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Abstract 
 

The perception of the environment is a major issue in 

autonomous robots. In our previous works, we have proposed a 

visual perception system based on an automatic image discarding 

method as a simple solution to improve the performance of a real-

time navigation system. In this paper, we take place in the obstacle 

avoidance context for vehicles in dynamic and unknown 

environments, and we propose a new method for Collision Risk 

Estimation based on Pearson’s Correlation Coefficient (PCC). 

Applying the PCC to real-time CRE has not been done yet, making 

the concept unique. This paper provides a novel way of calculating 

collision risk and applying it for object avoidance using the PCC. 

This real-time perception system has been evaluated from real data 

obtained by our intelligent vehicle. 

 

1. Introduction 

ATELY, several applications for control of autonomous 

and (semi)-autonomous vehicles are being developed. 

The challenge to construct robust methods, and, in most 

cases, in real-time systems, is far from being achieved. This 

can be observed by the great number of researches being 

published in the last few years. 

For military or civil purposes, some of these applications 

include: the Grand Challenge [1] and Urban Challenge [2]; 

Advanced Driver Assistance Systems (ADAS) [3]; 

autonomous perception system [4], [5], and aerial robots [6]. 

The goal of the Grand Challenge was the development of 

an autonomous robot capable of traversing unrehearsed, off-

road terrain [1].  For the Urban Challenge, the goal of the 

system was to drive a car, autonomously, in a city 

environment, with way crossings and with static and dynamic 

obstacles [2]. On the other hand, driven by the high number 

of vehicles in all over the world, the ADAS systems emerged 

to help the driver in its driver task [3]. Examples of such a 

system are: autonomous cruise control, laser-based systems, 

radar-based systems, collision avoidance system and 

precrash system [7]. 

In all these cases, the important factors are the variety and 

complexity of environments and situations. These intelligent 

vehicle developments have a common issue: providing to the 

vehicle platform the capability of perceiving and interacting 

with its neighbour environment. 

The importance of motion in visual processing cannot be 

 
 

understated [8]. The real nature of the information used by 

humans to evaluate time-to-contact is still an open question. 

Humans adapt their motion to avoid collisions in order to 

preserve admissible time-to-contact. Velocity, distance, and 

time are intrinsically linked together [9]. 

In 1895, Karl Pearson published the Pearson’s Correlation 

Coefficient (PCC) [10]. The Pearson's method is widely used 

in statistical analysis, pattern recognition and image 

processing. Applications on the latter include the comparison 

of two images for image registration purposes, object 

recognition, and disparity measurement [11]. Based on 

Pearson's method, we have proposed the discarding criteria 

[12], [13] as a simple solution to improve the performance of 

a real-time navigation system by exploiting the temporal 

coherence between consecutive frames. It also automatically 

determines the reference frame in a real time execution. In 

this paper, a real-time perception problem is applied to 

intelligent vehicles (human operated or autonomous 

systems). Based on the PCC variation, we estimate the 

Collision Risk Estimation in dynamic and unknown 

environments by using a single monocular system. 

In Section 2 we present a review of previous works. 

Section 3, 4 and 5 introduce the Pearson’s Correlation 

Coefficient, the Otsu thresholding method and the Region-

Merging Algorithm. Section 6 describes the proposed 

Collision Risk Estimation methodology. The results are 

presented in Section 7 and the conclusions are given in 

Section 8. 

2. Related Works 

The perception layer uses many types of sensors [1], [2], 

[14], including ultrasonic sensors, laser rangefinders, radar, 

cameras, etc, which in many cases may be limited in scope 

and subject to noise. These sensors are not perfect: ultrasonic 

sensors are cheap but suffer from specular reflections and are 

limited in range, and laser rangefinders and radar provide 

better resolution but are more complex and expensive [4].  

