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ABSTRACT 
Despite the recent advances in handwriting recognition, handwritten two-

dimensional (2D) languages are still a challenge. Electrical schemas, chemical 
equations and mathematical expressions are examples of such 2D languages. In this 
case, the recognition problem is particularly difficult due to the two dimensional 
layout of the language. The main goal of our work is to study the application of two-
dimensional (2D) languages on mathematical expression recognition, which is a 
special case of 2D graphical documents. The  research  work  will  be  focus  on  
context-free  grammars which has  the  potential  to cope with structural relations in 
documents.  
 The first part of this report gives an overview of mathematical expression 
recognition as well as different kinds of grammars applied in the recognition. The 
second part of the report presents our developed system, including grammars, 
segmentation hypothesis generator, parsing algorithm and spatial relation.  
 
Keywords: Pattern recognition, Graphical languages, Two-dimensional grammars, 
Handwriting recognition.  
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Chapter 1. Introduction 

 

1.1 Background 

Currently, digital devices such as smart phone are popular all over the world. As 
the digital devices are increasingly used, handwritten online documents are 
emerging. The rapid increase in the number of online handwritten documents leads 
to mounting pressure on finding new solutions for faster processing, retrieval and 
recognition. Researchers found that 2D graphical languages [1] have the potential to 
cope with the structural relation in 2D documents. As a result, the application of 2D 
languages on handwritten graphical parsing becomes a popular field of study.  

Handwriting recognition is considered as a complex field of pattern recognition 
and it has been addressed with a series of more and more complex challenges. First, 
limited to the recognition of isolated symbols, it has been then extended to deal with 
non-constrained handwriting where at the same time segmentation and recognition 
issues have to be considered. With the introduction of statistical model languages [2], 
it has been possible to go beyond word recognition with efficient solution for text 
recognition. However, in all of these cases, a strong assumption is used. The input 
can be considered as a global one dimensional (1D) layout of symbols forming words 
and then texts. This is no more the case, if we want to process structural information 
such as tables, diagrams, mathematical expressions, etc. where the layout conveys as 
much information as the symbols themselves. Hence, despite the recent advances in 
handwriting recognition, handwritten two-dimensional (2D) languages are still a 
challenge. The problems appear very complex and cannot be resolved with tools 
dedicated to 1D languages such as textual languages.  
 

1.2 Scope and Outline 

 Our work is to study mathematical expression recognition, which is a special case 
of 2D graphical documents. The emphasis is on two dimensional languages. There 
are many kinds of 2D languages, but we are more interested in context-free grammar 
because it has the potential to cope with structural relations in documents. Although 
our study is on mathematical expression recognition, our work is not only restricted 
on mathematical expression. It can extend to other kinds of graphical documents. 

This report is divided into five chapters. The first chapter presents background 
and scope of our work. In chapter 2, we give an overview of mathematical expression 
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recognition techniques as well as two-dimensional (2D) languages and its application 
on mathematical expression recognition. In chapter 3, we described our developed 
system. In chapter 4, the results of experiments on two databases are reported. 
Finally, we make a conclusion of our work and point out the future work. 
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Chapter 2. State of the Art 

 

2.1 Overview of Mathematical Expression Recognition 

 Mathematical expression plays an important role in scientific issues as well as 
many other documents. However, the input of mathematical expressions is not easy 
because they consist of many special symbols like Greek letters and operators. 
Currently, many useful tools (e.g., LaTex) support the input of mathematical 
expressions into digital documents. However, working with this kind of tool requires 
special skill and training. The most natural way for human beings to produce 
mathematical expressions is writing. Consequently, the recognition of mathematical 
expressions is worthy of further study.  

Mathematical expression recognition can be categorized from different point of 
views. 
● Printed versus Handwritten 

Printed expressions are formal and more regular. Handwritten expressions are 
more difficult to be recognized because different people have different writing styles. 
● On-line versus Off-line 

On-line recognition considers the time information of pen strokes. The 
mathematical expression is given as a sequence of sample points. Off-line 
recognition does not consider any time information. The mathematical expression is 
given as only an image. 
 The problem of mathematical recognition is usually divided into three stages [6]: 
segmentation, symbol recognition and interpretation (structural and syntactic 
analysis). In the stage of segmentation and symbol recognition, the expression is 
segmented and each segment is recognized as a symbol. In the stage of 
interpretation, the structure of expression is analyzed. For example, given a simple 
expression “𝑥𝑥2 = 1”, the place of the symbol “2” need to be consider: it should be 
placed as the upper right (superscript) of 𝑥𝑥, or the right of 𝑥𝑥. 

Mathematical expression recognition consists of three major stages: 
segmentation, symbol recognition and interpretation (structural and syntactic 
analysis). Figure 2.1 shows the architecture of recognition. The first step is to 
segment the mathematical expression into groups. Each of these groups forms a 
single symbol. In the second step, a classifier is needed to recognize each of the 
segments. After the recognition step, a list of objects with attributes (e.g., location, 
size, and probability, etc.) are returned. Finally, we apply structural analysis to obtain 
the structure of the expression. 
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Typically, the above three stages are implemented step by step. In this way, an 
error occurring in one step would be inherited by the following steps. Furthermore, 
the whole context resolves local ambiguities, and enables robust recognition. As a 
result, some systems adopted a global approach [6, 7, 8 ]: they implement these 
three stages simultaneously. 

 

 
Figure 2.1 Architecture of mathematical expression recognition 

 
As stated above, mathematical expression recognition has different categories 

and many problems need to be considered. In [6], an overview of mathematical 
expression recognition problem is given. [7] is a survey of existing works. It provided 
a comparison between different systems. 

In Section 2.3, we will review some existing work on interpretation stage. In 
particular, we will highlight the similarities and differences between different 
approaches. In addition, a comparison of other two stages can be found in [5]. 
 

2.2 Language and Grammar 

In mathematics, computer science and linguistics, a language (when the context 
is not given, often called a formal language for clarity) is 
a set of strings of symbols that may be constrained by rules that are specific to it. 
The alphabet of a formal language is the set of symbols, letters, or tokens from which 
the strings of the language may be formed; frequently it is required to be finite. A 
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formal language is often defined by means of a formal grammar such as a regular 
grammar or context-free grammar. 

A formal grammar is a set of production rules for strings in a formal language. 
The rules describe how to form strings from the language's alphabet that are valid 
according to the language's syntax. A grammar does not describe the meaning of the 
strings or what can be done with them in whatever context. 

A formal grammar is a set of rules for rewriting strings, along with a "start 
symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a 
language generator. However, it can also sometimes be used as the basis for a 
"recognizer": a function in computing that determines whether a given string belongs 
to the language or is grammatically incorrect.  

Parsing is the process of recognizing an utterance (a string in natural languages) 
by breaking it down to a set of symbols and analyzing each one against the grammar 
of the language. Most languages have the meanings of their utterances structured 
according to their syntax—a practice known as compositional semantics. As a result, 
the first step to describing the meaning of an utterance in language is to break it 
down part by part and look at its analyzed form (known as its parse tree in computer 
science, and as its deep structure in generative grammar). 
 

 
Figure 2.2 Example of parsing a sentence “the dog chased the cat” 

 
Figure 2.2 shows a simple example of parsing a sentence. Given a set of 

production rules on the left hand side, we firstly extract the tokens from the 
sentence “the dog chased the cat”. Then we go through the tokens. “the” is a 
determiner (denoted by 𝐷𝐷𝐷𝐷𝐷𝐷), “dog” is a noun (denoted by 𝑁𝑁), “chased” is a verb 
(denoted by 𝑉𝑉), the second “the” is a 𝐷𝐷𝐷𝐷𝐷𝐷, “cat” is a 𝑁𝑁. Next, a 𝐷𝐷𝐷𝐷𝐷𝐷 and a 𝑁𝑁 can 
form to be a 𝑁𝑁𝑁𝑁 (Noun Phrase), a 𝑉𝑉 and a 𝑁𝑁𝑁𝑁 can form to be a 𝑉𝑉𝑉𝑉 (Verb Phrase). 
Finally, they form to be a start symbol 𝑆𝑆. 

In the classic formalization of generative grammars first proposed by Noam 
Chomsky in the 1950s [3], a grammar 𝐺𝐺 consists of the following components: 
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● A finite set 𝑁𝑁 of nonterminal symbols, none of which appear in strings formed from 
grammar 𝐺𝐺. 
● A finite set ∑ of terminal symbols that is disjoint from 𝑁𝑁. 
● A finite set 𝑃𝑃 of production rules, each rule of the form 

(∑ ∪ 𝑁𝑁)∗𝑁𝑁 (∑ ∪ 𝑁𝑁)∗ ⟶ (∑ ∪ 𝑁𝑁)∗ 
where ∗  is the Kleene star operator and ∪  denotes set union. That is, each 
production rule maps from one string of symbols to another, where the first string 
contains an arbitrary number of symbols provided at least one of them is a 
nonterminal. In the case that the second string consists solely of the empty string 
(that is contains no symbols at all), it may be denoted with a special notation (often ε) 
in order to avoid confusion. 
● A distinguished symbol 𝑆𝑆 ∈ 𝑁𝑁 that is the start symbol. 
 A grammar is formally defined as the tuple (N,∑, P , S). Nonterminals are often 
represented by uppercase letters, terminals by lowercase letters, and the start 
symbol by 𝑆𝑆. For example, the grammar with terminals {𝑎𝑎, 𝑏𝑏}, nonterminals {𝑆𝑆,𝐴𝐴,𝐵𝐵}, 
production rules: 

𝑆𝑆 ⟶ 𝐴𝐴𝐴𝐴𝐴𝐴 
𝑆𝑆 ⟶ 𝜀𝜀 

𝐵𝐵𝐵𝐵 ⟶ 𝐴𝐴𝐴𝐴 
𝐵𝐵𝐵𝐵 ⟶ 𝑏𝑏 
𝐵𝐵𝐵𝐵 ⟶ 𝑏𝑏𝑏𝑏 
𝐴𝐴𝐴𝐴 ⟶ 𝑎𝑎𝑎𝑎 
𝐴𝐴𝐴𝐴 ⟶ 𝑎𝑎𝑎𝑎 

and start symbol 𝑆𝑆, defines the language of all words of the form 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛 (i.e. 𝑛𝑛 copies 
of 𝑎𝑎 followed by 𝑛𝑛 copies of 𝑏𝑏). 

