
HAL Id: hal-00861078
https://hal.science/hal-00861078

Submitted on 11 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IPv6 address obfuscation by intermediate middlebox in
coordination with connected devices

Florent Fourcot, Laurent Toutain, Frédéric Cuppens, Nora
Cuppens-Bouhlahia, Stefan Köpsell

To cite this version:
Florent Fourcot, Laurent Toutain, Frédéric Cuppens, Nora Cuppens-Bouhlahia, Stefan Köpsell. IPv6
address obfuscation by intermediate middlebox in coordination with connected devices. EUNICE
2013 : 19th EUNICE/IFIP WG 6.6 International Workshop, Aug 2013, Chemnitz, Germany. pp.148
- 160. �hal-00861078�

https://hal.science/hal-00861078
https://hal.archives-ouvertes.fr


IPv6 address obfuscation by intermediate
middlebox in coordination with connected

devices

Florent Fourcot12, Laurent Toutain14, Stefan Köpsell2, Frédéric Cuppens13,
and Nora Cuppens-Boulahia13

1 Institut Mines-Télécom; Télécom Bretagne
{first.last}@telecom-bretagne.eu

2 TU Dresden; Faculty of Computer Science
stefan.koepsell@tu-dresden.de

3 Lab-STICC - Laboratoire en sciences et technologies de l’information, de la
communication et de la connaissance

4 IRISA - Institut de recherche en informatique et systèmes aléatoires

The original publication is available at www.springerlink.com.

Abstract. Privacy is a major concern on the current Internet, but trans-
port mechanisms like IPv4 and more specifically IPv6 do not offer the
necessary protection to users. However, the IPv6 address size allows de-
signing privacy mechanisms impossible in IPv4. Nevertheless existing so-
lutions like Privacy Extensions [20] are not optimal, still only one address
is in use for several communications over time. And it does not offer con-
trol of the network by the administrator (end devices use randomly gen-
erated addresses). Our IPv6 privacy proposal uses ephemeral addresses
outside the trusted network but stable addresses inside the local network,
allowing the control of the local network security by the administrator.
Our solution is based on new opportunities of IPv6: a large address space
and a new flow label field. In combination with Cryptographically Gen-
erated Addresses, we can provide protection against spoofing on the local
network and enhanced privacy for Internet communication.

Keywords: IPv6, Privacy, Security, Address Management

1 Introduction

If IPv4 is still the most popular IP stack, IPv6 leaves the laboratory to be de-
ployed on the Internet. For example, a lot of popular websites activated IPv6 on
6th June 2012 [1], and the French Internet provider “Free” offers IPv6 connec-
tivity for new clients by default. This activation of IPv6 is not without privacy
issues like the possibility to trace a device, thanks to the interface identifier
stability [19]. Indeed, an IPv6 address is made of two parts. The first one is
the routing information, read by routers across the Internet. The second part
is the interface identifier, locally generated but worldwide readable. The default

www.springerlink.com


2 IPv6 address obfuscation

stateless configuration uses the MAC address to generate this interface identifier,
without other parameters [17]. This means that initially the interface identifier
of a device is always the same, regardless of the connected network; the device
is traceable across the whole world.

To obfuscate this interface identifier, there exist full fledge anonymous com-
munication solutions, e.g. based on the ideas of mixes [11] like AN.ON [9] or
Tor [13]; DC networks [10] and many similar proposals. This class of solutions
offers high grade of protection even against powerful attackers but at the price
of complex design and deployment. In our paper we focus on a light weight con-
struction which offers protection only against weaker attackers. More specific we
assume an attacker outside of the trusted network. A prominent example would
be a web service which tries to reidentify its users.

