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This paper provides a Central Limit Theorem (CLT) for a process {θ n , n ≥ 0} satisfying a stochastic approximation (SA) equation of the form θ n+1 = θ n + γ n+1 H(θ n , X n+1 ); a CLT for the associated average sequence is also established. The originality of this paper is to address the case of controlled Markov chain dynamics {X n , n ≥ 0} and the case of multiple targets. The framework also accomodates (randomly) truncated SA algorithms.

Sufficient conditions for CLT's to hold are provided as well as comments on how these conditions extend previous works (such as independent and identically distributed dynamics, the Robbins-Monro dynamic or the single target case). The paper gives a special emphasis on how these conditions hold for SA with controlled Markov chain dynamics and multiple targets; it is proved that this paper improves on existing works.

Introduction

Stochastic Approximation (SA) algorithms were introduced for finding roots of an unknown function h (for recent surveys on SA, see e.g. [START_REF] Chen | Stochastic Approximation and Its Applications[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF][START_REF] Borkar | Stochastic Approximation: A Dynamical Systems Viewpoint[END_REF][START_REF] Kushner | Stochastic approximation: a survey[END_REF]). SA defines iteratively a sequence {θ n , n ≥ 0} by the update rule

θ n+1 = θ n + γ n+1 Ξ n+1 , (1) 
where {γ n , n ≥ 1} is a sequence of deterministic step-size and Ξ n+1 is a random variable (r.v.) standing for a noisy measurement of the unknown quantity h(θ n ).

Our aim is to establish the rate of convergence of the sequence {θ n , n ≥ 0} to a limiting point θ ⋆ in the following framework.

Let Θ ⊆ R d ; the sequence {θ n , n ≥ 0} is a Θ-valued random sequence defined on the filtered probability space (Ω, A, P, {F n , n ≥ 0}) and given by

θ n+1 = θ n + γ n+1 (h(θ n ) + e n+1 + r n+1 ) , θ 0 ∈ Θ ;
where h : Θ → R d is a measurable function, {e n , n ≥ 1} is a F n -adapted Pmartingale increment sequence and {r n , n ≥ 1} is a vanishing F n -adapted random sequence. Such a general description covers many SA algorithms: as discussed below (see Section 2.1), it covers the case when Ξ n+1 is of the form H(θ n , X n+1 ) where {X n , n ≥ 1} are independent and identically distributed (i.i.d.) r.v. such that (s.t.) E [H(θ, X)] = h(θ); and the more general case when {X n , n ≥ 1} is an adapted (non stationary) Markov chain with transition kernel driven by the current value of the SA sequence {θ n , n ≥ 0}. It also covers the case of fixed truncated and randomly truncated SA algorithms i.e.situations when given a (possibly random) sequence of subsets {K n , n ≥ 0} of Θ, the update rule is given by

θ n+1 = θ n + γ n+1 Ξ n+1 , if θ n + γ n+1 Ξ n+1 ∈ K n+1 θ 0 otherwise . (2) 
Such a truncated algorithm is used for example to solve optimization problem on a constraint set Θ (in this case, K n = Θ for any n), or to ensure stability of the random sequence {θ n , n ≥ 0} in situations where the location of the sought-for root is unknown (in this case, K n is an increasing sequence of sets, see [START_REF] Chen | Convergence and robustness of the Robbins-Monro algorithms truncated at randomly varying bounds[END_REF] and [START_REF] Chen | Stochastic Approximation and Its Applications[END_REF]Chapter 2]).

Our second aim is to extend the previous results to the case of multiple targets: we provide asymptotic convergence rates of {θ n , n ≥ 0} to a point θ ⋆ given the event {lim q θ q = θ ⋆ } for some θ ⋆ in the interior of Θ. Note that this paper is devoted to convergence rates so that sufficient conditions for the convergence is out of the scope of the paper; for convergence, the interested reader can refer to [START_REF] Benveniste | Adaptive Algorithms and Stochastic Approximations[END_REF][START_REF] Duflo | Random Iterative Models[END_REF][START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF][START_REF] Chen | Stochastic Approximation and Its Applications[END_REF][START_REF] Andrieu | Stability of Stochastic Approximation under Verifiable Conditions[END_REF][START_REF] Borkar | Stochastic Approximation: A Dynamical Systems Viewpoint[END_REF].

The originality of this paper consists in deriving rates of convergence in a new framework characterized by (i) general assumptions on the noisy measurement Ξ n+1 of h(θ n ) which weaken the conditions in the literature and (ii) the multiple targets problem. In Section 2.2, our framework will be carefully compared to the literature.

We derive sufficient conditions on the step-size sequence {γ n , n ≥ 1}, on the random sequences {e n , r n , n ≥ 1} and on the limiting point θ ⋆ so that γ -1/2 n (θ n -θ ⋆ ) converges in distribution under the conditional probability P(•| lim q θ q = θ ⋆ ). The limiting distribution is a (mixture of) centered Gaussian distribution(s) and this distribution is explicitly characterized. We also address the rate of convergence of the associated averaged process { θn , n ≥ 0} defined by

θn def = 1 n + 1 n k=0 θ k . (3) 
We prove that this averaged sequence reaches the optimal rate and the optimal variance (in a sense discussed below); such a result was already established in the literature in a more restrictive framework. The paper is organized as follows. Section 2 (resp. Section 3) is devoted to the SA sequence {θ n , n ≥ 0} (resp. the averaged SA sequence { θn , n ≥ 0}). We successively introduce the assumptions, comment these conditions, compare our framework to the literature and state a Central Limit Theorem (CLT). In Section 4, our results are applied to a randomly truncated SA algorithm with controlled Markov chain dynamics; since our conditions are quite weak, we are able to obtain better convergence rates than the rates obtained in Delyon [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF]. All the proofs are postponed in Section 5.

A Central Limit Theorem for Stochastic Approximation

Assumptions

Let Θ ⊆ R d . We consider the R d -valued sequence satisfying for n ≥ 0,

θ n+1 = θ n + γ n+1 h(θ n ) + γ n+1 e n+1 + γ n+1 r n+1 , θ 0 ∈ Θ ; (4) 
and we establish a Central Limit Theorem along sequences {θ n , n ≥ 0} converging to some point θ ⋆ ∈ Θ which is a root of the function h. We assume the following conditions on the attractive target θ ⋆ .

C1 (a) θ ⋆ is in the interior of Θ and h(θ ⋆ ) = 0.

(b) The mean field h : Θ → R d is measurable and twice continuously differentiable in a neighborhood of θ ⋆ .

(c) The gradient ∇h(θ ⋆ ) is a Hurwitz matrix. Denote by -L, L > 0, the largest real part of its eigenvalues.

Let {e n , n ≥ 1} be a R d -valued random variables defined on the filtered space (Ω, A, P, {F n , n ≥ 0}). We will denote by 

E |e k+1 | 2+τ ½ A m,k < ∞ .
In addition, for any m ≥ 1, lim k ½ A m,k ½ limq θq=θ⋆ = ½ Am ½ limq θq=θ⋆ and the limiting set satisfies lim m P(

A m | lim q θ q = θ ⋆ ) = 1. (c) E e k+1 e T k+1 |F k = U ⋆ + D (1) 
k + D (2) 
k where U ⋆ is a symmetric positive definite (random) matrix and

D (1) k a.s.
-→ 0 , on the set {lim q θ q = θ ⋆ }

lim n γ n E n k=1 D (2) k ½ limq θq=θ⋆ ½ Am = 0 ; (5) 
the sequence {A m , m ≥ 1} is defined in C2b.

We will show (see remark 5.3 in Section 5) that the condition on the r.v. {D

k , k ≥ 1} can be replaced with:

D (2) k = D (2,a) k + D (2,b) k lim n γ n E n k=1 D (2,a) k ½ A m,k ½ A k + n k=1 D (2,b) k ½ Am ½ limq θq=θ⋆ = 0 , ∀m ≥ 1 , (6) where {A k , k ≥ 1} is any F k -adapted sequence of sets satisfying lim k ½ A k = ½ limq θq=θ⋆ ; and A m,k is given by C2b. For a sequence of R d -valued r.v. {Z n , n ≥ 0}, we write Z n = O w.p.1. (1) if sup n |Z n | < ∞ w.p.1; and Z n = o L p (1) if lim n E[|Z n | p ] = 0. Let {r n , n ≥ 1} be a R d -valued random variables defined on the filtered space (Ω, A, P, {F n , n ≥ 0}). C3 r n is F n -adapted. r n = r (1) n + r (2)
n with, for any m ≥ 1,

γ -1/2 n r (1) n ½ limq θq=θ⋆ ½ Am = O w.p.1 (1)o L 1 (1) , √ γ n n k=1 r (2) k ½ limq θq=θ⋆ ½ Am = O w.p.1 (1)o L 1 (1) . The sequence {A m , m ≥ 1} is defined in C2b.
The last assumption is on the step-size sequence.

C4 One of the following conditions is satisfied:

(a) k γ k = +∞, k γ 2 k < ∞ and log(γ k-1 /γ k ) = o(γ k ). (b) k γ k = +∞, k γ 2 k < ∞ and there exists γ ⋆ > 1/(2L) such that log(γ k-1 /γ k ) ∼ γ k /γ ⋆ .

Comments on the assumptions

The framework described by ( 4) and the conditions C1 to C4 is general enough to cover many scenarios studied in the literature and to address new ones.

For SA algorithms [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF] with 4) is satisfied with

Ξ n+1 = H(θ n , X n+1 ), {X n , n ≥ 1} i.i.d. r.v. (and independent of θ 0 ) such that h(θ) = E [H(θ, X)], Eq. (
e n+1 = H(θ n , X n+1 ) -h(θ n ) , r n+1 = 0 ;
and E [e n+1 |F n ] = 0. Our framework also addresses the case when {X n , n ≥ 1} is a F n -adapted controlled Markov chain i.e.when there exists a family of transition kernels {Q θ , θ ∈ Θ} such that

P(X n+1 ∈ •|F n ) = Q θn (X n , •) ,
each kernel possessing an invariant probability distribution π θ and h(θ) = H(θ, x) π θ (dx) -hereafter, these algorithms will be called "SA with controlled Markov chain dynamics". Introduce the solution H θ of the Poisson equation [START_REF] Hernandez-Lerma | Markov Chains and Invariant Probabilities[END_REF]Chapter 8] or [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF]Chapter 17]), and set

H(θ, •) -h(θ) = H θ -Q θ H θ (see e.g.
e n+1 = H θn (X n+1 ) -Q θn H θn (X n ) , r n+1 = Q θn H θn (X n ) -Q θn H θn (X n+1 ) ; then E [e n+1
|F n ] = 0 P-almost surely. We will provide in Section 4 sufficient conditions on the transition kernels Q θ so that these sequences {e n , r n , n ≥ 1} exist and satisfy the conditions C2 and C3. Note that the i.i.d. case is a special case of the controlled Markov chain framework (set Q θ = π θ = π for any θ); and the so-called Robbins-Monro case corresponds to Q θ = π θ for any θ.