When Noam Chomsky first formalized generative grammars in 1956 [3], he 
classified them into types now known as the Chomsky hierarchy. The Chomsky 
hierarchy consists of the following levels (see Table 2.1). 

 
Table 2.1 Summary for Chomsky hierarchy 

 
 

Type-0 grammars (unrestricted grammars) include all formal grammars. The 
grammar rules have no restriction. They generate exactly all languages that can be 
recognized by a Turing machine. These languages are also known as the recursively 
enumerable languages. 
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Type-1 grammars (context-sensitive grammars) generate the context-sensitive 
languages. These grammars have rules of the form 𝛼𝛼𝛼𝛼𝛼𝛼 → 𝛼𝛼𝛼𝛼𝛼𝛼 with 𝐴𝐴 a nonterminal 
and 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 strings of terminals and nonterminals. The strings 𝛼𝛼 and 𝛽𝛽 may be 
empty, but 𝛾𝛾 must be nonempty. The rule 𝑆𝑆 ⟶ 𝜀𝜀  is allowed if 𝑆𝑆 does not appear on 
the right side of any rule. 

Type-2 grammars (context-free grammars) generate the context-free languages. 
These are defined by rules of the form  𝐴𝐴 ⟶ 𝛾𝛾 with 𝐴𝐴 a nonterminal and 𝛾𝛾 a string of 
terminals and nonterminals. Context-free languages – or rather the subset 
of deterministic context-free language – are the theoretical basis for the phrase 
structure of most programming languages, though their syntax also includes context-
sensitive name resolution due to declarations and scope. Often a subset of grammars 
are used to make parsing easier, such as by an LL parser. 

Type-3 grammars (regular grammars) generate the regular languages. Such a 
grammar restricts its rules to a single nonterminal on the left-hand side and a right-
hand side consisting of a single terminal, possibly followed by a single nonterminal 
(right regular). Alternatively, the right-hand side of the grammar can consist of a 
single terminal, possibly preceded by a single nonterminal (left regular); these 
generate the same languages – however, if left-regular rules and right-regular rules 
are combined, the language need no longer be regular. The rule 𝑆𝑆 ⟶ 𝜀𝜀 is also 
allowed here if 𝑆𝑆 does not appear on the right side of any rule.  
 

 
Figure 2.3 Comparison between different types of grammars 

 
Comparison between different types of grammars in Chomsky hierarchy is 

shown as Figure 2.3. The difference between these types is that they have 
increasingly strict production rules and can express fewer formal languages. Two 
important types are context-free grammars (Type 2) and regular grammars (Type 3). 
The languages that can be described with such a grammar are called context-free 
languages and regular languages, respectively. Although much less powerful 
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than unrestricted grammars (Type 0), these two restricted types of grammars are 
most often used because parsers for them can be efficiently implemented.  
 

2.3 Grammars in Recognition 

 Two-dimensional grammar is a common strategy for analyzing mathematical 
expression structure. Grammars rules are used to define the grouping of individual 
symbols, and to define the spatial meaning of grouping. 
 

2.3.1 Two-dimensional Context-free Grammar 

Several approaches work on two-dimensional context-free grammars [9, 10].  
 Průša and Hlaváč [9] use two-dimensional context-free grammars (2D-CFG) to 
model off-line handwritten mathematical formulae. In their work, each production 
rule is transformed into Chomsky Normal Form and associated with a spatial relation 
(denoted by 𝑠𝑠𝑠𝑠𝑠𝑠).  

As is described in Section 2.2, a context-free grammar (CFG) is a tuple 
(𝑉𝑉𝑁𝑁, 𝑉𝑉𝑇𝑇, 𝑆𝑆0, 𝑃𝑃), where: 
(1) 𝑉𝑉𝑁𝑁 is a finite set of nonterminals;  
(2) 𝑉𝑉𝑇𝑇 is a finite set of terminals;  
(3) 𝑆𝑆0 is the initial nonterminal;  
(4)  𝑃𝑃 is a finite set of productions: 𝐴𝐴 → 𝛼𝛼, where 𝐴𝐴 ∈ 𝑉𝑉𝑁𝑁 and 𝛼𝛼 ∈ (𝑉𝑉𝑁𝑁 ∪ 𝑉𝑉𝑇𝑇)+. 

A CFG in Chomsky Normal Form (CNF) is a CFG in which the production rules are 
of the form 𝐴𝐴 → 𝐵𝐵𝐵𝐵 or 𝐴𝐴 → 𝑎𝑎 where 𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ 𝑉𝑉𝑁𝑁 and 𝑎𝑎 ∈ 𝑉𝑉𝑇𝑇. Every grammar in CNF 
is context-free, and every CFG can be transformed into an equivalent one which is in 
CNF. 

In the grammars defined by Průša and Hlaváč, each production rule is 
transformed into CNF and associated with a spatial relation (denoted by 𝑠𝑠𝑠𝑠𝑠𝑠). The 
grammar is in the formalization as below. 

𝐴𝐴 → 𝑡𝑡 

𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵 

𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ 𝑉𝑉𝑁𝑁,  𝑡𝑡 ∈ 𝑉𝑉𝑇𝑇 
𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑢𝑢𝑢𝑢,  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,  𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡,  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} 

The term 𝑠𝑠𝑠𝑠𝑠𝑠 describes the spatial relation between nonterminals. The term 𝑠𝑠𝑠𝑠𝑠𝑠, 
which only exists in 2D-CFG, is the difference between 2D case and 1D case. The 
terminal productions do not contain spatial relationship 𝑠𝑠𝑠𝑠𝑠𝑠 because there is no 
spatial relationship with only one symbol. 

The parsing of 2D-CFG is similar with that of 1D case shown in Figure 2.2. In 
order to illustrate 2D-SCFG, we present a simple example. Given a simple grammar 
 (𝑉𝑉𝑁𝑁,𝑉𝑉𝑇𝑇 , 𝑆𝑆0,𝑃𝑃) where: 
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𝑉𝑉𝑁𝑁 = {𝐸𝐸𝐸𝐸𝐸𝐸,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁,𝑂𝑂𝑂𝑂} 
𝑉𝑉𝑇𝑇 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 0,1,2,3,4,5,6,7,8,9, +,−} 
𝑆𝑆0 = 𝐸𝐸𝐸𝐸𝐸𝐸 
𝑠𝑠𝑠𝑠𝑠𝑠 = {ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} 

the production rules 𝑃𝑃 are: 

𝐸𝐸𝐸𝐸𝐸𝐸
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
�⎯⎯⎯⎯⎯⎯� 𝐸𝐸𝐸𝐸𝐸𝐸 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 

𝐸𝐸𝐸𝐸𝐸𝐸
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�⎯⎯⎯⎯⎯⎯⎯� 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁𝑁𝑁𝑁𝑁 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
�⎯⎯⎯⎯⎯⎯� 𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸 

𝐸𝐸𝐸𝐸𝐸𝐸 → 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝐸𝐸𝐸𝐸𝐸𝐸 → 𝑁𝑁𝑁𝑁𝑁𝑁 
𝑁𝑁𝑢𝑢𝑚𝑚 → [0,1,2,3,4,5,6,7,8,9] 
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 → [𝑎𝑎, 𝑏𝑏, 𝑐𝑐] 

Given an expression “𝑎𝑎3 + 𝑏𝑏2 + 1”, we firstly extract the tokens from the 
expression. Then we go through the tokens. “𝑎𝑎” is a 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, “3” is a 𝑁𝑁𝑁𝑁𝑁𝑁, “+” is 
an operator (denoted by 𝑂𝑂𝑂𝑂), “2” is a 𝑁𝑁𝑁𝑁𝑁𝑁, “+” is a 𝑂𝑂𝑂𝑂, “1” is a 𝑁𝑁𝑁𝑁𝑁𝑁. Next, we 
combine the nonterminals according to the production rules, until we reach a start 
symbol 𝐸𝐸𝐸𝐸𝐸𝐸. The parsing tree is shown as Figure 2.4. 
 

 
Figure 2.4 Parsing tree for 𝑎𝑎3 + 𝑏𝑏2 + 1 

 
The structural analysis in [9] is penalty oriented. The formula structure with least 

penalty is the desired structure. It can be effectively parsed thanks to constraints 
defined via rectangles and the usage of orthogonal range searching. Time complexity 
is lower than CYK algorithm because it does not process all rectangles in the input. 
The other novelty is not treating symbol segmentation and structural analysis as two 
separate processes. This allows the system to recover from errors made in initial 
symbol segmentation. 
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To deal with on-line data, Průša and Hlaváč [10] propose an elementary symbols 
detection different from [9]. The data structure and parsing algorithm in structural 
analysis are modified. 
 

2.3.2 Two-dimensional Stochastic Context-free Grammar 

Yamamoto et al. [7] and Álvaro et al. [12] used 2D stochastic context-free 
grammar to model the spatial relations between symbols in mathematical 
expressions.  

A stochastic context-free grammar (SCFG; also probabilistic context-free 
grammar, PCFG) is a context-free grammar in which each production is augmented 
with a probability. So every rule is associated a probability:  

𝑃𝑃(𝑟𝑟𝑖𝑖) = 𝑃𝑃(𝐴𝐴 → 𝛼𝛼𝑖𝑖) ∈ [0,1] 

For ∀𝐴𝐴 ∈ 𝑉𝑉𝑁𝑁, ∑ 𝑃𝑃(𝐴𝐴 → 𝛼𝛼𝑖𝑖) = 1𝑛𝑛𝐴𝐴
𝑖𝑖=1  where 𝑛𝑛𝐴𝐴 is the number of rules associated to 

non-terminal symbol 𝐴𝐴. 

