

For SA algorithms (1) with Z,,11 = H(0p, Xy+1), {Xpn,n > 1} iid. r.v. (and
independent of y) such that h(0) = E[H (0, X)], Eq. (4) is satisfied with

Ent+1 = H(an,XnJrl) - h(an) s T'n4+1 = 0;

and E [e,41]|Fn] = 0. Our framework also addresses the case when {X,,n > 1} is
a Fn-adapted controlled Markov chain i.e.when there exists a family of transition

kernels {Qg, 0 € ©} such that
]P)(Xn-f—l S ’fn) - Q@n(Xna ) B

each kernel possessing an invariant probability distribution mg and h(0) = [ H (6, x) mg(dz)
- hereafter, these algorithms will be called “SA with controlled Markov chain dy-
namics”. Introduce the solution Hy of the Poisson equation H(6,-) — h(f) =

Hy — QgHy (sce e.g. [16, Chapter 8] or [22, Chapter 17]), and set

eni1 = Hp,(Xp1) — Qo Hy, (Xn) . Tng1 = Qo, Ho, (Xn) — Qo, Ho, (Xns1) ;
then E[ep+1]|F,] = 0 P-almost surely. We will provide in Section 4 sufficient

conditions on the transition kernels Qg so that these sequences {e,,r,,n > 1}
exist and satisfy the conditions C2 and C3. Note that the i.i.d. case is a special
case of the controlled Markov chain framework (set Qp = mp = 7 for any 6); and
the so-called Robbins-Monro case corresponds to Qg = 7y for any 6.
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Truncated SA algorithms (2) can be written as

Ont1 = On + Ynt1Zn+1 + (00 — On — Yn+1Z0+1) 10, 4y 415011 ¢Knsr 5

in most (if not any) proof of convergence of this sequence to limiting points in the
interior of ©, the first step consists in proving that P-almost-surely, the number
of truncations is finite (see e.g. Andrieu et al.[2, Theorem 1]). Therefore, the
term (6o — On — Yn+1Zn+1) 10, 4441504 1¢Kny, 18 nUll for any large n on the set
{lim, 6, = 0, } thus showing that it is part of 7n+17’£3421 in the expansion (4).

The condition C1 considers a limiting target 6, which is assumed to be stable
and such that the linear term in the Taylor’s expansion of h at 6, does not vanish
(see condition Clc). Results for the case of vanishing linear term can be found
in Chen [8, Section 3.2]. When h is a gradient function so that the SA algorithm
is a stochastic gradient procedure, the condition Cla assumes that 6, is a root
of the gradient. Therefore, our assumptions do not cover the case of constrained
optimization problem with solutions on the boundaries of the constraint set ©.
For rates of convergence for these constrained SA algorithms, see e.g. Buche and
Kushner [7].

The conditions C2 and C3 are designed to address the case of multiple targets,
a framework which improves on many published results. It is usually assumed in
the literature that there is an unique limiting target (see e.g. Fabian [12], Buche
and Kushner [7], Chen [8, Chapter 3] and Lelong [21]). While we are interested
in proving a Central Limit Theorem given the tail event {lim,6, = 6.}, it is
assumed in C2a that the r.v. e,41 in the expansion (4) is a martingale increment
with respect to (w.r.t.) the probability P. As discussed above, such an expansion
is easily verified. Note that since the event {lim,6, = 6.} is in the tail o-field
o(V,, Fn), it is not true that {e,,n > 1} are martingale-increments w.r.t. the
probability P(|lim, 8, = 6,). Therefore, our framework is not a special case of the
single target framework.

The main use of C2 is to prove that the {e,,n > 1} satisfies a CLT under the
conditional distribution P(-|lim, 6, = 6,). We could weaken some of the assump-
tions, for example by relaxing the 2 + 7-moment condition C2b which is a way to
easily check the Lindeberg condition for martingale difference array. Nevertheless,
our goal is not only to state a theorem with weaker assumptions but also to present
easy-to-check conditions.

When there exists 7 > 0 such that supys; E [|ex|*"7] < oo, C2b is satisfied
with A,, = Ay, = 2. When there exist 7,6 > 0 such that

supE U€k+1’2+T1|9k_9*|§5] < 0, (7)
k>0

then C2b is satisfied with A,k = (,,<;<,{[0; — 0x < 6} and Ay, =5, {16; —
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0,] < 6}. In most contributions, rates of convergence are derived under the con-
dition (7) (see e.g. the recent works by Pelletier [23] and Lelong [21]). This
framework is too restrictive to address the case of SA with controlled Markov
chain dynamics when the ergodic properties of the transition kernels {Qg,0 € O}
are not uniform in 6. Our assumption C2b is designed to address this framework
as it will be shown in Section 4.

C2c is an assumption on the conditional variance of the martingale-increment
term ey, which is more general than what is usually assumed. In Zhu [27], Pel-
letier [23], Chen [8] and Leling [21] (resp. in Delyon [10]), a CLT is proved under the

assumption that E [ek+le£+1’fk:| = U, —i—Dlgl) (resp. E [ek+1e%—‘+1’fk:| = U*—i—Dng))
where D,(Cl), D,(f) satisfy (5) and U, is a deterministic symmetric positive definite
matrix. A first improvement is to remove the assumption that Uy is deterministic.
A second improvement is in the combination D,(;) + Df). The introduction of the

term D,(f) is a strong improvement since it covers the case of SA with controlled
Markov chain dynamic: observe indeed that in this case E [ek+1eg+1’fk:| is a func-
tion of (X, 0) and it is really unlikely that this term converges almost-surely to a

(random) variable along the set {lim, 6, = 6,}. Allowing an additional term Df)

such that the sum Y, D,(f) converges in some sense to zero introduces more
flexibility (see Section 4 for more details). We will also show in Section 4 how our
framework improves on Delyon [10]. Examples of SA algorithm where C2c¢ holds
with resp. Robbins-Monro and controlled Markov chain dynamics can be found
resp. in Bianchi et al. [5] and Fort et al. [13].

Examples of sequences satisfying the condition C4 are the polynomial ones.
The step size v, ~ vn~? for a € (1/2,1) satisfies C4a. The step size v, ~ Y./n
satisfies C4b; note that the condition on (7, L) is well known in the literature (see
e.g. Chen [8, Assumption A3.1.4]).

2.3 Main result

Theorem 2.1. Choose 6y € © and consider the sequence {6,,n > 0} given by (4).
Assume C1, C2, C3 and C4. Let 'V be the positive definite matriz satisfying w.p.1
on the set {lim, 6, = 0.},

VVh(O)T +Vh(0,)V = —U, , in case Ca ,

V(Id + 27 Vh(0)T) + (Id + 2. Vh(0,))V = —27,U, , in case Cfb .
Under the conditional probability P (-|lim, 0, = 0,), {%?1/2 (0, —0y),n > 1} con-
verges in distribution to a r.v. with characteristic function given for any t € R?
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by
1

1
. — Ty
P(limg 0y = 0,) | 'mafa=0x exp(—3t V)

When the matrix U, in Assumption C2c is deterministic, the limiting distri-
bution is a centered multidimensional Gaussian distribution with (deterministic)
covariance matrix V.

Given matrices A, E, existence of a solution to the equation VA + ATV =
—FE  issolved by the Lyapunov theorem (see e.g. Horn and Johnson [18, Theorem
2.2.1.]). When A is a (negative) stable real matrix and E is positive definite, then
there exists an unique positive definite matrix V' satisfying the Lyapunov equation
VA+ ATV = —E  (see e.g. Horn and Johnson [18, Theorem 2.2.3.)).