Truncated SA algorithms (2) can be written as

θ n+1 = θ n + γ n+1 Ξ n+1 + (θ 0 -θ n -γ n+1 Ξ n+1 ) ½ θn +γ n+1 Ξ n+1 / ∈K n+1 ;
in most (if not any) proof of convergence of this sequence to limiting points in the interior of Θ, the first step consists in proving that P-almost-surely, the number of truncations is finite (see e.g. Andrieu et al. [START_REF] Andrieu | Stability of Stochastic Approximation under Verifiable Conditions[END_REF]Theorem 1]). Therefore, the term (θ 0θ nγ n+1 Ξ n+1 ) ½ θn +γ n+1 Ξ n+1 / ∈K n+1 is null for any large n on the set

{lim q θ q = θ ⋆ } thus showing that it is part of γ n+1 r (1)
n+1 in the expansion (4). The condition C1 considers a limiting target θ ⋆ which is assumed to be stable and such that the linear term in the Taylor's expansion of h at θ ⋆ does not vanish (see condition C1c). Results for the case of vanishing linear term can be found in Chen [START_REF] Chen | Stochastic Approximation and Its Applications[END_REF]Section 3.2]. When h is a gradient function so that the SA algorithm is a stochastic gradient procedure, the condition C1a assumes that θ ⋆ is a root of the gradient. Therefore, our assumptions do not cover the case of constrained optimization problem with solutions on the boundaries of the constraint set Θ. For rates of convergence for these constrained SA algorithms, see e.g. Buche and Kushner [START_REF] Buche | Rate of Convergence for Constrained Stochastic Approximation Algorithms[END_REF].

The conditions C2 and C3 are designed to address the case of multiple targets, a framework which improves on many published results. It is usually assumed in the literature that there is an unique limiting target (see e.g. Fabian [START_REF] Fabian | On asymptotically efficient recursive estimation[END_REF], Buche and Kushner [START_REF] Buche | Rate of Convergence for Constrained Stochastic Approximation Algorithms[END_REF], Chen [8, Chapter 3] and Lelong [START_REF] Lelong | Asymptotic normality of randomly truncated stochastic algorithms[END_REF]). While we are interested in proving a Central Limit Theorem given the tail event {lim q θ q = θ ⋆ }, it is assumed in C2a that the r.v. e n+1 in the expansion (4) is a martingale increment with respect to (w.r.t.) the probability P. As discussed above, such an expansion is easily verified. Note that since the event {lim q θ q = θ ⋆ } is in the tail σ-field σ( n F n ), it is not true that {e n , n ≥ 1} are martingale-increments w.r.t. the probability P(•| lim q θ q = θ ⋆ ). Therefore, our framework is not a special case of the single target framework.

The main use of C2 is to prove that the {e n , n ≥ 1} satisfies a CLT under the conditional distribution P(•| lim q θ q = θ ⋆ ). We could weaken some of the assumptions, for example by relaxing the 2 + τ -moment condition C2b which is a way to easily check the Lindeberg condition for martingale difference array. Nevertheless, our goal is not only to state a theorem with weaker assumptions but also to present easy-to-check conditions.

When there exists τ > 0 such that sup

k≥1 E |e k | 2+τ < ∞, C2b is satisfied with A m = A m,k = Ω. When there exist τ, δ > 0 such that sup k≥0 E |e k+1 | 2+τ ½ |θ k -θ⋆|≤δ < ∞ , (7) 
then C2b is satisfied with

A m,k = m≤j≤k {|θ j -θ ⋆ | ≤ δ} and A m = j≥m {|θ j - θ ⋆ | ≤ δ}.
In most contributions, rates of convergence are derived under the condition [START_REF] Buche | Rate of Convergence for Constrained Stochastic Approximation Algorithms[END_REF] (see e.g. the recent works by Pelletier [START_REF] Pelletier | Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing[END_REF] and Lelong [START_REF] Lelong | Asymptotic normality of randomly truncated stochastic algorithms[END_REF]). This framework is too restrictive to address the case of SA with controlled Markov chain dynamics when the ergodic properties of the transition kernels {Q θ , θ ∈ Θ} are not uniform in θ. Our assumption C2b is designed to address this framework as it will be shown in Section 4.

C2c is an assumption on the conditional variance of the martingale-increment term e n , which is more general than what is usually assumed. In Zhu [START_REF] Zhu | Asymptotic Normality for a Vector Stochastic Difference Equation with Applications in Stochastic Approximation[END_REF], Pelletier [START_REF] Pelletier | Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing[END_REF], Chen [START_REF] Chen | Stochastic Approximation and Its Applications[END_REF] and Leling [START_REF] Lelong | Asymptotic normality of randomly truncated stochastic algorithms[END_REF] (resp. in Delyon [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF]), a CLT is proved under the assumption that E e k+1 e T k+1 |F k = U ⋆ + D

(1)

k (resp. E e k+1 e T k+1 |F k = U ⋆ + D (2) k ) where D (1) k , D (2) 
k satisfy (5) and U ⋆ is a deterministic symmetric positive definite matrix. A first improvement is to remove the assumption that U ⋆ is deterministic. A second improvement is in the combination D

(1)

k + D (2) k . The introduction of the term D (2)
k is a strong improvement since it covers the case of SA with controlled Markov chain dynamic: observe indeed that in this case E e k+1 e T k+1 |F k is a function of (X k , θ k ) and it is really unlikely that this term converges almost-surely to a (random) variable along the set {lim q θ q = θ ⋆ }. Allowing an additional term D

(2) k such that the sum n k=1 D

(2) k converges in some sense to zero introduces more flexibility (see Section 4 for more details). We will also show in Section 4 how our framework improves on Delyon [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF]. Examples of SA algorithm where C2c holds with resp. Robbins-Monro and controlled Markov chain dynamics can be found resp. in Bianchi et al. [START_REF] Bianchi | Performance of a Distributed Stochastic Approximation Algorithm[END_REF] and Fort et al. [START_REF] Fort | Convergence of the Wang-Landau algorithm[END_REF].

Examples of sequences satisfying the condition C4 are the polynomial ones. The step size γ n ∼ γ ⋆ n -a for a ∈ (1/2, 1) satisfies C4a. The step size γ n ∼ γ ⋆ /n satisfies C4b; note that the condition on (γ ⋆ , L) is well known in the literature (see e.g. Chen [8, Assumption A3.1.4]).

Main result

Theorem 2.1. Choose θ 0 ∈ Θ and consider the sequence {θ n , n ≥ 0} given by [START_REF] Benveniste | Adaptive Algorithms and Stochastic Approximations[END_REF]. Assume C1, C2, C3 and C4. Let V be the positive definite matrix satisfying w.p.1 on the set {lim q θ q = θ ⋆ },

V ∇h(θ ⋆ ) T + ∇h(θ ⋆ )V = -U ⋆ , in case C4a , V (Id + 2γ ⋆ ∇h(θ ⋆ ) T ) + (Id + 2γ ⋆ ∇h(θ ⋆ ))V = -2γ ⋆ U ⋆ , in case C4b .
Under the conditional probability P (•| lim q θ q = θ ⋆ ), {γ

-1/2 n (θ n -θ ⋆ ) , n ≥ 1} con- verges in distribution to a r.v.

with characteristic function given for any

t ∈ R d by 1 P(lim q θ q = θ ⋆ ) E ½ limq θq=θ⋆ exp(- 1 2 t T V t) .
When the matrix U ⋆ in Assumption C2c is deterministic, the limiting distribution is a centered multidimensional Gaussian distribution with (deterministic) covariance matrix V .

Given matrices A, E, existence of a solution to the equation V A + A T V = -E is solved by the Lyapunov theorem (see e.g. Horn and Johnson [18, Theorem 2.2.1.]). When A is a (negative) stable real matrix and E is positive definite, then there exists an unique positive definite matrix V satisfying the Lyapunov equation Sketch of the proof of Theorem 2.1 The proof of Theorem 2.1 is detailed in Section 5. The key ingredient is the Central Limit Theorem for martingale arrays.

V A + A T V = -E (see e.
As commented in Section 2.2, e n is not a martingale-increment w.r.t. the conditional probability P(•| lim q θ q = θ ⋆ ). To overcome this technical difficulty, we use that

e n+1 = e n+1 ½ An + e n+1 (1 -½ An ) (8) 
where {A n , n ≥ 1} is a F n -adapted sequence of sets converging to {lim q θ q = θ ⋆ } (such a sequence always exists, see Lemma 5.7). Along the event {lim q θ q = θ ⋆ }, the second term in the right hand side (rhs) of ( 8) is null for any n larger than some almost-surely finite random time.

We write θ nθ ⋆ = µ n + ρ n , where µ n satisfies the equation

µ n+1 = (Id + γ n+1 ∇h(θ ⋆ )) µ n + γ n+1 e n+1 ; µ 0 = 0 .
Id denotes the d × d identity matrix. Roughly speaking, the sequence {µ n , n ≥ 0} captures the linear approximation of h(θ n ) and the martingale-increment noise sequence {e n , n ≥ 1}. We prove that γ -1/2 n ρ n ½ limq θq=θ⋆ converges to zero in probability so that {µ n , n ≥ 0} is the leading term. We then establish that for any

t ∈ R d , lim n E ½ limq θq=θ⋆ exp iγ -1/2 n t T µ n = E ½ limq θq=θ⋆ exp - 1 2 t T V t .

A Central Limit Theorem for Iterate Averaging

Theorem 2.1 shows that the rate of convergence of the sequence

{θ n , n ≥ 0} to θ ⋆ is O(n a/2 ) when γ n ∼ γ ⋆ /n a for some a ∈ (1/2, 1]
. The maximal rate is reached by choosing γ n ∼ γ ⋆ /n, for some γ ⋆ satisfying the conditions C4b. The main drawback with such a choice of the step-size sequence {γ n , n ≥ 1} is that in practice, -L i.e.the largest real part of the eigenvalues of ∇h(θ ⋆ ) is unknown so that the condition C4b is difficult to check.