The rules in 2D-SCFG are defined as A
𝑠𝑠𝑠𝑠𝑠𝑠
�� α, where A ∈ 𝑉𝑉𝑁𝑁, α ∈ (𝑉𝑉𝑁𝑁 ∪ 𝑉𝑉𝑇𝑇)∗ and 

spr denotes the spatial relationship that the rule models. The possible spatial 
relationships are: up, bottom, left, right, superscript, subscript and inside. Similar 
with 2D-CFG, the grammar rules can be represented in CNF as follow: 

𝐴𝐴 → 𝑡𝑡,𝑃𝑃𝑃𝑃(𝐴𝐴 → 𝑡𝑡) 

𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵,𝑃𝑃𝑃𝑃 �𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵� 

𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ 𝑉𝑉𝑁𝑁, 𝑡𝑡 ∈ 𝑉𝑉𝑇𝑇 
𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑢𝑢𝑢𝑢,  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,  𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡,  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} 

where 𝑃𝑃𝑃𝑃(𝐴𝐴 → 𝑡𝑡) and 𝑃𝑃𝑃𝑃 �𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵� are the probability of production rules. 

The probability of a derivation (parse) is then the product of the probabilities of 
the productions used in that derivation. With the probability, Yamamoto et al. [7] 
formulated the recognition problem as a search problem of the most likely 
mathematical expression candidate, which can be solved using the CYK algorithm. 
Figure 2.5 shows a simple example of Yamamoto’s algorithm. The main disadvantage 
of this algorithm is its dependency with respect to the temporal order of strokes. As a 
result, the user must input strokes in a correct order pre-processing methods must 
be applied. 

Compared with 2D-CFG, 2D-SCFG is a probabilistic model because of associating 
each production rule with a probability. It makes it possible to apply machine 
learning to automatically learn the grammar from a training dataset [8]. 
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Figure 2.5 Example of a search for most likely expression candidate using the CYK 
algorithm 
 

2.3.3 Fuzzy Relational Context-Free Grammar 

Scott et al. [13] and MacLean[21] used a variant of the relational context-free 
grammar called fuzzy relational context-free grammar (Fuzzy r-CFG) to model 
mathematical structure. Fuzzy r-CFG is similar to SCFG. Instead of the probability 

𝑃𝑃𝑃𝑃 �𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵�, each production rule is associated to a fuzzy function 𝑟𝑟𝑇𝑇. And fuzzy 

function is to represent the degree to which a particular interpretation of expression 
is valid. 

The advantage of Fuzzy r-CFG is that it provides confidence score for each 
interpretation. But the disadvantage is that it is not a probabilistic model as SCFG, 
and it cannot apply statistical method. 
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2.3.4 Other Grammars 

 In addition to context-free grammars, graph grammar, or graph rewriting, is also 
a general technique in structural analysis. Graph grammar has been applied to 
mathematical expression recognition as [19]. The initial graph contains nodes to 
represent each symbol and contains no edges. Each single node is associated with 
attribute recording location and meaning of each symbol. Then graph rules are 
applied to add edges representing spatial relations between symbols. The output of a 
successfully recognized expression is a single node whose attribute represents the 
high-level meaning of the input expression as a character string. Graph grammars 
encode the spatial relation into topology of graph. However, its calculation time is 
long. 
 Another grammar is geometric grammar [20]. It describes how a geometry or 
structure can be generated. However, it only concerns the structure information, not 
taken into account syntax. 

M. Shilman and P. Viola [14] present a grouping method in handwritten text in 
diagrams and equations, based on neighborhood graph. Then dynamic programming 
is used to search for the minimum cost interpretation. A. Kosmala and G. Rigoll [15] 
use context dependent graph grammars, and reduce the parsing complexity from 
O(𝑛𝑛2) to O(n) by optimizing graph parsing. 
 

2.4 Summary 

As mentioned above, many grammars are applied in mathematical expression 
interpretation. Table 2.2 shows a summary. 
 2D grammars are a powerful tool. However, they only describe the spatial 
relations roughly (right, top, bottom, superscript, subscript, and inside). To describe 
the relative position more precisely, some works combine grammar productions with 
statistical model. The model is learned from a training database. 
 Stria et al. [11] combined 2D grammar with statistical model of individual symbol 
relationship. In the schema, distributions are obtained by learning spatial relation 
from the dataset. And then relative values between two nodes in the relational tree 
are computed. Appropriate relationships are selected when their distributions fit the 
values. 

Álvaro et al. [8] train a Support Vector Machine (SVM) classifier using a set of 
features describing the spatial relations. They learn the spatial relations distribution 
from training data. From the resulting trained SVM models, the probabilities in the 
parsing are able to be computed. 
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 The approach proposed by Awal et al. [6] allows learning spatial relations directly 
from complete expressions. Each production rule of the grammar is associated to a 
Gaussian model specific to each spatial relation. 
 In addition to 2D grammars, other proposals are presented. Miller and Viola [17] 
proposed a geometric approach which uses convex hulls for grouping symbols and 
geometrical data structure to control the complexity of parsing. Liang et al. [18] 
improve Miller and Viola's algorithm and introduce several new types of geometrical 
data structures (e.g., Rectangle Hull Region, Convex Hull Region, Graph Region and 
Partial Order Region etc.) to speed up the parsing.  
 

Table 2.2 Summary of different grammars in Mathematical expression recognition 
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Chapter 3. Developed System 

 
This chapter describes the developed system for parsing mathematical 

expressions. The architecture is shown as Figure 3.1. The input is InkML file. 
Segmentation hypothesis generator is used to generate segments. MLP is used as 
symbol classifier. The Interpretation is carried out based on CYK algorithm with the 
help of 2D stochastic context-free grammar and spatial relation. The output is in both 
LaTex and MathML format. 
 

 
Figure 3.1 Architecture of our developed system 

 

3.1 Mathematical Expression Grammar 

A two-dimensional stochastic context-free grammar is used in our system. This 
grammar is defined manually trying to cover a wide range of expressions. We tried to 
model all the expressions that appear in the dataset in our experiment. There are six 
kinds of spatial relation defined in our grammar: subscript (𝑆𝑆𝑆𝑆𝑆𝑆), superscript (𝑆𝑆𝑆𝑆𝑆𝑆), 
horizontal (𝐻𝐻), vertical (𝑉𝑉), sub-super-expression (𝑆𝑆𝑆𝑆𝑆𝑆) and inside (𝐼𝐼𝐼𝐼𝐼𝐼). However, 
the grammar cannot parse the cases like left subscript, left superscript ( 𝑎𝑎12 ) or matrix. 
But these kinds of expression do not appear in our experiment dataset.  
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Table 3.1 shows all the non-terminals in our grammar. There are totally 21 non-
terminals where initial state must be Exp or Sym.  
 

Table 3.1 Non-terminals in our grammar 
Nonterminals Initial State 

Exp, Sym, ExpOp, OpUn, ROpUn, OBExp, 
OpBin, OverExp, Over, OverSym, LeftPar, 
RightPar, RPExp, SSExp, BigOpExp, BigOp, 

Sqrt, Func, 2Let, Let, SupSym 

Exp, Sym 

 
Table 3.2 shows all the nonterminal production rules that we defined. Each 

production rule consists of six parts: probability, spatial relation, one father (left-
hand side, denoted by A), two children (right-hand side, denoted by B and C), LaTex 
output format. For example, the production rule 

1.0    Sub   Exp       -> BigOp      Exp        "$1_{$2}" 
represents that an Exp can be obtained by the combination of a BigOp and an Exp 
with the spatial relation of Sub (subscript). The probability of this production rule is 
1.0. The Latex output format is "$1_{$2}" where $1, $2 represent the first child and 
second child, respectively. 
 In the production rules of vertical relation (V), there is an additional merge flag 
representing how father define its reference line. For example, in the production rule 

1.0    V     Exp       -> Exp        OverExp   "\frac{$1}{$2}"  BCC 
Merge flag “BCC” represents that father (Exp) uses sup-line of A (Exp), and center-
line and sub-line of B (OverExp). This will be described in detail in section 3.5.  
 