The vision-based sensors are defined as passive sensors 

and the image scanning is performed fast enough for 

Intelligent Transportation Systems. However, vision sensors 

are less robust than millimeter-wave radars in foggy, night, 

or direct sun-shine conditions [15]. All range-based obstacle 

detection systems have difficulty for detecting small or flat 

objects on the ground, and range sensors are also unable to 

distinguish between different types of ground surfaces [4]. 
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Notwithstanding, the main problem with the use of active 

sensors is represented by interference among sensors of the 

same type, hence, foreseeing a massive and widespread use 

of these sensing agents, the use of passive sensors obtains 

key advantages [15]. For example, the monocular vision 

contribution to the DARPA Grand Challenge [16] showed 

that the reach of lasers is approximately 22 meters, whereas 

the monocular vision module often looks 70 meters ahead.  

On the safety front, the progressive safety systems will be 

developed through the manufacturing of an “intelligent 

bumper” peripheral to the vehicle in answering new features 

as: blind spot detection, frontal and lateral pre-crash, etc. 

The objective in terms of cost to fill ADAS functions has to 

be very lower than the current Adaptive Cruise Control (500 

Euros) [17]. In the obstacle avoidance context, the collision 

warning algorithms typically issue a warning when the 

current range to an object is less than the critical warning 

distance, where the safety can be measured in terms of the 

minimum time-to-collision (TTC) [18]. To calculate the TTC 

several techniques are presented in the literature [19], [20], 

[21] [22], [23]. For example, from the fusion of radar and 

vision, the results have demonstrated the advantages of both 

sensors to improve the collision-sensing accuracy [24]. The 

radar gives accurate range and range-rate measurements 

while the vision solves the angular accuracy problem of 

radar; however this fusion solution is costly [21]. Moreover, 

many authors focus on algorithms not suitable to perform 

under real-time requirements such as low computational 

costs [19]. Measuring distances is a non-native task for a 

monocular camera system [19]. Nevertheless, TTC, or time-

to-contact estimation is an approach to visual collision 

detection from an image sequence. It is a biologically 

inspired method that does not require scene reconstruction or 

3D depth estimation [20]. Actually, TTC is an interesting 

and well studied research topic [19]. Optical flow may be 

used to TTC [8], [25], [26]. However, computing TTC from 

an optical flow has proven impractical for real applications 

in dynamic environment [22]. Additionally, gradient-based 

methods can be used with a certain degree of confidence in 

environments such as indoors were the lighting conditions 

can be controlled. It is computationally expensive [27]. 

Inspired by the TTC approaches, this paper presents a 

novel approach to obtain Collision Risk Estimation (CRE) 

based on PCC from a monocular camera. Acting as a 

complement, a region-merging algorithm is also 

implemented which aims to represent homogeneous image 

regions. These image regions are matched to reduce the 

Pearson’s variation. From an adaptation to the Pearson's 

method we obtain the interest points. Finally, in order to find 

the obstacle direction, we propose an interactive thresholding 

algorithm based on Otsu thresholding method (OTM) [28]. 

Our method does not take into account the relative 

acceleration between the host car and the subject “object”, 

neither its distance nor its velocity. 

3. Pearson’s Correlation Coefficient 

According to [29], an empirical and theoretical 

development that defines the regression and correlation as 

statistical topics were presented by Sir Francis Galton in 

1885. In 1895, Karl Pearson published the PCC [10]. It is 

widely used in statistical analysis, pattern recognition and 

image processing. It is described by Eq. (1) [11]: 
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where
ix is the intensity of the th

i pixel in image 1,
iy is the 

intensity of the th
i pixel in image 2, 

mx is the mean intensity 

of image 1, and 
my is the mean intensity of image 2.  

4. Otsu Thresholding Method 

4.1 Image pre-processing 

We use a color or gray-level image. If the image is 

colored, in order to utilize the most important information of 

the color image, the candidate color channel, that was 

dominant in certain color space, is selected to generate the 

histogram image [30]. It is described by Eq. (2).  
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where Cc means the color channel of the dominant color 

channel in certain referenced region. 

 

4.2 Otsu thresholding method (OTM): description 

Region recognition can be handled by popular 

thresholding algorithm such as Maximum Entropy, Invariant 

Moment and OTM. For road detection, because OTM 

supplies a more satisfactory performance in image 

segmentation, OTM was used to overcome the negative 

impacts caused by environmental variation [30]. 