The second comment is on the limiting covariance matrix when the rate is maximal (i.e.in the case γ n ∼ γ ⋆ /n). For any non-singular matrix Γ, we could define the algorithm

θn+1 = θn + γ n+1 Γh( θn ) + γ n+1 Γe n+1 + γ n+1 Γr n+1 , θ0 ∈ Θ .
This equation is of the form (4) with a mean field h = Γh and noises {e n , r n , n ≥ 1} replaced with {Γe n , Γr n , n ≥ 1}. Then, Theorem 2.1 gives sufficient conditions so that a CLT for the sequence { θn , n ≥ 0} holds: the matrix V is replaced with Ṽ = Ṽ (Γ) satisfying

Ṽ (Id + 2γ ⋆ ∇h(θ ⋆ ) T Γ T ) + (Id + 2γ ⋆ ∇h(θ ⋆ )Γ) Ṽ = -2γ ⋆ ΓU ⋆ Γ T .
A natural question is the "optimal" choice of the gain matrix Γ, defined as the matrix Γ ⋆ such that for any

λ ∈ R d , λ T Ṽ (Γ)λ ≥ λ T Ṽ (Γ ⋆ )λ. Following the same lines as in Benveniste et al. [4, Proposition 4, Chapter 3, Part I], it can be proved that Γ ⋆ = -γ -1 ⋆ ∇h(θ ⋆ ) -1 and in this case, Ṽ (Γ ⋆ ) = γ -1 ⋆ ∇h(θ ⋆ ) -1 U ⋆ ∇h(θ ⋆ ) -T .
Theorem 3.2 below shows that by considering the averaged sequence { θn , n ≥ 0}, the optimal rate of convergence (i.e.the rate √ n) and the optimal asymptotic covariance matrix (optimal in the sense discussed above) can be reached whatever the sequence {γ n , n ≥ 1} satisfying C4a used in the basic SA sequence (4). Therefore, such an optimality can be obtained even when ∇h(θ ⋆ ) is unknown. Note also that on a practical point of view, slow decreasing step-size γ n are better (see e.g. Spall [START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF]Section 4.4.]) and this simple averaging procedure improves the rate of convergence of the estimate of θ ⋆ . These properties of the averaged sequence were simultaneously established by Ruppert [START_REF] Ruppert | Handbook of Sequential Analysis, chapter Stochastic Approximation[END_REF] and Polyak and Juditsky [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] under more restrictive conditions than those stated below.

Assumptions

AVER1 (a) {e n , n ≥ 1} is a F n -adapted P-martingale-increment sequence. (b) There exists a sequence {A m , m ≥ 1} such that lim m P(A m | lim q θ q = θ ⋆ ) = 1, and for any m ≥ 1, sup k E |e k | 2 ½ A m,k-1 < ∞ , where A m,k-1 ∈ F k-1 and lim k ½ A m,k = ½ Am almost-surely on the set {lim q θ q = θ ⋆ }. (c) Let E n+1 = 1 √ n + 1 n k=0 e k+1 .
There exists a random matrix U ⋆ , positive definite w.p.1. on the set

{lim q θ q = θ ⋆ }, such that for any t ∈ R d , lim n E ½ lim q θq=θ⋆ exp(it T E n+1 ) = E ½ lim q θq=θ⋆ exp(- 1 2 t T U ⋆ t) .
We prove in Lemma 5.5 that when lim n nγ n > 0, assumption C2 implies AVER1. Note also that since lim m P(A m | lim q θ q = θ ⋆ ) = 1, AVER1c is equivalent to the condition: for any m ≥ 1,

lim n E ½ limq θq=θ⋆ exp(it T E n+1 )½ Am = E ½ limq θq=θ⋆ exp(- 1 2 t T U ⋆ t)½ Am . For a sequence of R d -valued r.v. {Z n , n ≥ 0}, we write Z n = O L p (1) if sup n E[|Z n | p ] < ∞. AVER2 r n is F n -adapted. r n = r (1) 
n + r (2) 
n with for any m ≥ 1,

(a) γ -1/2 n r (1) 
n ½ limq θq=θ⋆ ½ Am = O w.p.1 (1)O L 2 (1). (b) √ γ n n k=1 r (2) k ½ lim q θq=θ⋆ ½ Am = O w.p.1 (1)O L 2 (1) . (c) n -1/2 n k=0 r k+1 ½ lim q θq=θ⋆ P -→ 0.
The sequence {A m , m ≥ 1} is defined in AVER1b.

Note that AVER2c is equivalent to n -1/2 n k=0 r k+1 ½ lim q θq=θ⋆ ½ Am P -→ 0 for any m ≥ 1.

AVER3 lim n nγ n = +∞ and lim n 1 √ n n k=1 γ -1/2 k 1 - γ k γ k+1 = 0 , lim n 1 √ n n k=1 γ k = 0.
The step size γ n ∼ γ ⋆ n -a for a ∈ (1/2, 1) satisfies AVER3 but the step size γ n ∼ γ ⋆ /n does not. Observe that if the sequence {γ n , n ≥ 0} is non-increasing (or ultimately non-increasing) then (see Lemma 5.13)

lim n nγ n = +∞ =⇒ lim n 1 √ n n k=1 γ -1/2 k 1 - γ k γ k+1 = 0 .

Main results

We show that the above conditions allow a control of the L 2 -moment of the errors {θ nθ ⋆ , n ≥ 0}. This result is a cornerstone for the proof of Theorem 3.2. The proof is given in Section 5.

Proposition 3.1. Assume C1, C4, AVER1a-b and AVER2a-b. Then, for any

m ≥ 1 γ -1 n θ n -θ ⋆ 2 ½ limq θq=θ⋆ ½ Am = O w.p.1 (1) O L 1 (1) .
Theorem 3.2. Choose θ 0 ∈ Θ and consider the averaged sequence given by [START_REF] Benaim | Dynamics of stochastic approximation algorithms[END_REF]. Assume C1, C4a, AVER1, AVER2 and AVER3. Then for any t ∈ R d ,

lim n E ½ limq θq=θ⋆ exp i √ n t T θn -θ ⋆ = E ½ limq θq=θ⋆ exp - 1 2 t T ∇h(θ ⋆ ) -1 U ⋆ (∇h(θ ⋆ ) -1 ) T t .
Sketch of the proof of Theorem 3.2 The proof is detailed in Section 5. Since lim m P(A m | lim q θ q = θ ⋆ ) = 1, we only have to prove that for any m ≥ 1 and

t ∈ R d , lim n E ½ limq θq=θ⋆ ½ Am exp i √ n t T θn -θ ⋆ = E ½ lim q θq=θ⋆ ½ Am exp - 1 2 t T ∇h(θ ⋆ ) -1 U ⋆ (∇h(θ ⋆ ) -1 ) T t .
We write θn -

θ ⋆ = - ∇h(θ ⋆ ) -1 n + 1 n k=0 e k+1 + Z n .
We show that √ nZ n ½ limq θq=θ⋆ ½ Am converges to zero in probability for any m ≥ 1;

for this step, the main tool is Proposition 3.1. The proof is then concluded by AVER1c.

Application to SA with controlled Markov chain dynamics

Let {K n , n ≥ 0} be a sequence of compact subsets of Θ such that

K n ⊆ K n+1 , n≥0 K n = Θ .
Let {Q θ , θ ∈ Θ} be a family of Markov transition kernels onto (X, X ). We consider the following SA algorithm with truncation at randomly varying bounds: θ 0 ∈ K 0 , σ 0 = 0 and for n ≥ 0,

set θ n+1/2 = θ n + γ n+1 H(θ n X n+1 ). update (θ n+1 , σ n+1 ) = (θ n+1/2 , σ n ) , if θ n+1/2 ∈ K σn , (θ 0 , σ n + 1) otherwise,
where {X n , n ≥ 0} is a controlled Markov chain on (Ω, A, P) with conditional distribution given by

P(X n+1 ∈ A|F n ) = Q θn (X n , A) , F n = σ(θ 0 , X 0 , • • • , X n ) . (9) 
The random sequence {σ n , n ≥ 0} is a non-negative integer-valued sequence counting the number of truncations. Such a truncated SA was introduced by Chen et al. [START_REF] Chen | Convergence and robustness of the Robbins-Monro algorithms truncated at randomly varying bounds[END_REF] (see also Chen [8, Chapter 2]) to address the boundedness problem of the SA sequence {θ n , n ≥ 0}. A more general truncated SA algorithm with controlled Markov chain dynamics is introduced in Andrieu et al. [START_REF] Andrieu | Stability of Stochastic Approximation under Verifiable Conditions[END_REF]: when truncation occurs, both the parameter θ n+1/2 and the draw X n used to obtain the next point X n+1 are modified.

The key point of the proof of convergence of this algorithm is to show that the number of truncations is finite with probability one, so that after some random time, the sequence {θ n , n ≥ 0} is almost-surely bounded and obeys the update rule θ n+1 = θ n + γ n+1 H(θ n , X n+1 ). Conditions implying almost-sure boundedness and almost-sure convergence of the sequence {θ n , n ≥ 0} when {X n , n ≥ 0} is a controlled Markov chain can be found in Andrieu et al. [START_REF] Andrieu | Stability of Stochastic Approximation under Verifiable Conditions[END_REF]Section 3]. Since in this paper we are interested in CLT's, we will assume that A1 (a) For any θ ∈ Θ, there exists a probability distribution π θ on (X, X ) such that

π θ Q θ = π θ . Set h(θ) = H(θ, x) π θ (dx) . (10) 
(b) the number of truncations is finite with probability one: P(lim sup n σ n < ∞) = 1 and there exists θ ⋆ ∈ Θ satisfying C1 such that P(lim

n θ n = θ ⋆ ) > 0.
For simplicity, we consider the case when H is bounded and the step-size is polynomially decreasing. Extensions to the case H is unbounded can be done along the same lines as in Andrieu et al. [START_REF] Andrieu | Stability of Stochastic Approximation under Verifiable Conditions[END_REF].

A2 (a) for any compact set K ⊆ Θ, sup θ∈K sup x∈X |H(θ, x)| < ∞.

