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Abstract
An output-feedback scheme for the global stabiliza-

tion of uncoupled PVTOL aircraft with bounded inputs
is proposed. The control objective is achieved avoid-
ing input saturation and through the exclusive consid-
eration of system positions in the feedback. To cope
with the lack of velocity measurements, the proposed
algorithm involves a finite-time observer. With respect
to previous approaches, the developed finite-time-
observer-based scheme guarantees the global stabiliza-
tion objective disregarding velocity measurements in a
bounded input context. Simulation results corroborate
the analytical developments.
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1 Introduction
Since the publication of [Hauser, Sastry and Meyer,

1992], stabilization of the Planar Vertical Take-off and
Landing (PVTOL) aircraft has been a subject of spe-
cial interest in the control community. The design
of a suitable algorithm, in such analytical framework,
has proven to constitute a challenging task. This is
mainly due to the complexities involved by the PVTOL
dynamics: highly nonlinear, underactuated, signed
(thrust) input. The efforts devoted to such a particular
study case have given rise to diverse approaches. For
instance, in view of the unstable non-zero dynamics ob-
tained through the application of conventional geomet-
ric control techniques, an approximate input-output de-
sign procedure dealing with non-minimum phase non-
linear systems has been proposed in [Hauser, Sastry
and Meyer, 1992]. Applying a decoupling change
of coordinates, global stabilization was proven to be
achieved through backstepping under the considera-
tion of input coupling (generally neglected) in [Olfati-
Saber, 2002]. A globally stabilizing nonlinear feedback

control law that casts the system into a cascade struc-
ture was proposed in [Wood and Cazzolato, 2007]. By
transforming the system dynamics into a chain of in-
tegrators with nonlinear perturbations, global stabiliza-
tion was also proven to be achieved in [Ye, Wang and
Wang, 2007] through a control technique that involves
saturation functions. Based on partial feedback lin-
earization and optimal trajectory generation to enhance
the behavior and the stability of the system internal dy-
namics, a nonlinear prediction-based stabilization algo-
rithm was proposed in [Chemori and Marchand, 2008].
An open-loop exact tracking scheme ensuring bounded
internal dynamics was developed in [Consolini and
Tosques, 2007] through a Poincaré map approach. Fur-
ther, a path following controller with the properties of
output invariance of the path and boundedness of the
roll dynamics was proposed in [Consolini, Maggiore,
Nielsen and Tosques, 2010].
Other works have considered additional constraints

that commonly arise in real applications. For instance,
bounded inputs have been considered in [Zavala-Rı́o,
Fantoni and Lozano, 2003; López-Araujo, Zavala-Rı́o,
Fantoni, Salazar and Lozano, 2010; Ailon, 2010]: in
[Zavala-Rı́o, Fantoni and Lozano, 2003], global sta-
bilization was achieved, neglecting the lateral force
coupling, through the use of embedded (linear) sat-
uration functions; this approach was further proven
to achieve the global stabilization objective under the
additional consideration of the lateral force coupling
in [López-Araujo, Zavala-Rı́o, Fantoni, Salazar and
Lozano, 2010] (for sufficiently small values of the
parameter characterizing such a coupling); in [Ailon,
2010], a semiglobal tracking controller was developed
involving smooth sigmoidal functions. Furthermore,
schemes that achieve the control objective without ve-
locity measurements have been proposed in [Do, Jiang
and Pan, 2003; Frye, Ding, Qian and Li, 2010]: in
[Do, Jiang and Pan, 2003], the design and analysis pro-
cedures were developed under the consideration of a
Luenberger-type observer, while in [Frye, Ding, Qian
and Li, 2010], finite-time observers are involved. How-



ever, these output-feedback approaches were devel-
oped disregarding input constraints.
Inspired by the techniques involved in [Frye, Ding,

Qian and Li, 2010], this work proposes an output-
feedback control scheme for the global stabilization of
uncoupled PVTOL aircraft with bounded inputs. First,
a state feedback algorithm is presented and proven to
globally stabilize the closed-loop system avoiding in-
put saturation. Then, the same algorithm is proven to
achieve the global stabilization objective, avoiding in-
put saturation, by replacing the velocity variables by
auxiliary states coming from a finite-time observer,
which turns out to exactly reproduce the aircraft po-
sitions and velocities after a finite-time transient dur-
ing which the system variables are proven to remain
bounded. The finite-time stabilizers considered in this
work are generalized versions of those involved in
[Frye, Ding, Qian and Li, 2010]. This gives rise to
an additional degree of design flexibility that has not
only permitted to solve the output-feedback stabiliza-
tion problem in a bounded input context, but may also
be used in aid of performance improvements. Simula-
tion results corroborate the efficiency of the proposed
scheme.