Furthermore, some authors consider the OTM as one of the 

best choices for real-time applications in machine vision 

[31], [32]. It still remains one of the most referenced 

thresholding methods [33].  

The main characteristic of OTM is the maximization of 

the intra-classes variance of the image. The thresholding 

process is seen as the partitioning of pixels of an image in 

two classes: C1 (object) and C2 (background). This method 

is recursive and searches the maximization for the cases: 

C1={0, 1,…, T} and C2={T+1, T+2,…, N−1}, where T is 

the chosen threshold and N is the number of intensity levels 

of the image. It searches exhaustively for the threshold that 

minimizes the intra-classes variance, which is described by:  
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where ( )TW

2σ  is the intra-class variance, ( )Tq1
 is the 

proportion of background pixels, ( )T2

1σ  is the intensity 

variance of background pixels, ( )Tq2
 is the proportion of 

foreground pixels and ( )T2

2σ  is the intensity variance of 

foreground pixels. 

 

The class probabilities are estimated as: 
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The class means are given by: 
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Finally, the individual class variances are: 
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where H is the histogram of the selected channel in Eq. (2). 

 

5. Region-Merging Algorithm 

The region-merging algorithm mainly aims to represent 

homogeneous regions. In this context, distortions in the 

imaging system, pixel noise, slight variations in the object’s 

position relative to the camera, and other factors produce a 

PCC threshold value less than 1, even if the object has not 

been moved or physically altered in any manner [13]. 

Whereas there are homogeneous regions in the image, and in 

order to obtain a Pearson’s correlation closer to reality, we 

use the OTM and the Canny edge detector [30]. 

Additionally, only for the OTM, we apply a Gaussian filter 

that acts as low-pass frequency filters [34]. 

FigureFigure 1 (a) and (e) represent an interval equivalent 

to 1s (a certain analysis window), the reference (first) frame 

and the current (last) frame of the series. This pair of frames 

was submitted to OTM in Eq. (3) and to the Canny edge 

detector [35]. 

The Canny edge detector results are presented in the 

FigureFigure 1 (b) and (f). Then, the FigureFigure 1 (c) and 

(g) present the Canny step 2: from the bottom edge of the 

image (the slice closest to the vehicle) until the first detected 

edge: it is classified as background (white); from this point, 

the image pixels are classified as foreground (black). Finally, 

FigureFigure 1 (d) and (h) present the OTM results. 

Right after these processes, the next step is shown in 

FigureFigure 2 (c), where we have a yellow pixel for each 

pair of background pixels in both binarized images, whether 

in OTM or Canny. These pixels represent the homogeneous 

regions that will be matched. Then, the last step is shown in 

FigureFigure 2 (d): from this homogeneous region (yellow 

pixels) in FigureFigure 2 (c), the pixels of the current frame 

will be copied to the reference frame, respectively: 

FigureFigure 2 (b) to (a). To summarize, the FigureFigure 2 

(d) is equivalent to the Figure 2 (a) with the background of 

the Figure 2 (b). 

The Pearson’s correlation by Eq. (1) between Figure 2 (a) 

and (b) is 0.790. After the region-merging algorithm, it was 

0.800 between Figure 2 (d) and (b). 

 
Figure 1: (a) and (e) are the frames of the Mojave Desert 

video [36]; (b) and (f): the Canny edge detection [35]; (c) 

and (g) are the binarized images by Canny step 2; (d) and (h) 

are the binarized images by OTM [28]. 

 
Figure 2: (a) and (b) are the frames of the Mojave Desert 

video [36]; (c) Binarized image by OTM and Canny step 2; 

(d) the Frame 400 with the background of the Frame 430. 

 

6. Collision Risk Estimation based on PCC 

In this Section we present a novel approach to PCC. Based 

on the PCC variation and by exploiting the temporal 

coherence between consecutive frames, we estimate the 

Collision Risk Estimation (CRE) in dynamic and unknown 

environments by using a single monocular system.  