One existing light weight solution called Privacy Extensions is defined in
RFC 4941 [20]. Privacy extensions are compatible with the stateless autoconfig-
uration, but this solution is not really satisfactory. Usually the same address is
used over a long period of time, because changing the address implies disconnec-
tion of all active connections. Thus there is a trade off between relatively stable
connections versus a real privacy gain. Second, by using only one address, Pri-
vacy Extensions do not take advantage of the large IPv6 space. All applications
of the connected device will use the same address, therefore an eavesdropper can
easily link different communications of the same device, e.g. Instant messaging
communication and the Web traffic.

From a network administrator perspective, Privacy Extensions might be un-
acceptable because it makes logging user’s connections more cumbersome. This
logging is mandated by law in some countries, i.e. administrators have to reveal
who was using a given address in case of court order or police investigations. One
solution is to deploy the complex DHCPv6 protocol with distribution of tem-
porary addresses, standardized in RFC 3315 [14]. With this stateful protocol,
assignments of temporary addresses can be stored and are accessible to future
requests. Nevertheless, it does not solve the disconnection problem in case of
address switching and still does not utilize the large address space.

Another way to manage IPv6 addresses is to use Cryptographically Gener-
ated Addresses (CGA) [8]. CGA addresses are generated by the host itself, and
can be used to improve the security of communications. One example is the use
of CGA in conjunction with SEcure Neighbor Discovery [6] to prevent address
spoofing on the local network. The interface identifier of a CGA address is based
on a cryptographic hash function, and looks like a random address for an out-
sider. But the computational cost of CGA generation with an adequate security
level is high [3] and prevents to use it as a privacy solution with high frequency
of CGA calculation.

Our solution does not change the management of IPv6 assignment, and is
compatible with stateless autoconfiguration, DHCPv6 and CGA. To improve the
privacy of users, we introduce a middlebox, traditionally the border router of the
network or the local firewall. On an IPv4 network, the middlebox is frequently a
Network Address Translator (NAT) [22], and is already more “intelligent” than a



IPv6 address obfuscation 3

simple router. An example of middlebox on the IPv6 network is a Network Prefix
Translation (NPTv6) device [24]. NPTv6 is an experimental solution to change
the prefix of addresses, using a one-to-one mapping. In contrast, our middlebox
is in charge of spreading addresses across all locally available addresses, typi-
cally a /64 network, this means more than 1020 addresses. To accomplish this
spreading, the middlebox assigns a random address for each flow sent by local
devices and rewrites the source address accordingly. This spreading divides the
network in one trusted space with stable addresses and one untrusted network
(the Internet) with ephemeral addresses. Moreover, this rewriting can be easily
activated or deactivated for each flow.

This paper is organized as follow: we describe the architecture of our solution
in Section 2, we describe our implementation in Section 3, we discuss impacts and
consequences in Section 4. We continue in Section 5 with a solution for assign-
ing flow labels by application. Section 6 presents a performance measurement.
Finally, Section 7 and 8 conclude the paper.

2 Proposal of Architecture

2.1 Overview of new IPv6 opportunities

Our solution is based on two new opportunities offered by IPv6, namely a large
address space and flow labels.

Large address space: IPv6 addresses are encoded in a 128 bits field, it means
that 2128 addresses are available, more than 1028 addresses for each people alive
today. As shown in the introduction, each address is split into two main parts
and the first part is used for the routing and identifies a network. This main
part of network identifier is assigned by an Internet provider to a company or
home network. The second part of the address is the interface identifier. It can
be locally managed and identifies the connected device on the network. The size
of the locally manageable part is not always the same, but the recommenda-
tion is to give not less than 64 bits to the end network [12]. This means that
with thousands of connected computers, each with one address in use, less than
0.00000000000001% of the address space is used. Therefore, if the IPv4 address
management has to minimize the number of addresses in use, we can build new
paradigms based on abundance of addresses in IPv6.

The flow label is a new 20 bits field in IPv6. The usage has been experimental
for a long time, but after extensive discussions [4, 18], it has been standardized
in 2011 [5]. The purpose of the field is to simplify the flow classification in
order to apply some policies without complex packet inspection (like the well
known 5-tuple in IPv4). The flow label is added by connected devices, which
are easily able to discriminate flows without additional computational overhead.
The recommended usage of this field is Quality of Service oriented (for example
to prioritize real time communications), but this classification can have other
use cases, summarized in RFC 6294 [18].



