
HAL Id: hal-00861080
https://hal.science/hal-00861080

Submitted on 11 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-dimensional (2D) languages and application to
handwritten graphical parsing

Bingwei Wu

To cite this version:
Bingwei Wu. Two-dimensional (2D) languages and application to handwritten graphical parsing.
2013. �hal-00861080�

https://hal.science/hal-00861080
https://hal.archives-ouvertes.fr

Mater Research Project
Multimedia and Data Management

Academic Years 2012/2013

Two-dimensional (2D) languages and application to

handwritten graphical parsing

Students:

Bingwei WU

Supervisors:

Christian VIARD-GAUDIN

Harold MOUCHERE

Two-dimensional (2D) languages and application to

handwritten graphical parsing
Bingwei WU

Ecole Polytechnique de l’université de Nantes
18 août 2013

ABSTRACT
Despite the recent advances in handwriting recognition, handwritten two-

dimensional (2D) languages are still a challenge. Electrical schemas, chemical
equations and mathematical expressions are examples of such 2D languages. In this
case, the recognition problem is particularly difficult due to the two dimensional
layout of the language. The main goal of our work is to study the application of two-
dimensional (2D) languages on mathematical expression recognition, which is a
special case of 2D graphical documents. The research work will be focus on
context-free grammars which has the potential to cope with structural relations in
documents.
 The first part of this report gives an overview of mathematical expression
recognition as well as different kinds of grammars applied in the recognition. The
second part of the report presents our developed system, including grammars,
segmentation hypothesis generator, parsing algorithm and spatial relation.

Keywords: Pattern recognition, Graphical languages, Two-dimensional grammars,
Handwriting recognition.

Table of Contents

Chapter 1. Introduction .. 1

1.1 Background ... 1
1.2 Scope and Outline ... 1

Chapter 2. State of the Art ... 3
2.1 Overview of Mathematical Expression Recognition ... 3
2.2 Language and Grammar .. 4
2.3 Grammars in Recognition .. 8

2.3.1 Two-dimensional Context-free Grammar ... 8
2.3.2 Two-dimensional Stochastic Context-free Grammar 10
2.3.3 Fuzzy Relational Context-Free Grammar .. 11
2.3.4 Other Grammars ... 12

2.4 Summary ... 12
Chapter 3. Developed System .. 14

3.1 Mathematical Expression Grammar ... 14
3.2 Segmentation Hypothesis Generator .. 17
3.3 Symbol Recognition .. 21
3.4 CYK Parsing .. 22
3.5 Spatial Relation ... 27
3.6 Parsing Output .. 34
3.7 Example ... 35

Chapter 4. Databases and Experiments ... 38
4.1 Database ... 38
4.2 Experiments .. 40

Chapter 5. Conclusions .. 44
5.1 Grammar Learning .. 44
5.2 Searching Area .. 44
5.3 Spatial Relation ... 44
5.4 Complexity .. 45

Chapter 1. Introduction

1.1 Background

Currently, digital devices such as smart phone are popular all over the world. As
the digital devices are increasingly used, handwritten online documents are
emerging. The rapid increase in the number of online handwritten documents leads
to mounting pressure on finding new solutions for faster processing, retrieval and
recognition. Researchers found that 2D graphical languages [1] have the potential to
cope with the structural relation in 2D documents. As a result, the application of 2D
languages on handwritten graphical parsing becomes a popular field of study.

Handwriting recognition is considered as a complex field of pattern recognition
and it has been addressed with a series of more and more complex challenges. First,
limited to the recognition of isolated symbols, it has been then extended to deal with
non-constrained handwriting where at the same time segmentation and recognition
issues have to be considered. With the introduction of statistical model languages [2],
it has been possible to go beyond word recognition with efficient solution for text
recognition. However, in all of these cases, a strong assumption is used. The input
can be considered as a global one dimensional (1D) layout of symbols forming words
and then texts. This is no more the case, if we want to process structural information
such as tables, diagrams, mathematical expressions, etc. where the layout conveys as
much information as the symbols themselves. Hence, despite the recent advances in
handwriting recognition, handwritten two-dimensional (2D) languages are still a
challenge. The problems appear very complex and cannot be resolved with tools
dedicated to 1D languages such as textual languages.

1.2 Scope and Outline

 Our work is to study mathematical expression recognition, which is a special case
of 2D graphical documents. The emphasis is on two dimensional languages. There
are many kinds of 2D languages, but we are more interested in context-free grammar
because it has the potential to cope with structural relations in documents. Although
our study is on mathematical expression recognition, our work is not only restricted
on mathematical expression. It can extend to other kinds of graphical documents.

This report is divided into five chapters. The first chapter presents background
and scope of our work. In chapter 2, we give an overview of mathematical expression

1

recognition techniques as well as two-dimensional (2D) languages and its application
on mathematical expression recognition. In chapter 3, we described our developed
system. In chapter 4, the results of experiments on two databases are reported.
Finally, we make a conclusion of our work and point out the future work.

2

Chapter 2. State of the Art

2.1 Overview of Mathematical Expression Recognition

 Mathematical expression plays an important role in scientific issues as well as
many other documents. However, the input of mathematical expressions is not easy
because they consist of many special symbols like Greek letters and operators.
Currently, many useful tools (e.g., LaTex) support the input of mathematical
expressions into digital documents. However, working with this kind of tool requires
special skill and training. The most natural way for human beings to produce
mathematical expressions is writing. Consequently, the recognition of mathematical
expressions is worthy of further study.

Mathematical expression recognition can be categorized from different point of
views.
● Printed versus Handwritten

Printed expressions are formal and more regular. Handwritten expressions are
more difficult to be recognized because different people have different writing styles.
● On-line versus Off-line

On-line recognition considers the time information of pen strokes. The
mathematical expression is given as a sequence of sample points. Off-line
recognition does not consider any time information. The mathematical expression is
given as only an image.
 The problem of mathematical recognition is usually divided into three stages [6]:
segmentation, symbol recognition and interpretation (structural and syntactic
analysis). In the stage of segmentation and symbol recognition, the expression is
segmented and each segment is recognized as a symbol. In the stage of
interpretation, the structure of expression is analyzed. For example, given a simple
expression “𝑥𝑥2 = 1”, the place of the symbol “2” need to be consider: it should be
placed as the upper right (superscript) of 𝑥𝑥, or the right of 𝑥𝑥.

Mathematical expression recognition consists of three major stages:
segmentation, symbol recognition and interpretation (structural and syntactic
analysis). Figure 2.1 shows the architecture of recognition. The first step is to
segment the mathematical expression into groups. Each of these groups forms a
single symbol. In the second step, a classifier is needed to recognize each of the
segments. After the recognition step, a list of objects with attributes (e.g., location,
size, and probability, etc.) are returned. Finally, we apply structural analysis to obtain
the structure of the expression.

3

Typically, the above three stages are implemented step by step. In this way, an
error occurring in one step would be inherited by the following steps. Furthermore,
the whole context resolves local ambiguities, and enables robust recognition. As a
result, some systems adopted a global approach [6, 7, 8]: they implement these
three stages simultaneously.

Figure 2.1 Architecture of mathematical expression recognition

As stated above, mathematical expression recognition has different categories

and many problems need to be considered. In [6], an overview of mathematical
expression recognition problem is given. [7] is a survey of existing works. It provided
a comparison between different systems.

In Section 2.3, we will review some existing work on interpretation stage. In
particular, we will highlight the similarities and differences between different
approaches. In addition, a comparison of other two stages can be found in [5].

2.2 Language and Grammar

In mathematics, computer science and linguistics, a language (when the context
is not given, often called a formal language for clarity) is
a set of strings of symbols that may be constrained by rules that are specific to it.
The alphabet of a formal language is the set of symbols, letters, or tokens from which
the strings of the language may be formed; frequently it is required to be finite. A

4

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Symbol_(formal)
http://en.wikipedia.org/wiki/Alphabet_(computer_science)
http://en.wikipedia.org/wiki/Finite_set

formal language is often defined by means of a formal grammar such as a regular
grammar or context-free grammar.

A formal grammar is a set of production rules for strings in a formal language.
The rules describe how to form strings from the language's alphabet that are valid
according to the language's syntax. A grammar does not describe the meaning of the
strings or what can be done with them in whatever context.

A formal grammar is a set of rules for rewriting strings, along with a "start
symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a
language generator. However, it can also sometimes be used as the basis for a
"recognizer": a function in computing that determines whether a given string belongs
to the language or is grammatically incorrect.

Parsing is the process of recognizing an utterance (a string in natural languages)
by breaking it down to a set of symbols and analyzing each one against the grammar
of the language. Most languages have the meanings of their utterances structured
according to their syntax—a practice known as compositional semantics. As a result,
the first step to describing the meaning of an utterance in language is to break it
down part by part and look at its analyzed form (known as its parse tree in computer
science, and as its deep structure in generative grammar).

Figure 2.2 Example of parsing a sentence “the dog chased the cat”

Figure 2.2 shows a simple example of parsing a sentence. Given a set of

production rules on the left hand side, we firstly extract the tokens from the
sentence “the dog chased the cat”. Then we go through the tokens. “the” is a
determiner (denoted by 𝐷𝐷𝐷𝐷𝐷𝐷), “dog” is a noun (denoted by 𝑁𝑁), “chased” is a verb
(denoted by 𝑉𝑉), the second “the” is a 𝐷𝐷𝐷𝐷𝐷𝐷, “cat” is a 𝑁𝑁. Next, a 𝐷𝐷𝐷𝐷𝐷𝐷 and a 𝑁𝑁 can
form to be a 𝑁𝑁𝑁𝑁 (Noun Phrase), a 𝑉𝑉 and a 𝑁𝑁𝑁𝑁 can form to be a 𝑉𝑉𝑉𝑉 (Verb Phrase).
Finally, they form to be a start symbol 𝑆𝑆.