Sketch of the proof of Theorem 2.1 The proof of Theorem 2.1 is detailed in
Section 5. The key ingredient is the Central Limit Theorem for martingale arrays.
As commented in Section 2.2, e, is not a martingale-increment w.r.t. the
conditional probability P(-|lim, 6, = 6,). To overcome this technical difficulty, we

use that
ent1 = ent1la, +enp1 (1 —14,) (8)

where {A,,n > 1} is a F,-adapted sequence of sets converging to {lim, 6, = 6,}
(such a sequence always exists, see Lemma 5.7). Along the event {lim, 60, = 6.},
the second term in the right hand side (rhs) of (8) is null for any n larger than
some almost-surely finite random time.

We write 0,, — 0, = p, + pn, where p,, satisfies the equation

pnt1 = (Id + g 1VR(0k)) fin + Ynt1€n41 po=0.

Id denotes the d x d identity matrix. Roughly speaking, the sequence {u,,n > 0}
captures the linear approximation of h(f,) and the martingale-increment noise
sequence {e,,n > 1}.

We prove that ~, 1/2 Prllim, 6,=6, converges to zero in probability so that
{4tn,m > 0} is the leading term. We then establish that for any t € R,

. . 1
hTILnE Uim, 0,=0, €XD <Z’Yn 1/2 tTMn)] =E |:1limq 0,=0, €XD (-?TVZ‘/)}

3 A Central Limit Theorem for Iterate Averaging

Theorem 2.1 shows that the rate of convergence of the sequence {6,,,n > 0} to 6,
is O(n%?) when 7, ~ 7./n® for some a € (1/2,1]. The maximal rate is reached
by choosing 7, ~ 7x/n, for some 7, satisfying the conditions C4b. The main
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drawback with such a choice of the step-size sequence {v,,n > 1} is that in
practice, —L i.e.the largest real part of the eigenvalues of Vh(6,) is unknown so
that the condition C4b is difficult to check.

The second comment is on the limiting covariance matrix when the rate is
maximal (i.e.n the case vy, ~ 7./n). For any non-singular matrix I', we could
define the algorithm

Oni1 = On + Vi1 Th(0y) + Yns1lenit + i1 Drngt focO.

This equation is of the form (4) with a mean field 7 = Th and noises {e,,, 7, n > 1}
replaced with {T'e,,I'r,,n > 1}. Then, Theorem 2.1 gives sufficient conditions so
that a CLT for the sequence {én,n > 0} holds: the matrix V is replaced with
V = V() satisfying

V(Id 4 27, Vh(0,)TTT) + (Id 4 27, Vh(0,)T)V = —29,TUT7T .

A natural question is the “optimal” choice of the gain matrix I', defined as the
matrix Ty such that for any A € R ATV(I)A > ATV(I',)A. Following the same
lines as in Benveniste et al. [4, Proposition 4, Chapter 3, Part I, it can be proved
that 'y = —v, ' Vh(6,)~! and in this case,

V([y) =~ 'Vh(6,) U VR(6,) T .

Theorem 3.2 below shows that by considering the averaged sequence {6,,,n > 0},
the optimal rate of convergence (i.e.the rate /n) and the optimal asymptotic co-
variance matrix (optimal in the sense discussed above) can be reached whatever
the sequence {v,,n > 1} satisfying C4a used in the basic SA sequence (4). There-
fore, such an optimality can be obtained even when VA(6,) is unknown. Note also
that on a practical point of view, slow decreasing step-size 7, are better (see e.g.
Spall [26, Section 4.4.]) and this simple averaging procedure improves the rate of
convergence of the estimate of 6,.

These properties of the averaged sequence were simultaneously established by
Ruppert [25] and Polyak and Juditsky [24] under more restrictive conditions than
those stated below.

3.1 Assumptions

AVER1 (a) {e,, n > 1} is a F,-adapted P-martingale-increment sequence.

(b) There exists a sequence {A,,,m > 1} such that lim,, P(A,|lim, 0, =
0,) =1, and for any m > 1,

supEUek]21A ] <00,
k

m,k—1
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where A, -1 € Fr—1 and limy 1 Ams = 14, almost-surely on the set
{lim, 6, = 0. }.
(c) Let

1 n
Entl = —— €ki1 -
There exists a random matrix U,, positive definite w.p.1. on the set
{lim, 6, = 6.}, such that for any t € R%,
. . 1
hranE [himq 0q=0+ eXp(ZtT€n+1)] =K |:1limq 0q=0x exp(—i tTU*t):|

We prove in Lemma 5.5 that when lim,, ny, > 0, assumption C2 implies AVERI.
Note also that since lim,, P(A,,|lim, 6, = 0,) = 1, AVERIc is equivalent to the
condition: for any m > 1,

. . 1
h,ILnE [lhmq 0,=0. exp(th5n+1)1Am] =E |:]-limq 0,=0s exp(—§ tTU*t)lAm]
For a sequence of R%-valued r.v. {Z,,n > 0}, we write Z,, = Or»(1) if sup,, E[| Z,,|P] <
0.
AVER2 r, is F,-adapted. 1, = TS) + 7“7(12) with for any m > 1,
(a) v /2 Tr(zl)llimq 0,=0,14,, = Ouwp1(1)O0r2(1).
(b) VA kot 7 by 0,20, L = Ot (DOp2(1) -
_ P
(C) n-1/2 ZZ:O Tk-i—lllimq 0,=05 — 0.
The sequence {A,,, m > 1} is defined in AVERI1b.

Note that AVER2c is equivalent to n~'/2 > 0 Th+11img 0,=0, 1A, 250 for any
m > 1.

AVERS3 lim, nvy, = +oco and

1_l

Ve+1

B R R
h,{n%Z%ﬁ =0, 1171;11%2%—0.

k=1 k=1
The step size 7, ~ vn~?® for a € (1/2,1) satisfies AVER3 but the step size
Yn ~ Yx/n does not. Observe that if the sequence {7,,n > 0} is non-increasing
(or ultimately non-increasing) then (see Lemma 5.13)

1_i

Vk+1

=0.

. B G
hrrbnnfyn =400 = hrrbn % Z’yk
k=1
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3.2 Main results

We show that the above conditions allow a control of the L?-moment of the errors
{0, — 0,,n > 0}. This result is a cornerstone for the proof of Theorem 3.2. The
proof is given in Section 5.

Proposition 3.1. Assume C1, C4, AVERI1a-b and AVER2a-b. Then, for any
m>1

Theorem 3.2. Choose 6y € O and consider the averaged sequence given by (3).
Assume C1, Cfa, AVER1, AVER2 and AVERS3. Then for any t € R¢,

limE []-limq 0,=0, XD (z\/ﬁ tr (H_n — 9*))]
1
~ 8 |tim, 0. e (=5t VRO U (A0 7|
Sketch of the proof of Theorem 3.2 The proof is detailed in Section 5. Since

lim,, P(A,,|lim, 6, = 6,) = 1, we only have to prove that for any m > 1 and
t € R,

hrILnE [1limq 0q=0+ I_Am exp (Z\/ﬁ tT (én - 9*))]
1
~ & [t -0, La exp (~507 VA0, U (VA0 77|

We write
Vh(@,()_1

n
an—e*:—ﬁ;€k+l+zn.

We show that \/ﬁanhmq 9,=0, 14,, converges to zero in probability for any m > 1;
for this step, the main tool is Proposition 3.1. The proof is then concluded by
AVERIc.

