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On the rigid-lid approximation for two shallow layers

of immiscible fluids with small density contrast

Vincent Duchêne

September 11, 2013

Abstract

The rigid-lid approximation is a commonly used simplification in the study of density-
stratified fluids in oceanography. One assumes that the displacements of the surface are neg-
ligible compared with internal displacements. We offer a rigorous justification of this approx-
imation in the case of two shallow layers of immiscible fluid with constant and quasi-equal
mass densities. More precisely, we control the difference between the solutions of the Cauchy
problem predicted by the shallow-water (Saint-Venant) system in the rigid-lid and free-surface
configuration. We also describe explicitly the first-order behavior of the deformation of the
surface in the latter situation.
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1 Introduction

1.1 Motivation

The mass density of water in the ocean is not constant, due to variations of temperature and
salinity. As a matter of fact, one usually observes a sharp separation between a layer of warm,
relatively fresh water above a layer of cold, more salted water. The interface between these two
layers may experience great deformations that are mostly invisible at the surface, but account for
important oceanographic features, such as internal solitary waves or the dead-water phenomenon
(see, e.g., [13, 16, 17] and references therein). The study of these internal waves has attracted a
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considerable amount of attention in the past decades, and lead to a vast collection of various models.
In order to simplify the setting, two approximations are commonly used in the literature, namely the
rigid-lid and Boussinesq approximations. Roughly speaking, the rigid-lid approximation consists
in neglecting the surface displacements in front of interface displacements, while the Boussinesq
approximation relies on the assumption that the differences of mass density between the two layers
is small. Acknowledgedly, these two assumptions are related: a fixed amount of energy generates
a much smaller displacement on the air–water interface than on the fresh-salted water interface,
because the ratio of mass densities across the interface is negligible in the former case when compared
to the latter.

The ambition of this article is to offer a rigorous justification of the above presumption. We
restrict ourselves to one of the simplest possible setting, that is two infinite, two-dimensional layers
of immiscible fluids with constant densities, above a flat bottom. Moreover, we consider extremely
shallow layers, so that the horizontal velocity field is assumed to be constant throughout the depth
of each layer; thus we study the so-called Saint-Venant [9], or shallow-water systems. Even in that
much simplified setting, we will come across serious difficulties, which come from the fact that the
typical surface wave speed, as predicted by the linearized system, is much greater than the typical
interface wave speed, in particular in the limit of vanishing density contrast. Thus within the terms
neglected in the rigid-lid approximation are contributions whose velocity blows up in the limit we
consider. Controlling these terms on the relevant timescale is the main challenge we face.

To our knowledge, very few works are concerned with the validity of the aforementioned approxi-
mations, despite the early concerns expressed by Long [25] and Benjamin [3]. Grimshaw, Pelinovsky,
Poloukhina [14], Craig, Guyenne, Kalisch [7], Craig, Guyenne, Sulem [8] and the author [11] derived
and compared asymptotic models in both the rigid-lid and free surface settings. However, they do
not directly compare solutions of the two models for given initial data, but rather parameters of
their models, or explicit solutions (solitary waves). Moreover, and maybe more importantly, their
analysis is restricted to weakly nonlinear waves, so that the deformation of both the surface and
interface are assumed to be small. Recently, Leonardi [24] studied in much details the validity of the
rigid-lid approximation in a linearized setting, and without explicitly looking at the limit of small
density differences. On the contrary, our study allows fully nonlinear waves, and directly compare
the solutions predicted by the rigid-lid and free-surface systems, in the limit of vanishing density
contrast.

1.2 Presentation of the models, and main result

In this section, we present the two models we study, namely the shallow-water (or Saint-Venant)
systems in the free-surface and rigid-lid configuration; see Figure 1. We briefly describe some early
properties of these models, and state our main result in Theorem 1.2. It follows a brief outline of
the present paper, and some notations used therein.

(a) Free-surface situation (b) Rigid-lid situation

Figure 1: Sketch of the domain in the two different situations
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The free-surface system. Let us begin introduce the shallow-water model with free surface,
that we refer to as free-surface system.

α∂tζ1 + ∂x(h1u1) + ∂x(h2u2) = 0,
∂tζ2 + ∂x(h2u2) = 0,

∂tu1 + α δ+γ1−γ ∂xζ1 +
ε

2
∂x
(
|u1|2

)
= 0,

∂tu2 + (δ + γ)∂xζ2 + γα δ+γ1−γ ∂xζ1 +
ε

2
∂x
(
|u2|2

)
= 0,

(1.1)

where we denote h1 = 1 + εαζ1 − εζ2, and h2 = 1
δ + εζ2.

This system has been obtained1 in [6,7], and rigorously justified in [10] as an asymptotic model
for a system of two layers of immiscible, homogeneous, ideal, incompressible fluid under the only
influence of gravity. It describes the evolution of the deformation of the surface, ζ1, the interface,
ζ2, and the velocity of the fluid in the upper (resp. lower) layer u1 (resp. u2). More precisely, the
two layers are assumed to be connected, infinite in the horizontal dimension x ∈ R, delimited below
by a flat bottom, and by the graph of the functions ζ1(t, x), ζ2(t, x) (see figure 1(a)).

The parameters α, δ, γ, ε are dimensionless parameters that describe characteristics of the flow.
More precisely:

δ represents the ratio of the upper-layer to the lower-layer depth;

γ represents the ratio of the mass density between the two fluids;

ε represents the maximal deformation of the interface, divided by the upper-layer depth;

α represents the ratio of the maximal deformation of the surface to the one of the interface.

In particular, h1 denotes the depth of the upper layer, and h2 the depth of the lower layer.

Remark 1.1. Another dimensionless parameter plays an important role, but is not visible here,
although it is essential for the construction and relevance of the shallow-water models. If we denote
by µ the ratio of the depth of the two layers to a characteristic horizontal length, then one assumes
µ� 1, and all terms of size O(µ) are neglected.

An additional dimensionless parameter is ubiquitous in the present work, and obtained as a com-
bination of the aforementioned parameters. It turns out to be convenient to express the assumption
that the density differences between the two fluids are small with

% � 1 ; % ≡
√

1− γ
γ + δ

.

We conclude the presentation of the free-surface system by mentioning that system (1.1) is
obviously a system of four conservation laws, but also induces at least two other conserved quantities.
Indeed, as noticed in [2], after manipulating the equations, one may obtain:

• Conservation of horizontal momentum:

∂t(γh1u1 + h2u2) + ∂xp+ ∂x(γh1|u1|2 + h2|u2|2),

where p is the “pressure”: p = 1
2

(
γ δ+γ1−γ (h1 + h2)2 + (γ + δ)h2

2

)
.

• Conservation of energy:

∂tE + ∂x

(
1

2
(γh1|u1|2u1 + h2|u2|2u2) + γh2

1u1 + h2
2u2 + γh1h2(u1 + u2)

)
,

where we denote E ≡ 1
2γh1|u1|2 + 1

2h2|u2|2 + p.

1The models presented in these works are not limited to flat bottom or dimension d = 1. They present different
constants in the velocity equations. This is due to a different choice of scaling in the non-dimensionalizing step. We
chose our scaling in order to set the typical velocity of the internal wave (obtained by solving linear system when
α = ε = 0) as c0 = ±1, consistently with the rigid-lid system (1.2).
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The rigid-lid system. The model corresponding to (1.1) in the rigid-lid configuration, that we
refer to as rigid-lid system, is

∂tη + ∂x

( h1h2

h1 + γh2
v
)

= 0,

∂tv + (γ + δ)∂xη +
ε

2
∂x

(
| h

2
1 − γh2

2

(h1 + γh2)2
|v|2
)

= 0 .

(1.2)

Here, η represents the deformation of the interface, and v the shear velocity (typically, v = u2−γu1;
see below). Again, h1, h2 denote the depth of the upper (resp. lower) layers, thus h1 = 1− εη and
h2 = 1/δ + εη. Parameters γ, δ, ε are defined as previously.

This model has been rigorously justified in [5], starting from the full Euler system in rigid-lid
configuration. Let us show how to formally recover (1.2) from (1.1). Set ζ1 ≡ 0 (or, equivalently,
α = 0) in (1.1). It follows in particular from the first equation that

∂x(h1u1) + ∂x(h2u2) = 0.

Since h1u1 and h2u2 are scalar functions vanishing at infinity, we deduce the identity h1u1 = −h2u2.
Thus, when we define v ≡ u2 − γu1, one obtains

u1 ≡
−h2v

h1 + γh2
and u2 ≡

h1v

h1 + γh2
.

It is now clear that the second equation, and a linear combination of the last two equations of (1.1)
yield (1.2) (with η ≡ ζ2). We aim at giving a rigorous confirmation of the above calculations.

Main result. We state here the main result of the present work (see below for the definition of
the different functional spaces used therein).

Theorem 1.2. Let s ≥ s0 + 1, s0 > 1/2. For any (α, δ, ε, γ) ∈ P, with

P ≡
{

(α, δ, ε, γ), 0 ≤ α ≤ 1, δmin ≤ δ ≤ δmax, 0 ≤ ε ≤ 1, 0 < γ < 1
}
,

there exists positive constants %0,M, T, C, depending only on δ−1
min, δmax,

1
s0−1/2 , such that for any

(α, δ, ε, γ) ∈ P with 0 < % ≤ %0 and for any ζ0
1 , ζ

0
2 , u

0
1, u

0
2 ∈ Hs+1(R) satisfying

α

%

∣∣ζ0
1

∣∣
Hs+1 +

∣∣ζ0
2

∣∣
Hs+1 +

∣∣u0
1

∣∣
Hs+1 +

∣∣u0
2

∣∣
Hs+1 ≤ M, (1.3)

and
α

%

∣∣ζ0
1

∣∣
Hs+1 +

∣∣h1u
0
1 + h2u

0
2

∣∣
Hs+1 ≤ M %, (1.4)

the following holds.

1. There exists a unique solution, (η, v) ∈ C([0, T/(εM)];Hs+1(R)2) ∩ C1([0, T/(εM)];Hs(R)2)
to (1.2), with initial data (η |t=0 = ζ0

2 , v |t=0 = u0
2 − γu0

1).

2. There exists a unique solution, (ζ1, ζ2, u1, u2) ∈ C([0, Tmax);Hs+1(R)4)∩C1([0, Tmax);Hs(R)4)
to (1.1), with initial data (ζ0

1 , ζ
0
2 , u

0
1, u

0
2), and Tmax ≥ T/max{εM, %}.

3. One has, for any 0 ≤ t < T/max{εM, %},

α

%

∥∥ζ1∥∥L∞([0,t];Hs)
+
∥∥h1u1 + h2u2

∥∥
L∞([0,t];Hs)

≤ C M %,

and ∥∥η − ζ2∥∥L∞([0,t];Hs)
+
∥∥v − (u2 − γu1)

∥∥
L∞([0,t];Hs)

≤ C M %.
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Remark 1.3. The restriction on the maximal time of existence for the solution of the free-surface
system, Tmax ≥ T/max{εM, %}, as opposed to the classical Tmax ≥ T/(εM), is purely technical, and
do not reveal any limitation that would appear in the weakly non-linear case, εM = O(%). On the
contrary, we know that in the latter case (see Proposition 2.2 and Remark 2.3), the system (1.1) is
well-posed over time O((εM)−1), without the additional condition (1.4). Moreover, it would not be
difficult to obtain an asymptotic description of the solution similar to the one obtained by the author
in [11] (without the dispersion terms), namely that the flow may be accurately approximated as a
superposition of four independent waves; each driven by an inviscid Burgers’ equation. The solution
of the rigid-lid system (1.2) complies to similar description (with only two counter-propagating
waves), thus the two solutions are easily compared. One ambition of the present article is to extend
such results to stronger nonlinearities; see in particular Theorem 4.5 and Proposition 4.7. In order
to acknowledge the fact that we are interested in strong nonlinearities, we set ε = 1 in the following,
without loss of generality.

Remark 1.4. The factor α
% in front of ζ1 is natural in our context. Indeed, one easily deduces from

the aforementioned conservation of energy for (1.1) that∫
R
E(x)− E(∞) dx ≈ γ

%2

∣∣αζ1∣∣2L2 +
∣∣ζ2∣∣2L2 + γ

∣∣u1

∣∣2
L2 +

∣∣u2

∣∣2
L2 is constant in time,

so that without any further assumption than a finite initial energy, we know that γ1/2 α
%

∣∣ζ1∣∣L2 remains
bounded as long as the solution is well-defined. In the following, and without loss of generality, we
set α ≡ %.

Let us emphasize again the consequences of the assumptions made on the preceding remarks.
The set of parameters we consider throughout the rest of the paper is now

P ≡
{

(α, δ, ε, γ), α = % ≡
√

1− γ
γ + δ

, δmin ≤ δ ≤ δmax, ε = 1, 0 < γ < 1

}
.

with 0 < δmin ≤ δmax <∞. Except for Section 2 and Appendix A, we additionally restrict % ≤ %0

with %0 sufficiently small, so that γ cannot approach zero.

Outline of the paper. Section 2 is dedicated to some preliminary results on the Cauchy problem
for systems (1.2) and (1.1), obtained through classical techniques on quasilinear, hyperbolic systems.
Indeed, one easily checks that system (1.2) is Friedrichs-symmetrizable for sufficiently small data.
As a matter of fact, the Cauchy problem for (1.2) has been studied in much details in [15] (with
the much more difficult case of dimension d = 2), and we recall their result in Proposition 2.1.

In the same way, one obtains easily the well-posedness of the free-surface equation (which is also
a Friedrichs-symmetrizable quasilinear system) with standard energy methods; we state the result
in Proposition 2.2, and postpone its proof to Appendix A. However, the resulting time of existence
is only of size T ≈ %. This is the main purpose of our work to obtain a control of the energy over
large time (i.e. uniform with respect to % small), as well as describing the asymptotic behavior of
the solution when % vanishes.

Let us mention that Proposition 2.2 also contains the usual blow-up criterion, so that item 2. is
a consequence of the control of the solution over large time. Thus it suffices to prove item 3., and
the Theorem follows. Section 3 is dedicated to the proof of item 3.

Finally, in section 4, we discuss several natural developments of Theorem 1.2, namely

• The construction of a first-order corrector in order to reach a higher precision. In particular,
we describe the asymptotic behavior of the small deformation at the surface.

• The case of ill-prepared initial data, that is satisfying (1.3) but not (1.4).

On both counts, the relevant notion lies in a decomposition between fast mode and slow mode,
that we precise therein. Finally, Section 4 also contains a discussion on the different results of the
present work, supported with numerical simulations.
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Notations. If not specified, C0 denotes a nonnegative constant whose exact expression is of no
importance. In the present work, C0 almost always depend non-decreasingly on δ−1

min, δmax, and
often on 1

s0−1/2 , such dependency being non-necessarily specified. The notation a . b or a = O(b)

means a ≤ C0b, and a ≈ b means a . b and b . a, while a ∼ b means a
b → 1 (%→ 0).

We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the parameters λ1, λ2,. . . ,
and whose dependence on the λj is always assumed to be nondecreasing.

The real inner product of any functions f1 and f2 in the Hilbert space of square-integrable
functions, L2 = L2(R), is denoted by(

f1 , f2

)
=

∫
R
f1(x)f2(x) dx.

The space L∞ = L∞(R) consists of all essentially bounded, Lebesgue-measurable functions f , and∣∣f ∣∣
L∞

= ess supx∈R |f(x)| < ∞ .

For any real s ≥ 0, Hs = Hs(R) denotes the Sobolev space of all tempered distributions, f ,
endowed with the norm |f |Hs = |Λsf |L2 <∞, where Λ is the fractional derivative Λ = (Id−∂2

x)1/2.
For any F ≡ (ζ1, ζ2, u1, u2)> ∈ Hs(R)4 and 0 < γ < 1, we introduce the following norm:∣∣F ∣∣2

Xs = γ
∣∣ζ1∣∣2Hs +

∣∣ζ2∣∣2Hs + γ
∣∣u1

∣∣2
Hs +

∣∣u2

∣∣2
Hs .

Notice that most of the time (that is everywhere except in Section 2 and Appendix A), γ is uniformly
bounded from below, since we restrict 0 < % ≤ %0. In that case, Xs is equivalent to the standard
Hs(R)4-norm, and will be used as such.

For any functions u = u(t, x) and v(t, x) defined on [0, T )× R with some T > 0, we denote the
inner product, the L2-norm as well as the Sobolev norms with respect to the spatial variable x,
with

(
u, v
)

=
(
u(t, ·), v(t, ·)

)
,
∣∣u∣∣

L2 =
∣∣u(t, ·)

∣∣
L2 , and |u|Hs = |u(t, ·)|Hs , respectively.

We denote L∞([0, T );Hs) the space of functions such that u(t, ·) is controlled in Hs, uniformly
for t ∈ [0, T ). This space is endowed with the following norm:∥∥u∥∥

L∞([0,T );Hs)
= ess supt∈[0,T ) |u(t, ·)|Hs < ∞.

Finally, Ck(R) denote the space of k-times continuously differentiable functions.