2 The PVTOL aircraft dynamics
The PVTOL aircraft dynamics is given by [Hauser,

Sastry and Meyer, 1992]:

ẍ = −u1 sin θ + εu2 cos θ

ÿ = u1 cos θ + εu2 sin θ − 1

θ̈ = u2

(1)

where x and y are the center of mass horizontal and
vertical positions, and θ is the roll angle of the air-
craft with the horizon. The control inputs u1 and u2

are respectively the thrust and the rolling moment. The
constant “−1” is the normalized gravity acceleration.
The parameter ε is a coefficient characterizing the cou-
pling between the rolling moment and the lateral accel-
eration of the aircraft. Its value is generally so small
that ε = 0 can be assumed [Hauser, Sastry and Meyer,
1992, §2.4]. Thus, under such a common considera-
tion, in this work we consider the (uncoupled) PVTOL
aircraft dynamics with ε = 0, i.e

ẍ = −u1 sin θ , ÿ = u1 cos θ − 1 , θ̈ = u2 (2)

Under the consideration of bounded inputs, i.e. 0 ≤
u1 ≤ U1 and |u2| ≤ U2 for some constants1 U1 > 1
and U2 > 0, we state the control objective as being the
global stabilization of the system trajectories towards
(x, y, θ) = (0, 0, 0), through a bounded control scheme

1Notice from the vertical motion dynamics in Eqs. (2) that
U1 > 1 is a necessary stabilizability condition, since steady-state
achievement implies that the aircraft weight be compensated.

that only feeds back configuration variables from the
PVTOL and avoids input saturation i.e. such that 0 <
u1(t) < U1 and |u2(t)| < U2, ∀t ≥ 0.

3 Preliminaries
Let N and Z+ respectively stand for the set of nat-

ural and nonnegative integer numbers. For particular
values m ∈ N and n ∈ Z+, let Nm = {1, . . . ,m}
and Z+

n = {0, . . . , n}. We denote 0n the origin
of Rn. For any x ∈ Rn, xi represents its ith ele-
ment, while ‖ · ‖ is used to denote the standard Eu-
clidean vector norm, i.e. ‖x‖ =

[∑n
i=0 x

2
i

]1/2
. Let

Rn>0 , {x ∈ Rn : xi > 0,∀i ∈ Nn} and Rn≥0 ,
{x ∈ Rn : xi ≥ 0,∀i ∈ Nn}. Let A and E be sub-
sets (with nonempty interior) of some vector spaces A
and E respectively. We denote Cm(A; E) the set of m-
times continuously differentiable functions from A to
E , with C0 the set of continuous functions. Consider
a scalar function ζ ∈ Cm(R;R) with m ∈ Z+. The
following notation will be used: ζ ′ : s 7→ d

dsζ, when
m ≥ 1; ζ ′′ : s 7→ d2

ds2 ζ, when m ≥ 2; and more
generally ζ(n) : s 7→ dn

dsn ζ, ∀n ∈ Nm, and ζ(0) = ζ.
We denote sat(s) the standard saturation function, i.e.
sat(s) = sign(s) min{|s|, 1}. In the rest of this sec-
tion, some definitions and results that underlie the con-
tribution of this work are stated. The proofs of the lem-
mas and corollaries of this section were thoroughly de-
veloped by the authors and will be omitted because of
space limitations.
Analogously to the (conventional) case of homoge-

neous functions and vector fields [Bacciotti and Rosier,
2005; Aeyels and de Leenheer, 2002], the following lo-
cal homogeneity concept was stated in [Zavala-Rı́o and
Fantoni, 2013] in terms of family of dilations δrε defined
as δrε(x) = (εr1x1, . . . , ε

rnxn), ∀x ∈ Rn, ∀ε > 0,
where r = (r1, . . . , rn), with the dilation coefficients
r1, . . . , rn being positive real numbers.