4 Application to SA with controlled Markov chain
dynamics

Let {K,,,n > 0} be a sequence of compact subsets of © such that

Kn C Kngt Uk.=o.

n>0
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Let {Qg,6 € ©} be a family of Markov transition kernels onto (X, X’). We consider
the following SA algorithm with truncation at randomly varying bounds: 6, €
Ko, 00 = 0 and for n > 0,

set 9n+1/2 =0, + 'YnJrlH(eanJrl)'

update

_ (9n+1/2a0n) ) if 9n+1/2 € ICUn s
(O 1, omi1) = { (0g,0n+1)  otherwise,

where {X,,,n > 0} is a controlled Markov chain on (2,.4,P) with conditional
distribution given by

]P)(Xn+1 S A|]:n) — Qen(Xn,A) 3 ]:n — 0(905X07 e aXn) . (9)

The random sequence {o,,n > 0} is a non-negative integer-valued sequence count-
ing the number of truncations. Such a truncated SA was introduced by Chen et
al. [9] (see also Chen [8, Chapter 2]) to address the boundedness problem of the
SA sequence {6,,n > 0}. A more general truncated SA algorithm with controlled
Markov chain dynamics is introduced in Andrieu et al. [2]: when truncation oc-
curs, both the parameter 6,/ and the draw X;, used to obtain the next point
X,41 are modified.

The key point of the proof of convergence of this algorithm is to show that the
number of truncations is finite with probability one, so that after some random
time, the sequence {6,,n > 0} is almost-surely bounded and obeys the update
rule 0,11 = 0, + Y41 H (0, Xpnt1). Conditions implying almost-sure boundedness
and almost-sure convergence of the sequence {6,,,n > 0} when {X,,,n > 0} is a
controlled Markov chain can be found in Andrieu et al. [2, Section 3]. Since in this
paper we are interested in CLT’s, we will assume that

A1l (a) For any 6 € ©, there exists a probability distribution 7y on (X, X') such
that mgQy = my. Set

h(6) = / H(0,z) mo(dz) . (10)

(b) the number of truncations is finite with probability one: P(lim sup,, o,, <
oo) = 1 and there exists 0, € © satisfying C1 such that P(lim, 0, =
0,) > 0.

For simplicity, we consider the case when H is bounded and the step-size is poly-
nomially decreasing. Extensions to the case H is unbounded can be done along
the same lines as in Andrieu et al. [2].
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A2 (a)
(b)

for any compact set K C O, supgei sup,ex |[H (0, )] < oo.

There exists a € (1/2,1] such that v, = v /n% When a = 1, ~,
satisfies the condition C4b.

We assume that the transition kernels {Qg, 6 € ©} satisty

A3 (a)

For any # € ©, there exists a measurable function Hy : (X, X) —
(R4, B(R?)) such that

H(6,2) — h(8) = Hy(x) — QoHy(x) . (1)

There exists a function V3 : X — [1,00) such that for any compact
subset K C ©,

sup sup \ﬁg(x)\ i ’Qeﬁe(x)‘ <00 . (12)

ek zeX Vi(z)

For any # € ©, there exists a measurable function Uy : (X,X) —
(R¥, B(R™")) such that

Folx) — / Folx) mo(da) = Up(x) — QoUp(x) , (13)

~ ~ ~ ~ T
where Fy(z) = [ Qq(,dy) Ho(y) Ho(y)"~QoHo(x) (QuHy(x)) . There
exists a function V5 : X — [1,00) such that for any compact subset
K Co,

sup sup [Up ()| + |QoUsg ()| c o (14)

ek zeX Va(x)

There exist §,7,7 > 0 such that for any m > 1,

:Llp E [(VEJFT(X’“H) + V21+?(Xk+1)) 10, << ll0j—0u] <6} | <00,
E [V (X)) + V37T (Xn)] < 0.

For any compact subset K C O, there exist b, C > 0 such that for any
0,0 € K,

(QoHo(w) = Qo Hy(@)| < Cl0 0> Vi(a) |
|Up(x) — U ()] < C 10— 0'|° Vo () .

Furthermore, almost-surely

lim ( / Fy, () 7o, (dz) — / Fo. (2) m(d@) i, 0, g, = 0.
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Conditions implying the existence of my and solutions to the Poisson equations (11)
and (13) can be found e.g. in Hernandez-Lerma and Lasserre [16, Chapter 8] or in
Meyn and Tweedie [22, Chapter 17]. When the transition kernel @y is uniformly
ergodic, then V; = V5 and is equal to the constant function 1. When the kernel
is V-geometrically ergodic, we can choose Vi = VP V4 = V2/P for any p > 2.
Sufficient conditions for (12) and (14) based on Lyapunov drift inequalities when
the chain is geometrically ergodic (resp. subgeometrically ergodic) are given by
Fort et al. [14, Lemma 2.3] (resp. Andrieu et al. [1]. Andrieu et al. [2, Proposition
6.1.] gives sufficient conditions to check A3c (compare this assumption with the
condition A3(ii) of Andrieu et al.) when the kernels are V-geometrically ergodic:
in this case, for any p > 2 we can choose V; = VP, Vy = V2/P and 2(1+7)/p = 1.
The first set of conditions in A3d is an assumption on the regularity-in-6 of the
solution to the Poisson equation. Andrieu et al. [2, Proposition 6.1.] give sufficient
conditions in terms of the regularity-in-6 of the transition kernels Q9. When mp = 7
for any 0, the second set of conditions can be established by combining smoothness-
in-0 properties of the function Fy and the dominated convergence theorem. When
mg depends on 6, Fort et al. [14, Theorem 2.11 and Proposition 4.3] give sufficient
conditions for this condition to hold.

We now show how these assumptions imply the conditions C1 to C4. Under
Alb, the condition C1 holds; note also that the conditional probability P(-|lim, 6, =
0,) is well defined. By using (10) and (11), we write the truncated SA algorithm
on the form (4) by setting

En+1 = ﬁlﬁn (XnJrl) - Qenﬁgn (Xn) )
i1 = Qo, Ho, (Xn) — Qo, Ho, (Xnt1) + (60 — Opr1/2)10,, ks, -

Let us prove that the condition C2 holds. Since 6,, € F,,, Eq. (9) implies C2a. Fix
§ such that B(6,,6) = {0 € R%, |6 — 0,] <6} C O. Set

{(7) if k <m,

A = Nin<j<i |l — 0 <0,0; =05 15}  otherwise.

)

Then for any k,m, Ap, 1 € Fi; limy Ay i = Ap, where A, = ﬂjzm{|9j — 0, <
6,0; = 0;_1/2}; and lim,, P(Ap,|lim, 0, = 6,) = 1 by Alb. Fix m > 1; by (12)
applied with K = B(6,,0), there exists a constant C' such that

E [lext1)* 14, ] < CE[(VZ(X5) + VP (Xis1)) 14, ]
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A3c concludes the proof of C2b. Observe that E [ek+1e£+1‘fk:| = Fy, (Xi). By
using (13), we write E [ex 1€l |Fr] = Us + D,(Cl) + D( 9 4 D(2 Y with

. = [ Fo(@) . (ds)
D) = [ Fay @) () — [ Fo. (@) . ()

D = Up, (Xp41) — Qo Us, (X) |
DY = U, (Xy) = Up, (Xps1) -

By A3d, Dlgl) 2% 0 on the set {lim,0, = 6,}. By (9), E [D |-7:k 1] = 0; by
application of the Burkholder inequality (see e.g. Hall and Heyde [15, Theorem
2.10]), it holds for any A € F such that limy Ay = {lim, 6, = 0.}

n
2,
Z Dl(c “ Lap T4,
k=1

The constant C'is finite since under A3c, sup;, E [|D,(€2’a) 1714
more,

1+7
< Cnlv(1+%)/2 )

m,k:| < 00. Further-

n

Z Dl(f’b) = Up,,(Xm) — Up, (Xnt1) + Z (Us (Xk) = Upe_, (X))
k=m

k=m+1
so that by A3c-d, there exists a constant C' such that

1+7
b(14+7
14, Ltim g 6= <C<1+Z (e ) :

k=m

(2,0)
k

The above discussion shows that C2c is verified if a > 1/2V 1/(1 + 7).