In the classic formalization of generative grammars first proposed by Noam
Chomsky in the 1950s [3], a grammar 𝐺𝐺 consists of the following components:

5

http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Regular_grammar
http://en.wikipedia.org/wiki/Regular_grammar
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Production_(computer_science)
http://en.wikipedia.org/wiki/String_(computer_science)
http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Alphabet_(computer_science)
http://en.wikipedia.org/wiki/Syntax_(programming_languages)
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Recognizer
http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Compositional_semantics
http://en.wikipedia.org/wiki/Parse_tree
http://en.wikipedia.org/wiki/Deep_structure
http://en.wikipedia.org/wiki/Generative_grammar

● A finite set 𝑁𝑁 of nonterminal symbols, none of which appear in strings formed from
grammar 𝐺𝐺.
● A finite set ∑ of terminal symbols that is disjoint from 𝑁𝑁.
● A finite set 𝑃𝑃 of production rules, each rule of the form

(∑ ∪ 𝑁𝑁)∗𝑁𝑁 (∑ ∪ 𝑁𝑁)∗ ⟶ (∑ ∪ 𝑁𝑁)∗
where ∗ is the Kleene star operator and ∪ denotes set union. That is, each
production rule maps from one string of symbols to another, where the first string
contains an arbitrary number of symbols provided at least one of them is a
nonterminal. In the case that the second string consists solely of the empty string
(that is contains no symbols at all), it may be denoted with a special notation (often ε)
in order to avoid confusion.
● A distinguished symbol 𝑆𝑆 ∈ 𝑁𝑁 that is the start symbol.
 A grammar is formally defined as the tuple (N,∑, P , S). Nonterminals are often
represented by uppercase letters, terminals by lowercase letters, and the start
symbol by 𝑆𝑆. For example, the grammar with terminals {𝑎𝑎, 𝑏𝑏}, nonterminals {𝑆𝑆,𝐴𝐴,𝐵𝐵},
production rules:

𝑆𝑆 ⟶ 𝐴𝐴𝐴𝐴𝐴𝐴
𝑆𝑆 ⟶ 𝜀𝜀

𝐵𝐵𝐵𝐵 ⟶ 𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵 ⟶ 𝑏𝑏
𝐵𝐵𝐵𝐵 ⟶ 𝑏𝑏𝑏𝑏
𝐴𝐴𝐴𝐴 ⟶ 𝑎𝑎𝑎𝑎
𝐴𝐴𝐴𝐴 ⟶ 𝑎𝑎𝑎𝑎

and start symbol 𝑆𝑆, defines the language of all words of the form 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 (i.e. 𝑛𝑛 copies
of 𝑎𝑎 followed by 𝑛𝑛 copies of 𝑏𝑏).

When Noam Chomsky first formalized generative grammars in 1956 [3], he
classified them into types now known as the Chomsky hierarchy. The Chomsky
hierarchy consists of the following levels (see Table 2.1).

Table 2.1 Summary for Chomsky hierarchy

Type-0 grammars (unrestricted grammars) include all formal grammars. The
grammar rules have no restriction. They generate exactly all languages that can be
recognized by a Turing machine. These languages are also known as the recursively
enumerable languages.

6

http://en.wikipedia.org/wiki/Noam_Chomsky
http://en.wikipedia.org/wiki/Formal_grammar%23cite_note-Chomsky1956-1
http://en.wikipedia.org/wiki/Chomsky_hierarchy
http://en.wikipedia.org/wiki/Unrestricted_grammar
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Recursively_enumerable_language
http://en.wikipedia.org/wiki/Recursively_enumerable_language

Type-1 grammars (context-sensitive grammars) generate the context-sensitive
languages. These grammars have rules of the form 𝛼𝛼𝛼𝛼𝛼𝛼 → 𝛼𝛼𝛼𝛼𝛼𝛼 with 𝐴𝐴 a nonterminal
and 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 strings of terminals and nonterminals. The strings 𝛼𝛼 and 𝛽𝛽 may be
empty, but 𝛾𝛾 must be nonempty. The rule 𝑆𝑆 ⟶ 𝜀𝜀 is allowed if 𝑆𝑆 does not appear on
the right side of any rule.

Type-2 grammars (context-free grammars) generate the context-free languages.
These are defined by rules of the form 𝐴𝐴 ⟶ 𝛾𝛾 with 𝐴𝐴 a nonterminal and 𝛾𝛾 a string of
terminals and nonterminals. Context-free languages – or rather the subset
of deterministic context-free language – are the theoretical basis for the phrase
structure of most programming languages, though their syntax also includes context-
sensitive name resolution due to declarations and scope. Often a subset of grammars
are used to make parsing easier, such as by an LL parser.

Type-3 grammars (regular grammars) generate the regular languages. Such a
grammar restricts its rules to a single nonterminal on the left-hand side and a right-
hand side consisting of a single terminal, possibly followed by a single nonterminal
(right regular). Alternatively, the right-hand side of the grammar can consist of a
single terminal, possibly preceded by a single nonterminal (left regular); these
generate the same languages – however, if left-regular rules and right-regular rules
are combined, the language need no longer be regular. The rule 𝑆𝑆 ⟶ 𝜀𝜀 is also
allowed here if 𝑆𝑆 does not appear on the right side of any rule.

Figure 2.3 Comparison between different types of grammars

Comparison between different types of grammars in Chomsky hierarchy is

shown as Figure 2.3. The difference between these types is that they have
increasingly strict production rules and can express fewer formal languages. Two
important types are context-free grammars (Type 2) and regular grammars (Type 3).
The languages that can be described with such a grammar are called context-free
languages and regular languages, respectively. Although much less powerful

7

http://en.wikipedia.org/wiki/Context-sensitive_grammar
http://en.wikipedia.org/wiki/Context-sensitive_language
http://en.wikipedia.org/wiki/Context-sensitive_language
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Context-free_language
http://en.wikipedia.org/wiki/Deterministic_context-free_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Scope_(computer_science)
http://en.wikipedia.org/wiki/LL_parser
http://en.wikipedia.org/wiki/Regular_grammar
http://en.wikipedia.org/wiki/Regular_language
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Regular_grammar
http://en.wikipedia.org/wiki/Context-free_language
http://en.wikipedia.org/wiki/Context-free_language
http://en.wikipedia.org/wiki/Regular_language

than unrestricted grammars (Type 0), these two restricted types of grammars are
most often used because parsers for them can be efficiently implemented.

2.3 Grammars in Recognition

 Two-dimensional grammar is a common strategy for analyzing mathematical
expression structure. Grammars rules are used to define the grouping of individual
symbols, and to define the spatial meaning of grouping.

2.3.1 Two-dimensional Context-free Grammar

Several approaches work on two-dimensional context-free grammars [9, 10].
 Průša and Hlaváč [9] use two-dimensional context-free grammars (2D-CFG) to
model off-line handwritten mathematical formulae. In their work, each production
rule is transformed into Chomsky Normal Form and associated with a spatial relation
(denoted by 𝑠𝑠𝑠𝑠𝑠𝑠).

As is described in Section 2.2, a context-free grammar (CFG) is a tuple
(𝑉𝑉𝑁𝑁, 𝑉𝑉𝑇𝑇, 𝑆𝑆0, 𝑃𝑃), where:
(1) 𝑉𝑉𝑁𝑁 is a finite set of nonterminals;
(2) 𝑉𝑉𝑇𝑇 is a finite set of terminals;
(3) 𝑆𝑆0 is the initial nonterminal;
(4) 𝑃𝑃 is a finite set of productions: 𝐴𝐴 → 𝛼𝛼, where 𝐴𝐴 ∈ 𝑉𝑉𝑁𝑁 and 𝛼𝛼 ∈ (𝑉𝑉𝑁𝑁 ∪ 𝑉𝑉𝑇𝑇)+.

A CFG in Chomsky Normal Form (CNF) is a CFG in which the production rules are
of the form 𝐴𝐴 → 𝐵𝐵𝐵𝐵 or 𝐴𝐴 → 𝑎𝑎 where 𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ 𝑉𝑉𝑁𝑁 and 𝑎𝑎 ∈ 𝑉𝑉𝑇𝑇. Every grammar in CNF
is context-free, and every CFG can be transformed into an equivalent one which is in
CNF.

In the grammars defined by Průša and Hlaváč, each production rule is
transformed into CNF and associated with a spatial relation (denoted by 𝑠𝑠𝑠𝑠𝑠𝑠). The
grammar is in the formalization as below.

𝐴𝐴 → 𝑡𝑡

𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵

𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ 𝑉𝑉𝑁𝑁, 𝑡𝑡 ∈ 𝑉𝑉𝑇𝑇
𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑢𝑢𝑢𝑢, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}

The term 𝑠𝑠𝑠𝑠𝑠𝑠 describes the spatial relation between nonterminals. The term 𝑠𝑠𝑠𝑠𝑠𝑠,
which only exists in 2D-CFG, is the difference between 2D case and 1D case. The
terminal productions do not contain spatial relationship 𝑠𝑠𝑠𝑠𝑠𝑠 because there is no
spatial relationship with only one symbol.

The parsing of 2D-CFG is similar with that of 1D case shown in Figure 2.2. In
order to illustrate 2D-SCFG, we present a simple example. Given a simple grammar
 (𝑉𝑉𝑁𝑁,𝑉𝑉𝑇𝑇 , 𝑆𝑆0,𝑃𝑃) where:

8

http://en.wikipedia.org/wiki/Unrestricted_grammar
http://en.wikipedia.org/wiki/Parsing

𝑉𝑉𝑁𝑁 = {𝐸𝐸𝐸𝐸𝐸𝐸,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁,𝑂𝑂𝑂𝑂}
𝑉𝑉𝑇𝑇 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 0,1,2,3,4,5,6,7,8,9, +,−}
𝑆𝑆0 = 𝐸𝐸𝐸𝐸𝐸𝐸
𝑠𝑠𝑠𝑠𝑠𝑠 = {ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}

the production rules 𝑃𝑃 are:

𝐸𝐸𝐸𝐸𝐸𝐸
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
�⎯⎯⎯⎯⎯⎯� 𝐸𝐸𝐸𝐸𝐸𝐸 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐸𝐸𝐸𝐸𝐸𝐸
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�⎯⎯⎯⎯⎯⎯⎯� 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
�⎯⎯⎯⎯⎯⎯� 𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸𝐸𝐸 → 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝐸𝐸𝐸𝐸 → 𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑢𝑢𝑚𝑚 → [0,1,2,3,4,5,6,7,8,9]
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 → [𝑎𝑎, 𝑏𝑏, 𝑐𝑐]

Given an expression “𝑎𝑎3 + 𝑏𝑏2 + 1”, we firstly extract the tokens from the
expression. Then we go through the tokens. “𝑎𝑎” is a 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, “3” is a 𝑁𝑁𝑁𝑁𝑁𝑁, “+” is
an operator (denoted by 𝑂𝑂𝑂𝑂), “2” is a 𝑁𝑁𝑁𝑁𝑁𝑁, “+” is a 𝑂𝑂𝑂𝑂, “1” is a 𝑁𝑁𝑁𝑁𝑁𝑁. Next, we
combine the nonterminals according to the production rules, until we reach a start
symbol 𝐸𝐸𝐸𝐸𝐸𝐸. The parsing tree is shown as Figure 2.4.