Definition 3.1. [Zavala-Rı́o and Fantoni, 2013] Given
r ∈ Rn>0, a neighborhood of the origin D ⊂ R is said
to be δrε -connected if, for every x ∈ D, δrε(x) ∈ D
for all ε ∈ (0, 1). A function V : Rn → R, resp.
vector field f : Rn → Rn, is locally homogeneous of
degree α with respect to the family of dilations δrε —or
equivalently, it is said to be locally r-homogeneous of
degree α— if there exists a δrε -connected open neigh-
borhood of the origin D ⊂ Rn —referred to as the do-
main of homogeneity— such that V (δrε(x)) = εαV (x),
resp. f(δrε(x)) = εαδrε(f(x)), for every x ∈ D and all
ε ∈ R>0 such that δrε(x) ∈ D.

Definition 3.2. [Bacciotti and Rosier, 2005; Bhat and
Bernstein, 2005] Consider an n-th order autonomous
system Σ : ẋ = f(x), where f : D → Rn is contin-
uous on an open neighborhood D ⊂ Rn of the origin
and f(0n) = 0n, and let x(t;x0) represent the sys-
tem solution with initial condition x(0;x0) = x0. The
origin is said to be a finite-time stable equilibrium of
system Σ if it is Lyapunov stable and there exist an



open neighborhood N ⊂ D being positively invari-
ant with respect to Σ, and a positive definite function
T : N → R≥0, called the settling-time function, such
that x(t;x0) 6= 0n, ∀t ∈

[
0, T (x0)

)
, ∀x0 ∈ N \ {0n},

and x(t;x0) = 0n, ∀t ≥ T (x0), ∀x0 ∈ N . The origin
is said to be a globally finite-time stable equilibrium of
system Σ if it is finite-time stable with N = D = Rn.

Theorem 3.1. [Zavala-Rı́o and Fantoni, 2013] Con-
sider the system Σ : ẋ = f(x) of Definition 3.2 with
D = Rn. Suppose that f is a locally r-homogeneous
vector field of degree k with domain of homogeneity
D ⊂ Rn. Then, the origin is a globally finite-time sta-
ble equilibrium of system Σ if and only if it is globally
asymptotically stable and k < 0.

The proof of Theorem 3.1 has been thoroughly de-
veloped in [Zavala-Rı́o and Fantoni, 2013]. A partial
version —namely, the sufficiency implication— of this
theorem was used in [Frye, Ding, Qian and Li, 2010]
to support the result presented therein.

Definition 3.3.

1. A continuous function σ : R→ R is said to be:

(a) bounded by M if |σ(s)| ≤ M , ∀s ∈ R, for
some positive constant M ;

(b) strictly passive if sσ(s) > 0, ∀s 6= 0;
(c) strongly passive if it is a strictly passive func-

tion satisfying |σ(s)| ≥ κ
∣∣a sat(s/a)

∣∣α =

κ
(

min{|s|, a}
)α

, ∀s ∈ R, for some positive
constants κ, α, and a.

2. A nondecreasing strictly passive function σ : R→
R being bounded by M , locally r-homogeneous
of degree α > 0 for some r > 0, and locally
Lipschitz-continuous on R \ {0}, is said to be a
homogeneous saturation (function) for (α, r,M).

3. A nondecreasing Lipschitz-continuous strictly pas-
sive function σ : R → R being bounded by M is
said to be a generalized saturation (function) with
bound M .

4. A generalized saturation function σ : R→ R with
boundM is said to be a linear saturation (function)
for (L,M) if there is a positive constant L ≤ M
such that σ(s) = s, ∀|s| ≤ L. [Teel, 1992]

For a generalized or homogeneous saturation func-
tion σ(s), M+ , lims→∞ σ(s) and M− ,
− lims→−∞ σ(s), which are called the limit bounds
of σ, while M̄ , max{M+,M−} and M

¯
,

min{M+,M−}.

Observe that M
¯
≤ M̄ ≤ M , i.e. M+ and M− does

not necessarily have the same value (but could be dif-
ferent), andM is not necessarily equal to M̄ (but could
be greater).