Finally, let us study r,. We write rp11 = 7“,(121 + 7’5321 with

) N N
7"211 = (00 = Ony1/2) Lo, eka, + Qonir Hopy (Xns1) — Qo, Ho, (Xns1) -

By Alb and A3d, v, NS )1hmq 0,=0, 1A, = Owp.1(1)+or1(1) for any fixed m > 1.
In addition, by (12), there exists a constant C' such that

>

k=1

1Am] <EMi(X)]+E[V(Xnt1)la,] ;

and by A3c, this term is uniformly bounded in n.
The above discussion is summarized in the following proposition
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Proposition 4.1. Assume A1, A2 and A3. Ifa € (1/2V 1/(1+7),1], the condi-
tions C1 to C4 are satisfied and

U, = /We*(dx) (ﬁe*(x) Hy, ()" — Qo, Hy, (x) (Qe*ﬁe*(w))T> :

By application of Theorem 2.1, we obtain a CLT for randomly truncated SA
with controlled Markov chain dynamics. Our result improves on Delyon [10, Theo-
rem 25]. Under stronger conditions (for example, it is assumed that V; and V3 are
bounded functions; there is a single target 6, ), Delyon [10] establishes a CLT in the
case Y, = Vx/n® with the condition a € (2/3,1]. Note that if Vi, V5 are bounded
then A3c holds with any 7 > 0 so that our approach only requires a € (1/2,1]
which is the usual range of values for SA algorithms.

Using similar tools, the conditions of Theorem 3.2 can be verified; details are
left to the interested reader.

5 Proof

5.1 Definitions and Notations

Let {A,,n > 0} be a sequence of sets such that
A, € Fp, liin 14, = llim, 6,0, w.p.l. (15)
Such a sequence exists by Lemma 5.7. Define recursively two sequences
o1 = (Id+ 1 V(i) pn + Yns1€ntr po =0; (16)
Pl = Onp1 — 0 — plnyr po = 0o — 0 ; (17)

and the matrices ¥4 (n, k) for 1 < k <mn,

n

v, k) = [](1d + 7 VA(6,)) . (18)

j=k
By convention, ¥ (n,n + 1) = Id. Under Cla-b, there exist a set of random d x d
symmetric matrices {RZ("), i < d} such that the entry ¢ of the column vector
{h(0,) —Vh(0,)(0,—0,)} isequal to  (0,, — 0*)TR§n)(9n —60,) . More precisely,

1 2
(n) _ [ 2 Oh B
R (k, 5)_/0 3 (1= 555 On + (00 = 0.)) dt. (19)
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Let Rsn) be the tensor such that
h(6n) = Vh(0,)(0, — 0,) + (6, — 0T R (6, — 6,.) . (20)

Finally, for 1 < k < n, define the d x d matrices
n
i—1 i—1
H (1d+ 7, {Vh(0.) + 207 RSV + o RIVY . (21)
with the convention that ¢ (n,n + 1) = Id.

5.2 Preliminary results on the sequence {y,,n > 0}
By iterating (16), we have by definition of 1, (see (18))

n+1

png1 = > Wwe(n+ 1,k + ey, . (22)
k=1

Proposition 5.1. Assume C1b-c, C2a-b and C4. Then

(1) pnllim, 0,—0. 2% 0 when n — .

(i) for any m > 1, v |iel? Tiim, 0,-0.14,, = Op1(1) + 0wpa(1).
Proof. Let m > 1 be fixed. Set pi,11 = ugll + uﬂl, with

n+1

/J,n+1—Z’yk1/J* n+1k+1)exla, -
k=1

(i) Since

we only have to prove that for any m > 1, limy, 15,1 4,, ltim, 6,6, 2%0. Let m > 1.
Let us first consider usll) and define S, def Zkz” Yrerla, oy - By (22) and
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the Abel transform, we have

n+1
u =" du(n+ 1k 4 1)(Sk — Sk1)
k=1
n n+1
= (Sni1 = Snt2) + Y Ue(n+ Lk +1)Sk = Y ¢u(n+1,k)S;
k=1 k=2

= —Ont2 + ZZ)*(” + 1a 2)51 + Z(¢*(n + 1’ k + 1) - TP*(” + 1’ k‘))Sk
k=2

= —Sni2+ 9 (n+ 1,2)S1 = > wth(n + 1,k + 1)VA(6,) S (23)
k=2

where we used (18) in the last equality. Under Clb-c and C4, Lemmas 5.8 and 5.9
yield for any fixed £ > 1

limsup Y yelthe(n + 1,k + 1)] < o0, lim [u(n+1,0)|=0.  (24)
" k=2 "

Under C2a, for any £ > 1, E [|Sg|2] <> E [|ek|21¢4m’k71] . By C4 and C2b,
the rhs is finite for any ¢ > 1, thus implying that (a) S, is finite w.p.1. and (b)
lim,, S, = 0 w.p.1. (23), (24) and these properties of S,, imply that ug)lAm 250
when n — oo.

Let us now consider ,ug). By C2b, there exists a random index K such that
for any k > K, (1 —14,,,)14,, llim,6,=0, = 0. Hence, for any n > K,

K
2
uflllum Uimg 0,=0, = E Yetbe(n+1k+1)ex (1 =14, ,,) 14, Lim, 0,—6, - (25)
k=1

Then, by (24), ,&) 14,, Ntim, 0,=6, = Ow.p.1.(1). This concludes the proof of item

(i)-
(i) Under C2a, (16) implies

n+1

1
E[luldiP] < 30 22E [l(n+ 1k + Dexta, ] -
k=1
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By Clc, C2b, C4 and Lemma 5.8, there exist positive constants C, L’ such that

n+1

1
E[lali?] <30 0F an + 1, b+ 1) E [lexf1a,, ]
k=1
n+1 n+1
< CsupE Uek‘QlAm,k_l] Z’Y}% exp(—2L' Z Vi) -
k k=1 j=kt1

Therefore, by Lemma 5.9 and C4, limsup, v, 'E[jux|?] < +oo. Consider now
M;Q_)H. By C4 and Lemma 5.8, lim,, v, ![t(n, £)|?> — 0 for any fixed . Therefore,

by (25), 7;1|p,(12ll|21,4m lim, 9,=0, = Ow.p.1(1). This concludes the proof of the
second item. O

5.3 Preliminary results on the sequence {p,,n > 0}
By (17) and (20),

prs1 = (1d + Y1 VA0))pn + Yns1Tns1 + Y1 (0n — 0)T RS (6, — 6,)
= (Id + 7n+1Vh(‘9*))pn + Yn+1Tn+1 + 'Yn-l—l(ﬂn + Pn)TRSn) (Mn + Pn)

- <Id + ’}/n+1Vh(9*) + 27n+1:uZZR£n) + 7n+1pZZR£n)) Pn

+ Ynt1Tna1 + 7n+1M:£R£n)Mn .

By induction, this yields
. k
-1
pr =0 po + S wtblnk+ 1) (re+ul B D) . (26)
k=1

where 1(n, k) is given by (21).
Proposition 5.2. Assume C1, C2a-b and C4. Let 0y € ©. Then, for any m > 1,

{Pn - Z’}/ki/)(n, k+ 1)T’k} 1limq =0, la,, = ,y%/\(l/QJrn) Ow.p.l(l)OLl (1) R
k=1

with k = 1/2 under C4a and k € (0, Ly, — 1/2) under C4b.
Assume in addition C3. Then, for any m > 1,

n
Z’Wb(n, ke + 1) liimg 0,0, 14, = 7/* Owpa(1)opi(1) .
k=1
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Proof. The proof in given under C4b. The case C4a - which is simpler - is on the
same lines and is omitted. Let m > 1 be fixed.
(i) Let n > 0 and k € (0, Ly, — 1/2) such that

(L=mv>1/2+k. (27)
Note that such (7, x) exist under C4b. This implies that

lirrln sup -y, V2 exp(—(L — 1) Z v;) < +00 . (28)
j=1

We now prove by application of Lemma 5.8 that there exists an almost-surely
finite positive r.v. U, such that for any 1 <k <n,

[, %) 1t 0,0, 14, < Upexp(—=(L—=n)>_7;) - (29)
j=k

To that goal, let us prove w.p.1. limn(pz;Rsn) + Quz;Rsn))lhmq 0,-0.14,, = 0. By

Proposition 5.1, limy, 14, liim, 6,=¢, = 0 w.p.l. and this implies that w.p.1.,
im pnLiim, 0,=0. 14, = liyfln(en — Ox — ) Ntimgy 0,-0,14,, = 0.