4 IPv6 address obfuscation

2.2 Overview of the solution

To increase the user’s privacy, we propose to assign one external address per
flow. For each independent flow of packets, the connected device assigns a new
flow label5. Then, the middlebox assigns a new external address to each pair of
(internal IP address, flow label) and rewrites the source addresses of the outgo-
ing packets and the destination addresses of the incoming packets (cf. Figure 1).
Because the middlebox is in position of a border router, it receives all the pack-
ets from the local network. Therefore, it does not need to send extra neighbor
discovery packets. In contrast, if the rewriting happens on the end devices, this
solution implies some active neighbor discovery.

Fig. 1: Architecture of the solution: spreading by the middlebox

Since some applications can be incompatible with address rewriting (similar
to the implications of NAT in IPv4 [16]), a flow label set to zero is a signal
to forbid rewriting. This special label can be used if a temporary address is
undesirable, for example in case of IP source address filtering on the destination
device or an incompatible application layer.

To summarize, the intelligence to discriminate flows and optimize privacy
is based on the end device, and all rewritings are based on the middlebox, i.e.
under control of the network administrator. There is no need to change local
address assignment policy. The middlebox should be located between the local
firewall and the Internet; it prevents to rewrite firewall policies.

2.3 Computation on the middlebox

Since the “intelligence” of flow classification is with in in the connected devices,
the middlebox does not need to do a complex parsing of packets’ headers, and
to follow a TCP stream in a stateful way. But it has to maintain a context to
perform rewriting (cf. Table 1). For each outgoing packet with an unknown pair
(internal IP address, flow label) (short (IP int, label)) the middlebox creates a
context and generates a random interface identifier, which creates an address
by concatenation with the prefix, named external IP address (short IPext). The
stored context is a 3-tuple (IPint, label, IPext), and all following packets match-
ing the pair (IPint, label) will be rewritten with the IPext. For all incoming

5 Given the 20 bits for a flow label, the risk of exhaustion is quite low.



IPv6 address obfuscation 5

packets, the middlebox rewrite the destination address with IP int if a context
exists, or applies standard routing and firewall policies.

Note that a flow (defined by all packets sharing the same source IP and
the same flow label) can be made of more than one TCP connection (or other
transport protocols). For example, we recommend to use the same flow for all
the elements of a given Web page. The middlebox itself does not care about
upper protocol layers, because the flow assignment is done on the end device.

Table 1: Example of context on the middlebox
Internal IP Flow label External IP

α::1/64 120137 α:ece9:f330:fe60:188d/64

α::1/64 4162 α:19f8:83b3:af5a:2511/64

α::2/64 647513 α:6c40:9951:605f:8e03/64

2.4 Flow label assignment by application

The connected device is in the best place to discriminate flows and to assign
flow labels. For example, a peer-to-peer application probably needs to use the
same address for more than one TCP connection, a Web browser knows if one
connection is related to another, etc. In our case, the best way is to patch the
application to assign flow labels efficiently.

To help a fast deployment of our solution, we propose an assignment of a
flow label per application in Section 5.2.

3 Implementation of the middlebox

To test our solution, we implemented and deployed the middlebox in a real net-
work environment. The middlebox is based on a standard Linux Kernel, and
we added a Netfilter module to spread addresses. The middlebox has to rewrite
addresses for outgoing and incoming packets. The limitation of our current im-
plementation is that it can only be load on one interface connected to the Internet
and does not yet support multihoming.

3.1 Packets processing

Outgoing packets: for each outgoing packet, we read the flow label informa-
tion. If this label is zero, we stop the work of the module and the standard policy
of the kernel is applied. Otherwise, we check if a context with the pair of source
address and flow label already exists.