Table 3.2 Stochastic context-free grammar used in our system 
Prob Relation A -> B C Latex Format Merge Flag 
1.0   Sup   Exp  -> ExpOp     SupSym    "{$1}^{$2}" 
1.0    Sup   Exp       -> Sym        SupSym    "{$1}^{$2}" 
1.0    Sub   Exp       -> BigOp      Exp        "$1_{$2}" 
1.0    Sub   Exp       -> BigOp      Sym       "$1_{$2}" 
1.0     H     Exp       -> Exp        Exp        "$1 $2" 
1.0    H     Exp      -> Exp        Sym        "$1 $2" 
1.0    H     Exp       -> Sym        Exp        "$1 $2" 
1.0    H     Exp       -> Sym        Sym        "$1 $2" 
1.0    H     Exp       -> OpUn       Exp        "$1 $2" 
1.0    H     Exp       -> OpUn       Sym        "$1 $2" 
1.0    H     Exp       -> Exp        ROpUn     "$1 $2" 
1.0    H     Exp       -> Sym        ROpUn     "$1 $2" 
1.0    H     Exp       -> Exp        OBExp     "$1 $2" 
1.0    H     Exp       -> Sym        OBExp     "$1 $2" 
1.0    H     OBExp   ->  OpBin      Exp        "$1 $2" 
1.0    H     OBExp    ->  OpBin      Sym        "$1 $2" 
1.0    Sup   Exp       -> ExpOp     Exp        "{$1}^{$2}" 
1.0    Sup   Exp       -> ExpOp     Sym        "{$1}^{$2}" 
1.0    Sup   Exp       -> Sym        Exp        "{$1}^{$2}" 
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1.0    Sup   Exp       -> Sym        Sym        "{$1}^{$2}" 
1.0    Sub   Exp       -> ExpOp     Exp        "{$1}_{$2}" 
1.0    Sub   Exp       -> Sym        Exp        "{$1}_{$2}" 
1.0    Sub   Exp       -> ExpOp     Sym        "{$1}_{$2}" 
1.0    Sub   Exp       -> Sym        Sym        "{$1}_{$2}" 
1.0    V     Exp       -> Exp        OverExp   "\frac{$1}{$2}"  BCC 
1.0    V     Exp       -> Sym        OverExp   "\frac{$1}{$2}"  BCC 
1.0    V     OverExp -> Over       Exp        "$2"              BBC 
1.0    V     OverExp ->  Over       Sym        "$2"              BBC 
1.0     H     Exp       -> LeftPar    RPExp      "$1 $2" 
1.0    H     ExpOp    ->  LeftPar    RPExp      "$1 $2" 
1.0    H     RPExp    -> Exp        RightPar  "$1 $2" 
1.0    H     RPExp    -> Sym        RightPar  "$1 $2" 
1.0    H     Exp       -> ExpOp     SSExp      "{$1}$2" 
1.0    H     Exp       -> Sym        SSExp      "{$1}$2" 
1.0     H     Exp       -> BigOp      SSExp      "$1$2" 
1.0    SSE   SSExp     -> Exp        Exp        "_{$2}^{$1}" 
1.0    SSE   SSExp     -> Sym        Exp        "_{$2}^{$1}" 
1.0     SSE   SSExp    -> Exp        Sym        "_{$2}^{$1}" 
1.0    SSE   SSExp    -> Sym        Sym        "_{$2}^{$1}" 
1.0    SSE   SSExp     -> SupSym    Exp        "_{$2}^{$1}" 
1.0    SSE   SSExp     -> SupSym    Sym        "_{$2}^{$1}" 
1.0    SSE   SSExp     -> Exp        SupSym    "_{$2}^{$1}" 
1.0    SSE   SSExp     -> Sym        SupSym    "_{$2}^{$1}" 
1.0    SSE   SSExp     -> SupSym    SupSym    "_{$2}^{$1}" 
1.0    V     Exp       -> Exp        BigOpExp  "$2^{$1}"        CCC 
1.0    V     Exp       -> Sym        BigOpExp  "$2^{$1}"        CCC 
1.0     V     BigOpExp  -> BigOp     Exp        "$1_{$2}"  BBB 
1.0    V     BigOpExp -> BigOp     Sym        "$1_{$2}"       BBB 
1.0    H     Exp       -> BigOpExp  Exp        "$1 $2" 
1.0    H     Exp       -> BigOpExp  Sym        "$1 $2" 
1.0    Ins   Exp       -> Sqrt       Exp        "\sqrt{$2}" 
1.0    Ins   Exp       -> Sqrt       Sym        "\sqrt{$2}" 
1.0    H     Exp       -> Exp        Func       "$1 $2" 
1.0     H     Exp       -> Sym        Func       "$1 $2" 
1.0    H     Exp       -> Func       Exp        "$1 $2" 
1.0    H     Exp       -> Func       Sym        "$1 $2" 
1.0    H     Func      -> Let        2Let       "\mathop{$1$2}" 
1.0    H     Func      -> 2Let       2Let       "\mathop{$1$2}" 
1.0    H     2Let     -> Let        Let        "$1$2" 
1.0    V     Exp       -> Func       Exp        "$1_{$2}"        BBB 
1.0    V     Exp       -> Func       Sym        "$1_{$2}"        BBB 
 

Terminal production rules are not shown in Table 3.2 because there are large 
numbers of terminals. Non-terminals Sym, Let, Over, BigOp, OpUn, ROpUn, OpBin, 
OverSym, SupSym, LeftPar, RightPar and Sqrt have terminal production rules. For 
example, BigOp includes big operators like \sum (∑), \bigcup (∪), \cap (∩), \int (∫ ), 
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\prod (∏), \lim (lim). OpUn includes unary operators like +, -, \neg (≠), \pmv(±), \log 
(log), \sin (sin), \cos (cos), \tan (tan), \exists (∃), \forall (∀), \ldots (⋯). 
 

3.2 Segmentation Hypothesis Generator 

 In the case of on-line handwritten recognition, the input is a set of strokes 
(shown as Figure 3.2). As we mentioned before, the segmentation hypothesis 
generator is to segment the mathematical expression into groups which are called 
segmentation hypotheses. These segmentation hypotheses will be recognized by a 
classifier and each of them is assumed to be a single symbol.  

 
Figure 3.2 The input in on-line case is a set of strokes 

 
The goal of segmentation hypothesis generator is to find out the correct 

segmentation as many as possible. Since many symbols are composed by only one 
stroke, in our system, each single stroke will be considered to be a hypothesis. 
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However, it is not enough because there are still a large number of multi-stroke 
symbols which are made of more than one stroke. For example, symbols like “i”, “j”, 
“=” are composed by two strokes. Symbols like “≠”, “÷”, “⋯” are composed by three 
strokes. Symbols like “sin”, “cos”, “lim” are composed by four strokes. As a result, not 
only each single stroke but also multiple strokes should be taken into account in the 
segmentation hypothesis generator.  

A possible way to treat this problem is by merging closer strokes to form a 
hypothesis. To measure the closeness between two strokes, first of all, we use 
minimum bounding box. The minimum bounding box is a term used in geometry. For 
a point set S, the minimum bounding box refers to the rectangle box with the 
smallest area within which all the points lie. As is shown in Figure 3.3, the dash lines 
represent the bounding box for each stroke in the expression. 
 

 
Figure 3.3 Bounding box of each stroke in the expression 

 
Then, we also define a searching area for the stroke. Take stroke 0 in Figure 3.3 

for example. As is shown in Figure 3.4, the bounding box of this stroke is the 
rectangle labeled by 𝐵𝐵. To represent a rectangle area in our paper, we would use 
{(𝑥𝑥,𝑦𝑦), (𝑠𝑠, 𝑡𝑡)}, where (𝑥𝑥,𝑦𝑦) is top left corner and (𝑠𝑠, 𝑡𝑡) is bottom right corner. 
Bounding box 𝐵𝐵 can be denoted by {(𝑥𝑥,𝑦𝑦), (𝑠𝑠, 𝑡𝑡)}. The searching area labeled by 𝐴𝐴 is 
given relative to the position and size of bounding box 𝐵𝐵. The searching area 𝐴𝐴 can 
be represented by {(𝑥𝑥 − 𝑅𝑅𝑅𝑅,𝑦𝑦 − 𝑅𝑅𝑅𝑅), (𝑠𝑠 + 𝑅𝑅𝑅𝑅, 𝑡𝑡 + 𝑅𝑅𝑅𝑅)}  where (𝑥𝑥 − 𝑅𝑅𝑅𝑅,𝑦𝑦 − 𝑅𝑅𝑅𝑅) is 
top left corner, (𝑠𝑠 + 𝑅𝑅𝑅𝑅, 𝑡𝑡 + 𝑅𝑅𝑅𝑅)  is bottom right corner,  𝑅𝑅𝑅𝑅  and 𝑅𝑅𝑅𝑅  are called 
reference distance.   

Let 𝑤𝑤𝑖𝑖 and ℎ𝑖𝑖 be the width and height of the bounding box of the 𝑖𝑖𝑡𝑡ℎ stroke in an 
expression ( i = 1⋯n ;𝑛𝑛 is the number of strokes in the expression ). Let 
𝑊𝑊 = {𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛} and 𝐻𝐻 = {ℎ1, ℎ2,⋯ ,ℎ𝑛𝑛} be the set of width and height of 
bounding box of all the strokes. 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are computed as follow: 

𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑊𝑊)� 

𝑅𝑅𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻),𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐻𝐻)� 
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Figure 3.4 Searching area of a stroke 

 
Given a certain stroke 𝑠𝑠 and its searching area 𝐴𝐴𝑠𝑠, any other stroke is considered 

to be close to stroke 𝑠𝑠 only if its bounding box has overlap with searching area 𝐴𝐴𝑠𝑠. 
Take stroke 0 in Figure 3.5 for example, 𝐴𝐴0 is searching area of stroke 0. Stroke 1 is 
close to stroke 0 because it is in the searching area 𝐴𝐴0. As a result, stroke 0 and 
stroke 1 form a hypothesis and it will be recognized by classifier in the following step. 
The generator inevitably generates wrong segmentation. Take stroke 5 for another 
example, stroke 5 and stroke 4 combine to be a hypothesis in a similar way. There are 
another two hypotheses (stroke 5 and 6, stroke 5 and 7) because the bounding box 
of stroke 6 and 7 have overlap with searching area 𝐴𝐴5. But obviously, they are not a 
symbol and not a correct segmentation. The goal of segmentation hypothesis 
generator is to find out the correct segmentation as many as possible. Larger 
searching area generates more hypotheses and covers more correct segmentation. 
But it introduces too much wrong segmentation and increases the hypotheses space.  
To solve this problem, we can set a “junk class” in the classifying step to avoid 
improbable hypothesis. This will be introduced in the next section. We can also apply 
machine learning to obtain an optimal searching area from a training set. 
 

 
Figure 3.5 Search for closer strokes using searching area 
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The method introduced above is to generate two-stroke hypothesis. To generate 

hypotheses which are composed by three strokes, we just need to merge a two-
stroke hypothesis with one of its closer strokes to form a three-stroke hypothesis. It 
is similar to form four-stroke hypothesis, five-stroke hypothesis and even n-stroke 
hypothesis. Take symbol “cos” for example. In Figure 3.6(a), stroke 0 and stroke 1 
form a two-stroke hypothesis ℎ0,1. To find any other strokes close to ℎ0,1, we need 
the searching area for this two-stroke hypothesis. The searching area and bounding 
box for n-stroke case (n ≥ 2) is similar with one-stroke case. The bounding box of 
stroke 0 is {(𝑥𝑥0, 𝑦𝑦0), (𝑠𝑠0, 𝑡𝑡0)} and the bounding box of stroke 1 is {(𝑥𝑥1, 𝑦𝑦1), (𝑠𝑠1, 𝑡𝑡1)}. 
The bounding box of ℎ0,1 is the rectangle area {(𝑥𝑥0,𝑦𝑦0), (𝑠𝑠1, 𝑡𝑡0)}, within which all the 
points of stroke 0 and 1 lie. The searching area 𝐴𝐴0,1 is {(𝑥𝑥0 − 𝑅𝑅𝑅𝑅, 𝑦𝑦0 − 𝑅𝑅𝑅𝑅), (𝑠𝑠1 +
𝑅𝑅𝑅𝑅, 𝑡𝑡0 + 𝑅𝑅𝑅𝑅)}. Any other stroke is considered to be close to ℎ0,1 only if its bounding 
box has overlap with searching area 𝐴𝐴0,1. In Figure 3.6(b), stroke 2 is close to ℎ0,1 
because its bounding box has overlap with searching area 𝐴𝐴0,1. Thus, ℎ0,1 and stroke 
2 form a three-stroke hypothesis and it will be recognized by classifier in the 
following step.  