In addition, under C1b, Rsn)llimq 0,=0, = Oy .p.1.(1). This concludes the proof of

(29). Set '/ LA (1/2 + k). By (26), we have

pn— > w(n, k+ Drg = 9(n, Dpo + > wtp(n, k + 1) <M£_1R£k71)uk_1> :
k=1 k=1
(30)
Consider the first term. By (29),

n

Y P, D] [polTiimg 0,26, 14, < Yo 2T U exp(—(L =) > )lpol,
=1

and by (28), this term is Oy, ,.1(1). For the second term, it holds by (29)

n
! k1
YD wm(n b+ Did RS i L, 0,20, 14,
k=1

n
i —1/2 k—1
<7" Z’Y}% [h(n, k+ )] (7, 2|1 ))?|RS )llhmqeqze*lAm
k=1
n

n

— k! / —1/2 k—1

< Ouwpa(D) 1 S 3 exp(—(L—n) S 1) P lik-1 D2 BE L, 0,20, 14, -
k=1 =k t1
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By Proposition 5.1, v, ! |pn|?14,, Nimg 0,—0, = Op1(1) + 0y p.1(1) and under Clb,
|R£k)|1hmq 0,=0, = Owp.1(1). By Lemma 5.9 and (27), this term is Oy ..1(1)Op1(1).
(ii) Set r, = r,gl) + 7“122) as in C3. It holds,

n
_ 1
T ] ZVW(H, k+ 1)?“,(C )|llimq0q:9* 14,
=1

n
_ 3/2 —1/2 (1
<2374 1, k4 D)) g P g 6,20, 14,0
k=1

and by (27), (29), C3, C4 and Lemma 5.9, this term is Oy p.1(1)op1(1). For the

second term, we use the Abel lemma: set =, def Dy r,(f) 1 A,, llim, 0,=6,- Then

n

_ 2

LA, Limg 0,=0, 1/2 E Y (n, k+ 1)7”12)
k=1

n—1
— _ 1 1 _
= VnEn + 9% Y wrw(n.k +2) {(— — )+ Hk} o
el Ve+1 Yk

where Hy, = Vh(0,) + 2,u£R£k) + prsk). Following the same lines as above, along
the event {lim, 6, = 0.} N A,,, sup;, |Hy| is finite w.p.1. Hence, o

14, 1limq €q=9*71;1/2 Z’ka(rh k+ 1)741(3) < Ow.p.l(l) {\/ Vn‘En’

k=1
n—1
70 2 VAR el (n, k + 2)|\/’Yk|Ek|}
k=1
and the rhs is Oy p.1(1)op1(1) by Lemma 5.9 and C3. O

5.4 Proof of Theorem 2.1

By (17), 7,;1/2 (0, —0,) = %:1/2,un + %71/2/)”. We first prove that on {lim, 6, =

0.}, the second term tends to zero in probability. By C2b, for any e > 0 there
exists m > 1 such that P(A,,|lim, 60, = 6,) > 1 — €. Therefore, it is sufficient

to prove that for any m > 1, 'yﬁ”zpnlAm Lim, 6,=6, 2.0 when n — oco. This

property holds by Proposition 5.2.
We now prove a CLT for the sequence {~, v 2,un, n > 0}. It is readily seen that

lim E exp(z'fygl/%%n)lnmqeq:e*} = E [exp(—0.5¢" Vi) liim, 6,6, |
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if and only if
liénE [exp(i’yglﬂtTunlhmq ngg*)} =K [exp(—O.E’)tTthhmq ngg*)]

Furthermore, by C4 and Lemma 5.8, for any fixed ¢ > 1, lim,, 7,:1/2]1/1*(71,6)\ =0
(where 1, is given by (18)); this property, together with (22) and (15) imply that

n
exp <ifT Z Xn—l—l,klAkl) ]

k=1

liﬁnE [exp(mgl/QtT,unlhmq gq:g*)] = 1111111E

where X, 11 = ng{kaw*(n—i—l, k+1)ex. By C2aand (15), E [Xn+1,k1Ak,1 |-7:k—1]
0 and the limit in distribution is obtained by standard results on CLT for martingale-
arrays (see e.g. Hall and Heyde [15, Corollary 3.1.]).

Lindeberg condition we have to prove that for any € > 0,

n
P

E E [|Xn+1,k|21\Xn+1’k|ze |-7:k—1] 14, , — 0.

k=1

Following the same lines as above, it can be proved that equivalently, we have to
prove for any m > 1,

n
P
1A, Nimg 0,=0, ZE [’Xn+1,k’21|Xn+lyk\Ze !fkq} — 0.

k=1
_ (@ (2) :
Let m > 1 be fixed and set X, 1 = Xpire T Xl with
1 2
Xr(z—izl,k = Xn+1yk51-'4m,k71 ’ Xr(z-zl,k; = Xn+1,k (1 - ]'Am,kfl) .

We can assume without loss of generality that 7 given by C2b is small enough so
that (24 7)Lvy, > 1+ 7. Then,

n+1 n+1

1 ~1/2
ZE {|X1(1+)1,k|2+7] - ZE [|7n+{ Ws(n+ 1k + Degla,, |2+T]
k=1 k=1
n+1
T —1-7/2 T
< upE [lexl a7 PN+ 1k + 1P
k=1

Under Clb-¢, C2b and C4, Lemmas 5.8 and 5.9 imply

n+1
lim sup ’y,:_(:;”) ZVZ+T\¢*(n +1L,kE+ 1) < 400
n

k=1
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since (2 + 7)Lv, > 1+ 7, Lemma 5.9 applies even in the case C4b). Hence,

n+1
S OE[IX W] = o)
k=1

Consider now Xr(jzl - Since there exists a random variable K such that 14, (1 —

14, 1 ) limg 6,=6, = 0 for any k > K, it holds for any n > K,

n
2
llimq‘nge*xl“‘lm ZE [‘XV(Lle,k‘zl\Xn-H,HZG “kal]

k=1
K
= llim, 0,=0, 1A, ZE [’Xn+1,k’21|Xn+l’k\25 !fkq} (T—14,,,)
k=1
K
< Llimg 0y=0, LA Y - D> VRl (n 4+ 1k + DPE [lex® | Froa] (1= 1a,,,) -
k=1

Under C4, this term is 04,p.1(1). Therefore, the first condition of [15, Corollary
3.1.] is satisfied.