(b) There exists a ∈ (1/2, 1] such that γ n = γ ⋆ /n a . When a = 1, γ ⋆ satisfies the condition C4b.

We assume that the transition kernels {Q θ , θ ∈ Θ} satisfy A3 (a) For any θ ∈ Θ, there exists a measurable function

H θ : (X, X ) → (R d , B(R d )) such that H(θ, x) -h(θ) = H θ (x) -Q θ H θ (x) . (11) 
There exists a function

V 1 : X → [1, ∞) such that for any compact subset K ⊆ Θ, sup θ∈K sup x∈X | H θ (x)| + |Q θ H θ (x)| V 1 (x) < ∞ . (12) 
(b) For any θ ∈ Θ, there exists a measurable function

U θ : (X, X ) → (R d 2 , B(R d 2 )) such that F θ (x) -F θ (x) π θ (dx) = U θ (x) -Q θ U θ (x) , (13) 
where

F θ (x) = Q θ (x, dy) H θ (y) H θ (y) T -Q θ H θ (x) Q θ H θ (x) T . There exists a function V 2 : X → [1, ∞) such that for any compact subset K ⊆ Θ, sup θ∈K sup x∈X |U θ (x)| + |Q θ U θ (x)| V 2 (x) < ∞ . (14) 
(c) There exist δ, τ, τ > 0 such that for any m ≥ 1,

sup k≥m E V 2+τ 1 (X k+1 ) + V 1+τ 2 (X k+1 ) ½ m≤j≤k {|θ j -θ⋆|≤δ} < ∞ , E V 2+τ 1 (X m ) + V 1+τ 2 (X m ) < ∞ .
(d) For any compact subset K ⊆ Θ, there exist b, C > 0 such that for any θ, θ ′ ∈ K,

Q θ H θ (x) -Q θ ′ H θ ′ (x) ≤ C |θ -θ ′ | 1/2+b V 1 (x) , |U θ (x) -U θ ′ (x)| ≤ C |θ -θ ′ | b V 2 (x) .
Furthermore, almost-surely

lim n F θn (x) π θn (dx) -F θ⋆ (x) π θ⋆ (dx) ½ limq θq=θ⋆ = 0 .
Conditions implying the existence of π θ and solutions to the Poisson equations ( 11) and ( 13) can be found e.g. in Hernandez-Lerma and Lasserre [START_REF] Hernandez-Lerma | Markov Chains and Invariant Probabilities[END_REF]Chapter 8] or in Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF]Chapter 17]. When the transition kernel Q θ is uniformly ergodic, then V 1 = V 2 and is equal to the constant function 1. When the kernel is V -geometrically ergodic, we can choose We now show how these assumptions imply the conditions C1 to C4. Under A1b, the condition C1 holds; note also that the conditional probability P(•| lim q θ q = θ ⋆ ) is well defined. By using [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF] and [START_REF] Duflo | Random Iterative Models[END_REF], we write the truncated SA algorithm on the form (4) by setting

V 1 = V 1/p , V 2 = V 2/
V 1 = V 1/p , V 2 = V 2/
e n+1 = H θn (X n+1 ) -Q θn H θn (X n ) , r n+1 = Q θn H θn (X n ) -Q θn H θn (X n+1 ) + (θ 0 -θ n+1/2 )½ θ n+1/2 / ∈Kσ n .
Let us prove that the condition C2 holds. Since θ n ∈ F n , Eq. ( 9) implies C2a. Fix [START_REF] Fabian | On asymptotically efficient recursive estimation[END_REF] applied with K = B(θ ⋆ , δ), there exists a constant C such that

δ such that B(θ ⋆ , δ) = {θ ∈ R d , |θ -θ ⋆ | ≤ δ} ⊆ Θ. Set A m,k = ∅ if k < m, m≤j≤k {|θ j -θ ⋆ | ≤ δ, θ j = θ j-1/2 } otherwise. Then for any k, m, A m,k ∈ F k ; lim k A m,k = A m where A m = j≥m {|θ j -θ ⋆ | ≤ δ, θ j = θ j-1/2 }; and lim m P(A m | lim q θ q = θ ⋆ ) = 1 by A1b. Fix m ≥ 1; by
E |e k+1 | 2+τ ½ A m,k ≤ C E V 2+τ 1 (X k ) + V 2+τ 1 (X k+1 ) ½ A m,k ,
A3c concludes the proof of C2b. Observe that E e k+1 e T k+1 |F k = F θ k (X k ). By using [START_REF] Fort | Convergence of the Wang-Landau algorithm[END_REF], we write E e k+1 e T k+1 |F k = U ⋆ + D

(1)

k + D (2,a) k + D (2,b) k with U ⋆ = F θ⋆ (x) π θ⋆ (dx) , D (1) 
k = F θ k (x) π θ k (dx) -F θ⋆ (x) π θ⋆ (dx) , D (2,a) k = U θ k (X k+1 ) -Q θ k U θ k (X k ) , D (2,b) k = U θ k (X k ) -U θ k (X k+1 ) .
By A3d, D

-→ 0 on the set {lim q θ q = θ ⋆ }. By ( 9), E D 

A k ∈ F k such that lim k A k = {lim q θ q = θ ⋆ } E   n k=1 D (2,a) k ½ A k ½ A m,k 1+τ   ≤ C n 1∨(1+τ )/2 . The constant C is finite since under A3c, sup k E |D (2,a) k | 1+τ ½ A m,k < ∞. Further- more, n k=m D (2,b) k = U θm (X m ) -U θn (X n+1 ) + n k=m+1 U θ k (X k ) -U θ k-1 (X k )
so that by A3c-d, there exists a constant C such that

E   n k=1 D (2,b) k 1+τ ½ Am ½ limq θq=θ⋆   ≤ C 1 + n-1 k=m γ b(1+τ ) k . The above discussion shows that C2c is verified if a > 1/2 ∨ 1/(1 + τ ).
Finally, let us study r n . We write r n+1 = r

(1)

n+1 + r (2) 
n+1 with r

(1)

n+1 = θ 0 -θ n+1/2 ½ θ n+1/2 / ∈Kσ n + Q θ n+1 H θ n+1 (X n+1 ) -Q θn H θn (X n+1 ) .
By A1b and A3d, γ

-1/2 n r (1) 
n ½ limq θq=θ⋆ ½ Am = o w.p.1 (1) + o L 1 (1) for any fixed m ≥ 1. In addition, by [START_REF] Fabian | On asymptotically efficient recursive estimation[END_REF], there exists a constant C such that

E n k=1 r (2) k ½ Am ≤ E [V 1 (X 1 )] + E [V (X n+1 )½ Am ] ;
and by A3c, this term is uniformly bounded in n.

The above discussion is summarized in the following proposition 

U ⋆ = π θ⋆ (dx) H θ⋆ (x) H θ⋆ (x) T -Q θ⋆ H θ⋆ (x) Q θ⋆ H θ⋆ (x) T .
By application of Theorem 2.1, we obtain a CLT for randomly truncated SA with controlled Markov chain dynamics. Our result improves on Delyon [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF]Theorem 25]. Under stronger conditions (for example, it is assumed that V 1 and V 2 are bounded functions; there is a single target θ ⋆ ), Delyon [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF] establishes a CLT in the case γ n = γ ⋆ /n a with the condition a ∈ (2/3, 1]. Note that if V 1 , V 2 are bounded then A3c holds with any τ > 0 so that our approach only requires a ∈ (1/2, 1] which is the usual range of values for SA algorithms.

Using similar tools, the conditions of Theorem 3.2 can be verified; details are left to the interested reader.

Proof

Definitions and Notations

Let {A n , n ≥ 0} be a sequence of sets such that

A n ∈ F n , lim n ½ An = ½ limq θq=θ⋆ w.p.1 . (15) 
Such a sequence exists by Lemma 5.7. Define recursively two sequences

µ n+1 = (Id + γ n+1 ∇h(θ ⋆ ))µ n + γ n+1 e n+1 , µ 0 = 0 ; ( 16 
)
ρ n+1 = θ n+1 -θ ⋆ -µ n+1 , ρ 0 = θ 0 -θ ⋆ ; (17) 
and the matrices

ψ ⋆ (n, k) for 1 ≤ k ≤ n, ψ ⋆ (n, k) = n j=k (Id + γ j ∇h(θ ⋆ )) . (18) 
By convention, ψ ⋆ (n, n + 1) = Id. Under C1a-b, there exist a set of random d × d symmetric matrices {R

(n) i , i ≤ d} such that the entry i of the column vector {h(θ n ) -∇h(θ ⋆ )(θ n -θ ⋆ )} is equal to (θ n -θ ⋆ ) T R (n) i (θ n -θ ⋆ ) . More precisely, R (n) i (k, l) = 1 0 1 2 (1 -t) 2 ∂ 2 h i ∂θ k ∂θ l (θ n + t(θ n -θ ⋆ )) dt . (19) 
Let R

(n)

• be the tensor such that

h(θ n ) = ∇h(θ ⋆ )(θ n -θ ⋆ ) + (θ n -θ ⋆ ) T R (n) • (θ n -θ ⋆ ) . (20) 
Finally, for 1 ≤ k ≤ n, define the d × d matrices

ψ(n, k) = n j=k (Id + γ j {∇h(θ ⋆ ) + 2µ T j-1 R (j-1) • + ρ T j-1 R (j-1) • }) , (21) 
with the convention that ψ(n, n + 1) = Id.

Preliminary results on the sequence {µ n , n ≥ 0}

By iterating ( 16), we have by definition of ψ ⋆ (see [START_REF] Horn | Topics in matrix analysis[END_REF]) -→ 0 when n → ∞.

µ n+1 = n+1 k=1 γ k ψ ⋆ (n + 1, k + 1)e k . (22 
(ii) for any m ≥ 1, γ -1 k |µ k | 2 ½ limq θq=θ⋆ ½ Am = O L 1 (1) + o w.p.1 (1) 
.

Proof. Let m ≥ 1 be fixed. Set µ n+1 = µ

(1)

n+1 + µ (2)
n+1 , with

µ (1) n+1 = n+1 k=1 γ k ψ ⋆ (n + 1, k + 1)e k ½ A m,k-1 . (i) Since P m A m lim q θ q = θ ⋆ ≥ lim M P A M lim q θ q = θ ⋆ = 1 ,
we only have to prove that for any m ≥ 1, lim n µ n ½ Am ½ limq θq=θ⋆ a.s.