2 Preliminary results

In this section, we present some results concerning the Cauchy problem related to the free-surface
and rigid-lid systems, in Sobolev spaces.

Proposition 2.1 (Well-posedness result concerning the rigid-lid system).
Let s ≥ s0 + 1, s0 > 1/2, and U0 = (ζ0, v0)> ∈ Hs(R)2 be such that there exists h0 > 0 with

h1 ≡ 1− η ≥ h0 > 0, h2 ≡
1

δ
+ η ≥ h0 > 0, γ + δ − γ (1 + δ−1)2

(h1 + γh2)3
|v|2 ≥ h0 > 0. (2.1)

There exists Tmax > 0 and a unique URL = (η, v)> ∈ C([0, Tmax);Hs(R)2)∩C1([0, Tmax);Hs−1(R)2),
maximal solution to (1.2) (with ε = 1), with initial data URL |t=0 = U0.

Moreover, there exists constants 0 < C0, T
−1 ≤

∣∣U0
∣∣
Hs(R)2

C(
∣∣U0
∣∣
Hs(R)2

, δ−1
min, δmax, h

−1
0 ) such

that one has Tmax ≥ T , and for any t ∈ [0, T ],∣∣URL(t, ·)
∣∣
Hs(R)2

+
∣∣∂tURL(t, ·)

∣∣
Hs−1(R)2

≤ C0 exp(C0 t),

and (2.1) is satisfied (with h0/2 replacing h0).

This result has been precisely expressed in [15, Theorem 1], and follows from standard techniques
on quasilinear, Friedrichs-symmetrizable systems. More precisely, the existence and uniqueness of a
solution follows from energy estimates on the linearized equation, of which the estimate above is a
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particular case. In order to assert the well-posedness in the sense of Hadamard, one should also state
that the flow depends continuously upon the initial data. Such a result holds: one may control the
energy of the difference between two solutions corresponding to different initial data, provided these
initial data are sufficiently regular. Precise blow-up conditions, specifying the possible scenarios
within the ones stated in Proposition 2.2, below, are also presented in [15, Corollary 1].

Let us now turn to the free-surface system, (1.1). We recall that we set α = % =
√

1−γ
γ+δ and

ε = 1, so that the system may be written as

∂tU + A[U ]∂xU = 0,

with U ≡ (ζ1, ζ2, u1, u2)> and

A[U ] ≡


u1

u2−u1

%
1+%ζ1−ζ2

%
δ−1+ζ2

%

0 u2 0 δ−1 + ζ2
1
% 0 u1 0
γ
% δ + γ 0 u2

 = A0 +A1(U),

where A0 is a constant 4-by-4 matrix, and A1(U) a linear mapping into 4-by-4 matrices.
Written as above, one clearly sees that the system exhibits 1/% factors, which complicate its

study. We state in Proposition 2.2, below, the well-posedness of the Cauchy problem as given
by standard energy methods on quasilinear, Friedrichs-symmetrizable systems. We see that the
existence of the solution is restricted to a poor a priori time of existence: O(%). This timescale is
intuitively seen from a change of variable: the function U(t, ·) ≡ Ũ(t/%, ·), where Ũ satisfies

∂τ Ũ + %A[Ũ ]∂xŨ = 0,

and %A[U ] ≡ %A0 + %A1(U), with the matrix %A0 and the linear mapping %A1 both uniformly
bounded with respect to %� 1.

Proposition 2.2 (Naive well-posedness result for the free-surface system).
Let s ≥ s0 + 1, s0 > 1/2, and U0 ≡ (ζ0

1 , ζ
0
2 , u

0
1, u

0
2)> ∈ Xs be such that there exists h0 > 0 with

∀x ∈ R, h0
1(x) ≥ h0 > 0 and h0

2(x) ≥ h0 > 0 (2.2)

and
∀x ∈ R, (γ + δ)h0

1(x)h0
2(x)−

(
h0

2(x)|u0
1(x)|2 + h0

1(x)|u0
2(x)|2

)
≥ h0 > 0, (2.3)

where we define h0
1 ≡ 1 + %ζ0

1 − ζ0
2 and h0

2 ≡ δ−1 + ζ0
2 .

There exists Tmax > 0 and U = (ζ0
1 , ζ

0
2 , u

0
1, u

0
2)> ∈ C([0, Tmax);Hs(R)4)∩C1([0, Tmax);Hs−1(R)4),

unique maximal solution to (1.1) (with α = %, ε = 1), with initial data U |t=0 = U0.
Moreover, there exists positive constants 0 < C0, T

−1 ≤
∣∣U0
∣∣
Xs C(

∣∣U0
∣∣
Xs , δ

−1
min, δmax, h

−1
0 ), such

that one has Tmax > T%, (2.2),(2.3) are satisfied on [0, T%] (with h0/2 replacing h0), and

∀t ∈ [0, T%],
∣∣U(t, ·)

∣∣
Xs + %

∣∣∂tU(t, ·)
∣∣
Xs−1 ≤ C0 exp(C0 %

−1 t).

Finally, if Tmax <∞, then at least one of the following holds:

•
∣∣U ∣∣

L∞([0,t]×R)4
or
∣∣∂xU ∣∣L∞([0,t]×R)4

blows up as t↗ Tmax; or

• one of the two conditions (2.2),(2.3) ceases to be true at t = Tmax.

The proof of Propositions 2.2 is postponed to Appendix A, so as not to interrupt the flow of the
text.

Remark 2.3. Notice that the uniform time of existence, T ≈ 1, is recovered for sufficiently small
initial data:

∣∣U0

∣∣
Xs = O(%). This result can be viewed through the following change of unknown:

U ≡ %Ŭ . The function Ŭ satisfies

∂tŬ +A[%Ŭ ]∂xŬ = 0,

and A[%Ŭ ] ≡ A0 +%A1(Ŭ). The fact that the constant operator A0∂x is not uniformly bounded with
respect to % � 1 does not prevent solutions to exist in a time domain independent of %, because it
does not contribute to commutator estimates. This simple observation motivates the strategy we use
to prove Theorem 1.2, as described in Section 3.
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3 Proof of the main result

This section is dedicated to the proof of Theorem 1.2. Our first ingredient consists in constructing
a system equivalent to (1.1), but whose non-linear contribution is uniformly bounded with respect
to %. In order to do so, we shall use different variables. Considering the conservation of horizontal
momentum displayed in Section 1.2, we introduce the horizontal momentum, m ≡ γh1u1 + h2u2,
and the shear velocity us ≡ u2 − γu1. One has immediately:

us ≡ u2 − γu1 and m ≡ γh1u1 + h2u2 (3.1)

if and only if

u1 =
m− h2us
γ(h1 + h2)

and u2 =
m+ h1us
h1 + h2

. (3.2)

Straightforward manipulations of the system (1.1) yield the new system we consider:

∂tζ1 + 1
%∂xm+ 1−γ

γ% ∂x

(
h1

m−h2us

h1+h2

)
= 0,

∂tζ2 + ∂x

(
h2

h1+h2
(h1us +m)

)
= 0,

∂tus + (δ + γ)∂xζ2 +
1

2
∂x

(
γ(m+h1us)2−(m−h2us)2

γ(h1+h2)2

)
= 0,

∂tm+ γ h1+h2

% ∂xζ1 + (γ + δ)h2∂xζ2 + ∂x

(
h1(m−h2us)2+γh2(m+h1us)2

γ(h1+h2)2

)
= 0.

(3.3)

We still refer to this system as the free-surface system. Systems (3.3) and (1.1) are equivalent in
the following sense.

Proposition 3.1. Let s ≥ s0 + 1, s0 > 1/2. Let V ≡ (ζ1, ζ2, us,m)> ∈ C([0, T ];Hs(R)4) be a
strong solution to (3.3), with T > 0, given. Assume that for any t ∈ [0, T ], one has

∃h0 > 0 such that min
x∈R

{
h1(t, x), h2(t, x)

}
≥ h0 > 0.

Then U ≡ (ζ1, ζ2, u1, u2)> ∈ C([0, T ];Hs(R)4), where u1 and u2 are given by (3.2), is a strong
solution to (1.1).

Conversely, if a given U ≡ (ζ1, ζ2, u1, u2)> ∈ C([0, T ];Hs(R)4) is a strong solution to (1.1),
and the above non-vanishing depth condition holds; then V ≡ (ζ1, ζ2, us,m)> ∈ C([0, T ];Hs(R)4)),
given by (3.1), is a strong solution to (3.3).

Proof. The existence and regularity of V ∈ C([0, T ];Hs(R)4) (resp. U ∈ C([0, T ];Hs(R)4)) is
deduced from the corresponding control of U (resp. V ), using product estimates in Lemma A.1, as
well as Corollary A.2. The fact that U satisfies (1.1) if V satisfied (3.3), and conversely, demands
somewhat tedious but straightforward computations, that we leave to the reader.

Remark 3.2. We do not claim here that the aforementioned solutions are unique. The uniqueness
of a solution to (1.1) is given in Proposition 2.2 and requires an additional condition on the initial
data, namely (2.3). In the same way, the existence and uniqueness of a solution to (3.3) is guar-
anteed by its strict hyperbolicity, which is proved later on to be valid at least for sufficiently small
initial data and %; see Section 3.3.

We see two benefits in considering (3.3) in lieu of (1.1). First, the the rigid-lid system which
was encrypted in (1.1) is now apparent in (3.3). This will be helpful, although not necessary, for
the construction of the approximate solution in the subsequent subsection. More importantly, one
sees that the only terms factored by %−1 in (3.3) are constant. This second property is crucial for
our analysis, and justifies the use of (3.3).

However, let us remark that we loose the simple structure of the original system (1.1). In
particular, finding an explicit symmetrizer of (3.3) seems out of reach. Specifying its domain of
hyperbolicity is equivalently difficult. This is why we turn to perturbation analysis, and prove
that (3.3) is strictly hyperbolic (thus Friedrichs-symmetrizable) for % sufficiently small, and data
not too large. This explains the corresponding restrictions in Theorem 1.2, and below.
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The rest of this section is as follows. In Section 3.1, we construct an approximate solution
to (3.3), using the solution to the rigid-lid system (1.2) with corresponding initial data. This
result is expressed in the sense of consistency, meaning that the approximate solution is proved to
satisfy (3.3) up to a small remainder term. The subsequent subsections are dedicated to the proof
that the difference between the exact solution and the constructed approximation remains small for
large time (independent of %). This is the most difficult step, and the heart of our strategy.

In Section 3.2, we discuss the main issues we face, and how we deal with them. We state therein
an intermediate result, Proposition 3.6, from which Theorem 1.2 is deduced. Section 3.3 contains
several algebraic results on our system, and in particular on its symmetrizer. Finally, we show in
Section 3.4 how to deduce from these the desired energy estimates (Lemma 3.13), and consequently
Proposition 3.6.

3.1 Construction of the approximate solution

In this section, we construct an approximate solution to the free-surface system (3.3), using the
corresponding solution to the rigid-lid system (1.2), as defined below.

Definition 3.3 (Rigid lid approximate solution). For a given initial data ζ0
2 , u

0
s, satisfying (2.1),

the rigid lid approximate solution corresponding to (ζ0
2 , u

0
s)
> is denoted V RL ≡ (0, η, v, 0)>, where

V ≡ (η, v)> is the unique solution to the rigid-lid system (1.2) with V |t=0 ≡ (ζ0
2 , u

0
s)
>.

Proposition 3.4. Let s ≥ s0, s0 > 1/2, and ζ0
2 , u

0
s ∈ Hs+1(R). There exists M−1 = C

(
δ−1
min, δmax)

such that if
∣∣(ζ0

2 , u
0
s)
>
∣∣
Hs+1×Hs+1 ≤M , then there exists 0 < T−1, C1, C2, C3 ≤M C

(
δ−1
min, δmax,M

)
,

with

• V RL ∈ C([0, T ];Xs+1) is well-defined as above, and satisfies

∀t ∈ [0, T ],
∣∣V RL

∣∣
Xs+1 +

∣∣∂tV RL
∣∣
Xs ≤ C1. (3.4)

• There exists Vrem ∈ C([0, T ];Xs+1), with

∀t ∈ [0, T ],
∣∣Vrem

∣∣
Xs+1 +

∣∣∂tVrem

∣∣
Xs ≤ %C2, (3.5)

such that Vapp ≡ V RL + Vrem satisfies (3.3), up to a remainder term R, satisfying∥∥R∥∥
L∞([0,T ];Xs)

≤ C3%
(
M + %

)
. (3.6)

Remark 3.5. The explicit formula for Vrem, which is precisely displayed in the proof, below, does
not play a significant role in this section, except as a technical artifice to obtain the desired estimate.
In particular, it does not appear in Theorem 1.2. However, as discussed in section 4, it corresponds
to a first order correction of the approximate solution, and is clearly observable in our numerical
simulations.

Proof of Proposition 3.4. It is clear that one can choose M sufficiently small so that (2.1) is satisfied.
Thus by Proposition 2.1, there exists positive constants C1, T

−1 ≤ MC(δ−1
min, δmax,M) such that

V RL ∈ C([0, T ];Xs+1) is well-defined by Definition 3.3, and (3.4) holds.
We now plug Vapp ≡ V RL + Vrem into (3.3), and check that one can explicitly define a function

Vrem ≡ Vrem[η, v] such that the remainder term, R, satisfies the estimates of the Proposition.

Anticipating the result, we denote Vapp ≡ (%ζ̆1, η, v, %
2m̆)>, and subsequently

%∂tζ̆1 + %∂xm̆+ 1−γ
γ% ∂x

(
h1

%2m̆−h2v
h1+h2

)
= r1,

∂tη + ∂x

(
h2

h1+h2
(h1v + %2m̆)

)
= r2,

∂tv + (δ + γ)∂xη + 1
2∂x

(
γ(%2m̆+h1v)2−(%2m̆−h2v)2

γ(h1+h2)2

)
= r3,

%2∂tm̆+ γ(h1 + h2)∂xζ̆1 + (γ + δ)h2∂xη + ∂x

(
h1(%2m̆−h2v)2+γh2(%2m̆+h1v)2

γ(h1+h2)2

)
= r4,

(3.7)

with h1 ≡ 1 + %2ζ̆1 − η and h2 ≡ δ−1 + η.
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Our aim is to prove that one can choose ζ̆1 and m̆ such that∣∣ζ̆1∣∣Hs+1 +
∣∣m̆∣∣

Hs+1 +
∣∣∂tζ̆1∣∣Hs +

∣∣∂tm̆∣∣Hs ≤ C2, (3.8)

and ∣∣r1

∣∣
Hs +

∣∣r2

∣∣
Hs +

∣∣r3

∣∣
Hs +

∣∣r4

∣∣
Hs ≤ C3 % (M + %). (3.9)

In order to ease the reading of the argument, we first assume that (3.8) holds, and see how ζ̆1, m̆

can be naturally chosen so that (3.9) is satisfied. Our choice for ζ̆1, m̆ is precisely stated in (3.12)
and (3.14), and checking that (3.8) is actually satisfied is then a straightforward consequence of (3.4).

Recall that, by definition, (η, v)> satisfies (1.2). In particular, from the first equation in (1.2),
one deduces

r2 ≡ ∂x
(
h1h2v

h1 + h2
− h1h2v

h1 + γh2

)
+ %2∂x

(
h2m̆

h1 + h2

)
,

where we denote h1 ≡ 1− η.
Let us recall that V RL satisfies (3.4), and also (2.1). Thus one can apply the product estimates

in Lemma A.1 as well as Corollary A.2 (we also recall that by definition, 1 − γ = %2(γ + δ)), to
deduce ∥∥r2

∥∥
L∞([0,T/M ];Hs)

≤ M%2 C(δ−1
min, δmax,M,C2), (3.10)

where we used the a priori estimate (3.8).
Similarly, one deduces from the second equation in (1.2) that

r3 =
1

2
∂x

({
γh2

1 − h2
2

γ(h1 + h2)2
− h2

1 − γh2
2

(h1 + γh2)2

}
v2 +

γ(%2m̆+ h1v)2 − γ2h2
1v

2 + h2
2v

2 − (%2m̆− h2v)2

γ(h1 + h2)2

)
,

so that one has as above,∥∥r3

∥∥
L∞([0,T/M ];Hs)

≤ M%2 C(δ−1
min, δmax,M,C2). (3.11)

Let us now look at the fourth equation in (3.7). Note that one has

γ(h1 + h2)∂xζ̆1 + (γ + δ)h2∂xη + ∂x

(
h1h2(h1 + γh2)v2

γ(h1 + h2)2

)
= ∂x

(
γ
(
(1 + δ−1)ζ̆1 +

%2

2
ζ̆2
1

)
+ (γ + δ)

(
δ−1η +

1

2
η2
)

+
h1h2(h1 + γh2)v2

γ(h1 + h2)2

)
.