Figure 2.4 Parsing tree for 𝑎𝑎3 + 𝑏𝑏2 + 1

The structural analysis in [9] is penalty oriented. The formula structure with least

penalty is the desired structure. It can be effectively parsed thanks to constraints
defined via rectangles and the usage of orthogonal range searching. Time complexity
is lower than CYK algorithm because it does not process all rectangles in the input.
The other novelty is not treating symbol segmentation and structural analysis as two
separate processes. This allows the system to recover from errors made in initial
symbol segmentation.

9

To deal with on-line data, Průša and Hlaváč [10] propose an elementary symbols
detection different from [9]. The data structure and parsing algorithm in structural
analysis are modified.

2.3.2 Two-dimensional Stochastic Context-free Grammar

Yamamoto et al. [7] and Álvaro et al. [12] used 2D stochastic context-free
grammar to model the spatial relations between symbols in mathematical
expressions.

A stochastic context-free grammar (SCFG; also probabilistic context-free
grammar, PCFG) is a context-free grammar in which each production is augmented
with a probability. So every rule is associated a probability:

𝑃𝑃(𝑟𝑟𝑖𝑖) = 𝑃𝑃(𝐴𝐴 → 𝛼𝛼𝑖𝑖) ∈ [0,1]

For ∀𝐴𝐴 ∈ 𝑉𝑉𝑁𝑁, ∑ 𝑃𝑃(𝐴𝐴 → 𝛼𝛼𝑖𝑖) = 1𝑛𝑛𝐴𝐴
𝑖𝑖=1 where 𝑛𝑛𝐴𝐴 is the number of rules associated to

non-terminal symbol 𝐴𝐴.

The rules in 2D-SCFG are defined as A
𝑠𝑠𝑠𝑠𝑠𝑠
�� α, where A ∈ 𝑉𝑉𝑁𝑁, α ∈ (𝑉𝑉𝑁𝑁 ∪ 𝑉𝑉𝑇𝑇)∗ and

spr denotes the spatial relationship that the rule models. The possible spatial
relationships are: up, bottom, left, right, superscript, subscript and inside. Similar
with 2D-CFG, the grammar rules can be represented in CNF as follow:

𝐴𝐴 → 𝑡𝑡,𝑃𝑃𝑃𝑃(𝐴𝐴 → 𝑡𝑡)

𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵,𝑃𝑃𝑃𝑃 �𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵�

𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ 𝑉𝑉𝑁𝑁, 𝑡𝑡 ∈ 𝑉𝑉𝑇𝑇
𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑢𝑢𝑢𝑢, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}

where 𝑃𝑃𝑃𝑃(𝐴𝐴 → 𝑡𝑡) and 𝑃𝑃𝑃𝑃 �𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵� are the probability of production rules.

The probability of a derivation (parse) is then the product of the probabilities of
the productions used in that derivation. With the probability, Yamamoto et al. [7]
formulated the recognition problem as a search problem of the most likely
mathematical expression candidate, which can be solved using the CYK algorithm.
Figure 2.5 shows a simple example of Yamamoto’s algorithm. The main disadvantage
of this algorithm is its dependency with respect to the temporal order of strokes. As a
result, the user must input strokes in a correct order pre-processing methods must
be applied.

Compared with 2D-CFG, 2D-SCFG is a probabilistic model because of associating
each production rule with a probability. It makes it possible to apply machine
learning to automatically learn the grammar from a training dataset [8].

10

http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Formal_grammar%23The_syntax_of_grammars

Figure 2.5 Example of a search for most likely expression candidate using the CYK
algorithm

2.3.3 Fuzzy Relational Context-Free Grammar

Scott et al. [13] and MacLean[21] used a variant of the relational context-free
grammar called fuzzy relational context-free grammar (Fuzzy r-CFG) to model
mathematical structure. Fuzzy r-CFG is similar to SCFG. Instead of the probability

𝑃𝑃𝑃𝑃 �𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵�, each production rule is associated to a fuzzy function 𝑟𝑟𝑇𝑇. And fuzzy

function is to represent the degree to which a particular interpretation of expression
is valid.

The advantage of Fuzzy r-CFG is that it provides confidence score for each
interpretation. But the disadvantage is that it is not a probabilistic model as SCFG,
and it cannot apply statistical method.

11

2.3.4 Other Grammars

 In addition to context-free grammars, graph grammar, or graph rewriting, is also
a general technique in structural analysis. Graph grammar has been applied to
mathematical expression recognition as [19]. The initial graph contains nodes to
represent each symbol and contains no edges. Each single node is associated with
attribute recording location and meaning of each symbol. Then graph rules are
applied to add edges representing spatial relations between symbols. The output of a
successfully recognized expression is a single node whose attribute represents the
high-level meaning of the input expression as a character string. Graph grammars
encode the spatial relation into topology of graph. However, its calculation time is
long.
 Another grammar is geometric grammar [20]. It describes how a geometry or
structure can be generated. However, it only concerns the structure information, not
taken into account syntax.

M. Shilman and P. Viola [14] present a grouping method in handwritten text in
diagrams and equations, based on neighborhood graph. Then dynamic programming
is used to search for the minimum cost interpretation. A. Kosmala and G. Rigoll [15]
use context dependent graph grammars, and reduce the parsing complexity from
O(𝑛𝑛2) to O(n) by optimizing graph parsing.

2.4 Summary

As mentioned above, many grammars are applied in mathematical expression
interpretation. Table 2.2 shows a summary.
 2D grammars are a powerful tool. However, they only describe the spatial
relations roughly (right, top, bottom, superscript, subscript, and inside). To describe
the relative position more precisely, some works combine grammar productions with
statistical model. The model is learned from a training database.
 Stria et al. [11] combined 2D grammar with statistical model of individual symbol
relationship. In the schema, distributions are obtained by learning spatial relation
from the dataset. And then relative values between two nodes in the relational tree
are computed. Appropriate relationships are selected when their distributions fit the
values.

Álvaro et al. [8] train a Support Vector Machine (SVM) classifier using a set of
features describing the spatial relations. They learn the spatial relations distribution
from training data. From the resulting trained SVM models, the probabilities in the
parsing are able to be computed.

12

 The approach proposed by Awal et al. [6] allows learning spatial relations directly
from complete expressions. Each production rule of the grammar is associated to a
Gaussian model specific to each spatial relation.
 In addition to 2D grammars, other proposals are presented. Miller and Viola [17]
proposed a geometric approach which uses convex hulls for grouping symbols and
geometrical data structure to control the complexity of parsing. Liang et al. [18]
improve Miller and Viola's algorithm and introduce several new types of geometrical
data structures (e.g., Rectangle Hull Region, Convex Hull Region, Graph Region and
Partial Order Region etc.) to speed up the parsing.

Table 2.2 Summary of different grammars in Mathematical expression recognition

13

Chapter 3. Developed System

This chapter describes the developed system for parsing mathematical

expressions. The architecture is shown as Figure 3.1. The input is InkML file.
Segmentation hypothesis generator is used to generate segments. MLP is used as
symbol classifier. The Interpretation is carried out based on CYK algorithm with the
help of 2D stochastic context-free grammar and spatial relation. The output is in both
LaTex and MathML format.

Figure 3.1 Architecture of our developed system

3.1 Mathematical Expression Grammar

A two-dimensional stochastic context-free grammar is used in our system. This
grammar is defined manually trying to cover a wide range of expressions. We tried to
model all the expressions that appear in the dataset in our experiment. There are six
kinds of spatial relation defined in our grammar: subscript (𝑆𝑆𝑆𝑆𝑆𝑆), superscript (𝑆𝑆𝑆𝑆𝑆𝑆),
horizontal (𝐻𝐻), vertical (𝑉𝑉), sub-super-expression (𝑆𝑆𝑆𝑆𝑆𝑆) and inside (𝐼𝐼𝐼𝐼𝐼𝐼). However,
the grammar cannot parse the cases like left subscript, left superscript (𝑎𝑎12) or matrix.
But these kinds of expression do not appear in our experiment dataset.

14

Table 3.1 shows all the non-terminals in our grammar. There are totally 21 non-
terminals where initial state must be Exp or Sym.

Table 3.1 Non-terminals in our grammar
Nonterminals Initial State

Exp, Sym, ExpOp, OpUn, ROpUn, OBExp,
OpBin, OverExp, Over, OverSym, LeftPar,
RightPar, RPExp, SSExp, BigOpExp, BigOp,

Sqrt, Func, 2Let, Let, SupSym

Exp, Sym

Table 3.2 shows all the nonterminal production rules that we defined. Each

production rule consists of six parts: probability, spatial relation, one father (left-
hand side, denoted by A), two children (right-hand side, denoted by B and C), LaTex
output format. For example, the production rule

1.0 Sub Exp -> BigOp Exp "$1_{$2}"
represents that an Exp can be obtained by the combination of a BigOp and an Exp
with the spatial relation of Sub (subscript). The probability of this production rule is
1.0. The Latex output format is "$1_{$2}" where $1, $2 represent the first child and
second child, respectively.
 In the production rules of vertical relation (V), there is an additional merge flag
representing how father define its reference line. For example, in the production rule

1.0 V Exp -> Exp OverExp "\frac{$1}{$2}" BCC
Merge flag “BCC” represents that father (Exp) uses sup-line of A (Exp), and center-
line and sub-line of B (OverExp). This will be described in detail in section 3.5.