If we do not have a context, we have to create one. The first step is to generate
a random address, and to check if the address is not in collision as explained in



6 IPv6 address obfuscation

Section 4.2. The prefix part is static and can not be rewritten, but it is possible
to configure the length of the prefix (routing information), to maximize the size
of the rewritable address part. We added the new external address to the pair
(source IP address, flow label), and happen this context to the context table.

If a context exists, or after the initialization of a context, we rewrite the
source address with the value stored in the fetched context. Afterwards we have
to adjust the transport layer checksum. There is no standard way to rewrite this
checksum, therefore we have to write code for each protocol. Currently, our im-
plementation supports the three most popular protocols: TCP, UDP and ICMP
(cf. Section 4.1). After this rewriting, we return the packet to apply standard
kernel policy.

The flow label is no longer useful after the middlebox, and is set to zero.

Incoming packets: for incoming packets, we only read the destination address.
We check if a context exists for this address. If not, the packet is transmitted in
the standard kernel way. Otherwise, we rewrite the destination address with the
value stored in the context and we adjust the transport layer checksum.

3.2 Identification of a context

The identification of a context has to be efficient on both directions. The iden-
tification of outgoing flows is done by matching the source address and the flow
label with all existing contexts. For incoming packet, the identifier of the context
is the destination address. We implement these searches with two hash tables,
one for outgoing packets using “source IP address + label” as key value, and
the second one for incoming packet using destination address as key value. This
double hash table allows fast matching between packets and contexts.

3.3 Cleanup of old context

At the termination of a flow, the middlebox should remove the corresponding
context to potentially reassign the address and to free the memory used. But in
the IP network, there is no concept of connection and there are no communication
messages to signal the end of a flow.

In IPv4 networks, RFC 4787 and 5382 [7,15] give some recommendations to
maintain a connection context for a NAT. But in your case, it is not possible (and
desirable) to trace the state of a TCP connection. On the one hand, a flow can
span more than a single TCP connection, on the other hand additional transport
protocols can be in use. The only available solution is to introduce a timeout
after an inactivity period. It should not be less than 120 seconds, according to
recommendation for IPv4. A large timeout period will help to avoid breaking
established connections, at cost of resource consumption. Based on our empirical
tests, we recommend a value of 30 minutes, which give a good trade-off between
resource consumption and connection stability. But the local administrator could
overwrite this standard configuration in case of particular needs like long inactive
TCP connections.



IPv6 address obfuscation 7

4 Impacts and consequences

4.1 Checksum computation

In IPv6, there is no checksum contained in the IP header but the transport layer
protocols like TCP and UDP are in charge of error detections and therefore
utilize a checksum. This checksum needs to be adapted if a rewriting happens.
Fortunately, the flow label is not part of the checksum calculation and can be
overwritten without implication. Nevertheless, the source address rewriting has
an impact on the transport layer protocol checksum.

The large IPv6 address space supports some checksum neutral modifications,
like in NPTv6 [24]. But in our case this solution is unacceptable. A checksum
neutral modification gives a way to group all rewritten addresses of a device,
with a simple checksum calculation of the source address. This removes the
unlinkability between several random addresses.

But thanks to good properties of the standard Internet checksum, the cost of
checksum computation is low, and an incremental update is possible [21]. We do
not need to completly recompute new checksum Cnew of a packet, since we can
easily add the difference CD between the 16-bit checksum Cint of the internal IP
address and the 16-bit checksum Cext of the external IP address to the already
computed checksum Cold: Cnew = Cold + CD. During the initialization of the
context, the middlebox will calculate CD = Cint − Cext once, and caches this
value.