It is now clear that one can choose

ζ̆1 ≡ −
(
η +

δ

2
η2
)
− (1− η)(δ−1 + η)v2

γ(1 + δ−1)2
, (3.12)

so that the above is of size O(%2). More precisely, and using once again (3.8), one has∥∥r4

∥∥
L∞([0,T/M ];Hs)

≤ M%2 C(δ−1
min, δmax,M,C2). (3.13)

We conclude with the first equation in (3.7). Using that %2 = 1−γ
γ+δ , one has

r1 = %

(
∂tζ̆1 + ∂xm̆+

γ + δ

γ
∂x

(
h1
%2m̆− h2v

h1 + h2

))
.

We now recall that η, v satisfies (1.2), so that∣∣∣∣∂tζ̆1 − ∂x( h1h2v

h1 + γh2

)∣∣∣∣
Hs

≤M2 C(δ−1
min, δmax,M,C2).

Now, one can check that by choosing

m̆ ≡ δ

1 + δ
v, (3.14)
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it follows ∣∣∣∣ h1h2v

h1 + γh2
+ m̆− γ + δ

γ

h1h2v

h1 + h2

∣∣∣∣
Hs

≤ (M2 +M%2) C(δ−1
min, δmax,M,C2),

so that estimates (3.4) and (3.5) yield∥∥r1

∥∥
L∞([0,T/M ];Hs)

. (M2%+M%2) C(δ−1
min, δmax,M,C2). (3.15)

Altogether, (3.10), (3.11), (3.13) and (3.15) give the desired estimate: (3.9), or equivalently (3.6).
Moreover, one easily deduces from the estimate concerning V RL in (3.4), the corresponding estimate

on Vrem ≡ (%ζ̆1, 0, 0, %
2m̆)>: (3.8), or equivalently (3.5). Proposition 3.4 is proved.

3.2 Strategy, and completion of the proof

Denote U ≡ (ζ1, ζ2, u1, u2)> ∈ C([0, Tmax];Xs) with s > 3/2, a solution to the free-surface sys-
tem (1.1) satisfying the non-vanishing depth condition, and V ≡ (ζ1, ζ2, us,m)> ∈ C([0, Tmax];Xs)
the corresponding solution to (3.3) given in Proposition 3.1. Our aim is to prove that condi-
tions (1.3),(1.4) in Theorem 1.2 are sufficient to ensure that V is controlled on a time domain [0, T ],
uniformly with respect to % ∈ (0, %0]. The heart of the matter is the following result.

Proposition 3.6. Let s ≥ s0 + 1, s0 > 1/2 and T > 0 with V ∈ C([0, T ];Xs+1) ∩ C1([0, T ];Xs),
solution to (3.3), and let Vapp ≡ V RL + Vrem ∈ C([0, T ];Xs+1) ∩ C1([0, T ];Xs), defined in Defini-
tion 3.3 and Proposition 3.4. Denote

M1 ≡ sup
t∈[0,T ]

{∣∣Vapp(t, ·)
∣∣
Xs+1 +

∣∣∂tVapp(t, ·)
∣∣
Xs

}
.

Denote W ≡ V − Vapp and assume moreover that∣∣W |t=0

∣∣
Xs ≤ M2 %.

There exists %0,M, T ′, depending only on δ−1
min, δmax such that for any % ∈ (0, %0], and M1,M2 ∈

[0,M ], and for any t ∈ [0,min{T, T ′/M, T ′/%}], one has∣∣W (t; ·)
∣∣
Xs + %

∣∣∂tW (t; ·)
∣∣
Xs−1 ≤ C0 M % exp(C0Mt), (3.16)

with C = C(M1,M2, δ
−1
min, δmax).

Let us briefly sketch our strategy to prove Proposition 3.6 (the detailed proof being postponed
to Sections 3.3 and 3.4), before we explain how Theorem 1.2 follows.

Sketch of the argument. The estimate (3.16) is obtained using classical energy methods for
Friedrichs-symmetrizable quasilinear systems. It is essential to show that the constants involved in
the energy estimates remain uniformly bounded as % vanishes.

The major complication in our case is that the symmetrizer is not explicitly known, but rather
obtained as a consequence of the strict hyperbolicity of the system, and constructed through per-
turbation arguments (see Section 3.3).

Let us introduce some notations, used thereafter. We rewrite the hyperbolic system (3.3) as

∂tV +

(
1

%
L% +B[V ]

)
∂xV = 0,

with V ≡ (ζ1, ζ2, us,m)>, and where

• 1
%L% represents the linear component of the system, obtained by setting ε = 0 in (1.1);

• B[·] contains the nonlinear contribution: its is uniformly bounded with respect to %.
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We prove in Section 3.3 that L% has four distinct, real eigenvalues, although L(0) ≡ limγ→1 L%
has a kernel of dimension 2. By perturbation arguments, it follows that

(
1
%L% + B[V ]

)
shares

the same property as long as V is not too large. Thus the system is strictly hyperbolic, and a
symmetrizer may be constructed from its spectral projectors. The main difficulty now consists in
proving that the symmetrizer enjoys some properties allowing the approach described below.

One can easily check that W ≡ V − Vapp satisfies the following system:

∂tW +
1

%
(L% + %B[Vapp +W ]) ∂xW + (B[Vapp +W ]−B[Vapp])∂xVapp + R = 0, (3.17)

with R as in Proposition 3.4. The system we study is therefore of the form

∂tW +
1

%
(L% + %B[Vapp +W ]) ∂xW = R, (3.18)

with
∣∣W |t=0

∣∣
Xs ≤ M2% and

∣∣R(t, ·)
∣∣
Xs .M1%(M1 +M2 + %).

When compared with the classical theory of Friedrichs-symmetrizable quasilinear systems, the
main issue we face lies in the fact that one cannot use the equation in order to deduce a uni-
form control of ∂tW from the corresponding control of ∂xW (typically, one would like to have∣∣∂tW ∣∣Xs−1 .

∣∣W ∣∣
Xs). However, we will see that in our case, it is sufficient to prove:

(i)
∣∣∂t(Vapp + W )

∣∣
(L∞)4

is uniformly bounded with respect to % (for L2 estimates); the control of

∂tVapp is given in Proposition 3.4, and the control of ∂tW is ensured by the identity (3.18), as long
as
∣∣W ∣∣

Xs is of size O(%).

(ii)
∣∣Π∂tW ∣∣Xs ≤ C

∣∣W ∣∣
Xs , where Π is the orthogonal projector onto the kernel of L>(0) (for commu-

tator terms in Hs estimates), which is once again due to (3.18), when multiplied by L>(0).

The fact that (i) and (ii) are sufficient to deduce the desired energy estimates is true because of
some properties of the symmetrizer, and in particular that (Id−Π)S = S0 +O(%), where (Id−Π)
is the projection onto the orthogonal of the kernel of L>(0), S the aforementioned symmetrizer, and
S0 a constant matrix.

As previously mentioned, the construction of the symmetrizer, as well as the proof of its essential
properties, are given in Section 3.3; while the argument yielding the energy estimate (3.16) is detailed
in Section 3.4.

Completion of the proof. Let us now quickly show how Theorem 1.2 follows from Proposition 3.6,
and previous results. For a given initial data as in the Theorem, it is clear that one can choose M
sufficiently small so that the conditions (2.2),(2.3) hold. Thus Proposition 2.2 yields the existence of
Tmax > 0 and a unique solution U ∈ C([0, Tmax);Xs+1) to (1.1). It follows that V ≡ (ζ1, ζ2, us,m)>

and Vapp are well-defined and bounded for t ∈ [0, T/M ], thanks to Proposition 3.4.
The hypotheses of Theorem 1.2 thus imply the ones of Proposition 3.6, with M1,M2 .M . Thus

estimate (3.16) on W ≡ V − Vapp holds, and triangular inequalities immediately yield (restricting
the upper bound on the time interval T ] ≤ min{Tmax, T/M, T ′/M, T ′/%} if necessary)∥∥ζ2∥∥L∞([0,T ]];Hs)

+
∥∥us∥∥L∞([0,T ]];Hs)

≤ M exp(C0Mt) , (3.19)∥∥ζ1∥∥L∞([0,T ]];Hs)
+
∥∥m∥∥

L∞([0,T ]];Hs)
≤ M% exp(C0Mt) , (3.20)∥∥|∂tζ1|+ |∂tζ2|+ |∂tus|+ |∂tm|∥∥L∞([0,T ]];Hs−1)
≤ M exp(C0Mt) , (3.21)

with C0 = C(M,%0, δ
−1
min, δmax).

It follows in particular from (3.21) that for any t ∈ [0, T ]], one has

∣∣h2(t, ·)− h2(0, ·)
∣∣
Hs−1 ≤

∣∣ ∫ t

0

∂tζ2(t′, ·) dt′
∣∣
Hs−1 ≤ C(M) M t,

where we recall that h2 ≡ δ−1 + ζ2. Similar estimates on h1 ≡ 1 + %ζ1 − ζ2 and u1, u2 given
by (3.2) show that conditions (2.2),(2.3) hold uniformly on U(t, ·) for t ∈ [0,min{T ], T ′′/M}), with

T ′′
−1

= C(M).
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From the blow-up conditions stated in Proposition 2.2 and a classical continuity argument, it is
now clear that there exists T > 0, depending only on M, δ−1

min, δmax, such that Tmax ≥ T/max{M,%}.
The estimates in Theorem 1.2 are a straightforward consequence of (3.16) (3.19) and (3.20)

(using Lemma A.1 and Corollary A.2), and the proof is now complete.

3.3 Symmetrization of the system

This section is dedicated to some algebraic results on the system we study. We recall the following
notation: system (3.3) is written

∂tV +

(
1

%
L% +B[V ]

)
∂xV = 0,

with V ≡ (ζ1, ζ2, us,m)> and

L% ≡


0 0 γ−1

γ(δ+1)
γ+δ
γ(δ+1)

0 0 %
1+δ

%
1+δ

0 %(γ + δ) 0 0

γ(1 + δ−1) % δ+γδ 0 0

 ,

so that B[V ] is a 4-by-4 matrix, depending smoothly on V , vanishing for V ≡ 0, and uniformly
bounded with respect to % sufficiently small.

It is convenient to denote

L(0) ≡ lim
γ→1

L% ≡


0 0 0 1
0 0 0 0
0 0 0 0

1 + δ−1 0 0 0

 .

Lemma 3.7. There exists %0 > 0, depending only on δ−1
min, δmax, such that L% has four distinct

eigenvalues, that we denote λf±(%), λs±(%). Moreover, one has

λf±(%) = ±
√

1 + δ−1 + O(%2) ; λs±(%) = ±% + O(%3).

We denote by P f±(%) (resp. P s±(%)) the spectral projection onto xf±(%) (resp. xs±(%)), the corre-
sponding left eigenvectors (i.e. L>% x± = λ±x±). Then one has∥∥P f±(%) − P f±(0)

∥∥ ≤ C0% and
∥∥P s±(%) − P s±(0)

∥∥ ≤ C0%,

with C0 = C(%0, δ
−1
min, δmax), and

P f±(0) =
1

2


1 0 0 ±

√
1 + δ−1

0 0 0 0
0 0 0 0

± 1√
1+δ−1

0 0 1

 ; P s±(0) =
1

2


0 0 0 0
0 1 ±(1 + δ) 0
0 ±1

1+δ 1 0

0 0 0 0

 .

In particular, one has the approximate orthogonality property:∥∥P f±(%)>P s±(%)
∥∥ ≤ C0%,

with C0 = C(%0, δ
−1
min, δmax).

Remark 3.8. Here and thereafter, the subscript “f” is for fast mode and “s” is for slow mode; by
analogy with the linear case, where the flow (as a consequence of the above result) can be decomposed

as the superposition of four exact traveling waves, with velocities
λf
±(%)

% ≈ ±1√
1−γ and

λs
±(%)

% ≈ ±1.

Such decomposition approximately holds in the weakly non-linear setting (V small); see [11] and
references therein. We show how it also extends to the strongly nonlinear case in Section 4.
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Remark 3.9. We denote Π ≡ P s+(0) + P s−(0) the orthogonal projector onto ker(L>(0)). Identically,

(Id−Π) ≡ P f+(0) + P f−(0) is the orthogonal projector onto the orthogonal complement of ker(L>(0)).

Notice that P f±(0) is equivalently defined as the spectral projection onto the left eigenvector of L(0)

associated with λf±(0) = ±
√

1 + δ−1. This is however not the case for P f±(0), since 0 is an eigenvalue
of L(0) with multiplicity two.

It is a consequence of the definition of the spectral projectors that P f±(0)P s±(0) ≡ 0, the matrix

with all zero components. The fact that P f±(0)>P s±(0) ≡ 0, however, is a specific property of our
system and crucial for our analysis. Roughly speaking, our strategy relies strongly on the fact that the
fast and slow modes are supported on approximately orthogonal components, and therefore coupling
effects are small.

Proof of Lemma 3.7. L(0) has three distinct eigenvalues: ±
√

1 + δ−1 and 0, the latter of multiplicity

two. The fact that λf±(%) = ±
√

1 + δ−1 + O(%) could be proved from standard perturbation
argument concerning the regularity of the spectrum around a point of constant multiplicity. To
prove that the kernel of L(0) bifurcates into two distinct eigenvalues would be much more technical.
In our case, the shortest route is to use a computer algebra system, such as Maple, which allows to
compute explicitly λf±(%) and λs±(%), and check that the estimates hold.

The similar estimates on the spectral projections may be obtained as follows. Since L% is
diagonalizable, one has that Pk, the spectral projection onto the left eigenvalue corresponding to
λk, is defined as

Pk =
∏
j 6=k

Qk,i =
∏
j 6=k

L>% − λj Id

λk − λj
,

where Id is the identity matrix. Note that the Qk,j obviously commute, so that ordering the product
is not necessary.

One easily checks that the above product identity, applied on P f±(0), behaves smoothly as %→ 0.

More precisely, the fact that
∥∥L% − L(0)

∥∥ ≤ C0%, as well as the estimate on λf±(%), λs±(%), imply∥∥P f±(%) − P f±(0)
∥∥ ≤ C0%,

with

P f±(0) =
1

2

(
±1√

1 + δ−1
L>(0) + Id

)(
1√

1 + δ−1
L>(0)

)2

.

The product identity applied on P s±(0) requires a more detailed analysis, due to the factor
1

λs
+(%)−λs

−(%) ∼
1
2% . More precisely, one has

P s±(%) =
L>% − λs∓(%) Id

λs±(%)− λs∓(%)

L>% − λ
f
+(%) Id

λs±(%)− λf+(%)

L>% − λ
f
−(%) Id

λs±(%)− λf−(%)

=
∓1

2%(1 + δ−1)
(L>% ± % Id)(L>% −

√
1 + δ−1 Id)(L>% +

√
1 + δ−1 Id) +O(%)

=
1

2%(1 + δ−1)
(∓L>% − % Id)((L>% )2 − (1 + δ−1) Id) +O(%),

where O(%) means that the remainder is a matrix with norm at most C0%. Now, we use that

∥∥L% − L(0) − %L(1)

∥∥ ≤ C0%
2, with L(1) ≡


0 0 0 0
0 0 1

1+δ
1

1+δ

0 1 + δ 0 0
0 δ+1

δ 0 0

 .

It follows ∥∥P s±(%) − P s±(0)
∥∥ ≤ C0%,

with

P s±(0) =
1

2(1 + δ−1)

{
(∓L>(1) − Id)((L>(0))

2 − (1 + δ−1) Id)∓ L>(0)(L
>
(0)L

>
(1) + L>(1)L

>
(0))
}
,
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where we used that (∓L>(0))((L
>
(0))

2 − (1 + δ−1) Id) = 0, the matrix with all zero components.

Finally, the last estimate is easily deduced from the following fact: P f±(0)>P s±(0) ≡ 0.

We now perturb the matrix L% by a generic matrix: L[B] ≡ L% + %B. We do not use at first
any property on B, but only that ‖B‖ is bounded, uniformly with respect to %. We then gradually
specify B to cover our case of interest: B ≡ B[V ] with V bounded in Xs.

Lemma 3.10. There exists %0 > 0 and M0 > 0, depending only on δ−1
min, δmax, such that if one

has ‖B‖ ∈ [0,M0], % ∈ (0, %0], then LB has four distinct eigenvalues, that we denote λf±[B], λs±[B].

Moreover, λf±[B], λs±[B] are holomorphic with respect to B, and one has∣∣λf±[B]∓
√

1 + δ−1
∣∣ . %2 + %‖B‖,

∣∣λs±[B]∓ %
∣∣ . %3 + %‖B‖.

The associated left projectors are holomorphic with respect to B, and satisfy

‖ P f±[B] − P f±(%) ‖ . %‖B‖, ‖ P s±[B] − P s±(%) ‖ . ‖B‖.

Moreover, the following approximate orthogonality properties holds:

‖ P f±[B]>P s±[B] ‖ . %‖B‖, ‖L>% (P s±[B] − P s±(%))‖ . %‖B‖.