Table 3.2 Stochastic context-free grammar used in our system
Prob Relation A -> B C Latex Format Merge Flag
1.0 Sup Exp -> ExpOp SupSym "{$1}^{$2}"
1.0 Sup Exp -> Sym SupSym "{$1}^{$2}"
1.0 Sub Exp -> BigOp Exp "$1_{$2}"
1.0 Sub Exp -> BigOp Sym "$1_{$2}"
1.0 H Exp -> Exp Exp "$1 $2"
1.0 H Exp -> Exp Sym "$1 $2"
1.0 H Exp -> Sym Exp "$1 $2"
1.0 H Exp -> Sym Sym "$1 $2"
1.0 H Exp -> OpUn Exp "$1 $2"
1.0 H Exp -> OpUn Sym "$1 $2"
1.0 H Exp -> Exp ROpUn "$1 $2"
1.0 H Exp -> Sym ROpUn "$1 $2"
1.0 H Exp -> Exp OBExp "$1 $2"
1.0 H Exp -> Sym OBExp "$1 $2"
1.0 H OBExp -> OpBin Exp "$1 $2"
1.0 H OBExp -> OpBin Sym "$1 $2"
1.0 Sup Exp -> ExpOp Exp "{$1}^{$2}"
1.0 Sup Exp -> ExpOp Sym "{$1}^{$2}"
1.0 Sup Exp -> Sym Exp "{$1}^{$2}"

15

1.0 Sup Exp -> Sym Sym "{$1}^{$2}"
1.0 Sub Exp -> ExpOp Exp "{$1}_{$2}"
1.0 Sub Exp -> Sym Exp "{$1}_{$2}"
1.0 Sub Exp -> ExpOp Sym "{$1}_{$2}"
1.0 Sub Exp -> Sym Sym "{$1}_{$2}"
1.0 V Exp -> Exp OverExp "\frac{$1}{$2}" BCC
1.0 V Exp -> Sym OverExp "\frac{$1}{$2}" BCC
1.0 V OverExp -> Over Exp "$2" BBC
1.0 V OverExp -> Over Sym "$2" BBC
1.0 H Exp -> LeftPar RPExp "$1 $2"
1.0 H ExpOp -> LeftPar RPExp "$1 $2"
1.0 H RPExp -> Exp RightPar "$1 $2"
1.0 H RPExp -> Sym RightPar "$1 $2"
1.0 H Exp -> ExpOp SSExp "{$1}$2"
1.0 H Exp -> Sym SSExp "{$1}$2"
1.0 H Exp -> BigOp SSExp "$1$2"
1.0 SSE SSExp -> Exp Exp "_{$2}^{$1}"
1.0 SSE SSExp -> Sym Exp "_{$2}^{$1}"
1.0 SSE SSExp -> Exp Sym "_{$2}^{$1}"
1.0 SSE SSExp -> Sym Sym "_{$2}^{$1}"
1.0 SSE SSExp -> SupSym Exp "_{$2}^{$1}"
1.0 SSE SSExp -> SupSym Sym "_{$2}^{$1}"
1.0 SSE SSExp -> Exp SupSym "_{$2}^{$1}"
1.0 SSE SSExp -> Sym SupSym "_{$2}^{$1}"
1.0 SSE SSExp -> SupSym SupSym "_{$2}^{$1}"
1.0 V Exp -> Exp BigOpExp "$2^{$1}" CCC
1.0 V Exp -> Sym BigOpExp "$2^{$1}" CCC
1.0 V BigOpExp -> BigOp Exp "$1_{$2}" BBB
1.0 V BigOpExp -> BigOp Sym "$1_{$2}" BBB
1.0 H Exp -> BigOpExp Exp "$1 $2"
1.0 H Exp -> BigOpExp Sym "$1 $2"
1.0 Ins Exp -> Sqrt Exp "\sqrt{$2}"
1.0 Ins Exp -> Sqrt Sym "\sqrt{$2}"
1.0 H Exp -> Exp Func "$1 $2"
1.0 H Exp -> Sym Func "$1 $2"
1.0 H Exp -> Func Exp "$1 $2"
1.0 H Exp -> Func Sym "$1 $2"
1.0 H Func -> Let 2Let "\mathop{$1$2}"
1.0 H Func -> 2Let 2Let "\mathop{$1$2}"
1.0 H 2Let -> Let Let "$1$2"
1.0 V Exp -> Func Exp "$1_{$2}" BBB
1.0 V Exp -> Func Sym "$1_{$2}" BBB

Terminal production rules are not shown in Table 3.2 because there are large
numbers of terminals. Non-terminals Sym, Let, Over, BigOp, OpUn, ROpUn, OpBin,
OverSym, SupSym, LeftPar, RightPar and Sqrt have terminal production rules. For
example, BigOp includes big operators like \sum (∑), \bigcup (∪), \cap (∩), \int (∫),

16

\prod (∏), \lim (lim). OpUn includes unary operators like +, -, \neg (≠), \pmv(±), \log
(log), \sin (sin), \cos (cos), \tan (tan), \exists (∃), \forall (∀), \ldots (⋯).

3.2 Segmentation Hypothesis Generator

 In the case of on-line handwritten recognition, the input is a set of strokes
(shown as Figure 3.2). As we mentioned before, the segmentation hypothesis
generator is to segment the mathematical expression into groups which are called
segmentation hypotheses. These segmentation hypotheses will be recognized by a
classifier and each of them is assumed to be a single symbol.

Figure 3.2 The input in on-line case is a set of strokes

The goal of segmentation hypothesis generator is to find out the correct

segmentation as many as possible. Since many symbols are composed by only one
stroke, in our system, each single stroke will be considered to be a hypothesis.

17

However, it is not enough because there are still a large number of multi-stroke
symbols which are made of more than one stroke. For example, symbols like “i”, “j”,
“=” are composed by two strokes. Symbols like “≠”, “÷”, “⋯” are composed by three
strokes. Symbols like “sin”, “cos”, “lim” are composed by four strokes. As a result, not
only each single stroke but also multiple strokes should be taken into account in the
segmentation hypothesis generator.

A possible way to treat this problem is by merging closer strokes to form a
hypothesis. To measure the closeness between two strokes, first of all, we use
minimum bounding box. The minimum bounding box is a term used in geometry. For
a point set S, the minimum bounding box refers to the rectangle box with the
smallest area within which all the points lie. As is shown in Figure 3.3, the dash lines
represent the bounding box for each stroke in the expression.

Figure 3.3 Bounding box of each stroke in the expression

Then, we also define a searching area for the stroke. Take stroke 0 in Figure 3.3

for example. As is shown in Figure 3.4, the bounding box of this stroke is the
rectangle labeled by 𝐵𝐵. To represent a rectangle area in our paper, we would use
{(𝑥𝑥,𝑦𝑦), (𝑠𝑠, 𝑡𝑡)}, where (𝑥𝑥,𝑦𝑦) is top left corner and (𝑠𝑠, 𝑡𝑡) is bottom right corner.
Bounding box 𝐵𝐵 can be denoted by {(𝑥𝑥,𝑦𝑦), (𝑠𝑠, 𝑡𝑡)}. The searching area labeled by 𝐴𝐴 is
given relative to the position and size of bounding box 𝐵𝐵. The searching area 𝐴𝐴 can
be represented by {(𝑥𝑥 − 𝑅𝑅𝑅𝑅,𝑦𝑦 − 𝑅𝑅𝑅𝑅), (𝑠𝑠 + 𝑅𝑅𝑅𝑅, 𝑡𝑡 + 𝑅𝑅𝑅𝑅)} where (𝑥𝑥 − 𝑅𝑅𝑅𝑅,𝑦𝑦 − 𝑅𝑅𝑅𝑅) is
top left corner, (𝑠𝑠 + 𝑅𝑅𝑅𝑅, 𝑡𝑡 + 𝑅𝑅𝑅𝑅) is bottom right corner, 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are called
reference distance.

Let 𝑤𝑤𝑖𝑖 and ℎ𝑖𝑖 be the width and height of the bounding box of the 𝑖𝑖𝑡𝑡ℎ stroke in an
expression (i = 1⋯n ;𝑛𝑛 is the number of strokes in the expression). Let
𝑊𝑊 = {𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛} and 𝐻𝐻 = {ℎ1, ℎ2,⋯ ,ℎ𝑛𝑛} be the set of width and height of
bounding box of all the strokes. 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are computed as follow:

𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊)�

𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻)�

18

Figure 3.4 Searching area of a stroke

Given a certain stroke 𝑠𝑠 and its searching area 𝐴𝐴𝑠𝑠, any other stroke is considered

to be close to stroke 𝑠𝑠 only if its bounding box has overlap with searching area 𝐴𝐴𝑠𝑠.
Take stroke 0 in Figure 3.5 for example, 𝐴𝐴0 is searching area of stroke 0. Stroke 1 is
close to stroke 0 because it is in the searching area 𝐴𝐴0. As a result, stroke 0 and
stroke 1 form a hypothesis and it will be recognized by classifier in the following step.
The generator inevitably generates wrong segmentation. Take stroke 5 for another
example, stroke 5 and stroke 4 combine to be a hypothesis in a similar way. There are
another two hypotheses (stroke 5 and 6, stroke 5 and 7) because the bounding box
of stroke 6 and 7 have overlap with searching area 𝐴𝐴5. But obviously, they are not a
symbol and not a correct segmentation. The goal of segmentation hypothesis
generator is to find out the correct segmentation as many as possible. Larger
searching area generates more hypotheses and covers more correct segmentation.
But it introduces too much wrong segmentation and increases the hypotheses space.
To solve this problem, we can set a “junk class” in the classifying step to avoid
improbable hypothesis. This will be introduced in the next section. We can also apply
machine learning to obtain an optimal searching area from a training set.

Figure 3.5 Search for closer strokes using searching area

19

The method introduced above is to generate two-stroke hypothesis. To generate

hypotheses which are composed by three strokes, we just need to merge a two-
stroke hypothesis with one of its closer strokes to form a three-stroke hypothesis. It
is similar to form four-stroke hypothesis, five-stroke hypothesis and even n-stroke
hypothesis. Take symbol “cos” for example. In Figure 3.6(a), stroke 0 and stroke 1
form a two-stroke hypothesis ℎ0,1. To find any other strokes close to ℎ0,1, we need
the searching area for this two-stroke hypothesis. The searching area and bounding
box for n-stroke case (n ≥ 2) is similar with one-stroke case. The bounding box of
stroke 0 is {(𝑥𝑥0, 𝑦𝑦0), (𝑠𝑠0, 𝑡𝑡0)} and the bounding box of stroke 1 is {(𝑥𝑥1, 𝑦𝑦1), (𝑠𝑠1, 𝑡𝑡1)}.
The bounding box of ℎ0,1 is the rectangle area {(𝑥𝑥0,𝑦𝑦0), (𝑠𝑠1, 𝑡𝑡0)}, within which all the
points of stroke 0 and 1 lie. The searching area 𝐴𝐴0,1 is {(𝑥𝑥0 − 𝑅𝑅𝑅𝑅, 𝑦𝑦0 − 𝑅𝑅𝑅𝑅), (𝑠𝑠1 +
𝑅𝑅𝑅𝑅, 𝑡𝑡0 + 𝑅𝑅𝑅𝑅)}. Any other stroke is considered to be close to ℎ0,1 only if its bounding
box has overlap with searching area 𝐴𝐴0,1. In Figure 3.6(b), stroke 2 is close to ℎ0,1
because its bounding box has overlap with searching area 𝐴𝐴0,1. Thus, ℎ0,1 and stroke
2 form a three-stroke hypothesis and it will be recognized by classifier in the
following step.

(a)

20

(b)

Figure 3.6 Generate three-stroke hypothesis. (a) Merge stroke 0 and stroke 1 to form
a two-stroke hypothesis. (b) Merge two-stroke hypothesis in (a) and stroke 2 to form
a three-stroke hypothesis.