Limiting variance We prove the second condition of [15, Corollary 3.1.]. Set

def _ s
ARRE= 27137/)*(”, k+ 1D)Uctpe(n, k+ 1)T1qu Oq=0x >

k=1
—(2) def _ -
VOIS 2 (n, k1)
k=1

x (Elexel | Fr-1]1a,, — Usltim, 0,=0.) Uu(n, k+1)";
(2)

We prove that V,ﬁ” L Vliim, 6,=6, and Vn L 0. It holds on {lim, 6, = 6.},
Tn

Tn+1

VO =y UL+ (Id + Y1 VA(0,) VO (Id + 401 VA6,))T

=V 4 3, (Us + VR0, VY + VOVR6,)T) + w%l)
n+1

+ (Yt1 — M) Us + Y1 VROV VA0,

and by Lemma 5.11, lim,, Vél) = V1jim, 9,=0, almost-surely. Following the same

lines as above, it can be proved that V,(f) and Vn@) given by

Vi =iy 0,=0, T > Vitu(n, k+ 1) (Eleref | Fra] = Us) ¢u(n, k+1)7
k=1
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have the same limit in probability. By C2c, we write Vn(2) = <V7§2’a) + Vn@’b)) lim, 0,=0,
with

v, (2a) —wnlzwz}*n k+1)DY g (n, k+1)T
k=1

V(2 b = ’Ynl Z'Yk¢* n, k+ 1)D(2 1Wx(ny b+ 1)
k=1

We have ‘VéQ’a)‘ < A PSR A [k, k4 1)) ]Dlgljly By Lemma 5.9, there

exists a constant C' such that on {lim, 6, = 0.}

lim sup ‘Vf’a)
n

<C limsup‘Dlgl)‘ ,
k

where we used (15). The rhs tends to zero w.p.1. by C2c. We now consider VéZ’b).
Since lim,, P(A,|lim, 0, = 6,) = 1, it is sufficient to prove that for any m > 1,

Vn(Q’b)llimq 0y=0. LA, — 0 when n — oo. Let m > 1. Set

— def 2)
=n Z D( ]-hmq 0q=0, 14, -
7=0

By the Abel transform, we have

n—1
2, _ _ _
Vny)lAm Liimg 6,26, = Ynt+1Zn+Vni1 E (s (n+ 1, k+2)Eu (n+1,k+2)7
k=0

— Yepou(n+ 1,k +3)Epu(n + 1,k +3)"}

Under C2¢, v,Z, 5 0. For the second term, following the same lines as in
Delyon [10, Proof of Theorem 24, Chapter 4], it can be proved that the expectation
of the second term is upper bounded by

n—1

n+127k+1 1hi(n + 1, k+2)‘ (E[IEk]]) -
k=0

Since limg, v,E [|E|] = 0, Lemma 5.9 implies that v

concludes the proof.

%) 1Am 1limq 0q="04 i} 0. This
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Remark 5.3. From the proof above, it can be seen that the assumption on the r.v.
D,(f) can be relaxed in

n
limyaE (| Y D14, 14, 1= 0.
k=1
Observe indeed that in probability,

n

. . - 2

i V21 4, T, 0,20, = im0 920e (0, kD)D) 0 (n, k+1) 1, La
k=1

5.5 Proof of Proposition 3.1
The proof is prefaced with a preliminary lemma.

Lemma 5.4. Let {y,,n > 1} is a (deterministic) positive sequence satisfying Cla
and A be a (deterministic) d x d Hurwitz matriz. Let {x,,n > 0} be a sequence of
Re-valued r.v. satisfying

Tpil = Tp + ’7n+1Axn + 'YnJrICY(Llle + 'YnJrle(fgl ) n=>0,
where
n n+1
1

S| T Gd+%4) | ¢ i, —0 = vVArOuwpa(1)Or2(1)

k=1 j=k+1

1P iy wy=0 = Za|* Owp.1.(1) -
Then

i |20 * iy g0 = Owp1. (101 (1) -

Proof. The proof is adapted from Delyon [10, Theorems 20 and 23]. For n > 0,
set Tpllim, 2q=0 = Yn + 2n Where

Yn+1 = (Id + '7n+1A) Yn + 7n+ICY(L1<2111imq xq=0 » n=>0, (31)

and yg = 0. The first step of the proof is to show

Yn = \/%Ow.p.l(l)OLQ(l) ) Zn = 'YnOw-p-l(l)OLl(l) : (32)

Then, upon noting that (y + 2)? < y? + 2(y + 2)z, we write

‘xn’2llimq 2q=0 < ‘yn’2 + 2[@n |20 | Limg z4=0 < ¥ O1(1) + 29,.0u.p.1(1) Opi(1)
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since [75|1tim, 2,0 = Ow.p.1.(1). This concludes the proof of the Lemma. We turn
to the proof of (32). By iterating (31), we have

n+1 n+1
1
Ynt1 = E Vi H (Id +~54) ¢ ¢ )1limq 24=0 -
k=1 j=k+1

Lemmas 5.8 and 5.9 imply that v, = \/7,0w.p.1(1)O2(1). It holds
Zn+1 = Tnt1llimg, 2,=0 — Yn+1
2
= (Id + Y 414) (Znllimg 2q=0 — Yn) + 7n+1<1(1421 Limg 2,=0
2

= (Id + ’Yn—l—lA) Zn + 7n+1<£421111mq xq=0 -
Under the stated assumptions, Lemmas 5.8 and 5.9 imply that z, = 0 p.1(1). We
thus also have ¥, = Tn1lim, 2,—0 — 2n = Owp.1(1). In addition,

2

‘Zn—I—l’ < ’Id + 'Yn-i—lA’ ’Zn’ + Yn+1 ‘Cy(L_zl‘llimq 2q=0 5
and since A is a Hurwitz matrix, there exists a constant L’ > 0 such that |Id +
Yn+1A] < exp(—L'vp+1) (see Lemma 5.8). Hence,

|Zn+1| < exp(_L/7n+l)|Zn| + Ow.p.l(l) Yn+41 (|yn|2 + |Zn|2)

< exp(—L'vn41) {14 Owp.1(1) exp(L' V1) Vnt1l2nl} 120+ O0wp.1(1) Ynsilyn

Let 6 € (0,L'). Since 2z, = 0yp.1(1), there exists a r.v. K which is finite w.p.1.
such that for any k > K, [Oy.p.1(1) exp(L'vg41)2k| < 6. Therefore, upon noting
that for any = > 0, 1 + = < exp(z), for any n > K,

?.

|znt1] < exp(—(L, = 6)Ynt1)|2n] + Ow-p-l(l) 'Yn—f—l‘yn’Q

n+1
< oxp (—(L/ -5 3 fyk) ok

k=K+1
ntl n+1
+Oupa(1) D wexp | —(L'=06) Y | [yl
k=K+1 j=k+1
n+1
< O pu(1) exp (—(L’ —4) Zwk>
k=1
ntl n+1
+Ouwpa(1) Y wwexp [ —(L'=08) Y | lyraf
k=1 Jj=k+1
n+1

+ Owpa(1l) exp | —(L' —96) Z Vi
j=K+1
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Since y,, = \/7nO0r2(1), C4a and Lemma 5.9 imply that z, = 7,0y p.1(1) Op:(1).
U

Proof of Proposition 3.1 By (20)

Hn—i-l - 9* = Hn - 9* + ’Yn+1Vh(6*) (Hn - 9*)
+ Yn+1 (enJrl + TnJrl) + Yn+1 (Hn - 9*)T En) (Hn - 9*)

Let m > 1. We apply Lemma 5.4 with x,, < (6, — 0,)1.4,,, A < Vh(6,), Cy(Ll_zl =
(ent+1 + rnt1)la,, and CT(LQJZI = (6, —6,)" R (6, —0,) 14, . Under Clc, A is a
Hurwitz matrix and ‘Cy(izﬂllimq 04=0, = Owpa(1) |zn|?.

We write C,gl = (en+11¢4m’n + ent1 (1 — 1Am,n) + Tn+1) 14,,- Under C4,
AVERIla-b, Lemmas 5.8 and 5.9 imply

> wte(n+ Lk +1) exla,, , =nO0r2(1) .
k=1

Upon noting that 14,, (1 — 1Am,k) = 0 for all £ > K where K is a r.v. finite
w.p.1.