-→ 0. Let m ≥ 1.

Let us first consider µ 

n+1 = n+1 k=1 ψ ⋆ (n + 1, k + 1)(S k -S k+1 ) = (S n+1 -S n+2 ) + n k=1 ψ ⋆ (n + 1, k + 1)S k - n+1 k=2 ψ ⋆ (n + 1, k)S k = -S n+2 + ψ ⋆ (n + 1, 2)S 1 + n k=2 (ψ ⋆ (n + 1, k + 1) -ψ ⋆ (n + 1, k))S k = -S n+2 + ψ ⋆ (n + 1, 2)S 1 - n k=2 γ k ψ ⋆ (n + 1, k + 1)∇h(θ ⋆ )S k (23) 
where we used [START_REF] Horn | Topics in matrix analysis[END_REF] in the last equality. Under C1b-c and C4, Lemmas 5.8 and 5.9 yield for any fixed ℓ ≥ 1 lim sup

n n k=2 γ k |ψ ⋆ (n + 1, k + 1)| < ∞ , lim n |ψ ⋆ (n + 1, ℓ)| = 0 . (24) 
Under C2a, for any ℓ ≥ 1,

E |S ℓ | 2 ≤ k≥ℓ γ 2 k E |e k | 2 ½ A m,k-1
. By C4 and C2b, the rhs is finite for any ℓ ≥ 1, thus implying that (a) S ℓ is finite w.p.1. and (b) lim n S n = 0 w.p.1. ( 23), [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] and these properties of S n imply that µ -→ 0 when n → ∞.

Let us now consider µ

n . By C2b, there exists a random index K such that for any k ≥ K, (1 -½ A m,k )½ Am ½ limq θq=θ⋆ = 0. Hence, for any n ≥ K,

µ (2) n+1 ½ Am ½ limq θq=θ⋆ = K k=1 γ k ψ ⋆ (n + 1, k + 1)e k 1 -½ A m,k-1 ½ Am ½ limq θq=θ⋆ . (25)
Then, by [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], µ

n ½ Am ½ limq θq=θ⋆ = o w.p.1. [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. This concludes the proof of item (i).

(ii) Under C2a, ( 16) implies

E |µ (1) n+1 | 2 ≤ n+1 k=1 γ 2 k E |ψ ⋆ (n + 1, k + 1)e k ½ A m,k-1 | 2 .
By C1c, C2b, C4 and Lemma 5.8, there exist positive constants C, L ′ such that

E |µ (1) n+1 | 2 ≤ n+1 k=1 γ 2 k |ψ ⋆ (n + 1, k + 1)| 2 E |e k | 2 ½ A m,k-1 ≤ C sup k E |e k | 2 ½ A m,k-1 n+1 k=1 γ 2 k exp(-2L ′ n+1 j=k+1 γ j ) .
Therefore, by Lemma 5.9 and C4, lim

sup k γ -1 k E[|µ k | 2 ] < +∞. Consider now µ (2)
n+1 . By C4 and Lemma 5.8, lim n γ -1 n |ψ ⋆ (n, ℓ)| 2 → 0 for any fixed ℓ. Therefore, by [START_REF] Ruppert | Handbook of Sequential Analysis, chapter Stochastic Approximation[END_REF], [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. This concludes the proof of the second item.

γ -1 n |µ (2) n+1 | 2 ½ Am ½ limq θq=θ⋆ = o w.p.1 ( 

Preliminary results on the sequence {ρ n , n ≥ 0}

By ( 17) and [START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF],

ρ n+1 = (Id + γ n+1 ∇h(θ ⋆ ))ρ n + γ n+1 r n+1 + γ n+1 (θ n -θ ⋆ ) T R (n) • (θ n -θ ⋆ ) = (Id + γ n+1 ∇h(θ ⋆ ))ρ n + γ n+1 r n+1 + γ n+1 (µ n + ρ n ) T R (n) • (µ n + ρ n ) = Id + γ n+1 ∇h(θ ⋆ ) + 2γ n+1 µ T n R (n) • + γ n+1 ρ T n R (n) • ρ n + γ n+1 r n+1 + γ n+1 µ T n R (n) • µ n .
By induction, this yields

ρ n = ψ(n, 1)ρ 0 + n k=1 γ k ψ(n, k + 1) r k + µ T k-1 R (k-1) • µ k-1 , (26) 
where ψ(n, k) is given by ( 21).

Proposition 5.2. Assume C1, C2a-b and C4. Let θ 0 ∈ Θ. Then, for any m ≥ 1,

ρ n - n k=1 γ k ψ(n, k + 1)r k ½ limq θq=θ⋆ ½ Am = γ 1∧(1/2+κ) n O w.p.1 (1)O L 1 (1) , with κ = 1/2 under C4a and κ ∈ (0, Lγ ⋆ -1/2) under C4b.
Assume in addition C3. Then, for any m ≥ 1,

n k=1 γ k ψ(n, k + 1)r k ½ limq θq=θ⋆ ½ Am = γ 1/2 n O w.p.1 (1)o L 1 (1) .
Proof. The proof in given under C4b. The case C4a -which is simpler -is on the same lines and is omitted. Let m ≥ 1 be fixed.

(i) Let η > 0 and κ ∈ (0, Lγ ⋆ -1/2) such that (L -η)γ ⋆ > 1/2 + κ . ( 27 
)
Note that such (η, κ) exist under C4b. This implies that lim

n sup γ -(1/2+κ) n exp(-(L -η) n j=1 γ j ) < +∞ . ( 28 
)
We now prove by application of Lemma 5.8 that there exists an almost-surely finite positive r.v. U η such that for any 1

≤ k ≤ n, |ψ(n, k)|½ limq θq=θ⋆ ½ Am ≤ U η exp(-(L -η) n j=k γ j ) . ( 29 
)
To that goal, let us prove w.p.1. lim n (ρ T n R

(n)

• + 2µ T n R (n)
• )½ lim q θq=θ⋆ ½ Am = 0. By Proposition 5.1, lim n µ n ½ Am ½ limq θq=θ⋆ = 0 w.p.l. and this implies that w.p.1.,

lim n ρ n ½ limq θq=θ⋆ ½ Am = lim n (θ n -θ ⋆ -µ n )½ limq θq=θ⋆ ½ Am = 0 .
In addition, under C1b, R

• ½ lim q θq=θ⋆ = O w.p.1. [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. This concludes the proof of (29). Set κ ′ def = 1 ∧ (1/2 + κ). By ( 26), we have

ρ n - n k=1 γ k ψ(n, k + 1)r k = ψ(n, 1)ρ 0 + n k=1 γ k ψ(n, k + 1) µ T k-1 R (k-1) • µ k-1 . ( 30 
)
Consider the first term. By (29),

γ -(1/2+κ) n |ψ(n, 1)| |ρ 0 |½ limq θq=θ⋆ ½ Am ≤ γ -(1/2+κ) n U η exp(-(L -η) n j=1 γ j )|ρ 0 |,
and by (28), this term is O w.p.1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. For the second term, it holds by (29)

γ -κ ′ n | n k=1 γ k ψ(n, k + 1)µ T k-1 R (k-1) • µ k-1 |½ limq θq=θ⋆ ½ Am ≤ γ -κ ′ n n k=1 γ 2 k |ψ(n, k + 1)| (γ -1/2 k |µ k-1 |) 2 |R (k-1) • |½ limq θq=θ⋆ ½ Am ≤ O w.p.1 (1) γ -κ ′ n n k=1 γ 1+κ ′ k exp(-(L-η) n j=k+1 γ j )(γ -1/2 k |µ k-1 |) 2 |R (k-1) • |½ limq θq=θ⋆ ½ Am . By Proposition 5.1, γ -1 n |µ n | 2 ½ Am ½ limq θq=θ⋆ = O L 1 (1) + o w.p.1 (1)

and under C1b, |R (k)

• |½ limq θq=θ⋆ = O w.p.1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. By Lemma 5.9 and ( 27), this term is O w.p.1 (1)O L 1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF].

(ii) Set r k = r

(1)

k + r (2) 
k as in C3. It holds,

γ -1/2 n | n k=1 γ k ψ(n, k + 1)r (1) k |½ limq θq=θ⋆ ½ Am ≤ γ -1/2 n n k=1 γ 3/2 k |ψ(n, k + 1)| |γ -1/2 k r (1) 
k |½ limq θq=θ⋆ ½ Am and by ( 27), (29), C3, C4 and Lemma 5.9, this term is O w.p.1 (1)o L 1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. For the second term, we use the Abel lemma: set

Ξ n def = n k=1 r (2) 
k ½ Am ½ limq θq=θ⋆ . Then

½ Am ½ limq θq=θ⋆ γ -1/2 n n k=1 γ k ψ(n, k + 1)r (2) k = √ γ n Ξ n + γ -1/2 n n-1 k=1 γ k γ k+1 ψ(n, k + 2) ( 1 γ k+1 - 1 γ k )I + H k Ξ k where H k = ∇h(θ ⋆ ) + 2µ T k R (k) • + ρ T k R (k)
• . Following the same lines as above, along the event

{lim q θ q = θ ⋆ } ∩ A m , sup k |H k | is finite w.p.1. Hence, o ½ Am ½ limq θq=θ⋆ γ -1/2 n n k=1 γ k ψ(n, k + 1)r (2) k ≤ O w.p.1 (1) { √ γ n |Ξ n | +γ -1/2 n n-1 k=1 √ γ k γ k+1 |ψ(n, k + 2)| √ γ k |Ξ k |
and the rhs is O w.p.1 (1)o L 1 (1) by Lemma 5.9 and C3.

Proof of Theorem 2.1

By (17), γ

-1/2 n (θ n -θ ⋆ ) = γ -1/2 n µ n + γ -1/2 n
ρ n . We first prove that on {lim q θ q = θ ⋆ }, the second term tends to zero in probability. By C2b, for any ǫ > 0 there exists m ≥ 1 such that P(A m | lim q θ q = θ ⋆ ) ≥ 1ǫ. Therefore, it is sufficient to prove that for any m ≥ 1, γ -1/2 n ρ n ½ Am ½ lim q θq=θ⋆ P -→ 0 when n → ∞. This property holds by Proposition 5.2.