To form three-stroke hypothesis, we need to find out all two-stroke hypothesis.
Similarly, we need three-stroke hypotheses to form four-stroke hypotheses. And so
on, we need (n-1) stroke hypotheses to form n-stroke hypotheses (n ≥ 2). It is a
recursive way. In our system, we generate up to four-stroke hypotheses because it
covers all the cases in our experiment dataset. It is important to note that it also
introduces wrong segmentation in this way. Take “cos” for example. To form a three-
stroke hypothesis of “cos”, we need to firstly form two-stroke hypotheses of “co” or
“os”. But these two-stroke hypotheses are just wrong segmentation and they
increase the hypotheses space. As is said before, a junk class in the classifier can
avoid improbable hypothesis and help to solve this problem.

3.3 Symbol Recognition

A set of segmentation hypotheses is obtained as described in section 3.2. Then,
the symbol classifier associates a recognition probability and a class label with each
segmentation hypothesis. In our system, Multilayer Perceptron Neural Network (MLP)

was chosen. For a given hypothesis ℎ𝑖𝑖, MLP gives it a probability denoted by 𝑝𝑝�𝑐𝑐𝑗𝑗�ℎ𝑖𝑖�

with ∑ 𝑝𝑝�𝑐𝑐𝑗𝑗�ℎ𝑖𝑖� = 1𝑗𝑗 . 𝑝𝑝�𝑐𝑐𝑗𝑗�ℎ𝑖𝑖� represents the probability that this hypothesis ℎ𝑖𝑖

being the class 𝑐𝑐𝑗𝑗. For every hypothesis, the classifier gives them many symbol
candidates. It is not necessary to keep all the candidates because many ambiguities
in classifying stage could be resolved at the global context level. After experiments,
we found that keeping the best three candidates of the symbol classifier is already
enough.

As is introduced in Section 3.2, the segmentation hypothesis generator always
generates wrong segmentation and consequently increases hypotheses space. Thus,

21

we hope the classifier can identify the wrong segmentation and reject them. In a
word, we are dealing with rejection problem. In this paper, we will call the reject
class the “junk class”. The “junk class” is also a class label, but it doesn’t represent
any symbol. For a hypothesis ℎ𝑖𝑖 being recognized as junk, the classifier also gives it a
probability 𝑝𝑝(𝑐𝑐𝑖𝑖 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗|ℎ𝑖𝑖). The higher the probability is, the more probably it can
be a wrong segmentation. The junk class is like a filter. It rejects wrong segmentation,
and consequently limits the hypotheses space.

Figure 3.7 shows the classifying result for symbol “cos”. As is described in Section
3.2, to form a three-stroke hypothesis ℎ0,1,2 of “cos”, we need to firstly form two-
stroke hypothesis ℎ0,1 of “co” and ℎ1,2 of “os”. Hypotheses ℎ0,1and ℎ1,2are wrong
segmentation. Both of them are considered to be junk with high probability. Thus,
they are rejected from the following CYK parsing step.

Figure 3.7 Classifying result for symbol “cos”

3.4 CYK Parsing

 After segmentation and symbol recognition, a set of hypotheses associated with
class label and probability is obtained. We need to determine the spatial relation
among these symbols in order to build a complete structure. In our work, the CYK
parsing algorithm is used to parse the input (represented by the set of hypotheses)
and obtain the most probable derivation. The CYK algorithm is a dynamic
programming method, and based on the construction of a parsing table.

Let 𝒢𝒢 be a CNF 2D-SCFG. As is introduced before, the probabilities are formally
defined as:

𝑝𝑝(𝐴𝐴 → 𝑡𝑡)

22

𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵)

A, B, C ∈ 𝑉𝑉𝑁𝑁, 𝑡𝑡 ∈ 𝑉𝑉𝑇𝑇
Let 𝒮𝒮 = {𝑠𝑠𝑖𝑖|𝑖𝑖: 1,2, …𝑁𝑁} be the set of all the strokes in a given expression where

𝑁𝑁 is the total number of strokes. Let 𝑆𝑆𝑙𝑙 be the set of 𝑙𝑙 strokes (1 ≤ 𝑙𝑙 ≤ 𝑁𝑁) and
𝑆𝑆𝑙𝑙 ⊆ 𝒮𝒮. Let 𝒯𝒯 be the parsing table of CYK algorithm. Each element in table 𝒯𝒯 is
denoted by 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝) and defined as follow. For a given element 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝), 𝑝𝑝
represents the probability that 𝐴𝐴 is the solution of the mathematical sub-expression
composed by the 𝑙𝑙 strokes 𝑆𝑆𝑙𝑙. Let 𝑇𝑇𝑙𝑙 = {𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝)} be the parse structure where
each element 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝) is composed by 𝑙𝑙 strokes.

The CYK algorithm is to calculate the parsing table 𝒯𝒯 (see Figure 3.8). Each
element 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝) represents a sub-expression composed by 𝑙𝑙 strokes. Each cell is
the set of elements with the same strokes 𝑆𝑆𝑙𝑙. Each row is the set of cells with the
same number of strokes, that is 𝑇𝑇𝑙𝑙 = {𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 ,𝑝𝑝)}. The table begins at the bottom
row 𝑇𝑇1 where each element 𝑒𝑒1(𝐴𝐴, 𝑆𝑆1,𝑝𝑝) is composed by only one stroke. The
algorithm constructs the higher part of table by calculating new sub-expression of
increasing strokes. The top of table 𝑇𝑇𝑁𝑁 = {𝑒𝑒𝑁𝑁(𝐴𝐴, 𝑆𝑆𝑁𝑁, 𝑝𝑝)} = {𝑒𝑒𝑁𝑁(𝐴𝐴,𝒮𝒮,𝑝𝑝)} is the
elements composed by all the strokes of a given expression. In the element
𝑒𝑒𝑁𝑁(𝐴𝐴,𝒮𝒮,𝑝𝑝) with the highest probability 𝑝𝑝, 𝐴𝐴 is the most probable interpretation for
this expression.

Figure 3.8 CYK parsing table

The CYK algorithm is divided into two steps. First it initializes the table with the

segmentation hypotheses. Let ℎ𝑙𝑙 be the segmentation hypothesis composed by 𝑙𝑙
strokes (𝑙𝑙 ≤ 4). 𝑙𝑙 ≤ 4 because we generate up to four-stroke hypotheses as is
described in section 3.2. The initialization works as follow:

 𝑇𝑇1 = 𝑇𝑇1 ∪ {𝑒𝑒1(𝐴𝐴, ℎ1, 𝑝𝑝)}
𝑇𝑇2 = 𝑇𝑇2 ∪ {𝑒𝑒2(𝐴𝐴,ℎ2, 𝑝𝑝)}
𝑇𝑇3 = 𝑇𝑇3 ∪ {𝑒𝑒3(𝐴𝐴,ℎ3, 𝑝𝑝)}
𝑇𝑇4 = 𝑇𝑇4 ∪ {𝑒𝑒4(𝐴𝐴,ℎ4, 𝑝𝑝)}

23

Generally,
𝑇𝑇𝑙𝑙 = 𝑇𝑇𝑙𝑙 ∪ {𝑒𝑒𝑙𝑙(𝐴𝐴, ℎ𝑙𝑙 ,𝑝𝑝)} 𝑙𝑙 = 1,2,3,4

For a given 𝑒𝑒𝑙𝑙(𝐴𝐴,ℎ𝑙𝑙 , 𝑝𝑝), the value 𝑝𝑝 is:
𝑝𝑝𝑙𝑙(𝐴𝐴) = 𝑝𝑝(𝐴𝐴 → 𝑡𝑡)𝑝𝑝(𝑡𝑡|ℎ𝑙𝑙)

where 𝑡𝑡 is a particular mathematical symbol, 𝐴𝐴 is a nonterminal and 𝐴𝐴 → 𝑡𝑡 is a
terminal production. Value 𝑝𝑝(𝐴𝐴 → 𝑡𝑡) is the probability provided by terminal
production 𝐴𝐴 → 𝑡𝑡 in the stochastic context-free grammar, and 𝑝𝑝(𝑡𝑡|ℎ𝑙𝑙) is the
probability that this hypothesis ℎ𝑙𝑙 being recognized as the class 𝑡𝑡. 𝑝𝑝(𝑡𝑡|ℎ𝑙𝑙) is provided
by MLP symbol classifier (see Section 3.3).
 It is important to note that one mathematical symbol 𝑡𝑡 can belong to several
nonterminal 𝐴𝐴. For example, the “+” symbol can be a binary operator such as “1+2”,
or it can be a unary operator such as “+2”. The “-” symbol can be a binary operator

such as “2-1”, or a unary operator such as “-2”, or a fractional line such as “1
2
”. Thus

for a hypothesis ℎ𝑙𝑙 being classified as a specific class 𝑡𝑡, each possible nonterminal
associated to the corresponding rule is added to the parsing table. For example, “+”
is added in the table with its probability for being “OpBin”, “OpUn”. “-” is added in
the table with its probability for being “OpBin”, “OpUn” and “Over”.

The pseudocode for the initialization is shown in Figure 3.9. For each hypothesis,
MLP classifier gives the best three candidates (see Section 3.3). We use a threshold
to avoid exploring improbable hypothesis. This is done to limit the search space
during the parsing. But in this way, we could not guarantee that the optimal solution
is achieved because some possible solutions are removed by threshold.