Remark 3.1. Note that homogeneous and generalized
saturation functions are strongly passive. Indeed, let
σ be any homogeneous or generalized saturation func-
tion. Notice that the strictly passive character of σ im-
plies the existence of a sufficiently small a > 0 such

that |σ(s)| ≥ κ|s|α, ∀|s| ≤ a, for some positive con-
stants κ and α, while from its non-decreasing character
we have that |σ(s)| ≥ |σ(sign(s)a)| ≥ κaα, ∀|s| ≥ a,
and thus |σ(s)| ≥ κ

(
min{|s|, a}

)α
= κ

∣∣a sat(s/a)
∣∣α,

∀s ∈ R. /

Lemma 3.1. Let σ ∈ Cm(R;R), for somem ∈ N, be a
generalized saturation function with bound M . Then:

1. lim|s|→∞ spσ(q)(s) = 0, ∀p ∈ Z+, ∀q ∈ Nm;
2. for all p ∈ Z+ and all q ∈ Nm, there exist Ap,q ∈

(0,∞) such that
∣∣spσ(q)(s)

∣∣ ≤ Ap,q , ∀s ∈ R.

Lemma 3.2. Let σ, σ1, σ2 : R → R be strongly pas-
sive functions and k be a positive constant. Then:

1.
∫ s

0
σ(kν)dν > 0, ∀s 6= 0;

2.
∫ s

0
σ(kν)dν →∞ as |s| → ∞;

3. σ1 ◦ σ2 is strongly passive.

Lemma 3.3. Let σ : R → R be a strictly increas-
ing function and k be a positive constant. Then:
s1

[
σ(ks1 + s2)− σ(s2)] > 0, ∀s1 6= 0, ∀s2 ∈ R.

Lemma 3.4. Consider the second-order system

ẋ1 = x2 , ẋ2 = −σ1(k1x1)− σ2(k2x2) (3)

where σ1 : R → R is a strongly passive function
and σ2 : R → R is strictly passive, both being lo-
cally Lipschitz on R \ {0}, and k1 and k2 are (arbi-
trary) positive constants. For this dynamical system,
(0, 0) is a globally asymptotically stable equilibrium.
If in addition, for every i ∈ N2, σi(s) is locally ri-
homogeneous of degree α with domain of homogeneity
Di ,

{
s ∈ R : |s| < ρi ∈ (0,∞]

}
, for some dilation

coefficients such that

α = 2r2 − r1 > 0 > r2 − r1 (4)

then (0, 0) is globally finite-time stable.

Lemma 3.4 is proven by showing that, from the prop-
erties satisfied by strictly and strongly passive func-
tions, V1(x1, x2) =

x2
2

2 +
∫ x1

0
σ1(k1s)ds is a radially

unbounded Lyapunov function of system (3), and the
application of La Salle’s invariance principle [Khalil,
2002, §4.2] and Theorem 3.1.

Corollary 3.1. For every i ∈ N2, let σi(s) =
κi sign(s)|s|βi , ∀|s| < ρi ∈ (0,∞], with κi and βi
being positive constants. Thus, for any (r1, r2) ∈ R2

>0

such that r1β1 = r2β2 , α, σi(s), i = 1, 2, are lo-
cally ri-homogeneous of degree α with domain of ho-
mogeneity Di = {s ∈ R : |s| < ρi}, guaranteeing the
satisfaction of (4), if and only if

1 =
2

β2
− 1

β1
> 0 >

1

β2
− 1

β1
(5)



Remark 3.2. Note from Lemma 3.4 and Corollary 3.1,
that for system (3) with a strongly passive σ1(s) and
a strictly passive σ2(s), both being locally Lipschitz-
continuous on R \ {0}, such that, for every i = 1, 2,
σi(s) = κi sign(s)|s|βi , ∀|s| < ρi ∈ (0,∞], with
κi > 0 and positive values of βi satisfying (5) —
equivalently expressed as: 0 < β1 < 1 and β2 =
2β1/(1 + β1)—, (0, 0) is a globally finite-time stable
equilibrium. In particular, for the special case gen-
erated by taking σi(s) = ki sign(s) max{|s|βi , |s|},
∀s ∈ R, i = 1, 2, with positive values of βi satisfying
(5), global finite-time stability of the origin was stated
in [Frye, Ding, Qian and Li, 2010, Lemma 2.2]. /