The TTC was first defined as the distance to an obstacle 

divided by the relative velocity between them [19]. However, 

it is important to notice that there is not a diffeomorphism 

between the vehicle speed and the PCC variation, because if 

there are no changes between consecutive captured frames, 

the PCC threshold remains static. Then, the isomorphism 

cannot be guaranteed. Moreover, we neglect relative 

acceleration between the host car and the subject obstacle. 

The Figure 3 (a) shows an autonomous displacement 

through the Mojave Desert [36], where the robot Stanley has 

used an average speed of 30.7 km/h [37]. In Figure 3 (b), 

taking a reference frame, i.e. the first frame of the Figure 3 

(a), a lower value of correlation is achieved when it is closer 

to the vehicle, Figure 3 (b): black line. That is, when the 

derivative approaches its maximum point, there is the 

obstacle detection. We have named it: "Risk of Collision" 

(chosen by looking at several tests), 6.01−=cR (i.e. 0.4).  



  

Taking into account
cR , we estimate the CRE in Eq. (8): 
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where 1 (one) represents the reference frame and
1r was 

obtained in Eq. (1). 

 

 
Figure 3: (a): the frames of the Mojave Desert video [36]; 

(b) From a reference frame, its correlation with all others; 

Blue line: the Pearson’s correlation by Eq. (1); Red line: the 

Pearson’s correlation by Eq. (1) after the region-merging 

algorithm presented in Section 5. 

 

6.1 Obstacle detection: interest point extraction 

According to the Pearson’s correlation, in a certain 

analysis window (pair of frames), if the obstacle occupies a 

big portion of the scene, the PCC threshold tends to be low. 

Conversely, if the obstacle occupies a small portion of the 

frame, it means that it is away from the vehicle and the 

system will have time enough to react. However, where is the 

obstacle? Or, which pixels (interest points) of the pair of 

images have contributed the most to the computed Pearson’s 

coefficient? 

Right after the Pearson’s correlation in Eq. (1), we have xm 

and ym, respectively: the mean intensities of images 1 and 2. 

From these values, we begin again the process’s correlation 

in Eq. (9), where for each pair of pixels analyzed, the only 

possible result is: [-1 or +1]. That is, all pixels with 

intensities below these means will be candidates for obstacle. 

See Figure 4 (c), (g) and (k): the red pixels. 
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where
ix is the intensity of the th

i pixel in image 1, 
iy is the 

intensity of the th
i pixel in image 2, 

Xmr1
and 

Ymr1 were 

obtained in Eq. (1). 

6.2 Obstacle direction  

From the interest points known in Sub-Section 6-A, we 

propose an Interactive Thresholding Algorithm (ITA) that 

reclassify the background and foreground pixels based on 

OTM [28]. The OTM was presented in Section 4, where its 

goal is the partitioning of pixels in two classes: foreground 

and background. In this context, Figure 4 (c), (g) and (k) 

present this partitioning from the process’s correlation by 

Eq. (9), where the red pixels (interest points) represent 

12 −=r . Then, the ITA process will be performed N times 

until the result is invariably, or until the red points 

(foreground) are less than 100. For example, from the first 

interaction result presented in Figure 4 (k), for each new 

interaction, the red points will be reclassified in Eq. (3). This 

process is shown in Figure 5 (a) to (f). Additionally, in 

Figure 4 (d), (h) and (l) we also have the ITA results. The 

blue line indicates the object direction based on the center of 

area of the red points. 

 

 
Figure 4: (a), (b), (e), (f), (i) and (j) are the frames of the 

Mojave Desert video [36]; (c), (g) and (k) are the interest 

points from the process’s correlation by Eq. (9); (d), (h) and 

(l) are the ITA results. 
 

 
Figure 5: The Interactive thresholding algorithm process. 



  

7. Experimental Results 

In Table I we present the performance of the Collision 

Risk Estimation (CRE) from the Figure 4. In the Frames 

column we have the pairs of frames [1–30], [300–330] and 

[400–430], respectively: Figure 4: [(a)–(b)], [(e)–(f)] and 

[(i)–(j)]. In the (1-
1r ) column we have the Pearson’s 

correlation calculated in Eq. (1) after the region-merging 

algorithm. The Variation in the Range column presents the 

PCC variation between the first and last frames of the series. 