Figure 3.9 Pseudocode for CYK parsing table initialization

Then, the parsing process constructs the higher part of table by calculating new
subexpression of increasing size. This step is computed as:

𝑇𝑇𝑙𝑙 = 𝑇𝑇𝑙𝑙 ∪ {𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 ,𝑝𝑝)} 𝑙𝑙 = 2,3,⋯ ,𝑁𝑁
A new subexpression 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 ,𝑝𝑝) is created from two subexpression of smaller

size 𝑒𝑒𝑘𝑘(𝐵𝐵, 𝑆𝑆𝑘𝑘,𝑝𝑝𝑘𝑘) and 𝑒𝑒𝑙𝑙−𝑘𝑘(𝐶𝐶, 𝑆𝑆𝑙𝑙−𝑘𝑘,𝑝𝑝𝑙𝑙−𝑘𝑘) (1 ≤ 𝑘𝑘 < 𝑙𝑙) according to both syntactic

constraint (the production rule 𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵) and the spatial constraint (spatial relation

𝑠𝑠𝑠𝑠𝑠𝑠). For a given 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 ,𝑝𝑝), the value 𝑝𝑝 is defined as:

𝑝𝑝 = 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵)𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙−𝑘𝑘𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠)

24

where 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵) is the probability provided by production rule 𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵 in the

grammar, the probability 𝑝𝑝𝑘𝑘 and 𝑝𝑝𝑙𝑙−𝑘𝑘 are obtained from the lower part of CYK
parsing table, and 𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) is the probability that these two sets of strokes
𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘 are combined according to the spatial relation 𝑠𝑠𝑠𝑠𝑠𝑠 (see Section 3.5).
 When creating a subexpression of size 𝑙𝑙, a straightforward way is to try all
(𝑘𝑘, 𝑙𝑙 − 𝑘𝑘) size pairs. In fact, it is not necessary to check all combinations. For a given
subexpression 𝑎𝑎 of size 𝑘𝑘, we define a specific searching area according to different
kinds of spatial relation (see Figure 3.10). The size of searching area (dashed line area)
is given by the bounding box of 𝑎𝑎 and reference distance 𝑅𝑅𝑅𝑅, 𝑅𝑅𝑅𝑅 (see Section 3.2).
Any other subexpression 𝑏𝑏 of size 𝑙𝑙 − 𝑘𝑘, which has overlap with the searching area,
will be combined with 𝑎𝑎 to form a new subexpression of size 𝑙𝑙. Figure 3.11 shows two
cases where given a subexpression (“sin” and “2”) and their searching area (dashed
line area). Given the subexpression “sin” and the spatial relation “horizontal”, the
system only would apply the horizontal production rules with the subexpressions
which overlap the searching area. The denominator “2” is other example of space
search for “vertical up” subexpressions.

Figure 3.10 Searching area for different kinds of spatial relation

25

Figure 3.11 Example of searching area for a particular subexpression and spatial
relation

 Figure 3.12 shows the second step of CYK parsing algorithm. In this pseudocode,
the “search” operation is to search subexpressions with searching area as explained
above.

For all 𝑙𝑙 = 2,3,⋯ ,𝑁𝑁 do { // 𝑁𝑁 strokes
 for all 𝑘𝑘 = 1,2,⋯ , 𝑙𝑙 − 1 do {
 for all 𝑒𝑒𝑘𝑘(𝐵𝐵, 𝑆𝑆𝑘𝑘, 𝑝𝑝𝑘𝑘) ∈ 𝐿𝐿𝑘𝑘 do {
 𝑧𝑧ℎ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑇𝑇𝑜𝑜−𝑘𝑘 , 𝑆𝑆𝑘𝑘,ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
 𝑧𝑧𝑣 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝑇𝑇𝑜𝑜−𝑘𝑘, 𝑆𝑆𝑘𝑘, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 �
 𝑧𝑧𝑜𝑜 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝑇𝑇𝑜𝑜−𝑘𝑘, 𝑆𝑆𝑘𝑘, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �
 for all 𝑒𝑒𝑜𝑜−𝑘𝑘(𝐶𝐶, 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝𝑜𝑜−𝑘𝑘) ∈ 𝑧𝑧ℎ do {
 for all (𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵) such that 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆,𝐻𝐻, 𝑆𝑆𝑆𝑆𝑆𝑆} do {

 𝑝𝑝 = 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵)𝑝𝑝𝑘𝑘𝑝𝑝𝑜𝑜−𝑘𝑘𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑜𝑜−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠)

 if (𝑝𝑝 > 0.0) then
 𝑇𝑇𝑜𝑜 = 𝑇𝑇𝑜𝑜 ∪ {𝑒𝑒𝑜𝑜(𝐴𝐴, 𝑆𝑆𝑘𝑘 ∪ 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝)}
 }
 }
 for all 𝑒𝑒𝑜𝑜−𝑘𝑘(𝐶𝐶, 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝𝑜𝑜−𝑘𝑘) ∈ 𝑧𝑧𝑣 do {
 for all (𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵) such that 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑉𝑉} do {

 𝑝𝑝 = 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵)𝑝𝑝𝑘𝑘𝑝𝑝𝑜𝑜−𝑘𝑘𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑜𝑜−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠)

 if (𝑝𝑝 > 0.0) then
 𝑇𝑇𝑜𝑜 = 𝑇𝑇𝑜𝑜 ∪ {𝑒𝑒𝑜𝑜(𝐴𝐴, 𝑆𝑆𝑘𝑘 ∪ 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝)}
 }
 }
 for all 𝑒𝑒𝑜𝑜−𝑘𝑘(𝐶𝐶, 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝𝑜𝑜−𝑘𝑘) ∈ 𝑧𝑧𝑜𝑜 do {
 for all (𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵) such that 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝐼𝐼𝐼𝐼𝐼𝐼} do {

 𝑝𝑝 = 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵)𝑝𝑝𝑘𝑘𝑝𝑝𝑜𝑜−𝑘𝑘𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑜𝑜−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠)

 if (𝑝𝑝 > 0.0) then
 𝑇𝑇𝑜𝑜 = 𝑇𝑇𝑜𝑜 ∪ {𝑒𝑒𝑜𝑜(𝐴𝐴, 𝑆𝑆𝑘𝑘 ∪ 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝)}
 }
 }
 }
 }
}

Figure 3.12 Pseudocode of the CYK parsing algorithm

26

 Now we compare our 2D CYK algorithm with the 1D case. In the standard 1D CYK
algorithm, two indexes explain the positions that define some substring. In the 2D
CYK algorithm, there is only one index. There is a level for each subexpression size.
Each level stores a set of elements in the same size. In the initialization step, the
terminals are added at 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4. After that, the parsing process continues by
creating new subexpressions of increasing size, in which both syntactic constraints
(grammar) and spatial constraints are taken into account for each new subexpression.

3.5 Spatial Relation

 In our system, we define six kinds of spatial relation (see Figure 3.13): subscript
(𝑆𝑆𝑆𝑆𝑆𝑆), superscript (𝑆𝑆𝑆𝑆𝑆𝑆), horizontal (𝐻𝐻), sub-super-expression (𝑆𝑆𝑆𝑆𝑆𝑆), vertical (𝑉𝑉) and
inside (𝐼𝐼𝐼𝐼𝐼𝐼).

Figure 3.13 Spatial relation between two subexpressions B and C

 Given two subexpressions 𝐵𝐵 and 𝐶𝐶 , the spatial relation between them is
determined using some geometric features of their bounding boxes. Using these
features, some functions are defined by us to compute the probability
𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) used in the CYK parsing algorithm.

Before introducing the features and functions, we defined six reference lines (see
Figure 3.14(a)) on the bounding box: left sub-line, left centroid-line, left sup-line and
right sub-line , right centroid-line , and right sup-line (denoted by 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 respectively). These reference lines are used to extract
geometric features of the bounding box. Firstly, three types of symbols are defined
by us: normal, ascending and descending. For example, “a”, “c”, “e” are normal
symbol, “b”, “d” are ascending symbol, “p”, “y”, “q” are descending symbol. The
reference lines are adapted for different types of symbol. In the symbol recognition
step, the reference lines are modified according to this classification.

For normal symbol, the centroid is the geometric center (see Figure 3.14(b) left):

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑦𝑦 + 𝑡𝑡

2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 0.9 ∙ (𝑡𝑡 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦 + 0.1 ∙ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦)

For ascending symbol, the centroid is displaced down to
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 2⁄ (see Figure 3.14(b) middle):

27

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑦𝑦 + 𝑡𝑡

2 + 𝑡𝑡
2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 0.9 ∙ (𝑡𝑡 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +
𝑦𝑦 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2

For descending symbol, the centroid is displaced up to (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑡𝑡𝑡𝑡) 2⁄ (see
Figure 3.14(b) right):

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑦𝑦 + 𝑦𝑦 + 𝑡𝑡

2
2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑡𝑡

2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦 + 0.1 ∙ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦)

Figure 3.14 (a) Reference line for a general case (b) Reference line for different kinds
of symbol: normal, ascending and descending

Once the reference lines are calculated for every single symbol, this information
is hierarchical inherited as follows. The combination of two subexpressions 𝐵𝐵 and 𝐶𝐶
resulting in a new subexpression 𝐴𝐴 should follow some rules in order to preserve
good reference lines. The reference line of 𝐴𝐴 is different according to different spatial
relation.

For horizontal relation (𝐵𝐵 𝐶𝐶) (see Figure 3.15),

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

2
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
2

28

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

2
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

2
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
2

Figure 3.15 Reference line for horizontal relation

For subscript relation (𝐵𝐵𝐶𝐶) (see Figure 3.16),

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)

Figure 3.16 Reference line for subscript relation

For superscript relation (𝐵𝐵𝐶𝐶) (see Figure 3.17),

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵)
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵)

29

Figure 3.17 Reference line for superscript relation

 For sub-super-expression (𝑋𝑋𝐶𝐶𝐵𝐵) (see Figure 3.18),

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

2
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)

Figure 3.18 Reference line for sub-super-expression

For inside relation (√𝐶𝐶) (see Figure 3.19),

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)

2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)

2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)

2

30

Figure 3.19 Reference line for inside relation

 The vertical relation (𝐵𝐵𝐶𝐶) depend on the grammar. As is described in Section 3.1,

there is an additional merge flag in the production rules of vertical relation. For
example, in the production rule

1.0 V Exp -> Exp OverExp "\frac{$1}{$2}" BCC
Merge flag “BCC” represents that father (Exp) uses sup-line of A (Exp), and center-
line and sub-line of B (OverExp).

Finally, the features and functions for determining the relation between 𝐵𝐵 and 𝐶𝐶
are explained as below:
(1) Horizontal (see Figure 3.20): the features are horizontal distance (denoted by 𝑑𝑑𝑑𝑑)

and difference between 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) (denoted by 𝑑𝑑𝑑𝑑𝑑𝑑). The probability
function is computed as:

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝐻𝐻) =
𝑝𝑝1 + 𝑝𝑝2

2

such that:

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑𝑑𝑑

max(𝑅𝑅𝑅𝑅, ℎ𝐵𝐵)

where ℎ𝐵𝐵 is height of bounding box of 𝐵𝐵, 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance.

Figure 3.20 Features for horizontal relation

(2) Subscript (see Figure 3.21): the features are horizontal distance (denoted by 𝑑𝑑𝑑𝑑)

31

and difference between 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) (denoted by 𝑑𝑑𝑑𝑑). The probability
function is computed as:

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑝𝑝1 + 𝑝𝑝2

2

such that:

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑

max(𝑅𝑅𝑅𝑅, ℎ𝐵𝐵)

where ℎ𝐵𝐵 is height of bounding box of 𝐵𝐵, 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance.