We now prove a CLT for the sequence {γ

-1/2 n µ n , n ≥ 0}. It is readily seen that lim n E exp(iγ -1/2 n t T µ n )½ limq θq=θ⋆ = E exp(-0.5t T V t)½ limq θq=θ⋆ if and only if lim n E exp(iγ -1/2 n t T µ n ½ limq θq=θ⋆ ) = E exp(-0.5t T V t½ limq θq=θ⋆ )
Furthermore, by C4 and Lemma 5.8, for any fixed ℓ ≥ 1, lim n γ -1/2 n |ψ ⋆ (n, ℓ)| = 0 (where ψ ⋆ is given by ( 18)); this property, together with ( 22) and ( 15) imply that Lindeberg condition we have to prove that for any ǫ > 0,

lim n E exp(iγ -1/2 n t T µ n ½ limq θq=θ⋆ ) = lim n E exp it T n k=1 X n+1,k ½ A k-1 where X n+1,k = γ -1/2 n+1 γ k ψ ⋆ (n+1, k+1)e k . By C2a and (15), E X n+1,k ½ A k-1 |F k-1 = 0 and
n k=1 E |X n+1,k | 2 ½ |X n+1,k |≥ǫ |F k-1 ½ A k-1 P -→ 0 .
Following the same lines as above, it can be proved that equivalently, we have to prove for any m ≥ 1,

½ Am ½ limq θq=θ⋆ n k=1 E |X n+1,k | 2 ½ |X n+1,k |≥ǫ |F k-1 P -→ 0 . Let m ≥ 1 be fixed and set X n+1,k = X (1) n+1,k + X (2) n+1,k with X (1) n+1,k = X n+1,k ½ A m,k-1 , X (2) 
n+1,k = X n+1,k 1 -½ A m,k-1 . We can assume without loss of generality that τ given by C2b is small enough so that (2 + τ )Lγ ⋆ > 1 + τ . Then,

n+1 k=1 E |X (1) n+1,k | 2+τ = n+1 k=1 E |γ -1/2 n+1 γ k ψ ⋆ (n + 1, k + 1)e k ½ A m,k-1 | 2+τ ≤ sup k E |e k ½ A m,k-1 | 2+τ γ -1-τ /2 n+1 n+1 k=1 γ 2+τ k |ψ ⋆ (n + 1, k + 1)| 2+τ .
Under C1b-c, C2b and C4, Lemmas 5.8 and 5.9 imply

lim sup n γ -(1+τ ) n+1 n+1 k=1 γ 2+τ k |ψ ⋆ (n + 1, k + 1)| 2+τ < +∞ since (2 + τ )Lγ ⋆ > 1 + τ ,
Lemma 5.9 applies even in the case C4b). Hence,

n+1 k=1 E |X (1) n+1,k | 2+τ = o(γ τ /2 n ) .
Consider now X

n+1,k . Since there exists a random variable K such that ½ Am (1 -½ A m,k-1 )½ limq θq=θ⋆ = 0 for any k ≥ K, it holds for any n ≥ K,

½ limq θq=θ⋆ ½ Am n k=1 E |X (2) n+1,k | 2 ½ |X n+1,k |≥ǫ |F k-1 = ½ limq θq=θ⋆ ½ Am K k=1 E |X n+1,k | 2 ½ |X n+1,k |≥ǫ |F k-1 1 -½ A m,k-1 ≤ ½ limq θq=θ⋆ ½ Am γ -1 n K k=1 γ 2 k |ψ ⋆ (n + 1, k + 1)| 2 E |e k | 2 |F k-1 1 -½ A m,k-1 .
Under C4, this term is o w.p.1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. Therefore, the first condition of [15, Corollary 3.1.] is satisfied.

Limiting variance We prove the second condition of [15, Corollary

n def = γ -1 n n k=1 γ 2 k ψ ⋆ (n, k + 1)U ⋆ ψ ⋆ (n, k + 1) T ½ limq θq=θ⋆ , V 3.1.]. Set V (1) 
n def = γ -1 n n k=1 γ 2 k ψ ⋆ (n, k + 1) • • • × E[e k e T k |F k-1 ]½ A k-1 -U ⋆ ½ limq θq=θ⋆ ψ ⋆ (n, k + 1) T ; (2) 
We prove that V

-→ V ½ limq θq=θ⋆ and V

-→ 0. It holds on {lim q θ q = θ ⋆ }, V (2) n P 
n+1 = γ n+1 U ⋆ + γ n γ n+1 (Id + γ n+1 ∇h(θ ⋆ )) V (1) n (Id + γ n+1 ∇h(θ ⋆ )) T = V (1) n + γ n (U ⋆ + ∇h(θ ⋆ )V (1) n + V (1) n ∇h(θ ⋆ ) T ) + γ n -γ n+1 γ n+1 V (1) 
n

+ (γ n+1 -γ n )U ⋆ + γ n γ n+1 ∇h(θ ⋆ )V (1) n ∇h(θ ⋆ ) T
and by Lemma 5.11, lim n V

(1) n = V ½ lim q θq=θ⋆ almost-surely. Following the same lines as above, it can be proved that V

n and V

(2) n

given by

V (2) n = ½ limq θq=θ⋆ γ -1 n n k=1 γ 2 k ψ ⋆ (n, k + 1) E[e k e T k |F k-1 ] -U ⋆ ψ ⋆ (n, k + 1) T
have the same limit in probability. By C2c, we write V

(2)

n = V (2,a) n + V (2,b) n ½ limq θq=θ⋆ with V (2,a) n = γ -1 n n k=1 γ 2 k ψ ⋆ (n, k + 1)D (1) 
k-1 ψ ⋆ (n, k + 1) T V (2,b) n = γ -1 n n k=1 γ 2 k ψ ⋆ (n, k + 1)D (2) k-1 ψ ⋆ (n, k + 1) T .
We have

V (2,a) n ≤ γ -1 n n k=1 γ 2 k |ψ ⋆ (n, k + 1)| 2 |D (1) 
k-1 |. By Lemma 5.9, there exists a constant C such that on

{lim q θ q = θ ⋆ } lim sup n V (2,a) n ≤ C lim sup k D (1) k ,
where we used [START_REF] Hall | Martingale Limit Theory and its Application[END_REF]. The rhs tends to zero w.p.1. by C2c. We now consider V

(2,b) n . Since lim m P(A m | lim q θ q = θ ⋆ ) = 1, it is sufficient to prove that for any m ≥ 1, V (2,b) n ½ limq θq=θ⋆ ½ Am P -→ 0 when n → ∞. Let m ≥ 1. Set Ξ n def = n j=0 D (2) j ½ limq θq=θ⋆ ½ Am .
By the Abel transform, we have

V (2,b) n+1 ½ Am ½ limq θq=θ⋆ = γ n+1 Ξ n +γ -1 n+1 n-1 k=0 {γ 2 k+1 ψ ⋆ (n+1, k +2)Ξ k ψ ⋆ (n+1, k +2) T -γ 2 k+2 ψ ⋆ (n + 1, k + 3)Ξ k ψ ⋆ (n + 1, k + 3) T } Under C2c, γ n Ξ n P -→ 0.
For the second term, following the same lines as in Delyon [10, Proof of Theorem 24, Chapter 4], it can be proved that the expectation of the second term is upper bounded by

C γ -1 n+1 n-1 k=0 γ 2 k+1 |ψ ⋆ (n + 1, k + 2)| 2 (γ k E [|Ξ k |]) . Since lim k γ k E [|Ξ k |] = 0, Lemma 5.9 implies that V (2,b) n
½ Am ½ limq θq=θ⋆ P -→ 0. This concludes the proof.

Remark 5.3. From the proof above, it can be seen that the assumption on the r.v. D [START_REF] Andrieu | Stability of Stochastic Approximation under Verifiable Conditions[END_REF] n can be relaxed in

lim n γ n E [| n k=1 D (2) k ½ A k ½ A m,k |] = 0 .
Observe indeed that in probability,

lim n V (2,b) n ½ Am ½ limq θq=θ⋆ = lim n γ -1 n n k=1 γ 2 k ψ ⋆ (n, k+1)D (2) k-1 ψ ⋆ (n, k+1) T ½ A m,k-1 ½ A k-1 .

Proof of Proposition 3.1

The proof is prefaced with a preliminary lemma.

Lemma 5.4. Let {γ n , n ≥ 1} is a (deterministic) positive sequence satisfying C4a and A be a (deterministic) d × d Hurwitz matrix. Let {x n , n ≥ 0} be a sequence of R d -valued r.v. satisfying Proof. The proof is adapted from Delyon [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF]Theorems 20 and 23]. For n ≥ 0, set x n ½ limq xq=0 = y n + z n where

x n+1 = x n + γ n+1 Ax n + γ n+1 ζ (1) 
n+1 + γ n+1 ζ (2) n+1 , n ≥ 0 ,
y n+1 = (Id + γ n+1 A) y n + γ n+1 ζ (1) n+1 ½ limq xq=0 , n ≥ 0 , (31) 
and y 0 = 0. The first step of the proof is to show

y n = √ γ n O w.p.1 (1)O L 2 (1) , z n = γ n O w.p.1 (1)O L 1 (1) . (32) 
Then, upon noting that (y + z) 2 ≤ y 2 + 2(y + z)z, we write

|x n | 2 ½ limq xq=0 ≤ |y n | 2 + 2|x n ||z n |½ limq xq=0 ≤ γ n O L 1 (1) + 2γ n O w.p.1 (1) O L 1 (1) since |x n |½ limq xq=0 = O w.p.1.
(1). This concludes the proof of the Lemma. We turn to the proof of (32). By iterating (31), we have

y n+1 = n+1 k=1 γ k    n+1 j=k+1 (Id + γ j A)    ζ (1) 
k ½ limq xq=0 .