In CRE Second column we estimate the CRE calculated in 

Eq. (8). Finally, from the average speed, in Distance Meters 

column we obtain estimations in meters. 
 

 
 

As has been shown above, in the Figure 6 and Table II we 

present the performance of the time-to-collision estimation in 

dynamic and unknown environment.  

These results were obtained in real conditions using an 

experimental vehicle of the Heudiasyc Laboratory. As 

illustrated in Figure 7, the vehicle was equipped with a 

camera to acquire 320x240 color images at 20 fps, and a 

CAN-bus gateway provides the speed of the rear-wheels 

(WSS) and the yaw rate of the vehicle (from the ESP). 

 

 
Figure 6: The results in real conditions: *(a): the reference 

frame after the region-merging algorithm presented in 

Section 5; *(b) ITA results; *(c) Obstacle direction. 

 

In real conditions our monocular vision system has been 

designed to investigate only a small portion of the road 

ahead of the vehicle, where the absence of other vehicles has 

been assumed [15]. The Fig 6.a-(*a) presents our fix analysis 

region (yellow line).  

In order to reduce the number of data, it also includes the 

resolution reduction of image (to 96x72), which does not 

influence significantly the PCC. The computational mean 

time of all process was 7.8 ms. It was tested on a 2.5GHz 

Intel Core 2 Quad processor, 3.48 GB RAM, Microsoft 

Windows XP Professional SP3, Visual Studio C++ and 

OpenCV 2.1.0. For additional results see the video [38]. 

 
 

  

Figure 7: Carmen: The experimental vehicle of the 

Heudiasyc Laboratory with the monocular vision system. 

 

8. Conclusion 

In this work, a real-time perception problem is applied to 

intelligent vehicles. From an image captured by a single 

camera, the purpose was to present a real-time machine 

vision algorithm capable of estimating the risk of collision. 

It is important to have in mind that the proposed system 

could be as secure as needed. This algorithm is thought to be 

used in a mobile platform together with another sensor. It is 

not expected that a single camera provides all needed 

information to the safe navigation system to take decisions 

on routes. However, it is important to notice that our 

algorithm is not based on previous knowledge of the 

environment (lane shape, geometric inference, etc) neither 

camera calibration. The algorithm is not optimized yet and 

we are confident that the processing time can be reduced 

even more, taking in account that it could be, for example, 

implemented in hardware. 

In order to validate the CRE, future work would be also 

focused to provide ground truth measurements from a front 

mounted radar and/or LIDAR system. Moreover, 

improvements are needed in processing of the interest point 

extraction and in the region-merging algorithm. 
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TABLE I 

RELATIONSHIP BETWEEN FRAMES OF THE FIGURE 4 

AND COLLISION RISK ESTIMATION (CRE) 

STANLEY AVERAGE SPEED: 30.7 KM/H [37] 

 

Frames 

 

 

(1-
1r ) 

Variation 

in the 

Range 

Risk of 

Collision 

CRE 

Second 

Distance 

Meters 

1–30 (1-0.968) 0.032 (
cR / 0.032) 12.43s 106m 

300–330 (1-0.907) 0.093 (
cR  / 0.093) 4.31s 36.75m 

400–430 (1-0.800) 0.200 (
cR  / 0.200) 2.00s 17.08m 

 

TABLE II 

RELATIONSHIP BETWEEN FRAMES OF THE FIGURE 6 

AND COLLISION RISK ESTIMATION (CRE) 

Frames 
 

(1-
1r ) 

Variation 

in the 

Range 

Risk of 

Collision 

CRE 

Second 

Distance 

Meters 

(a) 1001 (1-0.8315) 0.1685 (
cR / 0.1685) 2.37s 7.23m 

(b) 1024 (1-0.5584) 0.4416 (
cR / 0.4416) 0.90s 2.53m 

(c) 1139 (1-0.5411) 0.4589 (
cR / 0.4589) 0.87s 4.49m 

(d) 4654 (1-0.7394) 0.2606 (
cR / 0.2606) 1.53s 8.53m 
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