4.2 Risk of collision

Each generated address has to be unique behond the all local subnet, in order to
not disturb the network. As a consequence, the new address should not be already
used by the middlebox nor should it be assigned to any local device by any
other means. The first condition can be checked easily by looking at the context
table. The verification of the second condition is more complex, especially if the
rewriting use the same prefix for IPint and IPext. Here, there is a risk of collisions
between the randomly generated addresses and addresses already assigned to
end devices. One solution could be to check if the address is not already in use,
using a neighbour discovery (NDP). But this is unacceptable for at least two
reasons. First, it increases the latency for all connection initializations, because
the middlebox has to wait until the NDP timed out before making a decision.
Second, no response to a NDP request does not mean that this address is not in
use, e.g. the device can currently be down. To mitigate the problem, we propose
the following:

– The middlebox can be configured to not use the autoconfiguration space
derived from the MAC address (this means removing results with 4th byte
and 5th byte set to 0xFF and 0xFE respectively). This configuration should
be enabled by default to prevent a conflict with the standard configuration;

– In case of DHCPv6 address distribution, the DHCP address space should
not be included in the rewriting space configured on the middlebox;



8 IPv6 address obfuscation

– In case of CGA or static configured addresses, the administrator can manu-
ally forbid addresses;

– In any case, the middlebox should maintain a list of devices currently in
communication. Clearly this is not exhaustive, since devices can be connected
without established connections.

These four rules eliminate the risk of collisions in most networks, and min-
imize it for some special cases. Additionally, it is important to notice that the
risk of collision is actually very low – even without applying the rules mentioned
above. The evaluation of the probability of a collision is a variant of the “birth-
day paradox”. Given a pool of n addresses and already j addresses assigned, the
probability p̄(n, j) to choose the j + 1 address without collision is:

p̄(n, j) = 1 − j

n
=

n− j

n
(1)

This means that if we assign J addresses in a free space, we have a probability
to not have any collision of:

P̄ (n, J) = p̄(n, 0).p̄(n, 1) . . . p̄(n, J − 1) =
n · (n− 1) . . . (n− J + 1)

nJ
(2)

Then, the probability to have at least one collosion is:

P (n, J) = 1 − P̄ (n, J) = 1 − n · (n− 1) . . . (n− J + 1)

nJ
(3)

That we can write:

P (n, J) = 1 −
(

1 − 1

n

)
·
(

1 − 2

n

)
. . .

(
1 − J − 1

n

)
(4)

Since for all i in 1 . . . J : i ≤ J , we can give an upper bound for the probability
with:

P (n, J) ≤ 1 −
(

1 − J − 1

n

)J−1

(5)

We can now perform an evaluation of this probability. In a network with only
one prefix of the minimal size for auto-configuration, the interface identifier uses
64 bits. Two bits are reserved for special purpose, so only 62 bits are actually free.
We can calculate n = 262. On a big network with one thousand computers, where
each of them maintains one thousand flows, we need to allocate J = 1000·1000 =
106 addresses. A simple computation informs us than the probability of collision
is less than 2.2 · 10−7.

4.3 Compatibility analysis

In order to support wide spread deployment it is essential that our solution
integrates smoothly into existing networks. In our case, we only need to deploy
the middlebox at the border of the network and an adaptation of the end devices
to enable address rewriting. More specific the necessary changes are as follows:



IPv6 address obfuscation 9

Remote routers and servers: since our solution is based on standard IPv6
packets, it is compatible with the standard IPv6 network. There is no need to
upgrade intermediate routers or remote servers. We can deploy it locally without
cooperation or impact on other networks, the real source address is obfuscated
but the packet is still valid.

Local devices: for local devices, packets without flow label are not rewritten
and therefore there are no compatibily implications. But to use the benefits of
our solution, upgrades are usually necessary. First, not all Operating Systems
(OSes) provide means to set flow labels. Second, on compatible OSes, there
applications have to actually use the flow label option. We discuss assignment
of flow labels in Section 5.2.

Common address translation issues: Address rewriting is a kind of address
translation and can have some consequences. First, some applications send the
IP address to the peer within the application layer protocols, for example File
Transfer Protocol (FTP) and Session Initiation Protocol (SIP). If transmitting
the address at the application layer is mandatory for a given protocol, we can
not easily rewrite the address.