Proof. The holomorphic attribute of the perturbation of a diagonalizable matrix is detailed, e.g.,
in [19, II, Theorem 5.16]. We recall that a complex valued function µ[B] is said to be holomorphic
at B = B0 if it can be expanded into an absolutely convergent power series in ∆B ≡ B −B0:

µ[B0 + ∆B] = µ[B0] +

∞∑
n=1

µ(n)[B0,∆B],

where µ(n)[B0,∆B] is a form of degree n in B0. We say that a matrix is holomorphic if all its
components are holomorphic.

We detail the argument which yield our estimates below. The proof is based on the following
Cauchy formula for the projection onto the left eigenvalue xj [B], corresponding to λj [B]. One has

Pj [B] =
−1

2πi

∫
Γj

∞∑
n=0

R(ζ)(−%BR(ζ))n dζ, (3.22)

where Γj is a positively oriented closed curve enclosing the eigenvalue λj(%), but excluding the
other eigenvalues of L%. R(ζ) = (L>% − ζ)−1 is the resolvent of L%, whose decomposition into partial
fractions is (since L% is diagonalizable)

R(ζ) =

4∑
j=1

(ζ − λj)−1Pj(%),

where Pj(%) have been defined and estimated in Lemma 3.7. The estimates are now obtained as
follows.

Let λj = λf±(%). Then Γj may be chosen as the circle of center λj and of radius 1, so that
R(ζ) is bounded for ζ ∈ Γj , uniformly with respect to %. It follows that one can restrict % < %0 =(
‖B‖maxζ∈Γj ‖R(ζ)‖

)−1
so that the series (3.22) is uniformly convergent. In particular,

Pj [B] =
−1

2πi

∫
Γj

R(ζ) dζ +
%

2πi

∫
Γj

∞∑
n=0

R(ζ)BR(ζ)(−%BR(ζ))n dζ.

The first term on the right hand side is exactly Pj(%) (by the Cauchy formula), and the series in
the second term is uniformly convergent for % < %0, so that the estimate follows: one has

‖Pj [B]− Pj(%)‖ . %‖B‖(max
ζ∈Γj

‖R(ζ)‖)2
∞∑
n=1

(
%

%0

)n
.
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Now, let λj = λs±(%), and set Γj as the circle of center λj and of radius %. In this case, one
may only claim that %R(ζ) is bounded for ζ ∈ Γj , uniformly with respect to %. This is why we

require some smallness condition on ‖B‖. More precisely, for ‖B‖ < M0 =
(

maxζ∈Γj ‖%R(ζ)‖
)−1

,
the series (3.22) is uniformly convergent. In particular,

Pj [B] =
−1

2πi

∫
Γj

R(ζ) dζ +
1

2πi

∫
Γj

∞∑
n=0

R(ζ)B%R(ζ)(−%BR(ζ))n dζ.

As above, the first term on the right hand side is exactly Pj(%), and the series in the second term
is uniformly convergent for ‖B‖ < M0. Notice that for any matrix C,∣∣∣−1

2πi

∫
Γj

R(ζ)C dζ
∣∣∣ =

∣∣∣−1

2πi

∫
B(λj/%,1)

R(%ζ ′)C % dζ ′
∣∣∣ ≤ ‖C‖ max

ζ∈Γj

‖%R(ζ)‖,

so that the estimate follows:

‖Pj [B]− Pj(%)‖ . ‖B‖(max
ζ∈Γj

‖%R(ζ)‖)2
∞∑
n=1

(
‖B‖ max

ζ∈Γj

‖%R(ζ)‖
)n

.

Now, we note that P f±(%)>R(ζ) =
∑4
i=1(ζ − λj)

−1P f±(%)>Pj(%) is uniformly bounded for

ζ ∈ Γj , the circle of center λs±(%) and of radius % (using in particular that P f±(%)>P s±(%) = O(%), as

seen in Lemma 3.7). Thus, multiplying (3.22) on the left by P f±(%)> and proceeding as above, we

deduce ‖P f±(%)>P s±[B]‖ = O(%‖B‖). The same results on ‖P f±[B]>P s±[B]‖ immediately follows.

Similarly, notice that L>% R(ζ) =
∑4
i=1(ζ − λj)−1L>% Pj(%) =

∑4
i=1(ζ − λj)−1λjPj(%). As

above, this allows to control L>% R(ζ) for ζ ∈ Γj , uniformly with respect to %, and one deduces

‖L>% (Pj [B] − Pj(%))‖ = O(%‖B‖). This estimate was straightforward for Pj ≡ P f±, but not for
Pj ≡ P s±.

The estimates concerning the eigenvalues can then be deduced from the ones concerning Pj [B].
Indeed, since Pj [B] is one-dimensional, one has

λj [B] = tr
(
(L>% + %B) Pj [B]

)
= λj(%) + tr

(
L>% (Pj [B]− Pj(%))

)
+ tr

(
%B Pj [B]

)
,

and the desired estimates follow.

Lemma 3.11. Let B(κ) be depending on a variable κ. Then there exists %0 > 0 and M0 > 0,
depending only on δ−1

min, δmax, such that if max{‖B(κ)‖, ‖∂κB(κ)‖} ∈ [0,M0] and % ∈ (0, %0], then
one has

‖∂κP f±[B]‖ . %‖∂κB‖C(‖B‖), ‖∂κP s±[B]‖ . ‖∂κB‖C(‖B‖),

and the approximate orthogonality properties

‖P f±[B]>∂κP
s
±[B]‖ . %‖∂κB‖C(‖B‖), ‖L>% ∂κP s±[B]‖ . %‖∂κB‖C(‖B‖).

Concerning eigenvalues, one has∣∣∂κλf±[B]
∣∣ . %‖∂κB‖C(‖B‖),

∣∣∂κλs±[B]
∣∣ . %‖∂κB‖C(‖B‖).

Proof. These estimates are obtained as in the proof of Lemma 3.10, using the Cauchy formula (3.22).
Differentiating the formula with respect to κ, one has

∂κPj [B] =
−1

2πi

∫
Γj

∞∑
n=1

R(ζ)∂κ
{

(−%BR(ζ))n
}
dζ,

and the series is uniformly convergent for sufficiently small %,B. More precisely, one can write

∂κPj [B] =

∞∑
n=1

%nP
(n)
j [B, ∂κB],
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where P
(n)
j [B, ∂κB] is a form of degree n− 1 in B, and linear in ∂κB. Using the estimates of the

resolvent on Γj exactly as in the proof of Lemma 3.10, one easily deduces the desired estimates.
Once again, the corresponding estimates on the eigenvalue are then deduced:

∂κλj [B] = ∂κ
{

tr
(
(L>% + %B) Pj [B]

)}
= tr

(
L>% ∂κPj [B]

)
+ % tr

(
∂κ(B Pj [B])

)
,

and the result follows.

We shall apply the above results to L[V ] ≡ L%+%B[V ], where B[·] determined by (3.3). Indeed,
the knowledge of the spectral projectors allows to construct a symmetrizer of our system (see [28]
for example), as

S[V ] ≡
4∑
j=1

Pj [B[V ]] Pj [B[V ]]> (3.23)

and therefore

Σ[V ] ≡ 1

%
S[V ]L[V ] =

1

%

4∑
j=1

λj [B[V ]] Pj [B[V ]] Pj [B[V ]]>. (3.24)

We deduce below the desired properties of S,Σ, as a consequence of the preceding Lemmata.

Lemma 3.12. Let V ∈ X ⊂ L∞(R)4, where (X,
∣∣·∣∣
X

) is a Banach algebra. Define B[V ], S[V ],Σ[V ]

as above. Then there exists %0 > 0 and M > 0, depending only on δ−1
min, δmax, such that if % ∈ (0, %0]

and
∣∣V ∣∣

X
∈ [0,M ], then the following holds.

For any W ∈ L2(R)4, one has

1

C0

∣∣W ∣∣2
L2 ≤

(
S[V ]W , W

)
≤ C0

∣∣W ∣∣2
L2 , (3.25)

with C0 = C(
∣∣V ∣∣

X
, δ−1

min, δmax).∥∥B[V ]
∥∥
X
≤ C0

∣∣V ∣∣
X
,
∥∥S[V ]

∥∥
X
≤ C0,

∥∥Σ[V ]
∥∥
X
≤ %−1C0, (3.26)

with C0 = C(
∣∣V ∣∣

X
, δ−1

min, δmax), and where we denote
∥∥A∥∥

X
≡ sup
V ∈X\{0}

∣∣AV ∣∣
X∣∣V ∣∣
X

.

If U ∈ X and V ∈ X, then ∥∥B[U ]−B[V ]
∥∥
X
≤ C0

∣∣U − V ∣∣
X
, (3.27)

with C0 = C(
∣∣U ∣∣

X
,
∣∣V ∣∣

X
, δ−1

min, δmax).
If V ≡ V (κ) and ∂κV ∈ X, then∥∥∂κ(S[V ])

∥∥
X
≤ C0

∣∣∂κV ∣∣X , ∥∥∂κ(Σ[V ])
∥∥
X
≤ C0

∣∣∂κV ∣∣X , (3.28)

and (recalling the notation Π ≡ P s+(0) + P s−(0), thus Id−Π ≡ P f+(0) + P f−(0))∥∥∂κ(S[V ])(Id−Π)
∥∥
X
≤ %C0

∣∣∂κV ∣∣X , (3.29)

with C0 = C(
∣∣V ∣∣

X
, δ−1

min, δmax).

Proof. Let us first note that since (X,
∣∣ · ∣∣

X
) is a Banach algebra, and B[V ] involves only products

of the components of V , or factors of the form treated in Remark A.3, one has clearly, in addition
to (3.27), ∥∥B[V ]

∥∥
X

.
∣∣V ∣∣

X
C(
∣∣V ∣∣

X
) and

∥∥∂κB[V ]
∥∥
X

.
∣∣∂κV ∣∣XC(

∣∣V ∣∣
X

).

Thus one can find %0,M such that for % ∈ (0, %0] and
∣∣V ∣∣

X
∈ [0,M ], the assumptions of Lem-

mata 3.7, 3.10, 3.11 are satisfied. The remaining estimates in (3.26) follow immediately from of
Lemmata 3.7 and 3.10.
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Define S(0) ≡ P f+(0)P f+(0)>+P f−(0)P f−(0)>+P s+(0)P s+(0)>+P s−(0)P s−(0)>. It is straightforward
to check that one has

1

C(δ−1
min, δmax)

∣∣W ∣∣2
L2 ≤

(
S(0)W , W

)
≤ C(δ−1

min, δmax)
∣∣W ∣∣2

L2 .

From Lemmata 3.7 and 3.10, one easily sees that for %0,
∣∣V ∣∣

X
sufficiently small, similar estimates

hold for S[V ], thus (3.25) is proved.
Finally the estimates (3.28) and (3.29) are direct consequences of the estimates in Lemmata 3.10

and 3.11, when deriving identities (3.23),(3.24). In particular, the last estimate is obtained using∥∥∂κP f±[V ]
∥∥
X

= O(%
∣∣∂κV ∣∣X),

∥∥∂κP s±[V ]>P f±[V ]
∥∥
X

= O(%
∣∣∂κV ∣∣X),

∥∥P f±[V ]−P f±(0)
∥∥
X

= O(%),

and all other terms are of order O(1), with a factor
∣∣∂κV ∣∣X if derived.

3.4 Energy estimate

This subsection is dedicated to the proof of the energy estimates that yield Proposition 3.6. Recalling
that W ≡ V − Vapp satisfies (3.17), we consider W solution to the linearized system

∂tW +
1

%

(
L% + %B[V ]

)
∂xW = R. (3.30)

The following Lemma presents an a priori energy estimate on W satisfying the above system.
Proposition 3.6 is a direct application of the Lemma, as is detailed at the end of this section.

Lemma 3.13. Let s ≥ s0 + 1, s0 > 1/2, and W a strong solution to (3.30), with W |t=0 ∈ Xs.
Then there exists M,%0 > 0, depending only on δ−1

min, δmax, such that if % ∈ (0, %0] and

1

%

∥∥ΠV
∥∥
L∞([0,T ];Xs)

+
∥∥V ∥∥

L∞([0,T ];Xs)
+
∥∥∂tV ∥∥L∞([0,T ];Xs−1)

≤ M,

for some given T > 0, then one has

∀t ∈ [0, T ],
∣∣W (t, ·)

∣∣
Xs . C0

∣∣W (0, ·)
∣∣
Xse

C0Mt + C0

∫ t

0

eC0M(t−t′)∣∣R(t′, ·)
∣∣
Xs dt

′. (3.31)

with C0 = C(M, δ−1
min, δmax).

Proof. We compute the inner product of (3.30) with S[V ]Λ2sW , and obtain(
ΛsS[V ]∂tW,Λ

sW
)

+
(
ΛsΣ[V ]∂xW,Λ

sW
)

=
(
ΛsS[V ]R,ΛsW

)
.

From the symmetry of S[·] and Σ[·], one deduces

1

2

d

dt
Es(W ) =

1

2

([
∂t, S[V ]

]
ΛsW,ΛsW

)
+

1

2

([
∂x,Σ[V ]

]
ΛsW,ΛsW

)
−
([

Λs, S[V ]
]
∂tW,Λ

sW
)
−
([

Λs,Σ[V ]
]
∂xW,Λ

sW
)

+
(
ΛsS[V ]R,ΛsW

)
, (3.32)

where we define
Es(W ) ≡

(
S[V ]ΛsW,ΛsW

)
.

We estimate below each of the terms in the right-hand side of (3.32).

Estimate of
([
∂t, S[V ]

]
ΛsW,ΛsW

)
. From (3.28) in Lemma 3.12 (with X = L∞(R)4), one has∣∣[∂t, S[V ]

]
ΛsW

∣∣
L2 ≤

∣∣∂tV ∣∣L∞C(
∣∣V ∣∣

L∞
, δ−1

min, δmax

)∣∣ΛsW ∣∣
L2 .

By hypothesis,
∣∣∂tV ∣∣Xs−1 is controlled, and continuous Sobolev embedding for s − 1 ≥ s0 > 1/2

imply an equivalent control on the L∞ norm. One obtains simply∣∣[∂t, S[V ]
]
ΛsW

∣∣
L2 ≤ M C(M, δ−1

min, δmax)
∣∣ΛsW ∣∣

L2 .
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It follows from the above and Cauchy-Schwarz inequality that∣∣([∂t, S[V ]
]
ΛsW,ΛsW

)∣∣ ≤ C0 M
∣∣W ∣∣2

Xs , (3.33)

with C0 = C(M, δ−1
min, δmax).

Estimate of
([
∂x,Σ[V ]

]
W,W

)
. As above, Cauchy-Schwarz inequality and Lemma 3.12 yield([

∂x,Σ[V ]
]
W,W

)
≤
∣∣∂xV ∣∣L∞C(

∣∣V ∣∣
L∞

, δ−1
min, δmax)

∣∣W ∣∣2
L2 ,

which is easily estimated thanks to continuous Sobolev embeddings. One obtains∣∣([∂x,Σ[V ]
]
ΛsW,ΛsW

)∣∣ ≤ C0 M
∣∣W ∣∣2

Xs , (3.34)

with C0 = C(M, δ−1
min, δmax).

Estimate of
(
F, S[V ]W

)
. We apply Cauchy-Schwarz inequality and (3.26) in Lemma 3.12, with the

algebra X = Hs (see Lemma A.1). One deduces(
ΛsS[V ]R,ΛsW

)
≤ C0

∣∣W ∣∣
Xs

∣∣R∣∣
Xs , (3.35)

with C0 = C(M, δ−1
min, δmax).

Estimate of
([

Λs,Σ[V ]
]
∂xW,Λ

sW
)
. We make use of Kato-Ponce’s commutator estimate recalled

in Lemma A.4. It follows∣∣[Λs,Σ[V ]
]
∂xW

∣∣
L2(R)4

.
∥∥∂x(Σ[V ])

∥∥
Xs−1

∣∣∂xW ∣∣Xs−1 .

From Lemma 3.12, and since Xs−1 is an algebra, one has∥∥∂x(Σ[V ])
∥∥
Xs−1 .

∣∣∂xV ∣∣Xs−1C(
∣∣V ∣∣

Xs−1) . M C(M, δ−1
min, δmax).

It follows ∣∣([Λs,Σ[V ]
]
∂xW,Λ

sW
)∣∣ ≤ C0 M

∣∣W ∣∣2
Xs , (3.36)

with C0 = C(M, δ−1
min, δmax).

Estimate of
([

Λs, S[V ]
]
∂tW,Λ

sW
)
. As above, Kato-Ponce’s commutator estimate yields∣∣[Λs, S[V ]

]
∂tW

∣∣
L2(R)4

.
∥∥∂x(S[V ])

∥∥
Xs−1

∣∣∂tW ∣∣Xs−1 .M
∣∣∂tW ∣∣Xs−1 .

Unfortunately, making use of the equation satisfied by W only yields
∣∣∂tW ∣∣Xs−1 . 1

%

∣∣W ∣∣
Xs , which

is not sufficient to conclude. Thus we need now to use precisely the structure of our system, and in
particular the estimate (3.29). Thus we decompose into two components:[

Λs, S[V ]
]
Π∂tW +

[
Λs, S[V ]

]
(Id−Π)∂tW,

where we recall that Π ≡
(

0
1

1
0

)
is the projection onto ker(L>(0)).