 

 
(a) 
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(b) 

Figure 3.6 Generate three-stroke hypothesis. (a) Merge stroke 0 and stroke 1 to form 
a two-stroke hypothesis. (b) Merge two-stroke hypothesis in (a) and stroke 2 to form 
a three-stroke hypothesis. 
 

To form three-stroke hypothesis, we need to find out all two-stroke hypothesis. 
Similarly, we need three-stroke hypotheses to form four-stroke hypotheses. And so 
on, we need (n-1) stroke hypotheses to form n-stroke hypotheses (n ≥ 2). It is a 
recursive way. In our system, we generate up to four-stroke hypotheses because it 
covers all the cases in our experiment dataset. It is important to note that it also 
introduces wrong segmentation in this way. Take “cos” for example. To form a three-
stroke hypothesis of “cos”, we need to firstly form two-stroke hypotheses of “co” or 
“os”. But these two-stroke hypotheses are just wrong segmentation and they 
increase the hypotheses space. As is said before, a junk class in the classifier can 
avoid improbable hypothesis and help to solve this problem. 
 

3.3 Symbol Recognition 

A set of segmentation hypotheses is obtained as described in section 3.2. Then, 
the symbol classifier associates a recognition probability and a class label with each 
segmentation hypothesis. In our system, Multilayer Perceptron Neural Network (MLP) 

was chosen. For a given hypothesis ℎ𝑖𝑖, MLP gives it a probability denoted by 𝑝𝑝�𝑐𝑐𝑗𝑗�ℎ𝑖𝑖� 

with ∑ 𝑝𝑝�𝑐𝑐𝑗𝑗�ℎ𝑖𝑖� = 1𝑗𝑗 . 𝑝𝑝�𝑐𝑐𝑗𝑗�ℎ𝑖𝑖�  represents the probability that this hypothesis ℎ𝑖𝑖 

being the class 𝑐𝑐𝑗𝑗. For every hypothesis, the classifier gives them many symbol 
candidates. It is not necessary to keep all the candidates because many ambiguities 
in classifying stage could be resolved at the global context level. After experiments, 
we found that keeping the best three candidates of the symbol classifier is already 
enough. 

As is introduced in Section 3.2, the segmentation hypothesis generator always 
generates wrong segmentation and consequently increases hypotheses space. Thus, 
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we hope the classifier can identify the wrong segmentation and reject them. In a 
word, we are dealing with rejection problem. In this paper, we will call the reject 
class the “junk class”. The “junk class” is also a class label, but it doesn’t represent 
any symbol. For a hypothesis ℎ𝑖𝑖 being recognized as junk, the classifier also gives it a 
probability 𝑝𝑝(𝑐𝑐𝑖𝑖 = 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗|ℎ𝑖𝑖). The higher the probability is, the more probably it can 
be a wrong segmentation. The junk class is like a filter. It rejects wrong segmentation, 
and consequently limits the hypotheses space. 

Figure 3.7 shows the classifying result for symbol “cos”. As is described in Section 
3.2, to form a three-stroke hypothesis ℎ0,1,2 of “cos”, we need to firstly form two-
stroke hypothesis ℎ0,1 of “co” and ℎ1,2 of “os”. Hypotheses ℎ0,1and ℎ1,2are wrong 
segmentation. Both of them are considered to be junk with high probability. Thus, 
they are rejected from the following CYK parsing step. 

 
Figure 3.7 Classifying result for symbol “cos” 

 

3.4 CYK Parsing 

 After segmentation and symbol recognition, a set of hypotheses associated with 
class label and probability is obtained. We need to determine the spatial relation 
among these symbols in order to build a complete structure. In our work, the CYK 
parsing algorithm is used to parse the input (represented by the set of hypotheses) 
and obtain the most probable derivation. The CYK algorithm is a dynamic 
programming method, and based on the construction of a parsing table. 

Let 𝒢𝒢 be a CNF 2D-SCFG. As is introduced before, the probabilities are formally 
defined as: 

𝑝𝑝(𝐴𝐴 → 𝑡𝑡) 
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𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵) 

A, B, C ∈ 𝑉𝑉𝑁𝑁, 𝑡𝑡 ∈ 𝑉𝑉𝑇𝑇 
Let 𝒮𝒮 = {𝑠𝑠𝑖𝑖|𝑖𝑖: 1,2, …𝑁𝑁} be the set of all the strokes in a given expression where 

𝑁𝑁 is the total number of strokes. Let 𝑆𝑆𝑙𝑙  be the set of 𝑙𝑙 strokes (1 ≤ 𝑙𝑙 ≤ 𝑁𝑁) and 
𝑆𝑆𝑙𝑙 ⊆  𝒮𝒮. Let 𝒯𝒯 be the parsing table of CYK algorithm. Each element in table 𝒯𝒯 is 
denoted by 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝) and defined as follow. For a given element 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝), 𝑝𝑝 
represents the probability that 𝐴𝐴 is the solution of the mathematical sub-expression 
composed by the 𝑙𝑙 strokes 𝑆𝑆𝑙𝑙. Let 𝑇𝑇𝑙𝑙 = {𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝)}  be the parse structure where 
each element 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝) is composed by 𝑙𝑙 strokes.  

The CYK algorithm is to calculate the parsing table 𝒯𝒯 (see Figure 3.8). Each 
element 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 , 𝑝𝑝) represents a sub-expression composed by 𝑙𝑙 strokes. Each cell is 
the set of elements with the same strokes 𝑆𝑆𝑙𝑙. Each row is the set of cells with the 
same number of strokes, that is 𝑇𝑇𝑙𝑙 = {𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 ,𝑝𝑝)}. The table begins at the bottom 
row 𝑇𝑇1  where each element 𝑒𝑒1(𝐴𝐴, 𝑆𝑆1,𝑝𝑝)  is composed by only one stroke. The 
algorithm constructs the higher part of table by calculating new sub-expression of 
increasing strokes. The top of table 𝑇𝑇𝑁𝑁 = {𝑒𝑒𝑁𝑁(𝐴𝐴, 𝑆𝑆𝑁𝑁, 𝑝𝑝)} = {𝑒𝑒𝑁𝑁(𝐴𝐴,𝒮𝒮,𝑝𝑝)}  is the 
elements composed by all the strokes of a given expression. In the element 
𝑒𝑒𝑁𝑁(𝐴𝐴,𝒮𝒮,𝑝𝑝) with the highest probability 𝑝𝑝, 𝐴𝐴 is the most probable interpretation for 
this expression.  
 

 
Figure 3.8 CYK parsing table 

 
The CYK algorithm is divided into two steps. First it initializes the table with the 

segmentation hypotheses. Let ℎ𝑙𝑙 be the segmentation hypothesis composed by 𝑙𝑙 
strokes (𝑙𝑙 ≤ 4). 𝑙𝑙 ≤ 4 because we generate up to four-stroke hypotheses as is 
described in section 3.2. The initialization works as follow: 

 𝑇𝑇1 = 𝑇𝑇1 ∪ {𝑒𝑒1(𝐴𝐴, ℎ1, 𝑝𝑝)} 
𝑇𝑇2 = 𝑇𝑇2 ∪ {𝑒𝑒2(𝐴𝐴,ℎ2, 𝑝𝑝)} 
𝑇𝑇3 = 𝑇𝑇3 ∪ {𝑒𝑒3(𝐴𝐴,ℎ3, 𝑝𝑝)} 
𝑇𝑇4 = 𝑇𝑇4 ∪ {𝑒𝑒4(𝐴𝐴,ℎ4, 𝑝𝑝)} 
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Generally, 
𝑇𝑇𝑙𝑙 = 𝑇𝑇𝑙𝑙 ∪ {𝑒𝑒𝑙𝑙(𝐴𝐴, ℎ𝑙𝑙 ,𝑝𝑝)}        𝑙𝑙 = 1,2,3,4 

For a given 𝑒𝑒𝑙𝑙(𝐴𝐴,ℎ𝑙𝑙 , 𝑝𝑝), the value 𝑝𝑝 is: 
𝑝𝑝𝑙𝑙(𝐴𝐴) = 𝑝𝑝(𝐴𝐴 → 𝑡𝑡)𝑝𝑝(𝑡𝑡|ℎ𝑙𝑙) 

where 𝑡𝑡 is a particular mathematical symbol, 𝐴𝐴 is a nonterminal and 𝐴𝐴 → 𝑡𝑡 is a 
terminal production. Value 𝑝𝑝(𝐴𝐴 → 𝑡𝑡)  is the probability provided by terminal 
production 𝐴𝐴 → 𝑡𝑡  in the stochastic context-free grammar, and 𝑝𝑝(𝑡𝑡|ℎ𝑙𝑙)  is the 
probability that this hypothesis ℎ𝑙𝑙 being recognized as the class 𝑡𝑡. 𝑝𝑝(𝑡𝑡|ℎ𝑙𝑙) is provided 
by MLP symbol classifier (see Section 3.3). 
 It is important to note that one mathematical symbol 𝑡𝑡 can belong to several 
nonterminal 𝐴𝐴. For example, the “+” symbol can be a binary operator such as “1+2”, 
or it can be a unary operator such as “+2”. The “-” symbol can be a binary operator 

such as “2-1”, or a unary operator such as “-2”, or a fractional line such as “1
2
”. Thus 

for a hypothesis ℎ𝑙𝑙 being classified as a specific class 𝑡𝑡, each possible nonterminal 
associated to the corresponding rule is added to the parsing table. For example, “+” 
is added in the table with its probability for being “OpBin”, “OpUn”. “-” is added in 
the table with its probability for being “OpBin”, “OpUn” and “Over”.  