Figure 3.21 Features for subscript relation

(3) Superscript (see Figure 3.22): the features are horizontal distance (denoted by 𝑑𝑑𝑑𝑑)

and difference between 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) (denoted by 𝑑𝑑𝑑𝑑). The probability
function is computed as:

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑝𝑝1 + 𝑝𝑝2

2

such that:

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑

max(𝑅𝑅𝑅𝑅, ℎ𝐵𝐵)

where ℎ𝐵𝐵 is height of bounding box of 𝐵𝐵, 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance.

Figure 3.22 Features for superscript relation

(4) Vertical (see Figure 3.23): the features are vertical distance (denoted by 𝑑𝑑𝑑𝑑),

difference between the horizontal centers (denoted by 𝑑𝑑ℎ𝑐𝑐), difference between
left boundary 𝑑𝑑𝑑𝑑, difference between right boundary 𝑑𝑑𝑑𝑑. The probability function

32

is computed as:

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑉𝑉) =
𝑝𝑝1 + 𝑝𝑝2

2

such that:

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑
3 ∙ 𝑅𝑅𝑅𝑅

where 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance.

Figure 3.23 Features for vertical relation

(5) Sub-super-expression (see Figure 3.24): the features are vertical distance

(denoted by 𝑑𝑑𝑑𝑑) and the difference between left boundary 𝑑𝑑𝑑𝑑. The probability
function is computed as:

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑆𝑆𝑆𝑆𝑆𝑆) =
𝑝𝑝1 + 𝑝𝑝2

2

such that:

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅

where 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance.

33

Figure 3.24 Features for sub-super-expression relation

(6) Inside (see Figure 3.25): the features are the horizontal distance (denoted by 𝑑𝑑𝑑𝑑)

and vertical distance (denoted by 𝑑𝑑𝑑𝑑). The probability function is computed as:

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝐼𝐼𝐼𝐼𝐼𝐼) = 1 −
(𝑑𝑑𝑑𝑑)2 + (𝑑𝑑𝑑𝑑)2

(𝑅𝑅𝑅𝑅)2 + (𝑅𝑅𝑅𝑅)2

where 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance.

Figure 3.25 Features for inside relation

3.6 Parsing Output

 After the CYK parsing algorithm is performed, the recognized expression can be
obtained by going through the parsing tree that covers the root with both initial state
and highest probability. The parsing result could be presented in different ways such
as MathML or LaTex. In our system, it produces the output in both MathML and
LaTex format.
 The process that generates the desired format output from the parsing tree is
just a recursive way from the root to the leaves. Sometimes, the mathematical
expression is not fully recognized. But it is still meaningful to provide and output part
of the expression. For example (see Figure 3.26), the input expression is not fully

34

recognized because the square root is missed. However, the partial output is still
useful. In the case of partial recognizing, the system looks for the most probable
subexpression of bigger size that covers the initial symbol (𝐸𝐸𝐸𝐸𝐸𝐸 or 𝑆𝑆𝑆𝑆𝑆𝑆) of the
grammar. Then it goes through from this node to the leaves to generate the output.

Figure 3.26 Example of partial recognizing

3.7 Example

 In order to illustrate our system, we present a simple example (see Figure 3.27).
First of all, the segmentation hypothesis generator obtains 10 hypotheses including 7
one-stroke hypotheses, 2 two-stroke hypotheses and 1 three-stroke hypotheses.
Then, the symbol classifier (MLP) associates a recognition probability and a class
label with each segmentation hypothesis. All of these information are added to 𝑇𝑇1, 𝑇𝑇2,
𝑇𝑇3 to initialize the parsing table (see Figure 3.28). As is described in Section 3.4, one
mathematical symbol can belong to several nonterminals. For example, for stroke 0,
“-” is added in the table with its probability for being “OpBin”, “OpUn” and “Over”.
For stroke 2,3, “k” is added in the table with its probability for being “Sym” and “Let”.

Figure 3.27 Sample expression

 Once the table is initialized, the recursive step begins to build subexpression
until it completes subexpression of size 7 (all the input strokes). When building new
subexpression, both syntactic constraints (grammar defined by us, see Section 3.1)
and spatial constraints (see Section 3.5) are taken into account. Figure 3.29 shows
the complete parsing table for the sample expression.
 After the CYK parsing algorithm is performed, a parsing tree can be obtained
from the table. At the top of table, there are two possible solutions 𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂.
Only initial state 𝐸𝐸𝐸𝐸𝐸𝐸 or 𝑆𝑆𝑆𝑆𝑆𝑆 can become the root of parsing tree. Thus, the
nonterminal 𝐸𝐸𝐸𝐸𝐸𝐸 with the probability −3.50054 is chosen. Once the root is
determined, the parsing tree can be obtained by going through from top to bottom

35

(see Figure 3.30(a)). The parsing tree is shown as Figure 3.30(b). Finally, the
recognized expression can be obtained by going through the parsing tree.

Figure 3.28 Initialization of table

Figure 3.29 The complete parsing table

36

(a)

(b)

Figure 3.30 (a) Obtain a parsing tree by going through the table from top to bottom.
(b) The obtained parsing tree.

37

Chapter 4. Databases and Experiments

 We have developed a system for online handwritten mathematical expression
recognition. Now we describe the experiments that we carried out to test our
developed system. Firstly, we describe the databases that we used. Then some
experiments and result are presented.

4.1 Database

 We used two database, CROHME 2011 (Part-Ⅱ) and CROHME 2012 (Part-Ⅲ)
(see Table 4.1). There are few restrictions on the grammars of these two databases.
For example, there is no limit on recursions of operations like sum, product, function
call, fraction, root, sub/superscript on symbols, etc. However, CROHME 2012 (Part-Ⅲ)
covers more terminal symbols than CROHME 2011 (Part-Ⅱ), and the grammar in
CROHME 2012 (Part-Ⅲ) is more complicated.

Both of them are from CROHME (Competition on Recognition of Online
Handwritten Mathematical Expressions). This competition was organized by ICDAR
(International Conference on Document Analysis and Recognition) on 2011 and 2012.
An overview of this competition is in [23, 24].

Table 4.1 Description for database CROHME 2011 and CROHME 2012

In these two databases, the ink corresponding to each expression is stored in an
InkML file. An InkML file mainly contains three kinds of information: (1) the ink: a set
of traces made of points; (2) the symbol level ground truth: the segmentation and
label information of each symbol of the expression; and (3) the expression level

38

ground truth: the MathML structure of the expression.
The two levels of ground truth information (at the symbol as well as at the

expression level) are entered manually. Furthermore, some general information is
added in the file: (1) the channels (here, X and Y); (2) the writer information
(identification, handedness (left/right), age, gender, etc.), if available; (3) the LaTeX
ground truth (without any reference to the ink and hence, easy to render); (4) the
unique identification code of the ink (UI), etc.

The InkML format enables to make references between the digital ink of the
expression, its segmentation into symbols and its MathML representation. An
example of an InkML file for the expression 𝐴𝐴 × 𝐵𝐵 is shown as Figure 4.1. It contains
6 strokes for 3 symbols (two for the each symbol). Note that the traceGroup with
identifier xml:id=“7” has references to the 2 corresponding strokes of symbol “A”, as
well as to the MathML part with identifier xml:id=“A_1”. Thus, the stroke
segmentation of a symbol can be linked to its MathML representation.

<ink xmlns="http://www.w3.org/2003/InkML">
<traceFormat>
<channel name="X" type="decimal"/>
<channel name="Y" type="decimal"/>
</traceFormat>
<annotation type="truth">$A\times B$</annotation>
<annotation type="UI">2012_IVC_CROHME_F01_E0012</annotation>
<annotation type="copyright">LUNAM/IRCCyN</annotation>
<annotation type="writer">CROHME01</annotation>
<annotationXML type="truth" encoding="Content-MathML">
 <math xmlns='http://www.w3.org/1998/Math/MathML'>
 <mrow>
 <mi xml:id="A_1">A</mi>
 <mrow>
 <mo xml:id="\times_1">\times</mo>
 <mi xml:id="B_1">B</mi>
 </mrow>
 </mrow>
 </math>
</annotationXML>
<trace id="0">
1.10641 6.55641, … , 1.15034 6.55598
</trace>
…
<trace id="5">
1.23863 6.51972, … , 1.2446 6.54873
</trace>
<traceGroup xml:id="6">
 <annotation type="truth">Segmentation</annotation>
 <traceGroup xml:id="7">
 <annotation type="truth">A</annotation>

39

 <traceView traceDataRef="0"/>
 <traceView traceDataRef="1"/>
 <annotationXML href="A_1"/>
 </traceGroup>
 …
</traceGroup>
</ink>

Figure 4.1 Example of InkML format

4.2 Experiments

According to CROHME 2011 and 2012, four aspects should be measured to
evaluate the performance of a system on online handwritten mathematical
expression recognition [23, 24]. They are (1) 𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅: the stroke classification rate,
representing the percentage of strokes with the correct symbol, (2) 𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆: the
symbol segmentation rate, defining the percentage of symbols correctly segmented,
(3) 𝑆𝑆𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅: the symbol recognition rate, computing the performance of the
symbol classifier when considering only the correct segmented symbols. The last
measurement is (4) 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅: the expression recognition rate, which informs the
percentage of expressions totally correctly recognized. This is a very challenging
indicator since the slightest error anywhere in the expression prevents to count it. In
order to have a better insight of the capacity of the respective systems, [24] also
extended this indicator with (5) 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅_1, _2, _3, giving the percentage of
expressions recognized with at most 1 error, 2 errors and 3 errors (in terminal
symbols or in MathML node tags) given that the tree structure is correct.

We tested our system on the test dataset of both databases. The results are
reported in Table 4.2.

Firstly, we compared the values in horizontal direction. The first three value
𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅 stay high, showing that the segmentation hypothesis
generator and symbol classifier work quite well. However, the value 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅 is very
low on both datasets. We tried to explore the reason. On one hand, 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅 is a
very strict indicator as is explained above. Even only one single error in the
expression will prevent to count it. On the other hand, the system cannot correctly
analyze the structure even though most of segmentation and symbols are recognized.
It implies that the model of spatial relation needs to be improved.

We also noted that a big gap exists between 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅_1 ,
showing that many expressions go wrong because of only one error. As long as
correcting these single errors, our system will have much improvement. On the other
hand, the narrow differences between 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅_2 and 𝐸𝐸𝑋𝑋𝑋𝑋_𝑅𝑅𝑅𝑅𝑅𝑅_3 show that
when more errors go wrong, it is difficult to improve the accuracy. Therefore, to
improve our system, we can put more focus on the one-error expressions.

Then, we compared the values in vertical direction. All the values of CROHME
2012 (Part-Ⅲ) are lower than that of CROHME 2011 (Part-Ⅱ), proving that the

40

grammar in CROHME 2012 (Part-Ⅲ) is more complicated. It shows that our system
cannot handle complicated expressions very well.