One can use the equation satisfied by W , (3.30), to control Π∂tW . Indeed, one has

Π∂tW = −1

%
ΠL%∂xW −ΠB[V ]∂xW + ΠR,

so that ∣∣Π∂tW ∣∣Xs−1 ≤
∣∣Π1

%
(L% − L(0))∂xW

∣∣
Xs−1 +

∣∣B[V ]∂xW
∣∣
Xs−1 +

∣∣R∣∣
Xs−1 ,

.
(
1 +MC(M, δ−1

min, δmax)
)∣∣∂xW ∣∣Xs−1 +

∣∣R∣∣
Xs−1 ,
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where we used estimate (3.26) in Lemma 3.12, and the explicit expression of L% = L(0) +O(%). It
follows ∣∣[Λs, S[V ]

]
Π∂tW

∣∣
L2(R)4

. C0 M
(∣∣W ∣∣

Xs +
∣∣R∣∣

Xs−1

)
,

with C0 = C(M, δ−1
min, δmax).

The fast component is small as well. Since (Id−Π) is constant, it commutes with Λs, and
Kato-Ponce’s commutator estimates yield∣∣[Λs, S[V ]

]
(Id−Π)∂tW

∣∣
L2(R)4

.
∥∥∂x (S[V ](Id−Π))

∥∥
Hs−1

∣∣∂tW ∣∣Xs .

Now, one has as above, ∣∣∂tW ∣∣Xs . C0

(1

%

∣∣W ∣∣
Xs +

∣∣R∣∣
Xs−1

)
,

with C0 = C(M, δ−1
min, δmax). Estimate (3.29) in Lemma 3.12 allows to recover a factor of %:∥∥∂x (S[V ](Id−Π))

∥∥
Hs−1 ≤ C0 M %,

with C0 = C(M, δ−1
min, δmax). Altogether, one has∣∣([Λs, S[V ]

]
∂tW,Λ

sW
)∣∣ ≤ C0 M

(∣∣W ∣∣
Xs +

∣∣R∣∣
Xs−1

)∣∣W ∣∣
Xs , (3.37)

with C0 = C(M, δ−1
min, δmax).

Plugging (3.33),(3.34),(3.35),(3.36),(3.37) into (3.32) yields

1

2

d

dt
Es(W ) ≤ C0

(
M
∣∣W ∣∣2

Xs +
∣∣R∣∣

Xs

∣∣W ∣∣
Xs

)
.

Finally, estimate (3.25) in Lemma 3.12 yields

1

2

d

dt
Es(W ) ≤ C ′0 M Es(W ) + C ′0

∣∣R∣∣
XsE

s(W )1/2.

with C ′0 = C(M, δ−1
min, δmax), and Lemma 3.13 follows from Gronwall-Bihari’s Lemma.

We conclude this section with the proof of Proposition 3.6. Recalling that W satisfies (3.17),
we apply Lemma 3.13, with V ≡ Vapp +W and −R ≡ (B[Vapp +W ]−B[Vapp])∂xVapp + R.

Let us first define

T ] ≡ sup
{
t ∈ [0, T ],

∥∥W∥∥
L∞([0,t];Xs)

≤ 2M2%
}
.

One has T ] > 0, since W = V − Vapp ∈ C([0, T ];Xs+1).
It is easy to check that V ≡ Vapp +W satisfies the requirements of Lemma 3.13 for t ∈ [0, T ]].

Indeed, Vapp is controlled as a hypothesis in Proposition 3.6, and Proposition 3.4 yields∣∣ΠVapp

∣∣
Xs =

∣∣ΠVrem

∣∣
Xs . M1 %.

The control of W is a consequence of the definition of T ], and its derivative is controlled using the
equation satisfied by W , namely (3.17):∣∣∂tW ∣∣Xs−1 ≤

1

%
C(M1,M2, δ

−1
min, δmax)

∣∣∂xW ∣∣Xs−1 +
∣∣R∣∣

Xs−1 ≤ C(M1,M2, δ
−1
min, δmax) +

∣∣R∣∣
Xs−1 .

Thus we only need to estimate R. From Proposition 3.4, one has∥∥R∥∥
L∞([0,T/M1];Xs)

. M1%
(
M1 + %

)
.

Now, using that (Xs,
∣∣ · ∣∣

Xs) is a Banach algebra, and using (3.27) in Lemma 3.12, one has∣∣(B[Vapp +W ]−B[Vapp])∂xVapp

∣∣ . C(
∣∣Vapp

∣∣
Xs ,

∣∣W ∣∣
Xs)
∣∣W ∣∣

Xs

∣∣∂xVapp

∣∣
Xs .
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It follows, since M1,M2 ∈ [0,M ],∥∥R∥∥
L∞([0,min{T ],T/M1}];Xs)

≤ C0(M2%+M%2),

with C0 = C(M, δ−1
min, δmax).

Thus we can apply (3.31) in Lemma 3.13, and deduce

∀ 0 ≤ t ≤ min{T ], T/M},
∣∣W (t, ·)

∣∣
Xs ≤ C0M%eC0Mt + C0(M%+ %2)(eC0Mt − 1) ,

with C0 = C(M, δ−1
min, δmax). We finally deduce that there exists T ′ > 0, depending only on

M, δ−1
min, δmax, such that T ] ≥ min{T, T ′/M, T ′/%}, and Proposition 3.6 follows.

4 Additional results and discussion

In this section, we give partial answers to two of the natural questions arising from Theorem 1.2:

1. Can we construct a first-order corrector in order to describe the asymptotic behavior of the
solution, and in particular the deformation at the surface?

2. Can we extend the result to ill-prepared initial data, that is satisfying (1.3) but not (1.4)?

In both cases, as we shall see, the answer will be given through a decomposition between fast
and slow modes. Such decomposition is easily seen in the linear case (ε = 0 in (1.1)) as the solution
is then simply a superposition of four traveling waves, with velocity asserted by the eigenvalues
of 1

%L%. From Lemma 3.7, we know that when % → 0, two of these waves (corresponding to the

solution of the rigid-lid system, and mainly supported on variables ζ2, us) are moving at velocity

cs± ∼ ±1, while the two other ones (supported on ζ1,m) are moving at velocity cf± ∼ ±
√

1 + δ−1/%.
This decomposition is far from being new. In the literature, the two modes are also often

referred as surface and interface modes, or barotropic and baroclinic modes, since the fast mode
components share the properties of water-waves for one layer of a fluid of constant mass density [13].
The decomposition is exact in the linear setting, and has been showed to hold approximately in the
weakly nonlinear setting; see [11], and references therein. In that case, the smallness of ε allows to
control the coupling terms between each of the waves (even when additional —small— dispersion
terms are included), provided they are sufficiently spatially localized initially.

Our aim in this section is to show that this decomposition is quite robust, and holds even
when strong nonlinearities are involved. As above, such result will rely on a condition of spatial
localization of the initial data, that we express through weighted Sobolev spaces.

In subsection 4.1, we construct slow and fast-mode correctors which allow to obtain a very
precise approximate solution of the free-surface system, using only the corresponding solution of
the rigid-lid system and the initial data. In subsection 4.2, we extend the consistency result ob-
tained in Proposition 3.4 to ill-prepared initial data, that is data allowing non-small horizontal
momentum and deformation of the surface, and thus involving a leading order slow mode. Fi-
nally, subsection 4.3 contains numerical simulations illustrating the aforementioned results, and an
accompanying discussion.

4.1 Construction of the first-order correction

In this section, we show that one can construct the first-order corrector to the rigid-lid approximate
solution to (1.1) displayed in Theorem 1.2, provided the initial data is bounded in weighted Sobolev
spaces. A key ingredient is the establishment of a fast mode corrector, which allows to take into
account small initial data supported on variables ζ1,m.

In order to achieve this, one simply needs to provide higher-order approximate solutions to (3.3)
in the sense of consistency, i.e. similarly to Proposition 3.4. The results is expressed in Proposi-
tion 4.1. One can then apply the strategy developed in the previous section, and one obtains the
stronger result expressed in Theorem 4.5.
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Proposition 4.1. Let s ≥ s0, s0 > 1/2, σ > 1/2, and ζ0
1 , ζ

0
2 , u

0
s,m

0 ∈ Hs+1(R). There exists
M > 0, depending only on δ−1

min, δmax,M, 1
2σ−1 , such that if one has∣∣(1 + | · |2)σζ0

1

∣∣
Hs +

∣∣(1 + | · |2)σm0
∣∣
Hs + %

∣∣(1 + | · |2)σζ0
2

∣∣
Hs + %

∣∣(1 + | · |2)σu0
s

∣∣
Hs ≤ M% ,

then there exists 0 < T−1, C0 ≤ C(δ−1
min, δmax,M, 1

2σ−1 ) such that

1. V RL ≡ (0, η, v, 0)> is well-defined by Definition 3.3, and satisfies

∀t ∈ [0, T/M ],
∣∣V RL

∣∣
Xs+1 +

∣∣∂tV RL
∣∣
Xs ≤ C0 M.

2. V scor ≡ (%ζ̆1, 0, 0, 0)> is well-defined with

ζ̆1 ≡ −
(
η +

δ

2
η2
)
− (1− η)(δ−1 + η)v2

γ(1 + δ−1)2
.

3. V fcor is well-defined with

V fcor(t, x) ≡


u+(x− c/%t) + u−(x+ c/%t)

0
0

c(u+(x− c/%t)− u−(x+ c/%t))

 ,

where c ≡
√

1 + δ−1, and u±(x) = 1
2

(
ζ0
1 − %ζ̆1 |t=0 ± c−1m0

)
.

4. There exists Vrem, with

∀t ∈ [0, T ],
∣∣Vrem(t, ·)

∣∣
Xs+1

ul

≤ C0 M ,

such that Vapp ≡ V RL + V scor + V fcor + %2Vrem satisfies (3.3), up to a remainder term, R, with∫ T

0

∣∣R(t, ·)
∣∣
Xs dt ≤ C0 M %2 .

Remark 4.2. We denote (Hs
ul,
∣∣ · ∣∣

Hs
ul

) the uniformly local Sobolev space introduced in [18]:∣∣u∣∣
Hs

ul

≡ sup
j∈N

∣∣χ(· − j)u(·)
∣∣
Hs ,

where χ is a smooth function satisfying χ ≡ 0 for |x| ≥ 1, χ ≡ 1 for |x| ≤ 1/2, and
∑
j∈N χ(x−j) = 1

for any x ∈ R (the space is independent of the choice of χ satisfying these assumptions).
We then denote (Xs

ul,
∣∣ · ∣∣

Xs
ul

), (L∞([0, T ];Xs
ul),
∥∥ · ∥∥

L∞([0,T ];Xs
ul)

) similarly to the previously used

Sobolev-based spaces.

Remark 4.3. The last item is restricted to the time domain t ∈ [0, T ] instead of t ∈ [0, T/M ]. As
discussed in Remark 1.3, we do not expect any particular limitation when M is small.

Proof of Proposition 4.1. The well-posedness and estimate of V RL for t ∈ [0, T/M ] has already
been stated in Proposition 3.4. The definition of the corrector and remainder terms, as well as the
desired estimates, is obtained in three steps. First we construct a high-order approximate solution
corresponding to the initial data ζ0

2 , u
0
s, using the corresponding solution to the rigid-lid system,

and that we will refer as slow mode approximate solution. Then we see how to construct the fast
mode approximate solution in order to deal with the inadequacy of the slow mode approximate
solution with regards to the initial data. Finally, we show that, thanks to the localization in space
of the initial data, the coupling between the two modes are weak, so that the superposition of the
two modes produces the desired approximate solution.

Construction of the slow mode approximate solution. We proceed as in the proof of Proposition 3.4,
but with a more precise definition for the corrector term, in order to reach the improved consistency.
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More precisely, we seek V sapp ≡ V RL + V scor + %2Vrem, with V RL + V scor ≡ (%ζ̆1, η, v, 0)> as in

Proposition 3.4, and Vrem ≡ (0, 0, 0, m̆)> to be determined. Following the exact same steps and
notation as in the proof of Proposition 3.4, we see that the only difficulty we face lies in the estimate
of

r1 = %

(
∂tζ̆1 + ∂xm̆+

γ + δ

γ
∂x

(
h1
%2m̆− h2v

h1 + h2

))
.

It is therefore natural to define

m̆(t, x) ≡ −
∫ x

0

∂tζ̆1(t, x′) dx′ + h1(t, x)h2(t, x)v(t, x), (4.1)

where we denote h1 ≡ 1− η and h2 ≡ δ−1 + ζ.
Note that m̆ does not have finite energy, since it does not necessarily decay when x → ±∞.

However, recall the estimates of Proposition 3.4:

∀t ∈ [0, T/M ],
∣∣V RL

∣∣
Xs+1 +

∣∣∂tV RL
∣∣
Xs . C0 M, (4.2)

∀t ∈ [0, T/M ],
∣∣ζ̆1∣∣Hs+1 +

∣∣∂tζ̆1∣∣Hs . C0 M, (4.3)

with C0 = C(δ−1
min, δmax,M). One deduces

∀t ∈ [0, T/M ],
∣∣m̆∣∣

Hs+1
ul

+
∣∣∂xm̆∣∣Hs . C0 M, (4.4)

where we use that Hs is continuously embedded in Hs
ul and Hs

ul is an algebra, for any s ≥ s0 (see,
e.g., [23, App. B.4]). The estimate on Vrem, stated in the Proposition, is given by (4.2),(4.3),(4.4).

Note that (4.4) yields in particular, for any f ∈ Hs+1, s ≥ s0, that∣∣m̆f ∣∣
Hs ≤

∣∣m̆Λsf
∣∣
L2 +

∣∣[Λs, m̆]f ∣∣
L2 .

∣∣m̆∣∣
L∞

∣∣f ∣∣
Hs +

∣∣∂xm̆∣∣Hmax{s−1,s0}

∣∣f ∣∣
Hmax{s−1,s0}

. C0 M
∣∣f ∣∣

Hs , (4.5)

where we used the commutator estimate recalled in Lemma A.4. Using the above, it is now straight-
forward to check that V sapp ≡ V RL+V scor+%

2Vrem ≡ (%ζ̆1, η, v, %
2m̆)> satisfies (3.3), up to a remainder

term, Rs, with ∥∥Rs∥∥
L∞([0,T/M ];Hs)

. C0 M %2. (4.6)

Here, we used the fact that the occurrences of m̆ in (3.3) are either of the form ∂xm̆, or m̆× f with
f ∈ Hs, and both of these contributions are bounded in Hs, thanks to (4.4) and (4.5).

Construction of the fast mode approximate solution. The corrector V fcor has been defined as the
unique solution to

∂tV
f
cor +

1

%
L(0)∂xV

f
cor = 0, where we recall L(0) ≡

(
0 0 0 1
0 0 0 0
0 0 0 0

1+δ−1 0 0 0

)
,

with initial data V fcor |t=0 ≡ (ζ0
1 − %ζ̆1 |t=0 , 0, 0,m

0)>.
Our aim is to prove that V fcor is an approximate solution to (3.3). We recall that the system

reads

∂tV +
1

%
(L% + %B[V ]) ∂xV = 0, with L% ≡


0 0 γ−1

γ(δ+1)
γ+δ
γ(δ+1)

0 0 %
1+δ

%
1+δ

0 %(γ + δ) 0 0

γ(1 + δ−1) % δ+γδ 0 0

 .

Thus V fcor satisfies

∂tV
f
cor +

1

%
(L% + %B[V ]) ∂xV

f
cor = Rf ,

with

Rf ≡ 1

%
(L% − L(0))∂xV

f
cor + B[V fcor]∂xV

f
cor.
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It is obvious that for any t ∈ R, V fcor satisfies∣∣V fcor(t, ·)
∣∣
Xs+1 .

∣∣V fcor |t=0

∣∣
Xs+1 ≤ C0 M %, (4.7)

with C0 = C(δ−1
min, δmax,M) (where we used (4.3) and the hypothesis of the Proposition).

In particular, since
∥∥B[V ]

∥∥ .
∣∣V ∣∣

(L∞)4
(see Lemma 3.12), Lemma A.1 yields∣∣B[V fcor]∂xV

f
cor

∣∣
Xs .

∣∣V fcor

∣∣
(L∞)4

∣∣V fcor

∣∣
Xs+1 ≤ C0 M

2 %2. (4.8)

Now, we use the fact that (Id−Π)V fcor = V fcor where we recall that Π represents the orthogonal

projection onto ker(L(0)): Id−Π ≡
(

1
0

0
1

)
.