The pseudocode for the initialization is shown in Figure 3.9. For each hypothesis, 
MLP classifier gives the best three candidates (see Section 3.3). We use a threshold 
to avoid exploring improbable hypothesis. This is done to limit the search space 
during the parsing. But in this way, we could not guarantee that the optimal solution 
is achieved because some possible solutions are removed by threshold. 
 

 

Figure 3.9 Pseudocode for CYK parsing table initialization 
 

Then, the parsing process constructs the higher part of table by calculating new 
subexpression of increasing size. This step is computed as: 

𝑇𝑇𝑙𝑙 = 𝑇𝑇𝑙𝑙 ∪ {𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 ,𝑝𝑝)}        𝑙𝑙 = 2,3,⋯ ,𝑁𝑁 
A new subexpression  𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 ,𝑝𝑝) is created from two subexpression of smaller 

size 𝑒𝑒𝑘𝑘(𝐵𝐵, 𝑆𝑆𝑘𝑘,𝑝𝑝𝑘𝑘)  and 𝑒𝑒𝑙𝑙−𝑘𝑘(𝐶𝐶, 𝑆𝑆𝑙𝑙−𝑘𝑘,𝑝𝑝𝑙𝑙−𝑘𝑘)  (1 ≤ 𝑘𝑘 < 𝑙𝑙)  according to both syntactic 

constraint (the production rule 𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵) and the spatial constraint (spatial relation 

𝑠𝑠𝑠𝑠𝑠𝑠). For a given 𝑒𝑒𝑙𝑙(𝐴𝐴, 𝑆𝑆𝑙𝑙 ,𝑝𝑝), the value 𝑝𝑝 is defined as: 

𝑝𝑝 = 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵)𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙−𝑘𝑘𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) 
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where 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵) is the probability provided by production rule 𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
�� 𝐵𝐵𝐵𝐵 in the 

grammar, the probability 𝑝𝑝𝑘𝑘  and 𝑝𝑝𝑙𝑙−𝑘𝑘  are obtained from the lower part of CYK 
parsing table, and 𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) is the probability that these two sets of strokes 
𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘 are combined according to the spatial relation 𝑠𝑠𝑠𝑠𝑠𝑠 (see Section 3.5). 
 When creating a subexpression of size 𝑙𝑙, a straightforward way is to try all 
(𝑘𝑘, 𝑙𝑙 − 𝑘𝑘) size pairs. In fact, it is not necessary to check all combinations. For a given 
subexpression 𝑎𝑎 of size 𝑘𝑘, we define a specific searching area according to different 
kinds of spatial relation (see Figure 3.10). The size of searching area (dashed line area) 
is given by the bounding box of 𝑎𝑎 and reference distance 𝑅𝑅𝑅𝑅, 𝑅𝑅𝑅𝑅 (see Section 3.2). 
Any other subexpression 𝑏𝑏 of size 𝑙𝑙 − 𝑘𝑘, which has overlap with the searching area, 
will be combined with 𝑎𝑎 to form a new subexpression of size 𝑙𝑙. Figure 3.11 shows two 
cases where given a subexpression (“sin” and “2”) and their searching area (dashed 
line area). Given the subexpression “sin” and the spatial relation “horizontal”, the 
system only would apply the horizontal production rules with the subexpressions 
which overlap the searching area. The denominator “2” is other example of space 
search for “vertical up” subexpressions. 
 

 
Figure 3.10 Searching area for different kinds of spatial relation 
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Figure 3.11 Example of searching area for a particular subexpression and spatial 
relation 
 
 Figure 3.12 shows the second step of CYK parsing algorithm. In this pseudocode, 
the “search” operation is to search subexpressions with searching area as explained 
above. 
 
For all 𝑙𝑙 = 2,3,⋯ ,𝑁𝑁 do {    // 𝑁𝑁 strokes 
        for all 𝑘𝑘 = 1,2,⋯ , 𝑙𝑙 − 1 do { 
           for all 𝑒𝑒𝑘𝑘(𝐵𝐵, 𝑆𝑆𝑘𝑘, 𝑝𝑝𝑘𝑘) ∈ 𝐿𝐿𝑘𝑘 do { 
    𝑧𝑧ℎ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑇𝑇𝑜𝑜−𝑘𝑘 , 𝑆𝑆𝑘𝑘,ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 
    𝑧𝑧𝑣 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝑇𝑇𝑜𝑜−𝑘𝑘, 𝑆𝑆𝑘𝑘, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 � 
    𝑧𝑧𝑜𝑜 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ�𝑇𝑇𝑜𝑜−𝑘𝑘, 𝑆𝑆𝑘𝑘, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � 
   for all 𝑒𝑒𝑜𝑜−𝑘𝑘(𝐶𝐶, 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝𝑜𝑜−𝑘𝑘) ∈ 𝑧𝑧ℎ do { 
    for all (𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵) such that 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆,𝐻𝐻, 𝑆𝑆𝑆𝑆𝑆𝑆} do { 

     𝑝𝑝 = 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵)𝑝𝑝𝑘𝑘𝑝𝑝𝑜𝑜−𝑘𝑘𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑜𝑜−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) 

     if (𝑝𝑝 > 0.0) then 
       𝑇𝑇𝑜𝑜 = 𝑇𝑇𝑜𝑜 ∪ {𝑒𝑒𝑜𝑜(𝐴𝐴, 𝑆𝑆𝑘𝑘 ∪ 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝)} 
    } 
   } 
   for all 𝑒𝑒𝑜𝑜−𝑘𝑘(𝐶𝐶, 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝𝑜𝑜−𝑘𝑘) ∈ 𝑧𝑧𝑣 do { 
    for all (𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵) such that 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑉𝑉} do { 

     𝑝𝑝 = 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵)𝑝𝑝𝑘𝑘𝑝𝑝𝑜𝑜−𝑘𝑘𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑜𝑜−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) 

     if (𝑝𝑝 > 0.0) then 
       𝑇𝑇𝑜𝑜 = 𝑇𝑇𝑜𝑜 ∪ {𝑒𝑒𝑜𝑜(𝐴𝐴, 𝑆𝑆𝑘𝑘 ∪ 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝)} 
    } 
   } 
   for all 𝑒𝑒𝑜𝑜−𝑘𝑘(𝐶𝐶, 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝𝑜𝑜−𝑘𝑘) ∈ 𝑧𝑧𝑜𝑜 do { 
    for all (𝐴𝐴

𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵) such that 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝐼𝐼𝐼𝐼𝐼𝐼} do { 

     𝑝𝑝 = 𝑝𝑝(𝐴𝐴
𝑠𝑠𝑠𝑠𝑠𝑠
��𝐵𝐵𝐵𝐵)𝑝𝑝𝑘𝑘𝑝𝑝𝑜𝑜−𝑘𝑘𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑜𝑜−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) 

     if (𝑝𝑝 > 0.0) then 
       𝑇𝑇𝑜𝑜 = 𝑇𝑇𝑜𝑜 ∪ {𝑒𝑒𝑜𝑜(𝐴𝐴, 𝑆𝑆𝑘𝑘 ∪ 𝑆𝑆𝑜𝑜−𝑘𝑘, 𝑝𝑝)} 
    } 
   } 
  } 
 } 
} 

Figure 3.12 Pseudocode of the CYK parsing algorithm 
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 Now we compare our 2D CYK algorithm with the 1D case. In the standard 1D CYK 
algorithm, two indexes explain the positions that define some substring. In the 2D 
CYK algorithm, there is only one index. There is a level for each subexpression size. 
Each level stores a set of elements in the same size. In the initialization step, the 
terminals are added at 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4. After that, the parsing process continues by 
creating new subexpressions of increasing size, in which both syntactic constraints 
(grammar) and spatial constraints are taken into account for each new subexpression. 
 

3.5 Spatial Relation 

 In our system, we define six kinds of spatial relation (see Figure 3.13): subscript 
(𝑆𝑆𝑆𝑆𝑆𝑆), superscript (𝑆𝑆𝑆𝑆𝑆𝑆), horizontal (𝐻𝐻), sub-super-expression (𝑆𝑆𝑆𝑆𝑆𝑆), vertical (𝑉𝑉) and 
inside (𝐼𝐼𝐼𝐼𝐼𝐼). 
 

 
Figure 3.13 Spatial relation between two subexpressions B and C 

 
 Given two subexpressions 𝐵𝐵  and 𝐶𝐶 , the spatial relation between them is 
determined using some geometric features of their bounding boxes. Using these 
features, some functions are defined by us to compute the probability 
𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) used in the CYK parsing algorithm.  

Before introducing the features and functions, we defined six reference lines (see 
Figure 3.14(a)) on the bounding box: left sub-line, left centroid-line, left sup-line and 
right sub-line , right centroid-line , and right sup-line (denoted by 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  respectively). These reference lines are used to extract 
geometric features of the bounding box. Firstly, three types of symbols are defined 
by us: normal, ascending and descending. For example, “a”, “c”, “e” are normal 
symbol, “b”, “d” are ascending symbol, “p”, “y”, “q” are descending symbol. The 
reference lines are adapted for different types of symbol. In the symbol recognition 
step, the reference lines are modified according to this classification.  