Lemmas 5.8 and 5.9 imply that y n = √ γ n O w.p.1 (1)O L 2 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. It holds

z n+1 = x n+1 ½ limq xq=0 -y n+1 = (Id + γ n+1 A) (x n ½ limq xq=0 -y n ) + γ n+1 ζ (2) n+1 ½ limq xq=0 = (Id + γ n+1 A) z n + γ n+1 ζ (2) 
n+1 ½ limq xq=0 . Under the stated assumptions, Lemmas 5.8 and 5.9 imply that z n = o w.p.1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. We thus also have y n = x n ½ limq xq=0z n = o w.p.1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. In addition,

|z n+1 | ≤ |Id + γ n+1 A| |z n | + γ n+1 |ζ (2)
n+1 |½ limq xq=0 , and since A is a Hurwitz matrix, there exists a constant L ′ > 0 such that |Id + γ n+1 A| ≤ exp(-L ′ γ n+1 ) (see Lemma 5.8). Hence,

|z n+1 | ≤ exp(-L ′ γ n+1 )|z n | + O w.p.1 (1) γ n+1 |y n | 2 + |z n | 2 ≤ exp(-L ′ γ n+1 ) 1 + O w.p.1 (1) exp(L ′ γ n+1 )γ n+1 |z n | |z n |+O w.p.1 (1) γ n+1 |y n | 2 .
Let δ ∈ (0, L ′ ). Since z n = o w.p.1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF], there exists a r.v. K which is finite w.p.1. such that for any k ≥ K, |O w.p.1 (1) exp(L ′ γ k+1 )z k | ≤ δ. Therefore, upon noting that for any x ≥ 0, 1 + x ≤ exp(x), for any n ≥ K,

|z n+1 | ≤ exp(-(L ′ -δ)γ n+1 )|z n | + O w.p.1 (1) γ n+1 |y n | 2 ≤ exp -(L ′ -δ) n+1 k=K+1 γ k |z K | + O w.p.1 (1) n+1 k=K+1 γ k exp   -(L ′ -δ) n+1 j=k+1 γ k   |y k-1 | 2 ≤ O w.p.1 (1) exp -(L ′ -δ) n+1 k=1 γ k + O w.p.1 (1) n+1 k=1 γ k exp   -(L ′ -δ) n+1 j=k+1 γ k   |y k-1 | 2 + O w.p.1 (1) exp   -(L ′ -δ) n+1 j=K+1 γ k   . Since y n = √ γ n O L 2 (1)
, C4a and Lemma 5.9 imply that z n = γ n O w.p.1 (1) O L 1 (1).

Proof of Proposition 3.1 By ( 20)

θ n+1 -θ ⋆ = θ n -θ ⋆ + γ n+1 ∇h(θ ⋆ ) (θ n -θ ⋆ ) + γ n+1 (e n+1 + r n+1 ) + γ n+1 (θ n -θ ⋆ ) T R (n) • (θ n -θ ⋆ )
Let m ≥ 1. We apply Lemma 5.4 with

x n ← (θ n -θ ⋆ )½ Am , A ← ∇h(θ ⋆ ), ζ (1) 
n+1 = (e n+1 + r n+1 )½ Am and ζ n+1 = e n+1 ½ Am,n + e n+1 1 -½ Am,n + r n+1 ½ Am . Under C4, AVER1a-b, Lemmas 5.8 and 5.9 imply

(2) n+1 = (θ n -θ ⋆ ) T R (n) • (θ n -θ ⋆ ) ½ Am .
n k=1 γ k ψ ⋆ (n + 1, k + 1) e k ½ A m,k-1 = √ γ n O L 2 (1) . Upon noting that ½ Am 1 -½ A m,k = 0 for all k ≥ K where K is a r.v. finite w.p.1. n k=1 γ k ψ ⋆ (n + 1, k + 1) e k 1 -½ A m,k-1 ½ Am = K k=1 γ k ψ ⋆ (n + 1, k + 1) e k 1 -½ A m,k-1 ½ Am .
Therefore, by Lemma 5.9, this second term is √ γ n O w.p.1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. Finally, Lemma 5.9

and AVER2a-b imply that the last term is √ γ n O w.p.1 (1)O L 2 (1) (the proof is on the same lines as the proof of Proposition 5.2 and details are omitted).

Proof of Theorem 3.2

The proof is adapted from the proof of Delyon [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF]Theorem 26]. Under C1c, ∇h(θ ⋆ ) is invertible. By (4) and Lemma 5.12 applied with x k ← θ kθ ⋆ and A ← ∇h(θ ⋆ ), we have

√ n θn -θ ⋆ = -∇h(θ ⋆ ) -1 √ n n + 1 n k=0 e k+1 + √ nZ n where ∇h(θ ⋆ )Z n def = - 1 n + 1 n k=0 r k+1 - 1 n + 1 n k=0 (h(θ k ) -∇h(θ ⋆ )(θ k -θ ⋆ )) + 1 n + 1 θ n+1 -θ ⋆ γ n+1 - θ 0 -θ ⋆ γ 1 + 1 n + 1 n k=1 1 γ k - 1 γ k+1 (θ k -θ ⋆ ) .
We prove that √ nZ n ½ limq θq=θ⋆ P -→ 0; combined with AVER1c, this will conclude the proof. Since lim m P(A m | lim q θ q = θ ⋆ ) = 1, it is sufficient to prove that for

any m ≥ 1, √ nZ n ½ Am ½ limq θq=θ⋆ P -→ 0. Let m ≥ 1. By AVER2c, it holds n -1/2 n k=0 r k+1 ½ Am ½ limq θq=θ⋆ P -→ 0. By (20), 1 n + 1 n k=0 (h(θ k ) -∇h(θ ⋆ )(θ k -θ ⋆ )) = 1 n + 1 n k=0 (θ k -θ ⋆ ) T R (k) • (θ k -θ ⋆ ) ,
and by C1b, R

• ½ limq θq=θ⋆ = O w.p.1 [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. Therefore, by Proposition 3.1,

√ n n + 1 n k=0 (h(θ k ) -∇h(θ ⋆ )(θ k -θ ⋆ )) ½ Am ½ limq θq=θ⋆ = √ n n + 1 n k=0 γ k W k W k ,
where W k = O w.p.1.

(1) and W k = O L 1 (1). AVER3 implies that this term tends to zero in probability. Proposition 3.1 and AVER3 imply that

½ Am ½ limq θq=θ⋆ √ n n + 1 θ n+1 -θ ⋆ γ n+1 - θ 0 -θ ⋆ γ 1 = O L 1 (1)O w.p.1. (1) 
(n + 1)γ n+1 +o w.p.1.

P -→ 0 .

Finally, Proposition 3.1 and AVER3 also imply that ). This term tends to zero in probability.

½ Am ½ limq θq=θ⋆ √ n n + 1 n k=1 1 γ k - 1 γ k+1 (θ k -θ ⋆ ) = 1 √ n n k=1 1 γ k - 1 γ k+1 γ 1/2 k W k W k where W k = O w.p.1. (1) and W k = O L 1 ( 1 
Lemma 5.5. C2 and lim n nγ n > 0 imply AVER1.

Proof. C2 implies trivially AVER1a-b. We only have to check AVER1c, or equivalently, prove that for any m ≥ 1, [START_REF] Hall | Martingale Limit Theory and its Application[END_REF] and C2b, T 2,n = o w.p.1. [START_REF] Andrieu | Quantitative Convergence Rates for sub-geometric Markov chains[END_REF]. Observe that E e k+1 ½ A m,k ½ A k |F k = 0 so that the convergence in distribution of T 1,n will be established by applying results on martingale-arrays: we check the assumptions of Hall and Heyde [START_REF] Hall | Martingale Limit Theory and its Application[END_REF]Corollary 3.1.]. By C2b, it is easily checked that for any ǫ > 0, there exists a constant C such that for any n,

lim n E exp it T E n+1 ½ limq θq=θ⋆ ½ Am = E exp it T U ⋆ t½ limq θq=θ⋆ ½ Am . Write E n+1 ½ limq θq=θ⋆ ½ Am = T 1,n +T 2,n with T 1,n = (n+1) -1/2 n k=0 e k+1 ½ A m,k ½ A k . By
E 1 n n k=0 E |e k+1 | 2 ½ |e k+1 |≥ǫ √ n |F k ½ A m,k ≤ C n τ /2 . Hence, n -1 n k=0 E |e k+1 | 2 ½ |e k+1 |≥ǫ √ n |F k ½ A m,k ½ A k P -→ 0. We now prove that 1 n + 1 n k=0 E e k+1 e T k+1 |F k ½ A m,k ½ A k P -→ U ⋆ ½ Am ½ limq θq=θ⋆ . (33) 
As above, we claim that this is equivalent to the proof that for any m ≥ 1,

½ limq θq=θ⋆ ½ Am 1 n + 1 n k=0 E e k+1 e T k+1 |F k -U ⋆ P -→ 0 .
C2c and the Cesaro lemma imply that w.p.1, on the set A m ∩ {lim q θ q = θ ⋆ }, (n + 1) -1 n k=0 D

(1) k a.s.

-→ 0. Finally, under C2c,

1 n + 1 E n k=0 D (2) k ½ limq θq=θ⋆ ½ Am = o(1) nγ n
and the rhs tends to zero since lim n nγ n > 0. This concludes the proof of (33) and the proof of the Lemma.

Technical lemmas

Lemma 5.6. Let (Ω, A, µ) be a measured space, where µ is a bounded positive measure. Let G be an algebra generating A. Then for all B ∈ A and ǫ > 0, we can find A ∈ G such that µ(A∆B) < ǫ.

Proof. For any ǫ > 0, there exist m ≥ 1 and à ∈ F m such that E |½ à -½ B | ≤ ǫ (see Lemma 5.6). Therefore, for any n ≥ 1, there exist sets Ãn ∈ F mn such that 

E |½ Ãn -½ B | ≤ 1/n.
|(Id + γ n A n ) • • • (Id + γ k+1 A k+1 )(Id + γ k A k )| ≤ C exp(-L ′ n j=k γ j ) .
Proof. Let λ i , i ≤ d be the eigenvalues of A. By using the Jordan decomposition, we write A = SJS -1 where S is a non-singular matrix, and J is a Jordan matrix (as defined by Horn and Johnson [17, Definition 3.1.1] -note that the diagonal entries of J are λ i ).