Lemma 3.5. Consider the second-order system

ẋ1 = x2 − σ1(k1x1) , ẋ2 = −σ2(k2x1) (6)

where σ1 : R → R is a strictly passive function
and σ2 : R → R is strongly passive, both being lo-
cally Lipschitz on R \ {0}, and k1 and k2 are (arbi-
trary) positive constants. For this dynamical system,
(0, 0) is a globally asymptotically stable equilibrium.
If in addition, for every i ∈ N2, σi(s) is locally r0-
homogeneous of degree αi, with domain of homogene-
ity Di = {s ∈ R : |s| < ρi ∈ (0,∞]}, for some
(common) dilation coefficient such that

α2 = 2α1 − r0 > 0 > α1 − r0 (7)

then (0, 0) is globally finite-time stable.

Lemma 3.5 is proven by showing that, from the prop-
erties satisfied by strictly and strongly passive func-
tions, V2(x1, x2) =

x2
2

2 +
∫ x1

0
σ2(k2s)ds is a radially

unbounded Lyapunov function of system (6), and the
application of La Salle’s invariance principle and The-
orem 3.1.

Corollary 3.2. For every i ∈ N2, let σi(s) =
κi sign(s)|s|βi , ∀|s| < ρi ∈ (0,∞], with κi and βi
being positive constants. Thus, σi(s), i = 1, 2, are
locally r0-homogeneous of degree αi, for some (com-
mon) dilation coefficient such that (7) is satisfied, if and
only if

β2 = 2β1 − 1 > 0 > β1 − 1 (8)

Remark 3.3. Let us note, from Lemma 3.5 and Corol-
lary 3.2, that for system (6) with strictly passive
σ1(s) and strongly passive σ2(s), both being locally
Lipschitz-continuous on R \ {0}, such that, for every
i = 1, 2, σi(s) = κi sign(s)|s|βi , ∀|s| < ρi ∈ (0,∞],
with κi > 0 and positive values of βi satisfying (8) —
equivalently expressed as: 1

2 < β1 < 1 and β2 = 2β1−
1—, (0, 0) is a globally finite-time stable equilibrium.
In particular, for the special case of system (6) gen-
erated by taking σi(s) = ki sign(s) max{|s|βi , |s|},

∀s ∈ R, i = 1, 2, with positive values of βi satisfying
(8), global finite-time stability of the origin was stated
in [Frye, Ding, Qian and Li, 2010, Lemma 2.3]. /

4 State-feedback global stabilizer
Following a design reasoning similar to the one de-

scribed in [Zavala-Rı́o, Fantoni and Lozano, 2003], we
define the following new controller

u1 =
√
v2

1 + (1 + v2)2 (9)

v1 = −k0σ12

(
k12ẋ+ σ11(k11x)

)
(10)

v2 = −σ22

(
k22ẏ + σ21(k21y)

)
(11)

u2 = σ30(θ̈d)− σ31

(
k31(θ − θd)

)
− σ32

(
k32(θ̇ − θ̇d)

) (12)

θd = arctan(−v1, 1 + v2) (13)

where arctan(a, b) represents the (unique) angle φ
such that sinφ = a/

√
a2 + b2 and cosφ =

b/
√
a2 + b2; kij , i = 1, 2, 3, j = 1, 2, are (arbitrary)

positive constants; k0 is a positive constant less than
unity, i.e.

0 < k0 < 1 (14a)

σ11, σ12, σ21, and σ22 are strictly increasing twice con-
tinuously differentiable generalized saturations with
bounds M11, M12, M21, and limit bounds M+

22 and
M−22 such that

M2
12 + (1 +M−22)2 ≤ U2

1 , M+
22 < 1 (14b)

σ30 is a linear saturation, σ31 a homogeneous satura-
tion, and σ32 a strictly increasing homogeneous satura-
tion for (L30,M30), (α31, r31,M31), (α32, r32,M32),
and limit bounds such that

M30 +M31 +M32 ≤ U2 (15a)

M̄30 + M̄31 < M
¯ 32 (15b)