For IMCP packets, we have to rewrite the internals addresses in quoted ICMP
packet too. It makes parsing a little bit complexer but it does not break ICMP
messages.

In case of IPSec, we are in the same case than NPTv6 and the conclusion is
the same: peers should detect an address translator, so IPSec should work.

In all cases, our solution is better than standard address translation since it
can be easily disabled. For all connections that are not compatible, the applica-
tions can set the flow label to zero, the default value.

5 Flow label assignment at end devices

5.1 Link between applications and operating system: flow label
management API

Unfortunately, there is no standard Application Program Interface (API) be-
tween a software package and an operating system to set or request a flow label.
RFC 3542 [23] is the last standardized API for IPv6, and we can read “This
API does not define access to the flow label field, because today there is no
standard usage of the field”. Without standardized API, each operating system
has a specific approach to set and configure flow labels, and it is not easy to
write portable software. This is why our work focuses only on the Linux kernel.

The Linux Flow Label API is 13 years old, and part of the Kernel since the
version 2.2.7, released in April 1999. Design decisions of the implementation are
explained in [2], and there is nothing really new since this time. This document
is still the reference documentation for this API.



10 IPv6 address obfuscation

5.2 How to patch applications on Linux

Our proposition is simple: each application discriminates flows and sets flow
labels for outgoing sockets, and if it is not done, the operating system has to set
a flow label for all sockets of an application. The user can deactivate this kernel
behavior (for example with the help of an environment variable).

Thanks to the GNU linker ld, it is possible to preload some libraries for
dynamically linked software (the kind of linkage used by nearly all Linux distri-
butions). We can intercept the call to the connect() function. Here we check if
a flow label is already set, in this case we continue with the standard connect()

function. Otherwise, we enable the flow label and set its value (derived from the
process identifier PID) via the setsockopt() function.

Using this approach, we do not have to patch every application to use the
spreading. At the same time, it does not interfere with a patched application
since it does not overwrite an existing flow label value. Even if this is not an
optimal solution, the gain is high in comparison with using just one address for
all applications running on a given computer.

6 Performance evaluation

In the following sections, we discuss various performance aspects of our solution.

6.1 Memory consumption on the middlebox

Within a context, we have to store:

– the real source address IPint of the computer (128 bits);
– the randomized source address IPext (128 bits);
– the flow label (20 bits), stored in an integer (32 bits);
– the cached checksum difference CD (16 bits);
– the “last seen” value, to remove old entries (same size as jiffies 64 kernel

variable, i.e 64 bits);
– two node structures in the hash tables (128 bits each);

The total size is about 80 octets for each context. With the current hypothesis of
1000 computers with 1000 flows each, we need about 80MB to store all contexts.
On a home network with 5 computers and 100 flows each, less than 100KB of
memory is necessary.

Moroever, each context needs less space than a usual entry of the conntrack

table used for NAT in IPv4. Therefore, the memory consumption of our solution
will not be a problem for modern routers with NAT capacities.

6.2 Latency

Overhead of rewriting on the middlebox Our implementation adds extra
computation on the middlebox, before the routing of a packet. This adds some
latency for packet treatment. But this computation is simple and it does not
show any impact on the latency in our test networks. On a test bed with a
standard latency of 300ms, it was not possible to see any impact on the latency.



IPv6 address obfuscation 11

read read+preload nc nc+preload
0

5

10

15

T
im

e
(s

)

Fig. 2: Average time to run 20.000 times tests with library preload enabled/dis-
abled

Overhead of the library preload A second potential latency cost comes
from the library preload, to assign a flow label to each application. Our tests
were done on a virtual machine with a 2.4Ghz CPU allocated. We run 20.000
times four different tests:

– open and read a short file. The library preload is not enabled;
– the same command, but with library preload enabled;
– a short netcat command, this sends an UDP datagram to localhost and

quits, without library preload;
– the same netcat command, with library preload enabled.