It is straightforward to check that∥∥(L− L(0))(Id−Π)
∥∥ . %2,

so that ∣∣1
%

(L% − L(0))∂xV
f
cor

∣∣
Xs =

∣∣1
%

(L% − L(0))(Id−Π)∂xV
f
cor

∣∣
Xs . C0 M %2. (4.9)

Estimates (4.8),(4.9), immediately yield the desired result: V fcor satisfies (3.3), up to a remainder
term, Rf , satisfying ∥∥Rf∥∥

L∞([0,T/M ];Hs)
. C0 M %2. (4.10)

Completion of the proof. One easily checks that Vapp ≡ V sapp + V fcor satisfies

∂tVapp +
1

%
(L% + %B[Vapp]) ∂xVapp = Rf +Rs +Rc,

where
Rc ≡ (B[Vapp]−B[V fcor])∂xV

f
cor + (B[Vapp]−B[V sapp])∂xV

s
app.

The contribution of Rf +Rs is controlled as a result of the above calculations; see (4.6),(4.10). Thus
the only component to control is Rc, which contains the coupling terms between V fcor and V sapp.

Note that using (3.27) in Lemma 3.12 as well as estimates (4.2) (4.3), (4.4), (4.5) and (4.7), one
has ∣∣Rc∣∣

Xs ≤ C0

(∣∣V RL∂xV
f
cor

∣∣
Xs +

∣∣V fcor∂xV
RL
∣∣
Xs + M %2

)
(4.11)

with C0 = C(δ−1
min, δmax,M).

In order to control the latter contribution, we will use the fact that we assumed the initial data
to be spatially localized. V fcor is the superposition of two spatially localized waves, with center of
mass x ≈ ±c/%t. Thus we seek to prove that V RL remains spatially localized around x = 0 on the
relevant timescale.

It is convenient here to restrict the time domain to t ∈ [0, T ] instead of the more stringent
t ∈ [0, T/M ]. Indeed, recall the linearized equation predicts that V RL is the superposition of two
counter-propagating waves of velocity ±1, so that the spatial localization does not hold for large
time. One could work with a time-varying spatial localization (e.g. replacing 〈x〉σ ≡ (1 + |x|2)σ/2

with (1 + |x/〈t〉|)σ) but again, as our analysis is focused on strong nonlinearities, M is typically of
size 1, and it is easier to restrict ourselves to t ∈ [0, T ].

We state and prove below the persistence of the spatial decay which holds generically for a
quasilinear, hyperbolic system; and complete the proof of Proposition 4.1 thereafter.

Lemma 4.4 (Persistence of the spatial decay). Let s ≥ s0, s0 > 1/2 and V RL ≡ (η, v)> be the
solution to (1.2), with initial data V RL |t=0 ≡ (η0, v0)> as above. Assume moreover that there exists
σ > 0 such that one has 〈·〉ση0, 〈·〉σv0 ∈ Hs (where we denote 〈x〉 ≡ (1 + |x|2)1/2). There exists
M > 0 such that if

∣∣(η0, v0)>
∣∣
Hs×Hs ≤M , then one has

∀t ∈ [0, T ],
∣∣〈·〉ση∣∣

Hs +
∣∣〈·〉σv∣∣

Hs ≤ C
(
δ−1
min, δmax,M,

∣∣〈·〉ση0
∣∣
Hs +

∣∣〈·〉σv0
∣∣
Hs

)
.
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Proof of the Lemma. Consider W (t, x) = 〈x〉σV RL(t, x) (here and thereafter, multiplying a vector-
valued function by 〈x〉σ means that all components are multiplied). One has

S[V RL]∂t
(
〈·〉−σW

)
+ Σ[V RL]∂x

(
〈x〉−σW

)
= 0,

where S[·],Σ[·] are smooth mappings onto the space of 2-by-2 symmetric matrices (S and Σ are
explicit; see [15] for more details), provided M is chosen sufficiently small (so that the condition of
hyperbolicity (2.1) is satisfied).

It follows, since the multiplication with 〈·〉σ obviously commutes with S[·],Σ[·], ∂t,

S[V RL]∂tW + Σ[V RL]∂xW + 〈x〉σ∂x
(
〈x〉−σ

)
Σ[V RL]W = 0.

For M sufficiently small, S[V RL] is positive definite, so that there exists 0 < c0 <∞ such that

1

c0

∣∣W ∣∣2
Xs ≤ Es(W ) ≡

(
S[V RL]ΛsW,ΛsW

)
≤ c0

∣∣W ∣∣2
Xs .

Using the usual technique for a priori Hs estimates (see Lemma A.7 for example), one obtains

d

dt
Es(W ) ≤ C

(∣∣V RL
∣∣
Xs

)
Es(W ) + C

(∣∣〈x〉σ∂x(〈x〉−σ)∣∣Xs ,
∣∣V RL

∣∣
Xs

)
Es(W )1/2.

Now, using the control of V RL ∈ Xs in (4.2), and since one has∣∣〈x〉σ∂x(〈x〉−σ)∣∣Hs =
∣∣σx〈x〉−2

∣∣
Hs ≤ Cs,σ,

it follows from Gronwall-Bihari’s inequality:

Es(W ) ≤ Es(W |t=0 ) exp(C0t) +

∫ t

0

C1 exp(C0(t− t′)) dt′,

with C0, C1 = C
(
δ−1
min, δmax,M,

∣∣〈·〉ση0
∣∣
Hs +

∣∣〈·〉σv0
∣∣
Hs

)
, and the Lemma is proved.

Let us now complete the proof of Proposition 4.1. We use the following calculation to estimate
Rc in (4.11). Set s > 1/2, σ ≥ 0, and c 6= 0. Let u, v satisfy 〈·〉σv(t, ·) ∈ Hs, and 〈·〉σu(·) ∈ Hs.
Then one has∣∣v(·)u±(· − c/%t)

∣∣
Hs .

∣∣(1 + | · |2)v
∣∣
Hs

∣∣(1 + | · |2)u
∣∣
Hs

∣∣(1 + | · |2)−σ(1 + | · −c/%t|2)−σ
∣∣
Hs ,

and one can check (see [21] for example) that for any σ > 1/2 and T > 0, one has∫ T

0

∣∣(1 + | · |2)−σ(1 + | · −c/%t′|2)−σ
∣∣
Hs dt

′ ≤ Cσ%,

with Cσ = C( 1
2σ−1 ,

1
c ), thus uniform with respect to 1/% and T .

It is now straightforward, applying Lemma 4.4 and the definition of V fcor with the above calcu-
lations to (4.11), that the following estimate holds:

∀t ∈ [0, T ],

∫ t

0

∣∣Rc(t′, ·)∣∣
Xs dt

′ ≤ C0 M %2, (4.12)

with C0 = C(δ−1
min, δmax,M, 1

2σ−1 ).
Estimates (4.6), (4.10), and (4.12) conclude the proof of Proposition 4.1.

Let us conclude this section with the following result, which corresponds to Theorem 1.2, when
we use Proposition 4.1 instead of Proposition 3.4.
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Theorem 4.5. Let s ≥ s0 + 1, s0 > 1/2, and σ > 1/2. Then there exists positive constants
%0,M, T, C, depending only on δ−1

min, δmax,
1

s0−1/2 ,
1

2σ−1 , such that for any 0 < % ≤ %0 and for any

ζ0
1 , ζ

0
2 , u

0
1, u

0
2 ∈ Hs+1(R) satisfying∣∣(1 + | · |2)σζ0

1

∣∣
Hs +

∣∣(1 + | · |2)σζ0
2

∣∣
Hs +

∣∣(1 + | · |2)σu0
1

∣∣
Hs +

∣∣(1 + | · |2)σu0
2

∣∣
Hs ≤ M, (4.13)

and ∣∣(1 + | · |2)σζ0
1

∣∣
Hs +

∣∣(1 + | · |2)σ
(
h1u

0
1 + h2u

0
2

)∣∣
Hs ≤ M%, (4.14)

one can uniquely define U ∈ C([0, T ];Xs+1)∩C1([0, T ];Xs) as the solution to (3.3) with initial data
U |t=0 = (ζ0

1 , ζ
0
2 , u

0
1, u

0
2)>, and V RL, V scor, V

f
cor as in Proposition 4.1. Denote Uapp the approximate

solution corresponding to V RL + V scor + V fcor, after the change of variables (3.2). Then one has

∀t ∈ [0, T ],
∥∥U − Uapp

∥∥
L∞([0,t];Xs

ul)
≤ C M %2 .

Remark 4.6. Recall we set ε = 1 and α = % after Theorem 1.2; see Remarks 1.3 and 1.4. The
statement of Theorem 4.5 is easily extended to the general case.

Sketch of the proof. The existence and uniqueness of U has already been stated in Theorem 1.2.
The existence and uniqueness of V RL, V scor, V

f
cor is guaranteed by Proposition 4.1. Now, one can

follow the exact same procedure as described in Section 3, using the result of Proposition 4.1
instead of the corresponding Proposition 3.4. Note however that the remainder term constructed
in Proposition 4.1, Vrem, has not a finite Hs norm, as it may not decay when x± → ∞. Thus we
need to work with uniformly local Sobolev spaces, defined in Remark 4.2.

However, as initially remarked by Kato [18], the usual theory of hyperbolic quasilinear system
in Sobolev spaces extends naturally to uniformly local Sobolev spaces, without significant change
in the proof (in particular, similar product and commutator estimates hold; see [23, App. B]); thus
we do not detail further on.

We simply remark that Vapp has been constructed so that W ≡ V − Vapp satisfies∣∣W |t=0

∣∣
Xs

ul

. C0M%2,

where we denote V ≡ (ζ1, ζ2, us,m)> the solution to (3.3) corresponding to U , in terms of the
unknowns defined by (3.1). Consequently, the energy estimate (3.31) in Lemma 3.13 implies

∀t ∈ [0, T ],
∣∣W ∣∣

Xs
ul

. C0M%2 +

∫ t

0

∣∣R(t′, ·)
∣∣
Xs

ul

dt′,

which immediately yields the desired estimate.

4.2 The case of ill-prepared initial data

In this section, we are concerned with the case of ill-prepared initial data, that is initial data satis-
fying (1.3), but not (1.4). Once again, we construct an approximate solution as the superposition
of a slow-mode approximate solution, obtained from the corresponding solution to the rigid-lid sys-
tem (1.2), and a fast-mode approximate solution, that we shall exhibit below. There are two main
differences with the previous results, due to the fact that the slow-mode approximate solution is no
longer of size O(%):

1. Nonlinear effects have a non-trivial contribution on the behavior of the slow-mode approximate
solution, and cannot be neglected.

2. The strategy developed in Section 3 is not valid anymore, as the hypothesis of Lemma 3.13 is
no longer satisfied.

As a consequence, we restrict our statement to a consistency result, Proposition 4.7, and cannot
deduce an estimate on the difference of the exact and approximate solutions, as in Theorems 1.2
and 4.5; or even that (1.1) is well-posed for a large time (independent of %). However, numeri-
cal simulations, presented in the subsequent subsection, are in full agreement with the intuitive
conjecture that ∣∣V − V RL − V fcor

∣∣
Xs = O(%),

with the notations introduced below.
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Proposition 4.7. Let s ≥ s0, s0 > 1/2, σ > 1/2 and let ζ0
1 , ζ

0
2 , u

0
s,m

0 ∈ Hs+1(R). Then there
exists M > 0, depending only on δ−1

min, δmax,M, 1
2σ−1 , such that if one has∣∣(1 + | · |2)σζ0

1

∣∣
Hs +

∣∣(1 + | · |2)σm0
∣∣
Hs +

∣∣(1 + | · |2)σζ0
2

∣∣
Hs +

∣∣(1 + | · |2)σu0
s

∣∣
Hs ≤ M ,

then there exists 0 < T−1, C0 ≤ C(δ−1
min, δmax,M, 1

2σ−1 ) such that

1. V RL ≡ (0, η, v, 0)> is well-defined by Definition 3.3, and satisfies

∀t ∈ [0, T/M ],
∣∣V RL

∣∣
Xs+1 +

∣∣∂tV RL
∣∣
Xs ≤ C0 M.

2. V fcor is well-defined with

V fcor(t, x) ≡


u+(t, x) + u−(t, x)

0
0

c(u+(t, x)− u−(t, x))

 ,

where c ≡
√

1 + δ−1, and u± is the unique solution to

∂tu± ±
c

%
∂xu± ±

3

2c
u±∂xu± = 0,

with u± |t=0 = 1
2

(
ζ0
1 ± c−1m0

)
.

3. There exists Vrem with

∀t ∈ [0, T ],
∣∣Vrem

∣∣
Xs+1 + %

∣∣∂tVrem

∣∣
Xs ≤ C0 M ,

such that Vapp ≡ V RL + V fcor + %Vrem satisfies (3.3), up to a remainder term, R, satisfying∫ T

0

∣∣R(t, ·)
∣∣
Xs dt ≤ C0 M % .

Remark 4.8. The fast-mode contribution V fcor is different from the one defined in the previous
subsection. It is also not a corrector term per se, since it has the same order of magnitude as V RL.
We decide to use the same notation in order to acknowledge the following fact: one can replace V fcor

in Proposition 4.1 by the one defined above, without modifying the rest of the statement; nonlinear
effects on the fast-mode component are negligible in the case of well-prepared initial data.

Proof of Proposition 4.7. We follow the same three steps as in the proof of Proposition 4.1. We
first construct an approximate solution corresponding to the slow-mode and fast-mode, respectively.
Finally, we prove that the coupling between the two modes are weak, thanks to the appropriate
spatial localization of the initial data, and therefore the superposition of the two modes yields an
approximate solution.

Construction of the slow-mode approximate solution. Proposition 3.4 directly gives the desired
result: denoting V srem ≡ (ζ̆1, 0, 0, %m̆), with ζ̆1, m̆ defined in (3.12),(3.14), one has

∀t ∈ [0, T/M ],
∣∣V RL

∣∣
Xs+1 +

∣∣∂tV RL
∣∣
Xs . C0 M, (4.15)

∀t ∈ [0, T/M ],
∣∣V srem

∣∣
Xs+1 +

∣∣∂tV srem

∣∣
Xs . C0 M, (4.16)

and V sapp ≡ V RL + %V srem satisfies (3.3) up to a remainder term, Rs, satisfying∥∥Rs∥∥
L∞([0,T/M ];Xs)

. C0 M(M %+ %2) . C0 M % , (4.17)

with C0 = C(δ−1
min, δmax,M).
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Construction of the fast-mode approximate solution. We recall that (3.3) reads

∂tV +
1

%
(L% + %B[V ]) ∂xV = 0,

denoting U ≡ (ζ1, ζ2, us,m)>, and

L% ≡


0 0 γ−1

γ(δ+1)
γ+δ
γ(δ+1)

0 0 %
1+δ

%
1+δ

0 %(γ + δ) 0 0

γ(1 + δ−1) % δ+γδ 0 0

 .

We denote L% ≡ L(0) + %L(1) +O(%2), with

L(0) ≡


0 0 0 1
0 0 0 0
0 0 0 0

1 + δ−1 0 0 0

 , L(1) ≡


0 0 0 0
0 0 1

1+δ
1

1+δ

0 γ + δ 0 0
0 δ+1

δ 0 0


One can also check that B[(ζ1, 0, 0,m)>] ≡ B(1)[(ζ1, 0, 0,m)>] +O(%), with

B(1)[(ζ1, 0, 0,m)>] ≡


0 0 0 0
0 δ

δ+1m 0 0

0 0 δ
δ+1m 0

ζ1 0 0 2 δ
δ+1m

+O(%).

In the following, we seek an approximate solution to

∂tV +

(
1

%
L(0) + L(1) + B(1)[V ]

)
∂xV = 0. (4.18)

Our strategy is based on a BKW-type expansion, namely we seek an approximate solution
to (4.18) under the form

V fapp(t, x) = V fcor(t, t/%, x) + %V frem(t, t/%, x),

where (with a straightforward abuse of notation) V fapp(t, τ, x) is an approximate solution to

1

%
∂τV

f
app + ∂tV

f
app +

(
1

%
L(0) + L(1) + B(1)[V

f
app]

)
∂xV

f
app = 0. (4.19)

More precisely, and based on the fact that at first order (in terms of %), the system (4.19) is a
simple linear equation, ∂τV + L(0)∂xV = 0, we set V fcor as the superposition of decoupled waves,
supported on the eigenspaces of L(0). The analysis of higher-order terms yield

• the behavior of V fcor with respect to the large-time variable, t, which takes into account the
nonlinear effects on the propagation of each decoupled waves;

• a remainder term, V frem(t, τ, x), which mimics the coupling effects between the two counter-
propagating waves of V fcor, as well as the “slow mode component”, supported on (0, ·, ·, 0)>.

The key ingredient in the proof is to show that one can set V fcor such that V frem remains small for
large time. This strategy has been applied notably to the rigorous justification of the Korteweg-de
Vries equation as a model for the propagation of surface waves in the long wave regime [4,26], and
later on to similar problems [11, 12] in the bi-fluidic setting. It is described comprehensively for
example in [23, Chap. 7], thus we do not detail the calculations, and simply state the outcome.

It is convenient to introduce here the following eigenvectors of L(0):

e+ =


1
0
0
c

 , e− =


1
0
0
−c

 , e0 =


0
1
0
0


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(of course a fourth vector —second linearly independent element of ker(L(0))— could be defined,
but this is not necessary in our analysis).