(Z ka*(n + 17 k+ 1) €k (1 - 1Am,k_1)> 1./4m

k=1
K
= (Z 'ka*(n + 1L,k + 1) €k (1 - 1Am,k—l)> La,, -
k=1

Therefore, by Lemma 5.9, this second term is /7,0y p.1(1). Finally, Lemma 5.9
and AVER2a-b imply that the last term is /7,04 .1(1)O2(1) (the proof is on
the same lines as the proof of Proposition 5.2 and details are omitted).

5.6 Proof of Theorem 3.2

The proof is adapted from the proof of Delyon [10, Theorem 26]. Under Clc,
Vh(0,) is invertible. By (4) and Lemma 5.12 applied with zj < 60 — 6, and
A < Vh(0,), we have

n

Vit (00— 0) = ~Vh(0) " S e vz,
k=0
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where

n

Vh(0,)Z, < — Z Thp1 — Z 0.)(6r — 64))

kO
1 9n+1—0* 90—9*> 1 @ (1 1 )
+ - + — ——— ) (6 —6,) .
“+1< Y+l 7 n+1; e Vet1 (6 =)

We prove that \/ﬁanlimq 0,=0 & 0; combined with AVERI1c, this will conclude
the proof. Since lim,, P(A,|lim, 6, = 6,) = 1, it is sufficient to prove that for

any m > 1, \/nZy1a,, lim,0,=6. P, 0. Let m > 1. By AVER2c, it holds
_ P
n Y o rkila,, lim, 6,—0, — 0. By (20),

n

L 1
0, —0.)T R (0, —0,) |

h(0r) — Vh(0,)(0r —0.)) =
> (h(6h) = TR0 = 0) = 55 3

1
n+1

and by Cl1b, ng)llimq 0,0, = Owp.1(1). Therefore, by Proposition 3.1,

Vi g Vi ¢ _—
D (1(0) = VR(0) Bk = 0)) Ly Ly 0,0, = | 507 kzokaka :

k=0

where Wi, = Oy p.1.(1) and W, = O1(1). AVERS3 implies that this term tends to
zero in probability. Proposition 3.1 and AVERS3 imply that

N4 <9n+1 — 0, B Oy — 9*> _ Or1(1)Oypp1.(1)
n+1 Yn+1 M (n 4+ 1)Yn41

Finally, Proposition 3.1 and AVERS3 also imply that
14,, Llim, 6,0, — — —— | (O — O,
actimneo. 2253 (5 W)< -0,

where Wy, = Oy 1.(1) and Wy = Op1(1). This term tends to zero in probability.

P
1A, Nim g 0,=0, +0u.p1.(1) — 0.

Ve Vk+1

Lemma 5.5. C2 and lim, nvy, > 0 imply AVERI.
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Proof. C2 implies trivially AVER1a-b. We only have to check AVERIc, or equiv-
alently, prove that for any m > 1,

li;LnIE [ exp (itTEnthmq 0,=0, 1Am) ] =E [ exp (itTU*tlhmq 0,=0, 1Am) ] .

Write £,41 1limq 0,=0, 14, = Tl,n+T27n with Tl,n = (’I’H—l)_l/2 ZZ:O €k+11_,4m7k 1a,.
By (15) and C2b, 15, = 04p.1.(1). Observe that E [€k+11Am,k 14, ]fk] = 0 so that
the convergence in distribution of 77, will be established by applying results on
martingale-arrays: we check the assumptions of Hall and Heyde [15, Corollary
3.1.]. By C2b, it is easily checked that for any e > 0, there exists a constant C
such that for any n,

E

Ly E 2 F < ¢
Ekz—(:) [’ekJFl, 1|€k+1\26\/ﬁ‘ k] Lap | = nt/2 "

Hence, n= ' >0 _(E “ekﬂﬁl\ekﬂge\/ﬁ’fk} 14,14, %5 0. We now prove that

1 & T P
nl Z E [€k+1€k+1|fk] ]‘-Am,k ]'Ak — U*]-Am llimq 0q=0, - (33)
k=0

As above, we claim that this is equivalent to the proof that for any m > 1,

n
n—_|_1 (E [ek+1€,£+1‘fk:| - U*) L 0.
k=0

Limg 0,=0,1.4,,

C2c and the Cesaro lemma imply that w.p.1, on the set A, N {lim, 6, = 6.},
(n+1)7137, D,(:) 2% 0. Finally, under C2c,

1 -~ p@ o(1)
2
E D; " 11im, 0,—0,1 =
|3 D .t | - 22
k=0
and the rhs tends to zero since lim,, ny, > 0. This concludes the proof of (33) and
the proof of the Lemma. O

5.7 Technical lemmas

Lemma 5.6. Let (2, A, 1) be a measured space, where p is a bounded positive
measure. Let G be an algebra generating A. Then for all B € A and € > 0, we can
find A € G such that u(AAB) < e.
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Proof. Let S def {A C QVe>0,34" € G,u(AAA") < e}. We prove that S is a

o-algebra; since it contains G by definition, this yields the result.

Q€ Ssince 2 € G. Let A € S: we prove that ACCEQ\AES. Let € > 0;

there exists A’ € G such that u(AAA’) <e. Since AAB = A°AB¢, it holds
HASA(A)) = p(AAA) < 6

(A")¢ € G since G is an algebra, thus showing that A° € S.

Finally, we prove that S is stable by countable union. We first prove it is stable
by finite union, or equivalently by union of two elements. Let A, As be elements
of S and fix € > 0. There exists A}, € G such that u(A;zAA)) < e/2. Upon noting
that

it holds
p (A1 U A2)A(A] U AY)) <e.

This concludes the proof since A’1 UA’2 € G. Let us consider the countable case. Let
(Ag, k > 1) be a sequence of S and fix € > 0; since S is stable under complement
and finite union, we can assume without loss of generality that the sets A; are
pairwise disjoint. For any k, there exists A} € G such that p(A4;AA)) < 27k,
Since (Ag, k > 0) are pairwise disjoint

1 <U Ak) = n(Ap) ;
k =1

since y is finite, there exists K¢ such that p(d ;-5 Ax) < €/2. Using again (34)
it holds

k k<K k<K k<K k>K.
K.
<D n(ARAAY) +¢/2
k=1
<e€.

Since U<, A} € G, this concludes the proof of the sub-additivity.
- O

Lemma 5.7. Let (Q, AP, {F,,n > 0}) be a filtered probability space and set
Foo = 0(Fp,n>1). Let B € Fo. There exists a Fn-adapted sequence {Ap,n > 0}
such that lim, 14, =15 P-a.s.
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Proof. For any e > 0, there exist m > 1 and A € F,, such that E 1515 <e
(see Lemma 5.6). Therefore, for any n > 1, there exist sets A, € Fum,, such that

E [|1 i —1 B|] < 1/n. This implies almost-sure convergence of a subsequence
{Ag,,n > 0} to 1p, with A, € Fp, o, - Note that we can assume without loss
of generality that the sequence {mg,n > 1} is non decreasing. For any k €
(Mg, Mg, [, set Ay = Ay, Then, Ay € Fpp,,  C Fj, and

h,gnlAk :11,£n1A¢ =1g.

n

O

Lemma 5.8. Let |- | be any matriz norm. Let {Ay, k > 0} be a sequence of
square matriz such that limy |Ax, — A| = 0 where A is a Hurwitz matriz. Denote by
—L, L > 0, the largest real part of its eigenvalues. Let {v, k > 0} be a positive
sequence such that limy vy, = 0. For any 0 < L' < L, there exists a positive
constant C such that for any k <n

|(Id + 7y Ap) -+ (Id + Yy 1 Apr1)(Id + 3 Ag)| < Cexp(—L ZWJ) :
=k

Proof. Let \;,i < d be the eigenvalues of A. By using the Jordan decomposition,
we write A = SJS~! where S is a non-singular matrix, and J is a Jordan matrix
(as defined by Horn and Johnson [17, Definition 3.1.1] - note that the diagonal
entries of J are \;).