Figure 2 shows the measured times for the 20.000 iterations. The difference
between the two file readings comes from the load of the library at the startup,
even if the library does nothing. For each run, it introduces a latency of 5.10−5

seconds, but only at the startup of the software (we need to load the library only
once). The difference between the two netcat tests reveals the total overhead of
the library, with the time to set up the flow label included. If we subtract the
time to load the library, we get a latency overhead of 9.10−6 seconds for each
connection, Kernel time included.

As expected, our preload library does not have significant influence on the
overall latency.

6.3 CPU consumption on the middlebox

To evaluate the CPU consumption of our solution, we made a profiling of the
Kernel. We used the OProfile software, part of the standard tools of the Linux
Kernel package. Our results show that our module needs about 10% of the time
needed by the network card driver itself. With a bandwidth of 2.2Gb/s our
module uses less than 2.5% of the CPU time of the 2.4Ghz CPU used.

Additionnaly, we install our solution in a home network on a standard router
(Asus-rt16) and we do not see any CPU consumption overhead6.

6 The maximal bandwidth of the Internet connection is about 30Mb/s



12 IPv6 address obfuscation

7 Future works

Currently our solution allows only to activate or deactivate the address rewriting
(encoded by setting the flow label to zero). One of our ideas is to encode more
data in the 20 bits of flow labels. The first bit could be used as a flag for a stateful
firewall, to allow or deny incoming connections on the ephemeral address. This
can be very useful in case of peer-to-peer connections.

Another possibility is to signal to disable the rewriting of the flow label to
zero. This can be relevant if an upstream router uses the flow label for Quality of
Service. Finally, a configuration of the timeout before erasing a context could be
added too. All this flags improve the possibility of the client to adapt to specific
communication context. We have enough space to provide five flags, since 32768
flows (15 bits left) should be enough to numbering all flows of a device.

Another improvement can be done in case of multihoming of the middlebox.
The flow label tagging allows us to assign one outgoing interface for each flow,
thus it allows us to make some load balancing on the middlebox.

8 Conclusion

Our solution provides a privacy gain, since an attacker cannot easily link differ-
ents connections of a single computer. It is compatible with all address assign-
ment policies, and is very easy to deploy on a network. The administrator does
not need to change the actual configuration and still can use CGA to prevent
IP address spoofing on the local network. Our middlebox divides the network in
one trusted zone under the control of an administrator and one untrusted zone,
where privacy of users is protected.

The intelligence stays on the end devices, able to determine if a flow should
be spread or not. On the middlebox, the resource consumption is lower than a
typical IPv4 NAT setting and should not be a problem for the deployment. As
for a IPv4 NAT, there is a risk of deny of service attacks from local network, by
opening a lot of connections with random flow label values. It can be mitigated
by limiting the number of allowed connections per devices.

Today, privacy is a hot topic for IPv6. For example, Deutsche Telekom Inter-
net Provider uses privacy as a marketing argument for their IPv6 architecture.
A patched middlebox with our solution is relevant in this context.

References

1. World IPv6 launch, http://www.worldipv6launch.org/, Consulted the Septem-
ber 11, 2013.

2. N. Kuznetsov Alexey, IPv6 flow labels in Linux-2.2, Tech. report, Institute for
Nuclear Research, Moscow, April 1999.

3. A. Alsa’deh, H. Rafiee, and C. Meinel, Stopping time condition for practical IPv6
Cryptographically Generated Addresses, Information Networking (ICOIN), 2012
International Conference on, Februar 2012, pp. 257 –262.

http://www.worldipv6launch.org/


IPv6 address obfuscation 13

4. S. Amante, B. Carpenter, and S. Jiang, Rationale for Update to the IPv6 Flow
Label Specification, RFC 6436 (Informational), November 2011.

5. S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, IPv6 Flow Label Specifica-
tion, RFC 6437 (Proposed Standard), November 2011.