For normal symbol, the centroid is the geometric center (see Figure 3.14(b) left): 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑦𝑦 + 𝑡𝑡

2
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 0.9 ∙ (𝑡𝑡 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦 + 0.1 ∙ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦) 

For ascending symbol, the centroid is displaced down to 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 2⁄  (see Figure 3.14(b) middle): 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑦𝑦 + 𝑡𝑡

2 + 𝑡𝑡
2

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 0.9 ∙ (𝑡𝑡 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +
𝑦𝑦 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2
 

For descending symbol, the centroid is displaced up to (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑡𝑡𝑡𝑡𝑡𝑡) 2⁄  (see 
Figure 3.14(b) right): 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑦𝑦 + 𝑦𝑦 + 𝑡𝑡

2
2

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑡𝑡

2
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦 + 0.1 ∙ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦) 
 

 
Figure 3.14 (a) Reference line for a general case (b) Reference line for different kinds 
of symbol: normal, ascending and descending 
 

Once the reference lines are calculated for every single symbol, this information 
is hierarchical inherited as follows. The combination of two subexpressions 𝐵𝐵 and 𝐶𝐶 
resulting in a new subexpression 𝐴𝐴 should follow some rules in order to preserve 
good reference lines. The reference line of 𝐴𝐴 is different according to different spatial 
relation. 

For horizontal relation (𝐵𝐵 𝐶𝐶) (see Figure 3.15), 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

2
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
2
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

2
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
2

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

2
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
2

 

 

Figure 3.15 Reference line for horizontal relation 
 
For subscript relation (𝐵𝐵𝐶𝐶) (see Figure 3.16), 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶) 

 

 
Figure 3.16 Reference line for subscript relation 

 
For superscript relation (𝐵𝐵𝐶𝐶) (see Figure 3.17), 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶) 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) 
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Figure 3.17 Reference line for superscript relation 

 
 For sub-super-expression (𝑋𝑋𝐶𝐶𝐵𝐵) (see Figure 3.18), 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶)

2
, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)
2

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶) 
 

 
Figure 3.18 Reference line for sub-super-expression 

 

For inside relation (√𝐶𝐶) (see Figure 3.19), 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)

2
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)

2
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐵𝐵), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶)

2
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Figure 3.19 Reference line for inside relation 

 

 The vertical relation (𝐵𝐵𝐶𝐶) depend on the grammar. As is described in Section 3.1, 

there is an additional merge flag in the production rules of vertical relation. For 
example, in the production rule 

1.0    V     Exp       -> Exp        OverExp   "\frac{$1}{$2}"  BCC 
Merge flag “BCC” represents that father (Exp) uses sup-line of A (Exp), and center-
line and sub-line of B (OverExp). 

Finally, the features and functions for determining the relation between 𝐵𝐵 and 𝐶𝐶 
are explained as below: 
(1) Horizontal (see Figure 3.20): the features are horizontal distance (denoted by 𝑑𝑑𝑑𝑑) 

and difference between 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) (denoted by 𝑑𝑑𝑑𝑑𝑑𝑑). The probability 
function is computed as: 

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝐻𝐻) =
𝑝𝑝1 + 𝑝𝑝2

2
 

such that: 

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅
 

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑𝑑𝑑

max(𝑅𝑅𝑅𝑅, ℎ𝐵𝐵) 

where ℎ𝐵𝐵 is height of bounding box of 𝐵𝐵, 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance. 
 

 
Figure 3.20 Features for horizontal relation 

 
(2) Subscript (see Figure 3.21): the features are horizontal distance (denoted by 𝑑𝑑𝑑𝑑) 

31 
 



and difference between 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) (denoted by 𝑑𝑑𝑑𝑑). The probability 
function is computed as: 

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑝𝑝1 + 𝑝𝑝2

2
 

such that: 

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅
 

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑

max(𝑅𝑅𝑅𝑅, ℎ𝐵𝐵) 

where ℎ𝐵𝐵 is height of bounding box of 𝐵𝐵, 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance. 
 

 
Figure 3.21 Features for subscript relation 

 
(3) Superscript (see Figure 3.22): the features are horizontal distance (denoted by 𝑑𝑑𝑑𝑑) 

and difference between 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐵𝐵) and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) (denoted by 𝑑𝑑𝑑𝑑). The probability 
function is computed as: 

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑠𝑠𝑠𝑠𝑠𝑠) =
𝑝𝑝1 + 𝑝𝑝2

2
 

such that: 

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅
 

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑

max(𝑅𝑅𝑅𝑅, ℎ𝐵𝐵) 

where ℎ𝐵𝐵 is height of bounding box of 𝐵𝐵, 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance. 
 

 
Figure 3.22 Features for superscript relation 

 
(4) Vertical (see Figure 3.23): the features are vertical distance (denoted by 𝑑𝑑𝑑𝑑),  

difference between the horizontal centers (denoted by 𝑑𝑑ℎ𝑐𝑐), difference between 
left boundary 𝑑𝑑𝑑𝑑, difference between right boundary 𝑑𝑑𝑑𝑑. The probability function 
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is computed as: 

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑉𝑉) =
𝑝𝑝1 + 𝑝𝑝2

2
 

such that: 

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅
 

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑
3 ∙ 𝑅𝑅𝑅𝑅

 

where 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance. 
 

 
Figure 3.23 Features for vertical relation 

 
(5) Sub-super-expression (see Figure 3.24): the features are vertical distance 

(denoted by 𝑑𝑑𝑑𝑑) and the difference between left boundary 𝑑𝑑𝑑𝑑. The probability 
function is computed as: 

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝑆𝑆𝑆𝑆𝑆𝑆) =
𝑝𝑝1 + 𝑝𝑝2

2
 

such that: 

𝑝𝑝1 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅
 

𝑝𝑝2 = 1 −
𝑑𝑑𝑑𝑑

3 ∙ 𝑅𝑅𝑅𝑅
 

where 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance. 
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Figure 3.24 Features for sub-super-expression relation 

 
(6) Inside (see Figure 3.25): the features are the horizontal distance (denoted by 𝑑𝑑𝑑𝑑) 

and vertical distance (denoted by 𝑑𝑑𝑑𝑑). The probability function is computed as: 

𝑝𝑝(𝑆𝑆𝑘𝑘, 𝑆𝑆𝑙𝑙−𝑘𝑘|𝐼𝐼𝐼𝐼𝐼𝐼) = 1 −
(𝑑𝑑𝑑𝑑)2 + (𝑑𝑑𝑑𝑑)2

(𝑅𝑅𝑅𝑅)2 + (𝑅𝑅𝑅𝑅)2 

where 𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅 are reference distance. 
 

 
Figure 3.25 Features for inside relation 

 

3.6 Parsing Output 

 After the CYK parsing algorithm is performed, the recognized expression can be 
obtained by going through the parsing tree that covers the root with both initial state 
and highest probability. The parsing result could be presented in different ways such 
as MathML or LaTex. In our system, it produces the output in both MathML and 
LaTex format. 
 The process that generates the desired format output from the parsing tree is 
just a recursive way from the root to the leaves. Sometimes, the mathematical 
expression is not fully recognized. But it is still meaningful to provide and output part 
of the expression. For example (see Figure 3.26), the input expression is not fully 
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recognized because the square root is missed. However, the partial output is still 
useful. In the case of partial recognizing, the system looks for the most probable 
subexpression of bigger size that covers the initial symbol (𝐸𝐸𝐸𝐸𝐸𝐸 or 𝑆𝑆𝑆𝑆𝑆𝑆) of the 
grammar. Then it goes through from this node to the leaves to generate the output. 
 

 
Figure 3.26 Example of partial recognizing 

 

3.7 Example 

 In order to illustrate our system, we present a simple example (see Figure 3.27). 
First of all, the segmentation hypothesis generator obtains 10 hypotheses including 7 
one-stroke hypotheses, 2 two-stroke hypotheses and 1 three-stroke hypotheses. 
Then, the symbol classifier (MLP) associates a recognition probability and a class 
label with each segmentation hypothesis. All of these information are added to 𝑇𝑇1, 𝑇𝑇2, 
𝑇𝑇3 to initialize the parsing table (see Figure 3.28). As is described in Section 3.4, one 
mathematical symbol can belong to several nonterminals. For example, for stroke 0, 
“-” is added in the table with its probability for being “OpBin”, “OpUn” and “Over”. 
For stroke 2,3, “k” is added in the table with its probability for being “Sym” and “Let”. 
 

 
Figure 3.27 Sample expression 

 
 Once the table is initialized, the recursive step begins to build subexpression 
until it completes subexpression of size 7 (all the input strokes). When building new 
subexpression, both syntactic constraints (grammar defined by us, see Section 3.1) 
and spatial constraints (see Section 3.5) are taken into account. Figure 3.29 shows 
the complete parsing table for the sample expression. 
 After the CYK parsing algorithm is performed, a parsing tree can be obtained 
from the table. At the top of table, there are two possible solutions 𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂. 
Only initial state 𝐸𝐸𝐸𝐸𝐸𝐸  or 𝑆𝑆𝑆𝑆𝑆𝑆  can become the root of parsing tree. Thus, the 
nonterminal 𝐸𝐸𝐸𝐸𝐸𝐸  with the probability −3.50054  is chosen. Once the root is 
determined, the parsing tree can be obtained by going through from top to bottom 
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(see Figure 3.30(a)). The parsing tree is shown as Figure 3.30(b). Finally, the 
recognized expression can be obtained by going through the parsing tree. 
 

 
Figure 3.28 Initialization of table 

 

 
Figure 3.29 The complete parsing table 
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(a) 

 
(b) 

Figure 3.30 (a) Obtain a parsing tree by going through the table from top to bottom. 
(b) The obtained parsing tree. 
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Chapter 4. Databases and Experiments 

 
 We have developed a system for online handwritten mathematical expression 
recognition. Now we describe the experiments that we carried out to test our 
developed system. Firstly, we describe the databases that we used. Then some 
experiments and result are presented. 
 

4.1 Database 

 We used two database, CROHME 2011 (Part-Ⅱ) and CROHME 2012 (Part-Ⅲ) 
(see Table 4.1). There are few restrictions on the grammars of these two databases. 
For example, there is no limit on recursions of operations like sum, product, function 
call, fraction, root, sub/superscript on symbols, etc. However, CROHME 2012 (Part-Ⅲ) 
covers more terminal symbols than CROHME 2011 (Part-Ⅱ), and the grammar in 
CROHME 2012 (Part-Ⅲ) is more complicated. 