Table 4.2 Main results on the test dataset of CROHME 2011 and CROHME 2012

To compare our system with the participants of CROHME 2011 and CROHME
2012, their results are shown in Table 4.3 [24]. As we can see, our system
outperforms all the participants of CROHME 2011 at every aspect. However, we
ranked only five out of eight in CROHME 2012.

Table 4.3 Comparison between our system and the participating systems of CROHME
2011 and CROHME 2012

41

 Another interesting analysis concerns the distribution of errors with respect
to the size of the expressions. Of course, the longer the expressions, the harder it is
to recognize them. Figure 4.3 illustrates this behavior. Our system only achieved 44.6%
and 26.8% recognition rates (on CROHME 2011 and CROHME 2012, respectively)
among the shortest expressions. This kind of short expressions is also our target of
improvement.

Figure 4.2 Recognition rates (𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅) with respect to the expression length

As is discussed above, generating hypotheses covering all the correct

segmentation is the first task in the recognition process. If we don’t have correct
candidates at first, it is impossible to achieve a correct solution at the end. We did
another experiment to evaluate the performance of the segmentation hypothesis
generator. In this experiment, recall is measured. Two terms are related to the value
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 : 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . The term 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 refers to
hypotheses that are actually correct segmentation. The term 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 refers
to the correct segmentations that the generator missed to create. Recall is then
defined as:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the capability of successfully retrieving the correct segmentations.
Ideally, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 equals to be 1, meaning that the hypotheses covers all the correct
segmentations. The experimental results are shown in Table 4.4. Recalls in two stages
were tested. Before classifying, recall is almost 1, showing that the generated
hypotheses cover almost all the correct segmentations. However, recall went down
to 0.97 after classifying on both databases. That is to say some correct segmentations
were removed by the classifier. It is probably because of the classifier misrecognizing
those correct segmentations to be ‘junk’. Thus, retraining the classifier to recognize

42

the junk class is another potential to improve our system.

Table 4.4 Recall for segmentation hypotheses

43

Chapter 5. Conclusions

 In this report, we presented an on-line handwritten mathematical expression
recognition system based on 2D-SCFG. We defined a grammar covering a wide range
of expressions. We proposed a segmentation hypothesis generator using a searching
area to combine closer strokes. CYK parsing algorithm was used to analyze the
structure. For different kinds of spatial relation, we used some simple geometric
features to model them. Finally, we performed several experiments. Our system had
a moderate performance.

 For future work, there are a lot of issues to study.

5.1 Grammar Learning

 In this work, the grammar is defined manually and every production rule has a
fixed probability. A very interesting objective is to learn the probabilities of the
production rules of the SCFG from a training dataset.

5.2 Searching Area

 We used searching area for both generating multiple-stroke hypothesis and
building subexpressions during CYK parsing. The size of searching area has an
important impact. Smaller size discards some possible cases and finally cannot
guarantee the optimal solution. Bigger size introduces too many cases and finally
increases the computational time. Thus, the size of searching area is hard to
determine.

For expressions with a short symbol interval, it takes a long time to recognize
because the searching area discovers too many cases. For expressions with a long
symbol interval, we could not fully recognize since searching area is not big enough
to build new subexpression. As a result, the gap between symbols should be taken
into account when we determine the size of searching area.

5.3 Spatial Relation

 In Section 3.5, we explained the probability distributions used to model the
spatial relation. But these models are very simple. It is necessary to employ more

44

features. For example, the baseline information should contribute in the
performance of the system.
 The spatial distributions are defined manually. It is also very interesting to be
able to automatically learn the parameters of these distributions.

5.4 Complexity

 Currently, it takes nearly 30 hours to perform our system on a test dataset of 488
expressions. When the number of symbols of the expression is large, the cost of time
is very expensive. It is still far from practical. For that reason, it is necessary to reduce
this computational cost.
 Using thresholds to remove improbable hypotheses helps to improve reducing
the computational time, but it cannot guarantee that the optimal solution is
achieved.

The complexity of the parsing is relative to the number of strokes. The parsing
table becomes bigger as the expression has more strokes. As a result, another
possible solution is to adjust the input of CYK parsing algorithm from single stroke
connected strokes. It probably reduces the size of parsing table because the number
of connected strokes is far less than the number of strokes.

45

Reference

[1] Michael Shilman, Hanna Pasula, Stuart Russell, Richard Newton, Statistical Visual
Language Models for Ink Parsing, American Association for Artificial Intelligence,
2000.
[2] F. Perraud, C. Viard-Gaudin, E. Morin, P.M. Lallican, “Statistical Language Models
for On-Line Handwriting Recognition”, IEICE Transactions on Information and
Systems/Document Image Understanding and Digital Document, Vol.E88-D No.8
pp.1807-1814, 2005.
[3] N. Chomsky, “Three models for the description of language,” IRE Transactions on
Information Theory, vol. 2, pp. 113–124, 1956.
[4] D. Blostein and A. Grbavec, “Recognition of mathematical notation,” Handbook
of character recognition and document image analysis, pp. 557–582, 1997.
[5] K.-F. Chan and D.-Y. Yeung, “Mathematical expression recognition: a survey,”
International Journal on Document Analysis and Recognition, vol. 3, no. 1, pp. 3–15,
Aug. 2000.
[6] A. Awal, H. Mouchère, and C. Viard-Gaudin, “A global learning approach for an
online handwritten mathematical expression recognition system,” Pattern
Recognition Letters, Nov. 2012.
[7] R. Yamamoto and S. Sako, “On-line recognition of handwritten mathematical
expressions based on stroke-based stochastic context-free grammar,” tenth
International Workshop on Frontiers in Handwriting Recognition, 2006.
[8] Francisco Álvaro, Joan-Andreu Sánchez, “Recognition of On-line Handwritten
Mathematical Expressions Using 2D Stochastic Context-Free Grammars and Hidden
Markov Models,” Pattern Recognition Letters, 2012.
[9] D. Průša and V. Hlaváč, “2D context-free grammars: Mathematical formulae
recognition,” Proceedings of the Prague Stringology Conference, vol. 6, pp. 77–89,
2006.
[10] D. Průša and V. Hlaváč, “Structural construction for on-line mathematical
formulae recognition,” Progress in Pattern Recognition, Image Analysis and
Applications, pp. 317–324, 2008.
[11] Jan Stria, Daniel Průša, Václav Hlaváč, “Combining Structural and Statistical
Approach to Online Handwritten Math Recognition.”
[12] Álvaro, F.; Sanchez, J.-A.; Benedi, J.-M., "Recognition of Printed Mathematical
Expressions Using Two-Dimensional Stochastic Context-Free Grammars," Document
Analysis and Recognition (ICDAR), 2011 International Conference on , vol., no.,
pp.1225,1229, 18-21 Sept. 2011
[13] S. MacLean, G. Labahn, and E. Lank, “Grammar-based techniques for creating
ground-truthed sketch corpora,” International Journal on Document Analysis and
Recognition (IJDAR), vol. 14, pp. 1–21, 2011.
[14] M. Shilman, P. Viola, and K. Chellapilla, “Recognition and Grouping of
Handwritten Text in Diagrams and Equations,” Ninth International Workshop on
Frontiers in Handwriting Recognition, pp. 569–574, 2004.

[15] A. Kosmala and G. Rigoll, “On-line handwritten formula recognition using hidden
Markov models and context dependent graph grammars,” Document Analysis and
Recognition, 1999. ICDAR’99. Proceedings of the Fifth International Conference, pp.
107–110, 1999.
[16] M. Shilman, and P. Viola, “Learning nongenerative grammatical models for
document analysis,” Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference, vol. 2, pp. 1–7, 2005.
[17] E. Miller and P. Viola, “Ambiguity and constraint in mathematical expression
recognition,” PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE, vol. 784–791, 1998.
[18] Liang, P.; Narasimhan, M.; Shilman, M.; Viola, P., "Efficient geometric algorithms
for parsing in two dimensions," Document Analysis and Recognition, 2005.
Proceedings. Eighth International Conference on , vol., no., pp.1172,1177 Vol. 2, 29
Aug.-1 Sept. 2005
[19] a. Grbavec and D. Blostein, “Mathematics recognition using graph rewriting,”
Proceedings of 3rd International Conference on Document Analysis and Recognition,
vol. 1, pp. 417–421, 1995.
[20] P. Garcia and B. Coüasnon, “Using a generic document recognition method for
mathematical formulae recognition,” Graphics Recognition Algorithms and
Applications, pp. 236–244, 2002.
[21] S. MacLean and G. Labahn, “Recognizing handwritten mathematics via fuzzy
parsing,” Tech. Rep. CS-2010-13, School of Computer Science, University of Waterloo,
2010. 3, 2010.
[22] J. Fitzgerald, “Structural analysis of handwritten mathematical expressions
through fuzzy parsing,” ACST’06: Proceedings of the Second IASTED International
Conference on Advances in Computer Science and Technology, pp. 151–156, 2006.
[23] H. Mouchère and C. Viard-Gaudin, “Crohme2011: Competition on recognition of
online handwritten mathematical expressions,” International Conference on
Document Analysis and Recognition (ICDAR), 2011, pp. 1497–1500, 2011.
[24] H. Mouchère and C. Viard-Gaudin, “ICFHR 2012 Competition on Recognition of
On-Line Mathematical Expressions (CROHME 2012),” International Conference on
Frontiers in Handwriting Recognition (ICFHR), 2012, pp. 811–816, 2012.

	Two-dimensional (2D) languages and application to handwritten graphical parsing
	ABSTRACT
	Chapter 1. Introduction
	1.1 Background
	1.2 Scope and Outline

	Chapter 2. State of the Art
	2.1 Overview of Mathematical Expression Recognition
	2.2 Language and Grammar
	2.3 Grammars in Recognition
	2.3.1 Two-dimensional Context-free Grammar
	2.3.2 Two-dimensional Stochastic Context-free Grammar
	2.3.3 Fuzzy Relational Context-Free Grammar
	2.3.4 Other Grammars

	2.4 Summary

	Chapter 3. Developed System
	3.1 Mathematical Expression Grammar
	3.2 Segmentation Hypothesis Generator
	3.3 Symbol Recognition
	3.4 CYK Parsing
	3.5 Spatial Relation
	3.6 Parsing Output
	3.7 Example

	Chapter 4. Databases and Experiments
	4.1 Database
	4.2 Experiments

	Chapter 5. Conclusions
	5.1 Grammar Learning
	5.2 Searching Area
	5.3 Spatial Relation
	5.4 Complexity

	Reference