6. J. Arkko, J. Kempf, B. Zill, and P. Nikander, SEcure Neighbor Discovery (SEND),
RFC 3971 (Proposed Standard), March 2005, Updated by RFCs 6494, 6495.

7. F. Audet and C. Jennings, Network Address Translation (NAT) Behavioral Re-
quirements for Unicast UDP, RFC 4787 (Best Current Practice), January 2007.

8. T. Aura, Cryptographically Generated Addresses (CGA), RFC 3972 (Proposed
Standard), March 2005, Updated by RFCs 4581, 4982.

9. Oliver Berthold, Hannes Federrath, and Stefan Köpsell, Web mixes: A system
for anonymous and unobservable internet access, Designing Privacy Enhancing
Technologies (Hannes Federrath, ed.), Lecture Notes in Computer Science, vol.
2009, Springer Berlin Heidelberg, 2001, pp. 115–129 (English).

10. David Chaum, The dining cryptographers problem: Unconditional sender and re-
cipient untraceability, Journal of Cryptology 1 (1988), 65–75.

11. David L. Chaum, Untraceable electronic mail, return addresses, and digital
pseudonyms, Commun. ACM 24 (1981), no. 2, 84–90.

12. G. Van de Velde, C. Popoviciu, T. Chown, O. Bonness, and C. Hahn, IPv6 Unicast
Address Assignment Considerations, RFC 5375 (Informational), December 2008.

13. Roger Dingledine, Nick Mathewson, and Paul Syverson, Tor: The second-
generation onion router, In Proceedings of the 13 th Usenix Security Symposium,
2004.

14. R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney, Dynamic
Host Configuration Protocol for IPv6 (DHCPv6), RFC 3315 (Proposed Standard),
July 2003, Updated by RFCs 4361, 5494, 6221, 6422.

15. S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh, NAT Behavioral
Requirements for TCP, RFC 5382 (Best Current Practice), October 2008.

16. T. Hain, Architectural Implications of NAT, RFC 2993 (Informational), November
2000.

17. R. Hinden and S. Deering, IP Version 6 Addressing Architecture, RFC 4291 (Draft
Standard), February 2006, Updated by RFCs 5952, 6052.

18. Q. Hu and B. Carpenter, Survey of Proposed Use Cases for the IPv6 Flow Label,
RFC 6294 (Informational), June 2011.

19. Janne Lindqvist, IPv6 is bad for your privacy, Defcon 15, 2007.
20. T. Narten, R. Draves, and S. Krishnan, Privacy Extensions for Stateless Address

Autoconfiguration in IPv6, RFC 4941 (Draft Standard), September 2007.
21. A. Rijsinghani, Computation of the Internet Checksum via Incremental Update,

RFC 1624 (Informational), May 1994.
22. P. Srisuresh and M. Holdrege, IP Network Address Translator (NAT) Terminology

and Considerations, RFC 2663 (Informational), August 1999.
23. W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei, Advanced Sockets Applica-

tion Program Interface (API) for IPv6, RFC 3542 (Informational), May 2003.
24. M. Wasserman and F. Baker, IPv6-to-IPv6 Network Prefix Translation, RFC 6296

(Experimental), June 2011.


	IPv6 address obfuscation
	Introduction
	Proposal of Architecture
	Overview of new IPv6 opportunities
	Large address space:
	The flow label

	Overview of the solution
	Computation on the middlebox
	Flow label assignment by application

	Implementation of the middlebox
	Packets processing
	Outgoing packets:
	Incoming packets:

	Identification of a context
	Cleanup of old context

	Impacts and consequences
	Checksum computation
	Risk of collision
	Compatibility analysis
	Remote routers and servers:
	Local devices:
	Common address translation issues:


	Flow label assignment at end devices
	Link between applications and operating system: flow label management API
	How to patch applications on Linux

	Performance evaluation
	Memory consumption on the middlebox
	Latency
	Overhead of rewriting on the middlebox
	Overhead of the library preload

	CPU consumption on the middlebox

	Future works
	Conclusion