We set
V fcor(·, τ, x) ≡ u+(·, x− cτ)e+ + u−(·, x+ cτ)e−,

where u±(t, y) is uniquely defined by

∂tu± ±
3

2c
u±∂yu± = 0,

with u± |t=0 = 1
2

(
ζ0
1 ± c−1m0

)
. One checks immediately that V fcor : (t, x) 7→ V fcor(t, t/%, x) is as in

the Proposition, explaining our (slightly misused) notation.
In the same way, we write

V frem(·, τ, x) ≡ r+(t, τ, x)e+ + r−(t, τ, x)e− + r0(t, τ, x)e0,

with functions r+, r−, r0 determined by

∂τr+(·, τ, x) + c∂xr+(·, τ, x) +
3

4c
∂x
(
u−(·, x− cτ)2

)
− 1

2c
∂x
(
u−(·, x− cτ)u+(·, x+ cτ)

)
= 0,

∂τr−(·, τ, x)− c∂xr+(·, τ, x)− 3

4c
∂x
(
u+(·, x− cτ)2

)
+

1

2c
∂x
(
u−(·, x− cτ)u+(·, x+ cτ)

)
= 0,

∂τr0(·, τ, x) +
1

δc
∂x
(
u+(·, x+ cτ)− u−(·, x− cτ)

)
= 0,

and V frem(·, 0, x) ≡ 0.
One can check that V fapp(t, τ, x) = V fcor(t, τ, x) + %V frem(t, τ, x), as defined above, satisfies

1

%
∂τV

f
app + ∂tV

f
app +

(
1

%
L(0) + L(1) + B(1)[V

f
app]

)
∂xV

f
app = Rf ,

with Rf ≡ ∂tV frem + %L(1)∂xV
f
rem +B(1)[V

f
app]∂xV

f
app −B(1)[V

f
cor]∂xV

f
cor.

It follows (using (3.27) in Lemma 3.12) that∣∣Rf ∣∣
Xs ≤ % C

(∣∣∂tV frem

∣∣
Xs ,

∣∣∂xV frem

∣∣
Xs ,

∣∣V fcor

∣∣
Xs+1

∣∣V frem

∣∣
Xs+1

)
. (4.20)

In order to estimate the above, one needs to control V frem, using the following two Lemmata.

Lemma 4.9. Let s ≥ 0, and f0 ∈ Hs+1(R). Then there exists a unique global strong solution,
u(τ, x) ∈ C0(R;Hs+1) ∩ C1(R;Hs), of{

(∂τ + c1∂x)u = ∂xf
u |t=0 = 0

with

{
(∂τ + c2∂x)f = 0
fi |t=0 = f0

where c1 6= c2. Moreover, one has the following estimates for any τ ∈ R:∣∣u(τ, ·)
∣∣
Hs+1(R)

≤ 2

|c1 − c2|
∣∣f0
∣∣
Hs+1(R)

,
∣∣u(τ, ·)

∣∣
Hs(R)

≤ |τ |
∣∣f0
∣∣
Hs+1(R)

.

Lemma 4.10. Let s ≥ s0 > 1/2, and v0
1, v0

2 ∈ Hs+1(R). Then there exists a unique global strong
solution, u ∈ C0(R;Hs+1) ∩ C1(R;Hs), of{

(∂τ + c∂x)u = g(v1, v2)
u |t=0 = 0

with ∀i ∈ {1, 2},
{

(∂τ + ci∂x)vi = 0
vi |t=0 = v0

i

where c1 6= c2, and g is a bilinear mapping defined on R2 and with values in R. Moreover, one has
the following estimates:∥∥u∥∥

L∞([0,τ);Hs)
≤ Cs |τ |,

∥∥∂τu∥∥L∞([0,τ);Hs)
≤ Cs+1 |τ |.

If moreover, there exists σ > 1/2 such that v0
1(1 + | · |2)σ, and v0

2(1 + | · |2)σ ∈ Hs(R), then one has
the (uniform in time) estimate∥∥u∥∥

L∞Hs(R)
≤ C

∣∣v0
1(1 + | · |2)σ

∣∣
Hs(R)

∣∣v0
2(1 + | · |2)σ

∣∣
Hs(R)

,

with C = C( 1
c1−c2 ,

1
σ−1/2 ).
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Lemma 4.9 is straightforward, and Lemma 4.10 follows from Propositions 3.2 and 3.5 in [21].
Lemmata 4.9 and 4.10 applied to V frem and ∂tV

f
rem immediately yield∣∣V frem(t, τ, ·)

∣∣
Xs +

∣∣∂tV frem(t, τ, ·)
∣∣
Xs ≤ C min(τ, 1)

∣∣u+(t, ·)(1+ | · |2)σ
∣∣
Hs(R)

∣∣u−(t, ·)(1+ | · |2)σ
∣∣
Hs(R)

.

It is not difficult to show that the inviscid Burgers’ equation propagates the localization in space
of its solutions (see Lemma 4.4), so that one has

∀t ∈ [0, T ],
∣∣u−(t, ·)(1 + | · |2)σ

∣∣
Hs(R)

.
∣∣u−(0, ·)(1 + | · |2)σ

∣∣
Hs(R)

≤ M. (4.21)

In particular, we deduce (recalling that V fcor ≡ u+(t, x− ct/%)e+ + u−(t, x+ ct/%)e−)

∀t ∈ [0, T ],
∣∣V fcor

∣∣
Xs+1 + %

∣∣∂tV fcor

∣∣
Xs . Cσ M, (4.22)

∀t ∈ [0, T ],
∣∣V frem

∣∣
Xs+1 + %

∣∣∂tV frem

∣∣
Xs . Cσ M, (4.23)

with Cσ = C
(
M, 1

2σ−1

)
.

Therefore (4.20) simply becomes∥∥Rf∥∥
L∞([0,T ];Xs)

≤ Cσ M %, (4.24)

with Cσ as above.

Completion of the proof. One easily checks that Vapp ≡ V sapp + V fapp ≡ V RL + V fcor + %V srem + %V frem

satisfies

∂tVapp +
1

%
(L% + %B[Vapp]) ∂xVapp = Rs +Rs +Rc,

where Rs and Rf have been defined and estimated above, and with

Rc ≡ (B[Vapp]−B[V fapp])∂xV
f
app + (B[Vapp]−B[V sapp])∂xV

s
app.

The contribution of Rf + Rs is controlled as a result of the above calculations; see (4.17)
and (4.24). Thus the only component to control comes from the coupling effects between V sapp and

V fapp, displayed in Rc. Recalling the construction of V sapp ≡ V RL + %V srem and V fapp ≡ V fcor + %V frem,
using estimates (4.15), (4.16), (4.22),(4.23) as well as (3.27) in Lemma 3.12, one immediately sees
that ∣∣Rc∣∣

Xs ≤ Cσ
(∣∣V RL∂xV

f
cor

∣∣
Xs +

∣∣V fcor∂xV
RL
∣∣
Xs + M%

)
,

with Cσ = C
(
M, 1

2σ−1

)
.

We estimate the above as in the proof of Proposition 4.1, using spatial localization. For any v
satisfying (1 + |x|2)v(t, x) ∈ Hs, with s > 1/2, one has∣∣v(t, x)u±(t, x∓ c/%t)

∣∣
Hs

.
∣∣(1 + | · |2)σv(t, ·)

∣∣
Hs

∣∣(1 + | · |2)σu±(t, ·)
∣∣
Hs

∣∣(1 + | · |2)−σ(1 + |x∓ c/%t|2)−σ
∣∣
Hs ,

and recall that for any σ > 1/2 and t > 0, one has∫ t

0

∣∣(1 + | · |2)−σ(1 + | · ∓c/%t′|2)−σ
∣∣
Hs dt

′ ≤ CσM%,

with Cσ = C( 1
2σ−1 ,

1
c ), thus uniform with respect to 1/% and T .

Thus it follows from Lemma 4.4 and (4.21) that one can restrict T > 0 such that∫ T

0

∣∣Rc(t, ·)∣∣
Xs dt ≤ CσM%,

with Cσ ≡ C(M, 1
2σ−1 ). Proposition 4.7 is proved.
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4.3 Discussion and numerical simulations

In this section, we illustrate and discuss the results displayed in Theorem 1.2 and Proposition 3.4
(validity of the rigid-lid approximation), Proposition 4.1 and Theorem 4.5 (first-order corrector)
and Proposition 4.7 (ill-prepared initial data).

In each case, we construct the appropriate approximate solution (V RL, V fcor, V
s
cor) and compare

with the exact solution of the free-surface system (3.3) (which is equivalent to (1.1) with the
corresponding variables); for different values of %, while the other parameters are fixed.

More precisely, we set:

δ = 1/2 ε = 1/2 γ ∈ {0.75, 0.9, 0.93, 0.95, 0.965, 0.0975, 0.09825, 0.09875, 0.099}.

The initial data is given as follows:

ζ2 |t=0 = exp
(
− (x/2)2

)
; us |t=0 =

−1

3
exp

(
− (x/2)2

)
,

and

ζ1 |t=0 = 0 ; us |t=0 =

{
0 in the well-prepared case;

2 exp
(
− (x/2)2

)
in the ill-prepared case.

We compute for times t ∈ [0, T ] with T = 4.

Each figure contains three panels. The upper-left panel represents the initial data. For the sake
of readability, we plot respectively 1 + δ−1 + εζ1 |t=0 , δ−1 + εζ2 |t=0 , 1 + us |t=0 and m |t=0 . The
lower panel represents the solution of the free-surface system (3.3) as well as the corresponding
approximate solution at stake (the latter with dotted lines), at final time T = 4, for γ = 0.9, thus
% ≈ 0.2673. Finally, in the upper-right panel, we plot the discrete l2-norm of the difference between
the aforementioned data in a log–log scale, for several values of % (the markers reveal the positions
which have been computed), at final time T = 4.

The numerical scheme we use is based on spectral methods as for the space discretization
(see [29]), thus yields an exponential accuracy with respect to the size of the grid ∆x, as long as
the signal is smooth (note that the major drawback is that the discrete differentiation matrices are
not sparse). We set ∆x = 0.1 (for x ∈ [−100, 100]), which is sufficient for the numerical errors to be
undetectable. We then use the Matlab solver ode45, which is based on the fourth and fifth order
Runge-Kutta-Merson method [27], with a tolerance of 10−8, in order to solve the time-dependent
problem.

Well-prepared initial data. In figure 2, we present a numerical simulation corresponding to
the setting of Theorem 1.2, thus we compare the solution of the free-surface system with the
corresponding solution of the rigid-lid system (or more precisely, the rigid-lid approximate solution
defined in Definition 3.3). One straightforwardly sees that the free-surface solution closely follows
the deformation of the interface and shear velocity predicted by the rigid-lid approximation, even
for a relatively large value of % (we recall γ = 0.1 in the panel 2(c)). As a matter of fact, the
precision of the approximation is not foreseen from Theorem 1.2: as we can see from the panel 2(b),
the convergence rate for ζ2 and us is O(%2), as Theorem 1.2 predicts only O(%). One can see that
the main error in the rigid-lid approximation is supported on the deformation of the surface, ζ1,
as well as on the horizontal momentum, m (and more precisely the fast mode of the horizontal
momentum).

Of course, such result is predicted by Theorem 4.5, since the first-order corrector constructed
in Proposition 4.1 follows precisely the above description. We show in figure 3 the precision of
the improved rigid-lid approximation. One sees that the main differences between the free-surface
solution and the rigid-lid approximate solution have been recovered. The rate of convergence is now
O(%2) for each variable ζ1, ζ2, us,m, in full accordance with Theorem 4.5.
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Figure 2: Solution of the free-surface system compared with the rigid-lid approximate solution
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Figure 3: Solution of the free-surface system compared with the improved approximate solution
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Ill-prepared initial data. We discuss now the case of ill-prepared initial data, that is when
ζ1 |t=0 ,m |t=0 are not assumed to be small. Recall however that the surface deviation from the flat
equilibrium value is represented by εαζ1 = %ζ1 (in other words, the total depth of the two layers is
h1 + h2 ≡ 1 + δ−1 + %ζ1) so that it is still vanishing when % tends to zero. In order to ensure that
this scaling does not affect our numerical simulations, and especially the computed convergence
rate, we set ζ1 |t=0 = 0, and fix m |t=0 6= 0. In that way, the initial data is does not depend on the
varying parameter, %.

We plot in Figure 4 the difference between the exact solution of the free-surface system and the
one of the approximate solution constructed in Proposition 4.7, for such initial data. As one can
see, there is a noticeable difference between the two solution. Moreover, this discrepancy seems to
be mainly located on the fast-mode, and on the variables ζ1,m. As a matter of fact, the variables
ζ2, us present a slightly better convergence rate (around O(%1.2) and O(%1.5), respectively) than the
expected O(%).

Such a results advocates for the construction of a higher-order approximation. We know from
Proposition 4.1 that one can construct a first-order slow-mode corrector (%ζ̆1, 0, 0, 0)> and that its
initial value plays a role in the fast-mode corrector. More precisely, one has to modify the initial
data of the fast-mode corrector in order to ensure that the full approximate solution enjoys the
correct initial data. Using both statements of Proposition 4.1 and Proposition 4.7, we define the
improved approximation for ill-prepared initial data as

Vapp = V RL + V scor + V fcor,

where

• V RL ≡ (0, η, v, 0)> is defined by Definition 3.3;

• V scor ≡ (%ζ̆1, 0, 0, 0)> is defined by ζ̆1 ≡ −
(
η + δ

2η
2
) (1−η)(δ−1+η)v2

γ(1+δ−1)2 .

• V fcor is well-defined with

V fcor(t, x) ≡


u+(t, x) + u−(t, x)

0
0

c(u+(t, x)− u−(t, x))

 ,

where c ≡
√

1 + δ−1, and u± is the unique solution to ∂tu± ± c
%∂xu± ±

3
2cu±∂xu± = 0, with

u± |t=0 = 1
2

(
ζ0
1 − %ζ̆1 |t=0 ± c−1m0

)
.

Let us notice that, as mentioned in Remark 4.8, this improved approximation is equivalent to
the one already defined in Proposition 4.1 for well-prepared initial data. Thus this approximate
solution is quite general and robust: it offers the same accuracy as our previously constructed
approximate solutions in the well-prepared case (Proposition 4.1) as well as in the ill-prepared case
(Proposition 4.7).

We investigate in figure 5 the precision of this improved approximate solution. Comparing
panels 4(c) and 5(c), one clearly obtains a better result than with the former approximate solution,
and the main discrepancy seems to be recovered. However, as one can see from panel 5(b), this
apparent improvement is not reflected in the convergence rate. Although the produced error is
clearly smaller, the rate is not better than O(%) where ζ1 and m are involved (ζ2 and us are
unchanged). It is not clear whether a better approximate solution can be constructed, or what
explains the slightly better convergence rate on ζ2 and us. Our numerical simulations indicate that
there is a non-trivial coupling between the fast and slow modes during early times (when both are
localized at the same place), and that the contribution of these coupling effects is of size ≈ %. Thus
in order to take into account these coupling effects, one may have no other choice than solving a
fully coupled system, at least for small time, t = O(%).
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Figure 4: Solution of the free-surface system compared with the approximate solution, for ill-
prepared initial data
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Figure 5: Solution of the free-surface system compared with the improved approximate solution,
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A Proof of Propositions 2.2

In this section, we detail the proof of Proposition 2.2, which follows the classical theory concerning
Friedrichs-symmetrizable quasilinear systems. The proof is based on a priori energy estimates, for
which the key ingredients are product and commutator estimates in Sobolev spaces. We first recall
such results, and let the reader refer to, e.g., [1, 23] for the proof of Lemmata A.1 and A.4.

Lemma A.1 (Product estimates).
Let s ≥ 0. For any f, g ∈ Hs(R)

⋂
L∞(R), one has:∣∣ f g ∣∣

Hs .
∣∣ f ∣∣

L∞

∣∣ g ∣∣
Hs +

∣∣ f ∣∣
Hs

∣∣ g ∣∣
L∞

.

If s ≥ s0 > 1/2, one deduces thanks to continuous embedding of Sobolev spaces,∣∣ f g ∣∣
Hs .

∣∣ f ∣∣
Hs

∣∣ g ∣∣
Hs .

Let F ∈ C∞(R) such that F (0) = 0. If g ∈ Hs(R)
⋂
L∞(R) with s ≥ 0, one has F (g) ∈ Hs(R) and∣∣ F (g)

∣∣
Hs ≤ C(

∣∣ g ∣∣
L∞

,
∣∣ F ∣∣

C∞
)
∣∣ g ∣∣

Hs .

Throughout the paper, we repeatedly make use of the following Corollary.