For any ¢ > 0, denote by D; the diagonal matrix with diagonal entries (¢,¢2,--- , %)
and set

A= (SDy) (D;'IDy) (SDy) ™" = (SDy) (A + Ry) (SDy) "

with A % diag(A;), upon noting that

)\1 tu1 0 . 0
0 )\2 tUQ . 0
D;YJD; =
o - © Ag—1 tug—
0 . . A

Note also that |R;| — 0 as t — 0. We write

(SD)™" (I +76Ae) (SDy) = (SDy) ™" (I + 7eA) (SDy) + ¢ (SDy) ™' (A — A) (SDy)
=1+~ D; ' JD; + 7 (SDy) ™" (A — A) (SDy)
=I+7A+7R+7(SD) " (A — A) (SDy) .
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Therefore,
(D)™ (I +7eAqr) (SDt)‘ < T+ 3 AL+ e | Rel + e [Ag = Al |SDi| [(SDy) 7Y

Let 0 < L < L" < L. There exists ty such that for any t € (0,ty), |R¢|
(L"—L")/2; and there exists K such that for any ¢ > K and any ¢t < tg, |[I + ¢ A
1 —~L" and |A; — A||SDy||(SDy)~!| < (L” — L')/2. Therefore, for any ¢ > K
and any ¢ € (0,tp)

<
<

‘(SDt)’l (I + 7 Ar) (spt)( <1— L.

Now we write for K <k <n and t < tg,

(I + 7 An) - (I +eAr) =| < ISD| |(SD) 7Y J] (1= 7eL)
{=k

which concludes the proof. ]

Lemma 5.9. Let -y, be a positive sequence such that limy v, =0 and ), v, = oo.
Let {e, k> 0} be a non-negative sequence. Then

n n 1
lim sup VJPZVZH er exp(—b Z v5) < CTlimsup €n ,
" k=1 j=k+1 (b:p)
(i) with C(b,p) =b, for any b > 0,p > 0 if log(_1/m) = o(n)-

(ii) with C(b,p) = b — p/vs, for any by, > p > 0 if there exists v, > 0 such that
log (Ve—1/7k) ~ Y/ V-

By convention, Z;‘L:m—l v = 0.

Proof. The proof is from Delyon [10, Theorem 19, Chapter 4]. Let {z,, n > 0}
be defined by z, = exp(—by,)xn—1 + 75“6,1 where g = 0. Then by a trivial

recursion, it holds
n n
+1
rn =Y W lepexp(=b Y ).
k=1 j=k—+1

f
Set u,, dof Yn P x,. Then

Tn—1 P
Uy = < S > exp(—byn ) un—1 + nen
n

= exp(plog(Yn—1/7n) — bVn)Un—1 + Tmen
= (1 - bNVn)un—l + bn')/n(bglen) s
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where b,y defy _ exp(plog(Yn—-1/7n) — byn). Observe that v,b, ~ 1 —exp(—byy,)
in case (i) and vpb, ~ 1 — exp(—(b — p/v«)yn) in case (ii). Therefore, lim,, b, = b
(resp. b — p/vs) in case (i) (resp. (i7)).

Let v > limsup,, b, 'e,. We have

Up — v = (1= bpyn)(Up—1 —v) + bn%(bglen —)

and upon noting that (a + b)+ < ay + by, it holds

(un —v) < (1= bpyn)(Un—1—v)+ + bn'Yn(bglen =)+ < (1= bpyn)(Un—1—v)4 .

Since limy, y,b, = 0 and > by,y, = +oo, lim,(u, — v); = 0 thus implying
that limsup,, u, < v. This holds for any v > limsup,, b, e, thus concluding
the proof. O

Lemma 5.10. For any matrices A, B,C

|ABAT — CBC™| = |(A— C)BA" —CB(C - A)T| < |[A-C| |B| (|A|+]C]) .
Lemma 5.11. Let U, be a positive definite matrix.
(a) Assume C1b-c and Cja. Consider the equation

Tn — In+1

1 Un+(r7n+1_'Yn)U*""Yn’)/nJrIVh(e*)vth(e*)T s
n+

Upt1 = VUn+Ynf(vp)+

where f(v) © U, + Vh(0:)v+vVh(0,)T. Then there evists an unique positive

definite matriz V' such that f(V) =0 and lim, v, = V.

(b) Assume C1b-c and C4b. Consider the equation
Unt1 = Vp + Y (vn) + (V1 — W)Us + ’yn’yn+1Vh((9*)vth(9*)T )

where f(v) U, + Vh(0,)v +vVh(0,)T + 7 v. Then there exists an unique
positive definite matriz V' such that f(V) =0 and lim, v, = V.

Proof. (a) Let V such that f(V) = 0. We have

Upa1 =V =0, =V +, (H(vn —V)+ (vy —V)HT)
+ w (00 — V) 4 1 Ans1t VA (0n — V)V R(,)T
n+1
+ Tn — Ynt1

1 V+ 'Yn'Yn+IVh(9*)VVh(9*)T + (’7n+1 - 'Vn) Us .
n+
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Under C4a, |y, /Ynt1 — 1] = o(ym) and 4y, — yns1 = 0(72). Then, denoting by vy,
the vectorialized form of the matrix v, — V, this yields

Upy1 = (Id + 'YnAn) Un + By

where {A4,,,n > 0} is a sequence of Hurwitz matrix that converges to a Hurwitz
matrix A, and B,, = o(7;,). Then, there exists L' > 0 such that

‘Un—l—l - V’ < (1 - 'YnL/)‘Un - V’ + Yn€n »

where €, = o(1). Asin the proof of Lemma 5.9, it can be proved that lim sup,, |vy, 41—
V| <limsup,, €, = 0.
(b) Under Cdb, 10t — ~ /o 4 0(7,) and a1 — Yn = O(72). As in the

. . Int1
previous case, we write

Upp1 —V =0, =V + +'Ynﬁ(vn = V) +vlvn — V)HT + 0(7n)

where H % Vh(y) + (27,)~'Id. Under the assumptions on 7, H is a Hurwitz
matrix. As in the proof of Lemma 5.9, it can be proved that lim sup,, [v,+1 — V| <
o(1) =0. O

Lemma 5.12. Define the sequence {x,,,n > 0} by
Tpnt1 = Ty + Yar1A2n + Yngr1lnst To € R¢ )

where {y,,n > 1} is a positive sequence, {Cu,n > 1} is a R%*-valued sequence and
A is a d x d matriz. Then

n n n
Tn+1 Zo 1 1
AE ka—E Ck+1+<n+ ——>+E <———>xk
k=0 k=0 /S \k

Tn+1 Vk+1

Proof. By definition of {x,,n > 0}, for any n > 0 it holds

Axn = (anrl - xn) - CnJrl .
TYn41
Therefore,
n n 1 n
AY jar=D (@ = @) = ) G
k=0 k=0 Th+1 k=0
We then conclude by the Abel transform. O

Lemma 5.13. Let {7y,,n > 1} be a positive non-increasing sequence. Then

1_i

Vk+1

=0.

. 1 1
hrrbnnfyn =400 = hrrbn % Z’yk
k=1
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Proof. The following proof can be found in the proof of Delyon [10, Theorem 26,
Chapter 4]. We have

Z'Vk 1/2 <i _1) — ZW;/Q (_ . %>

k=

Ve+1 Vk+1

1 k=1

n+1 1

Z—Zwk (V7% = V-1) — \/_1 Naresi

n+1

—1/2 —1/2 1 1 1
<S=Q % -V = + :
P (\/_ - 1) Vv In+1 VIn o VIl
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