For any t > 0, denote by D t the diagonal matrix with diagonal entries (t, t 2 , • • • , t d ) and set A = (SD t ) D -1 t JD t (SD t ) -1 = (SD t ) (Λ + R t ) (SD t ) -1

with Λ def = diag(λ i ), upon noting that

D -1 t JD t =       λ 1 tu 1 0 • 0 0 λ 2 tu 2 • 0 • • 0 • • λ d-1 tu d-1 0 • • λ d       .
Note also that |R t | → 0 as t → 0. We write (SD t ) -1 (I + γ ℓ A ℓ ) (SD t ) = (SD t ) -1 (I + γ ℓ A) (SD t ) + γ ℓ (SD t ) -1 (A ℓ -A) (SD t ) = I + γ ℓ D -1 t JD t + γ ℓ (SD t ) -1 (A ℓ -A) (SD t ) = I + γ ℓ Λ + γ ℓ R t + γ ℓ (SD t ) -1 (A ℓ -A) (SD t ) . Therefore,

(SD t ) -1 (I + γ ℓ A ℓ ) (SD t ) ≤ |I + γ ℓ Λ| + γ ℓ |R t | + γ ℓ |A ℓ -A| |SD t | (SD t ) -1 .
Let 0 < L < L ′′ < L. There exists t 0 such that for any t ∈ (0, t 0 ), |R t | ≤ (L ′′ -L ′ )/2; and there exists K such that for any ℓ ≥ K and any t ≤ t 0 , |I + γ ℓ Λ| ≤ 1γ ℓ L ′′ and |A ℓ -A| |SD t | (SD t ) -1 ≤ (L ′′ -L ′ )/2. Therefore, for any ℓ ≥ K and any t ∈ (0, t 0 ) (SD t ) -1 (I + γ ℓ A ℓ ) (SD t ) ≤ 1γ ℓ L ′ . Now we write for K ≤ k < n and t ≤ t 0 ,

|(I + γ n A n ) • • • (I + γ k A k ) =| ≤ |SD t | (SD t ) -1 n ℓ=k 1 -γ ℓ L ′
which concludes the proof. ). As in the previous case, we write

v n+1 -V = v n -V + +γ n H(v n -V ) + γ n (v n -V )H T + o(γ n )
where H def = ∇h(θ ⋆ ) + (2γ ⋆ ) -1 Id. Under the assumptions on γ ⋆ , H is a Hurwitz matrix. As in the proof of Lemma 5.9, it can be proved that lim sup n |v n+1 -V | ≤ o(1) = 0. x k .

Proof. By definition of {x n , n ≥ 0}, for any n ≥ 0 it holds

Ax n = 1 γ n+1 (x n+1 -x n ) -ζ n+1 .
Therefore,

A n k=0 x k = n k=0 1 γ k+1 (x k+1 -x k ) - n k=0 ζ k+1 .
We then conclude by the Abel transform. 

γ k γ k+1 -1 = n k=1 γ 1/2 k 1 γ k+1 - 1 γ k = - n+1 k=2 γ -1 k √ γ k - √ γ k-1 - 1 √ γ 1 + 1 √ γ n+1 ≤ - n+1 k=2 γ -1/2 k γ -1/2 k-1 √ γ k - √ γ k-1 + 1 √ γ n+1 = 1 √ γ n + 1 √ γ n+1
.

  g. Horn and Johnson [18, Theorem 2.2.3.]).

( 2

 2 ,a) k |F k-1 = 0; by application of the Burkholder inequality (see e.g. Hall and Heyde [15, Theorem 2.10]), it holds for any

Proposition 4 . 1 .

 41 Assume A1, A2 and A3. If a ∈ (1/2 ∨ 1/(1 + τ ), 1], the conditions C1 to C4 are satisfied and

) Proposition 5 . 1 .

 51 Assume C1b-c, C2a-b and C4. Then (i) µ n ½ limq θq=θ⋆ a.s.

( 1 )

 1 n and define S n def = k≥n γ k e k ½ A m,k-1 . By (22) and the Abel transform, we have µ

  the limit in distribution is obtained by standard results on CLT for martingalearrays (see e.g. Hall and Heyde [15, Corollary 3.1.]).

k

  ½ limq xq=0 = √ γ n O w.p.1 (1)O L 2 (1) , |ζ (2) n |½ limq xq=0 = |x n | 2 O w.p.1. (1) . Then γ -1 n |x n | 2 ½ limq xq=0 = O w.p.1.(1)O L 1 (1) .

Lemma 5 . 9 .

 59 Let γ k be a positive sequence such that lim k γ k = 0 and k γ k = ∞. Let {e k , k ≥ 0} be a non-negative sequence. Then with C(b, p) = b, for any b > 0,p ≥ 0 if log(γ k-1 /γ k ) = o(γ k ). (ii) with C(b, p) = bp/γ ⋆ , for any bγ ⋆ > p ≥ 0 if there exists γ ⋆ > 0 such that log(γ k-1 /γ k ) ∼ γ k /γ ⋆ .By convention, n j=n+1 γ j = 0. Proof. The proof is from Delyon[START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF] Theorem 19, Chapter 4]. Let {x n , n ≥ 0} be defined by x n = exp(-bγ n )x n-1 + γ p+1 n e n where x 0 = 0. Then by a trivial recursion, it holdsx n = bγ n )u n-1 + γ n e n = exp(p log(γ n-1 /γ n )bγ n )u n-1 + γ n e n = (1b n γ n )u n-1 + b n γ n (b -1 n e n ) , Under C4a, |γ n /γ n+1 -1| = o(γ n ) and γ nγ n+1 = o(γ 2 n ).Then, denoting by vn the vectorialized form of the matrix v n -V , this yields vn+1 = (Id + γ n A n ) vn + B n where {A n , n ≥ 0} is a sequence of Hurwitz matrix that converges to a Hurwitz matrix A, and B n = o(γ n ). Then, there exists L ′ > 0 such that|v n+1 -V | ≤ (1γ n L ′ )|v n -V | + γ n ǫ n ,where ǫ n = o(1). As in the proof of Lemma 5.9, it can be proved that lim sup n |v n+1 -V | ≤ lim sup n ǫ n = 0. (b) Under C4b, γn-γ n+1 γ n+1 = γ n /γ ⋆ + o(γ n ) and γ n+1γ n = O(γ 2 n

Lemma 5 . 12 .

 512 Define the sequence {x n , n ≥ 0} byx n+1 = x n + γ n+1 Ax n + γ n+1 ζ n+1 , x 0 ∈ R d ,where {γ n , n ≥ 1} is a positive sequence, {ζ n , n ≥ 1} is a R d -valued sequence and A is a d × d matrix. Then A

Lemma 5 . 13 .

 513 Let {γ n , n ≥ 1} be a positive non-increasing sequence. Then The following proof can be found in the proof of Delyon[START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF] Theorem 26

  | • | the Euclidean norm on R d ; and by x T the transpose of a matrix x. By convention, vectors are column-vectors. For a set A, ½ A is the indicator function. It is assumed C2 (a) {e n , n ≥ 1} is a F n -adapted P-martingale-increment sequence i.e.E [e n |F n-1 ] = 0 P-almost surely.

(b) For any m ≥ 1, there exists a sequence of measurable sets {A m,k , k ≥ 0} such that A m,k ∈ F k and there exists τ > 0 such that sup k≥0

  p for any p ≥ 2. Sufficient conditions for[START_REF] Fabian | On asymptotically efficient recursive estimation[END_REF] and (14) based on Lyapunov drift inequalities when the chain is geometrically ergodic (resp. subgeometrically ergodic) are given by Fort et al.[14, Lemma 2.3] (resp. Andrieu et al. [1]. Andrieu et al. [2, Proposition 6.1.] gives sufficient conditions to check A3c (compare this assumption with the condition A3(ii) of Andrieu et al.) when the kernels are V -geometrically ergodic: in this case, for any p ≥ 2 we can choose

  p and 2(1 + τ )/p = 1. The first set of conditions in A3d is an assumption on the regularity-in-θ of the solution to the Poisson equation. Andrieu et al. [2, Proposition 6.1.] give sufficient conditions in terms of the regularity-in-θ of the transition kernels Q θ . When π θ = π for any θ, the second set of conditions can be established by combining smoothnessin-θ properties of the function F θ and the dominated convergence theorem. When π θ depends on θ, Fort et al. [14, Theorem 2.11 and Proposition 4.3] give sufficient conditions for this condition to hold.

  n+1 |½ limq θq=θ⋆ = O w.p.1 (1) |x n | 2 .

		Under C1c, A is a
	Hurwitz matrix and |ζ We write ζ (1)	(2)

  This implies almost-sure convergence of a subsequence { Ãφn , n ≥ 0} to ½ B , with Ãφn ∈ F m φn . Note that we can assume without loss of generality that the sequence {m φn n ≥ 1} is non decreasing. For any k ∈ [m φn , m φ n+1 [, set A k = Ãφn . Then, A k ∈ F m φn ⊆ F k and lim Lemma 5.8. Let | • | be any matrix norm. Let {A k , k ≥ 0} be a sequence of square matrix such that lim k |A k -A| = 0 where A is a Hurwitz matrix. Denote by -L, L > 0, the largest real part of its eigenvalues. Let {γ k , k ≥ 0} be a positive sequence such that lim k γ k = 0. For any 0 < L ′ < L, there exists a positive constant C such that for any k ≤ n

k ½ A k = lim n ½ Ãφn = ½ B .

Proof. Let S def = {A ⊂ Ω, ∀ǫ > 0, ∃A ′ ∈ G, µ(A∆A ′ ) ≤ ǫ}. We prove that S is a σ-algebra; since it contains G by definition, this yields the result.

Ω ∈ S since Ω ∈ G. Let A ∈ S: we prove that A c def = Ω \ A ∈ S. Let ǫ > 0; there exists A ′ ∈ G such that µ(A∆A ′ ) ≤ ǫ. Since A∆B = A c ∆B c , it holds

Finally, we prove that S is stable by countable union. We first prove it is stable by finite union, or equivalently by union of two elements. Let A 1 , A 2 be elements of S and fix ǫ > 0. There exists

Let us consider the countable case. Let (A k , k ≥ 1) be a sequence of S and fix ǫ > 0; since S is stable under complement and finite union, we can assume without loss of generality that the sets A k are pairwise disjoint. For any k, there exists

Since k≤Kǫ A ′ k ∈ G, this concludes the proof of the sub-additivity.

Lemma 5.7. Let (Ω, A, P, {F n , n ≥ 0}) be a filtered probability space and set

Let v ≥ lim sup n b -1 n e n . We have

and upon noting that (a + b)

Since lim n γ n b n = 0 and n b n γ n = +∞, lim n (u nv) + = 0 thus implying that lim sup n u n ≤ v. This holds for any v ≥ lim sup n b -1 n e n thus concluding the proof. Lemma 5.10. For any matrices A, B, C 

Then there exists an unique positive definite matrix V such that f (V ) = 0 and lim n v n = V .

(b) Assume C1b-c and C4b. Consider the equation

Then there exists an unique positive definite matrix V such that f (V ) = 0 and lim n v n = V .

Proof. (a) Let V such that f (V ) = 0. We have