Both of them are from CROHME (Competition on Recognition of Online 
Handwritten Mathematical Expressions). This competition was organized by ICDAR 
(International Conference on Document Analysis and Recognition) on 2011 and 2012. 
An overview of this competition is in [23, 24]. 

 
Table 4.1 Description for database CROHME 2011 and CROHME 2012 

 
 

In these two databases, the ink corresponding to each expression is stored in an 
InkML file. An InkML file mainly contains three kinds of information: (1) the ink: a set 
of traces made of points; (2) the symbol level ground truth: the segmentation and 
label information of each symbol of the expression; and (3) the expression level 
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ground truth: the MathML structure of the expression.  
The two levels of ground truth information (at the symbol as well as at the 

expression level) are entered manually. Furthermore, some general information is 
added in the file: (1) the channels (here, X and Y); (2) the writer information 
(identification, handedness (left/right), age, gender, etc.), if available; (3) the LaTeX 
ground truth (without any reference to the ink and hence, easy to render); (4) the 
unique identification code of the ink (UI), etc.  

The InkML format enables to make references between the digital ink of the 
expression, its segmentation into symbols and its MathML representation. An 
example of an InkML file for the expression  𝐴𝐴 × 𝐵𝐵  is shown as Figure 4.1. It contains 
6 strokes for 3 symbols (two for the each symbol). Note that the traceGroup with 
identifier xml:id=“7” has references to the 2 corresponding strokes of symbol “A”, as 
well as to the MathML part with identifier xml:id=“A_1”. Thus, the stroke 
segmentation of a symbol can be linked to its MathML representation. 

 
<ink xmlns="http://www.w3.org/2003/InkML"> 
<traceFormat> 
<channel name="X" type="decimal"/> 
<channel name="Y" type="decimal"/> 
</traceFormat> 
<annotation type="truth">$A\times B$</annotation> 
<annotation type="UI">2012_IVC_CROHME_F01_E0012</annotation> 
<annotation type="copyright">LUNAM/IRCCyN</annotation> 
<annotation type="writer">CROHME01</annotation> 
<annotationXML type="truth" encoding="Content-MathML"> 
 <math xmlns='http://www.w3.org/1998/Math/MathML'> 
  <mrow> 
   <mi xml:id="A_1">A</mi> 
   <mrow> 
    <mo xml:id="\times_1">\times</mo> 
    <mi xml:id="B_1">B</mi> 
   </mrow> 
  </mrow> 
 </math> 
</annotationXML> 
<trace id="0"> 
1.10641 6.55641, … , 1.15034 6.55598 
</trace> 
… 
<trace id="5"> 
1.23863 6.51972, … , 1.2446 6.54873 
</trace> 
<traceGroup xml:id="6"> 
 <annotation type="truth">Segmentation</annotation> 
 <traceGroup xml:id="7"> 
  <annotation type="truth">A</annotation> 
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  <traceView traceDataRef="0"/> 
  <traceView traceDataRef="1"/> 
  <annotationXML href="A_1"/> 
 </traceGroup> 
 … 
</traceGroup> 
</ink> 

Figure 4.1 Example of InkML format 
 

4.2 Experiments 

According to CROHME 2011 and 2012, four aspects should be measured to 
evaluate the performance of a system on online handwritten mathematical 
expression recognition [23, 24]. They are  (1)  𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅:  the  stroke  classification  rate, 
representing the percentage of strokes with the correct symbol, (2) 𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆: the 
symbol segmentation rate, defining the percentage of symbols correctly segmented, 
(3) 𝑆𝑆𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅: the symbol recognition rate, computing the performance of the  
symbol classifier when considering only the correct segmented symbols. The last 
measurement is (4) 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅: the  expression  recognition  rate,  which  informs  the 
percentage of expressions totally correctly recognized. This is a very challenging 
indicator since the slightest error anywhere in the expression prevents to count it. In 
order to have a better insight of the capacity of the respective systems, [24] also 
extended this indicator with (5) 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅_1, _2, _3, giving the percentage of 
expressions recognized with at most 1 error, 2 errors and 3 errors (in terminal 
symbols or in MathML node tags) given that the tree structure is correct. 

We tested our system on the test dataset of both databases. The results are 
reported in Table 4.2.  

Firstly, we compared the values in horizontal direction. The first three value 
𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅, 𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆_𝑅𝑅𝑅𝑅𝑅𝑅 stay high, showing that the segmentation hypothesis 
generator and symbol classifier work quite well. However, the value 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅 is very 
low on both datasets. We tried to explore the reason. On one hand, 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅 is a 
very strict indicator as is explained above. Even only one single error in the 
expression will prevent to count it. On the other hand, the system cannot correctly 
analyze the structure even though most of segmentation and symbols are recognized. 
It implies that the model of spatial relation needs to be improved. 

We also noted that a big gap exists between 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅  and 𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅_1 , 
showing that many expressions go wrong because of only one error. As long as 
correcting these single errors, our system will have much improvement. On the other 
hand, the narrow differences between  𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅_2  and 𝐸𝐸𝑋𝑋𝑋𝑋_𝑅𝑅𝑅𝑅𝑅𝑅_3 show that 
when more errors go wrong, it is difficult to improve the accuracy. Therefore, to 
improve our system, we can put more focus on the one-error expressions. 

Then, we compared the values in vertical direction. All the values of CROHME 
2012 (Part-Ⅲ) are lower than that of CROHME 2011 (Part-Ⅱ), proving that the 
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grammar in CROHME 2012 (Part-Ⅲ) is more complicated. It shows that our system 
cannot handle complicated expressions very well. 

 
Table 4.2 Main results on the test dataset of CROHME 2011 and CROHME 2012 

 
 

To compare our system with the participants of CROHME 2011 and CROHME 
2012, their results are shown in Table 4.3 [24]. As we can see, our system 
outperforms all the participants of CROHME 2011 at every aspect. However, we 
ranked only five out of eight in CROHME 2012. 
 
Table 4.3 Comparison between our system and the participating systems of CROHME 
2011 and CROHME 2012 
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 Another  interesting  analysis  concerns  the distribution  of  errors  with  respect  
to  the  size  of the expressions. Of course, the longer the expressions, the harder it is 
to recognize them. Figure 4.3 illustrates this behavior. Our system only achieved 44.6% 
and 26.8% recognition rates (on CROHME 2011 and CROHME 2012, respectively) 
among the shortest expressions. This kind of short expressions is also our target of 
improvement. 

 
Figure 4.2 Recognition rates (𝐸𝐸𝐸𝐸𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅) with respect to the expression length 

 
As is discussed above, generating hypotheses covering all the correct 

segmentation is the first task in the recognition process. If we don’t have correct 
candidates at first, it is impossible to achieve a correct solution at the end. We did 
another experiment to evaluate the performance of the segmentation hypothesis 
generator. In this experiment, recall is measured. Two terms are related to the value 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 : 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . The term 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  refers to 
hypotheses that are actually correct segmentation. The term 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 refers 
to the correct segmentations that the generator missed to create. Recall is then 
defined as: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the capability of successfully retrieving the correct segmentations. 
Ideally, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 equals to be 1, meaning that the hypotheses covers all the correct 
segmentations. The experimental results are shown in Table 4.4. Recalls in two stages 
were tested. Before classifying, recall is almost 1, showing that the generated 
hypotheses cover almost all the correct segmentations. However, recall went down 
to 0.97 after classifying on both databases. That is to say some correct segmentations 
were removed by the classifier. It is probably because of the classifier misrecognizing 
those correct segmentations to be ‘junk’. Thus, retraining the classifier to recognize 
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the junk class is another potential to improve our system. 
 

Table 4.4 Recall for segmentation hypotheses 
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Chapter 5. Conclusions 

 
 In this report, we presented an on-line handwritten mathematical expression 
recognition system based on 2D-SCFG. We defined a grammar covering a wide range 
of expressions. We proposed a segmentation hypothesis generator using a searching 
area to combine closer strokes. CYK parsing algorithm was used to analyze the 
structure. For different kinds of spatial relation, we used some simple geometric 
features to model them. Finally, we performed several experiments. Our system had 
a moderate performance. 

 For future work, there are a lot of issues to study.  
 

5.1 Grammar Learning 

 In this work, the grammar is defined manually and every production rule has a 
fixed probability. A very interesting objective is to learn the probabilities of the 
production rules of the SCFG from a training dataset. 
 

5.2 Searching Area 

 We used searching area for both generating multiple-stroke hypothesis and 
building subexpressions during CYK parsing. The size of searching area has an 
important impact. Smaller size discards some possible cases and finally cannot 
guarantee the optimal solution. Bigger size introduces too many cases and finally 
increases the computational time. Thus, the size of searching area is hard to 
determine. 

For expressions with a short symbol interval, it takes a long time to recognize 
because the searching area discovers too many cases. For expressions with a long 
symbol interval, we could not fully recognize since searching area is not big enough 
to build new subexpression. As a result, the gap between symbols should be taken 
into account when we determine the size of searching area. 
 

5.3 Spatial Relation 

 In Section 3.5, we explained the probability distributions used to model the 
spatial relation. But these models are very simple. It is necessary to employ more 
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features. For example, the baseline information should contribute in the 
performance of the system. 
 The spatial distributions are defined manually. It is also very interesting to be 
able to automatically learn the parameters of these distributions. 
 

5.4 Complexity 

  Currently, it takes nearly 30 hours to perform our system on a test dataset of 488 
expressions. When the number of symbols of the expression is large, the cost of time 
is very expensive. It is still far from practical. For that reason, it is necessary to reduce 
this computational cost. 
 Using thresholds to remove improbable hypotheses helps to improve reducing 
the computational time, but it cannot guarantee that the optimal solution is 
achieved.  

The complexity of the parsing is relative to the number of strokes. The parsing 
table becomes bigger as the expression has more strokes. As a result, another 
possible solution is to adjust the input of CYK parsing algorithm from single stroke 
connected strokes. It probably reduces the size of parsing table because the number 
of connected strokes is far less than the number of strokes. 
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