Corollary A.2. Let f, ζ ∈ L∞
⋂
Hs, with s ≥ 0 and h(ζ) ≡ 1 − ζ, with h(ζ) ≥ h0 > 0 for any

x ∈ R. Then one has ∣∣ 1

h(ζ)
f
∣∣
Hs ≤ C(h−1

0 ,
∣∣ζ∣∣

L∞
)
(∣∣f ∣∣

Hs +
∣∣ζ∣∣

Hs

∣∣f ∣∣
L∞

)
∣∣f − 1

h(ζ)
f
∣∣
Hs ≤ C(h−1

0 ,
∣∣ζ∣∣

L∞
)
(∣∣ζ∣∣

L∞

∣∣f ∣∣
Hs +

∣∣ζ∣∣
Hs

∣∣f ∣∣
L∞

)
.

Proof. We will use the identity

1

h(ζ)
f =

1

1− ζ
f = f +

ζ

1− ζ
f.

By Lemma A.1, one deduces∣∣ 1

h(ζ)
f
∣∣
Hs ≤

∣∣f ∣∣
Hs +

∣∣ ζ

1− ζ
f
∣∣
Hs

.
∣∣f ∣∣

Hs +
∣∣ ζ

1− ζ
∣∣
L∞

∣∣f ∣∣
Hs +

∣∣ ζ

1− ζ
∣∣
Hs

∣∣f ∣∣
L∞

.

The only non-trivial term to estimate is now
∣∣ ζ

1−ζ
∣∣
Hs . Using that h(ζ) = 1 − ζ ≥ h0 > 0, we

introduce a function F ∈ C∞(R) such that

F (X) =

{
X

1−X if 1−X ≥ h > 0,

0 if 1−X ≤ 0.

The function F satisfies the hypotheses of Lemma A.1, and one has∣∣ ζ

1− ζ
∣∣
Hs =

∣∣F (ζ)
∣∣
Hs ≤ C(

∣∣ζ∣∣
L∞

, h−1
0 )
∣∣ζ∣∣

Hs .

The first estimate of the Lemma is proved. The second estimate is obtained in the same way, using

f − 1

h(ζ)
f = − ζ

1− ζ
f.

The Corollary is proved.
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Remark A.3. The above result is straightforward if one replaces the assumption h(ζ) ≥ h0 > 0
with the more stringent max{

∣∣ζ∣∣
Hs ,

∣∣ζ∣∣
L∞
} < 1. In fact for any Banach Algebra (X,

∣∣ · ∣∣
X

), one has

under the hypothesis
∣∣ζ∣∣

X
< 1, that

∣∣ 1

h(ζ)
f
∣∣
X

.
1

1−
∣∣ζ∣∣

X

∣∣f ∣∣
X

and
∣∣f − 1

h(ζ)
f
∣∣
X

.
1

1−
∣∣ζ∣∣

X

∣∣ζ∣∣
X

∣∣f ∣∣
X
,

using the identity 1
1−ζ =

∑∞
n=0 ζ

n, which holds under the aforementioned hypothesis.

The following Lemma presents a generalization of the Kato-Ponce [20] commutator estimates
due to Lannes [22] (one has

∣∣f ∣∣
Hs instead of

∣∣∂xf ∣∣Hs−1 in the standard Kato-Ponce estimate).

Lemma A.4 (Commutator estimates).
For any s ≥ 0, and ∂xf, g ∈ L∞(R)

⋂
Hs−1(R), one has∣∣ [Λs, f ]g

∣∣
L2 .

∣∣ ∂xf ∣∣Hs−1

∣∣ g ∣∣
L∞

+
∣∣ ∂xf ∣∣L∞ ∣∣ g ∣∣Hs−1 .

Thanks to continuous embedding of Sobolev spaces, one has for s ≥ s0 + 1, s0 >
1
2 ,∣∣ [Λs, f ]g

∣∣
L2 .

∣∣ ∂xf ∣∣Hs−1

∣∣ g ∣∣
Hs−1 .

Let us now continue with the proof of Proposition 2.2. The system (1.1) is quasilinear. We
prove below that it is Friedrichs-symmetrizable, under conditions (2.2),(2.3). We display below the
symmetrizer of the system, and compute the necessary energy estimates in Lemmata A.6 and A.7.

Symmetrizer of the system. Recall that (1.1) reads ∂tU + A[U ]∂xU = 0, with

A[U ] ≡


u1

u2−u1

%
h1

%
h2

%

0 u2 0 h2
1
% 0 u1 0
γ
% δ + γ 0 u2

 , (A.1)

where we denote h1 ≡ 1 + %ζ1 − ζ2 and h2 ≡ δ−1 + ζ2. Define

S[U ] ≡


γ 0 %γu1 0
0 γ + δ −γu1 u2

%γu1 −γu1 γh1 0
0 u2 0 h2

 . (A.2)

One can easily check that S[U ]A[U ] ≡ Σ[U ] and S[U ] are symmetric. More precisely, one has

Σ[U ] ≡


2γu1

γ(u2−u1)
%

γh1

% + γ%u2
1

γh2

%
γ(u2−u1)

% 2(γ + δ)u2 −γu2
1 (γ + δ)h2 + u2

2
γh1

% + γ%u2
1 −γu2

1 2γh1u1 0
γh2

% (γ + δ)h2 + u2
2 0 2h2u2

 . (A.3)

By looking at its upper-left determinants, and after tedious but straightforward calculations, one
may check that S[U ] is positive definite provided that the following holds:

γ > 0, γ + δ > 0, |u1|2 < h1(γ + δ), |u2|2 < h2(γ + δ),

and

h1h2(γ + δ)2 + (1− γ)|u1|2|u2|2 − (h1|u2|2 + h2|u1|2)(γ + δ) > 0.

One easily sees that conditions (2.2) and (2.3) are sufficient for the above to hold.
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Energy of the system. The natural energy of our system is

Es(U) ≡
(
S[U ]ΛsU,ΛsU

)
(A.4)

= γ
∣∣ζ1∣∣2Hs + (γ + δ)

∣∣ζ2∣∣2Hs + γ

∫
R
h1

∣∣Λsu1

∣∣2 +

∫
R
h2

∣∣Λsu2

∣∣2
+ 2

∫
R
γu1

{
Λsu1

}{
Λs(%ζ1 − ζ2)

}
+ 2

∫
R
u2

{
Λsu2

}{
Λsζ2

}
,

with h1 ≡ 1 + %ζ
1
− ζ

2
and h2 ≡ δ−1 + ζ

2
.

Recall that Xs denotes the space (Hs)4, endowed with the following norm:∣∣U ∣∣2
Xs = γ

∣∣ζ1∣∣2Hs +
∣∣ζ2∣∣2Hs + γ

∣∣u1

∣∣2
Hs +

∣∣u2

∣∣2
Hs .

Then we have the following result:

Lemma A.5. Let s ≥ 0 and ζ ∈ L∞(R), satisfying (2.2),(2.3). Then Es(U) is uniformly equivalent

to the | · |Xs-norm. More precisely, there exists positive constants C2 = C(h−1
0 , δ−1

min) > 0 and
C1 = C(

∣∣h1

∣∣
L∞

,
∣∣h2

∣∣
L∞

, δmax) > 0 such that

1

C1
Es(U) ≤

∣∣U ∣∣2
Xs ≤ C2E

s(U).

Proof. The fact that Es(U) ≤ C1

∣∣U ∣∣
Xs is a simple consequence of Cauchy-Schwarz inequality,

applied to (A.4), where we use that γ < 1, and (2.3) yields |u1|2 < (γ + δ)h1, |u2|2 < (γ + δ)h2.

Let us now show how to obtain the other inequality. We recall that

S[U ] ≡


γ 0 %γu1 0
0 γ + δ −γu1 u2

%γu1 −γu1 γh1 0
0 u2 0 h2

 ≡


γ 0
0 γ + δ

M [U ]>

M [U ]
γh1 0
0 h2

 .

Standard Gaussian elimination yields S[U ] = L[U ]D[U ]L[U ]>, with

L[U ] =


1 0
0 1

0

L21[U ]
1 0
l[U ] 1

 and D[U ] =


γ 0
0 γ + δ

0

0
d3[U ] 0

0 d4[U ]

 ,

where 0 is the 2-by-2 zero matrix, and L21[U ], l[U ], d3[U ], d4[U ] may have complicated expressions.
However, since we know that S[U ] is positive definite, one has d3[U ], d4[U ] > 0. It follows in
particular that

Es(U) =
(
S[U ]ΛsU,ΛsU

)
=
(
D[U ]L[U ]>ΛsU,L[U ]>ΛsU

)
>
(
γΛsζ1,Λ

sζ1
)

+
(
(γ + δ)Λsζ2,Λ

sζ2
)

= γ
∣∣ζ1∣∣2Hs + (γ + δ)

∣∣ζ2∣∣2Hs .

In the same way, one can make use of Gaussian elimination, starting from lower rows. It follows
S[U ] = R[U ]D̃[U ]R[U ]>, with

L̃[U ] =


1 r[U ]
0 1

R12[U ]

0
1 0
0 1

 and D̃[U ] =


d1[U ] 0

0 d2[U ]
0

0
γh1 0
0 h2

 .

Again, since S[U ] is positive definite, one has d1[U ], d2[U ] > 0, and one deduces

Es(U) >
(
γh1Λsu1,Λ

su1

)
+
(
h2Λsu2,Λ

su2

)
≥ h0

(
γ
∣∣u1

∣∣2
Hs +

∣∣u2

∣∣2
Hs

)
.

It follows from above estimates that one can find C2 = C(h−1
0 , δ−1

min) such that∣∣U ∣∣
Xs ≤ C2E

s(U).

The Lemma is now proved.
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We now highlight energy estimates concerning the linearized system from (1.1), namely

∂tU + A[U ]∂xU = F , (A.5)

with given U,F .

Lemma A.6 (L2 energy estimate). Set T,M > 0. Let U ∈ L∞([0, T ];X0) satisfy (A.5) with given
F ∈ L1([0, T ];X0), and U satisfying (2.2),(2.3) as well as∥∥U∥∥

L∞([0,T ]×R)4
+
∥∥∂xU∥∥L∞([0,T ]×R)4

+ %
∥∥∂tU∥∥L∞([0,T ]×R)4

≤ M.

Then there exists C0 ≡ C(M, δ−1
min, δmax, h

−1
0 ) such that

∀t ∈ [0, T ], E0(U)(t) ≤ eC0M%−1tE0(U |t=0 ) + C0

∫ t

0

eC0M%−1(t−t′)∣∣F (t′, ·)
∣∣
Xs dt

′. (A.6)

Proof. Let us consider the L2-inner product of (A.5) and S[U ]U :(
∂tU, S[U ]U

)
+
(
A[U ]∂xU, S[U ]U

)
=
(
F, S[U ]U

)
.

From the symmetry property of S[U ],Σ[U ], and using the definition of E0(U), one deduces

1

2

d

dt
E0(U) =

1

2

(
U,
[
∂t, S[U ]

]
U
)
−
(
Σ[U ]∂xU,U

)
+
(
F, S[U ]U

)
=

1

2

(
U,
[
∂t, S[U ]

]
U
)

+
1

2

([
∂x,Σ[U ]

]
U,U

)
+
(
F, S[U ]U

)
. (A.7)

We now estimate each of the terms in the right-hand side of (A.7).

Estimate of
(
U,
[
∂t, S[U ]

]
U
)
. One has

(
U,
[
∂t, S[U ]

]
U
)

=
(
U, StU

)
, with

St ≡


0 0 %γ∂tu1 0
0 0 −γ∂tu1 u2

%γ∂tu1 −γ∂tu1 γ∂t(%ζ1
− ζ

2
) 0

0 ∂tu2 0 ∂tζ2

 .

Using Cauchy-Schwarz inequality, and Lemma A.5, one has straightforwardly∣∣(U, [∂t, S[U ]
]
U
)∣∣ ≤ C0

∣∣∂tU ∣∣L∞C−1
2

∣∣U ∣∣2
X0 ≤ C0 M %−1 E0(U), (A.8)

with C0 = C(δ−1
min, δmax, h

−1
0 ).

Estimate of
([
∂x,Σ[U ]

]
U,U

)
. One has

([
∂x,Σ[U ]

]
U,U

)
=
(
U,ΣxU

)
with

Σx ≡


2γ∂xu1

γ∂x(u2−u1)
%

γ∂x(%ζ
1
−ζ

2
+%2u2

1)

%

γ∂xζ
2

%
γ∂x(u2−u1)

% 2(γ + δ)∂xu2 −γ∂x(u2
1) (γ + δ)∂xζ2

+ ∂x(u2
2)

γ∂x(%ζ
1
−ζ

2
+%2u2

1)

% −γ∂x(u2
1) 2γ∂x(h1u1) 0

γ∂xζ
2

% (γ + δ)∂xζ2
+ ∂x(u2

2) 0 2∂x(h2u2)

 .

As above, Cauchy-Schwarz inequality and Lemma A.5 yield∣∣(Σ[U ]∂xU,U
)∣∣ ≤ C0 M %−1 E0(U), (A.9)

with C0 = C(δ−1
min, δmax, h

−1
0 ,M).

Estimate of
(
F, S[U ]U

)
. By Cauchy-Schwarz inequality and Lemma A.5,∣∣(F, S[U ]U

)∣∣ ≤ C1

∣∣U ∣∣
Xs

∣∣F ∣∣
Xs ≤ C0E

s(U)1/2
∣∣F ∣∣

Xs , (A.10)

with C0 = C(δ−1
min, δmax, h

−1
0 ,M).

Estimate (A.6) is now a consequence of Gronwall-Bihari’s inequality applied to the differential
inequality obtained when plugging (A.8), (A.9), (A.10) into (A.7).



September 11, 2013 Vincent Duchêne 39

Lemma A.7 (Hs energy estimate). Set M,T > 0 and s ≥ s0+1, s0 > 1/2. Let U ∈ L∞([0, T ];Xs)
satisfy (A.5) with F ∈ L1([0, T ];Xs), and U ∈ L∞([0, T ];Xs) satisfying (2.2)(2.3) as well as∥∥U∥∥

L∞([0,T ];Xs)
+ %
∥∥∂tU∥∥L∞([0,T ];Xs−1)

≤ M.

Then there exists C0 ≡ C(δ−1
min, δmax, h

−1
0 ,M) such that

∀t ∈ [0, T ], Es(U)(t) ≤ eC0M%−1tEs(U |t=0 ) + C0

∫ t

0

eC0M%−1(t−t′)∣∣F (t′, ·)
∣∣
Xs dt

′. (A.11)

Proof. As previously, we deduce from (A.5) the identity(
Λs∂tU, S[U ]ΛsU

)
+
(
ΛsA[U ]∂xU, S[U ]ΛsU

)
=
(
ΛsF, S[U ]ΛsU

)
,

where we recall the notation Λ ≡ (1− ∂2
x)1/2. It follows

1

2

d

dt
Es(U) =

1

2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

)
−
(
S[U ]ΛsA[U ]∂xU,Λ

sU
)

+
(
ΛsF, S[U ]ΛsU

)
=

1

2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

)
+

1

2

([
∂x,Σ[U ]

]
ΛsU,ΛsU

)
+
(
ΛsF, S[U ]ΛsU

)
−
(
S[U ]

[
Λs, A[U ]

]
∂xU,Λ

sU
)
. (A.12)

The first three terms are bounded exactly as above, when replacing U with ΛsU . The only novelty
lies in the use of continuous Sobolev embeddings, so that∥∥U∥∥

L∞([0,T ]×R)4
+
∥∥∂xU∥∥L∞([0,T ]×R)4

.
∥∥U∥∥

L∞([0,T ];Xs)
.

Similarly, one has
%
∥∥∂tU∥∥L∞([0,T ]×R)4

. %
∥∥∂tU∥∥L∞([0,T ];Xs−1)

.

The remaining term is estimated as follows. Using the commutator estimate in Lemma A.4, one
has ∣∣[Λs, A[U ]

]
∂xU

∣∣
L2 ≤ C

∣∣∂xU ∣∣Hs−1

∣∣[∂x, A[U ]
]∣∣
Hs−1 ≤ C0 M %−1

∣∣U ∣∣
Xs ,

with C0 = C(δ−1
min, δmax, h

−1
0 ,M). Altogether, one deduces from (A.12)

1

2

d

dt
Es(U) ≤ C0M%−1Es(U) + C0E

s(U)1/2
∣∣F ∣∣

Xs .

Estimate (A.11) is now a consequence of Gronwall-Bihari’s inequality, and the Lemma is proved.

Proposition 2.2 is now a consequence of the energy estimates of Lemmata A.6 and A.7. More
precisely, the solution of the nonlinear problem (1.1), U , is obtained as the limit of the following
iterative scheme:

∂tU
n+1 + A[Un]∂xU

n = 0.

The restriction on the timescale Tmax ≥ T% is necessary to guarantee that (Un)n∈N is a Cauchy
sequence, and in particular that Un is uniformly bounded with respect to n, over the relevant
time domain. The desired estimate on

∣∣U ∣∣
Xs follows directly from Lemma A.7 with U = U and

F ≡ 0, and the corresponding estimate on
∣∣∂tU ∣∣Xs is then deduced using (1.1). The uniqueness

comes from a similar estimate on the difference of two solutions, and the blow-up criterion as
t→ Tmax if Tmax <∞ follows from standard continuation arguments. This concludes the proof of
Proposition 2.2.
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