α31 = α32 = 2r32 − r31 > 0 > r32 − r31 (15c)

and θ̇d , d
dtθd and θ̈d , d2

dt2 θd are given by

θ̇d = k0
˙̄θd

˙̄θd =
v̄1v̇2 − (1 + v2) ˙̄v1

u2
1

(16)



θ̈d = k0
¨̄θd

¨̄θd =
v̄1v̈2 − (1 + v2)¨̄v1

u2
1

− 2u̇1
˙̄θd

u1

(17)

where v̄1 , v1/k0, ˙̄v1 , d
dt v̄1, ¨̄v1 , d2

dt2 v̄1, v̇2 ,
d
dtv2, v̈2 , d2

dt2 v2, and u̇1 , d
dtu1 are given by v̄1 =

−σ12(s12),

˙̄v1 = −σ′12(s12)ṡ12 (18)

¨̄v1 = −σ′′12(s12)ṡ2
12 − σ′12(s12)s̈12 (19)

v̇2 = −σ′22(s22)ṡ22 (20)

v̈2 = −σ′′22(s22)ṡ2
22 − σ′22(s22)s̈22 (21)

u̇1 =
v1v̇1 + (1 + v2)v̇2

u1
(22)

with v̇1 , d
dtv1 = k0 ˙̄v1, and si2, ṡi2 , d

dtsi2, and
s̈i2 , d2

dt2 si2, i = 1, 2, given by

s12 = k12ẋ+ σ11(k11x)

ṡ12 = k12ax + σ′11(k11x)k11ẋ

s̈12 = k12ȧx + σ′′11(k11x)(k11ẋ)2 + σ′11(k11x)k11ax

s22 = k22ẏ + σ21(k21y)

ṡ22 = k22ay + σ′21(k21y)k21ẏ

s̈22 = k22ȧy + σ′′21(k21y)(k21ẏ)2 + σ′21(k21y)k21ay

and ax (taken from the horizontal dynamics in Eqs.
(2)), ȧx , d

dtax, ay (taken from the vertical dynam-
ics in Eqs. (2)), and ȧy , d

dtay given by

ax = −u1 sin θ , ȧx = −u̇1 sin θ − u1θ̇ cos θ

ay = u1 cos θ − 1 , ȧy = u̇1 cos θ − u1θ̇ sin θ

Proposition 4.1. Consider the PVTOL aircraft dynam-
ics (2) with input saturation bounds U1 > 1 and
U2 > 0. Let the input thrust u1 be defined as in
(9), with constant k0, bounds M11, M12, M21, and
limit bounds M+

22 and M−22 of the strictly increasing
twice continuously differentiable generalized satura-
tion functions σij , i, j = 1, 2, in (10) and (11) satis-
fying inequalities (14), and (arbitrary) positive gains
kij , i, j = 1, 2, and the input rolling moment u2 as
in (12), with parameters (L30,M30), (α31, r31,M31),
(α32, r32,M32), and limit bounds of the linear, homo-
geneous, and strictly increasing homogeneous satura-
tions σ3l, l = 1, 2, 3, in (12) satisfying conditions (15),
and (arbitrary) positive gains k3l, l = 1, 2, 3. Then, for
any (x, y, θ, ẋ, ẏ, θ̇)(0) ∈ R6:

1. 0 < 1 − M+
22 ≤ u1(t) ≤√

(k0M12)
2

+
(
1 +M−22

)2
< U1 and

|u2(t)| < M30 +M31 +M32 ≤ U2, ∀t ≥ 0;

2. x(t), ẋ(t), y(t), ẏ(t), θ(t), and θ̇(t) are bounded
on [0, τ ] for any τ ∈ (0,∞);

3. there exist initial-condition-independent positive
constantsB ˙̄v1 ,Bv̇2 ,Bu̇1

, andB ˙̄θd
such that (along

the closed-loop system trajectories) |v̇1(t)| <
| ˙̄v1(t)| ≤ B ˙̄v1 , |v̇2(t)| ≤ Bv̇2 , |u̇1(t)| ≤ Bu̇1

, and

|θ̇d(t)| < | ˙̄θd(t)| ≤ B ˙̄θd
, ∀t ≥ 0;

4. there exists a finite time t1 ≥ 0 such that:

(a) |θ̇(t)| ≤ Bθ̇, ∀t ≥ t1,
(b) and |¨̄v1(t)| ≤ B¨̄v1 , |v̈2(t)| ≤ Bv̈2 , |θ̈d(t)| ≤

k0B ¨̄θd
, ∀t ≥ t1,

for some initial-condition-independent positive
constants Bθ̇, B¨̄v1 , Bv̈2 , and B ˙̄θd

;
5. provided that k0 is sufficiently small, from t1 on,
θd(t) is globally finite-time stabilized in the rota-
tional coordinate space, i.e. θd(t) becomes a sta-
ble solution of the rotational motion closed-loop
dynamics and, for any (θ, θ̇)(t1) ∈ R2, there ex-
ists a finite time t2 ≥ t1 such that θ(t) = θd(t),
∀t ≥ t2;

6. from t2 on, (x, y)(t) ≡ (0, 0) becomes a sta-
ble solution of the translational motion closed-
loop dynamics and, for any (x, y, ẋ, ẏ)(t2) ∈ R4,
(x, y, θ)(t)→ (0, 0, 0) as t→∞.

Proof.

1. Item 1 of the statement follows directly from the
definition of u1, u2, v1, and v2 in Eqs. (9)–(12),
the consideration of inequalities (14) and (15a),
and the strictly increasing character of σ32. Its
proof is consequently straightforward.

2. Observe from the system dynamics in Eqs. (2),
item 1 of the statement, and inequality (14a) that

|ẍ(t)| <
√
M2

12 +
(
1 +M−22

)2
, Bu1

|ÿ(t)| < Bu1
+ 1

|θ̈(t)| < M30 +M31 +M32 , Bu2

Hence, for any τ ∈ (0,∞):

|ẋ(t)| < |ẋ(0)|+Bu1
τ

|ẏ(t)| < |ẏ(0)|+ (Bu1
+ 1)τ

|θ̇(t)| < |θ̇(0)|+Bu2τ

and

|x(t)| < |x(0)|+ |ẋ(0)|τ +Bu1
τ2/2

|y(t)| < |y(0)|+ |ẏ(0)|τ + (Bu1
+ 1)τ2/2

|θ(t)| < |θ(0)|+ |θ̇(0)|τ +Bu2τ
2/2

∀t ∈ [0, τ ].



3. Note that Eq. (18) may be rewritten as

˙̄v1 = −σ′12(s12)

[
k12ax

+
k11

k12
σ′11(k11x)

(
s12 − σ11(k11x)

)]

Then, by applying Lemma 3.1, we have that (along
the closed-loop system trajectories)

| ˙̄v1(t)| ≤ k12A
0,1
12 Bu1

+
k11

k12
A0,1

11

(
A1,1

12 +A0,1
12 M11

)
, B ˙̄v1

∀t ≥ 0; recall further that v1 = k0v̄1 and conse-
quently, under the consideration of (14a), we have
that |v̇1(t)| < | ˙̄v1(t)| ≤ B ˙̄v1 , ∀t ≥ 0. Following a
similar procedure for Eq. (20), we get

|v̇2(t)| ≤ k22A
0,1
22 (Bu1 + 1)

+
k21

k22
A0,1

21

(
A1,1

22 +A0,1
22 M21

)
, Bv̇2

∀t ≥ 0. Observe now that Eq. (22) may be rewrit-
ten as

u̇1 = v̇2 cos θd − v̇1 sin θd

=
√
v̇2

1 + v̇2
2 cos

(
θd + arctan(v̇1, v̇2)

)
whence we have that |u̇1(t)| ≤

√
B2

˙̄v1
+B2

v̇2
,

Bu̇1 , ∀t ≥ 0. Furthermore, notice that the right-
hand-side equation in (16) may be rewritten as

˙̄θd =
v̄1v̇2

u2
1

−
˙̄v1 cos θd
u1

wherefrom we get that

| ˙̄θd(t)| ≤
M12Bv̇2

(1−M+
22)2

+
B ˙̄v1

1−M+
22

, B ˙̄θd

∀t ≥ 0. Observe further from left-hand-side equa-
tion in (16) that, under the consideration of (14a),
we have that |θ̇d(t)| < | ˙̄θd(t)| ≤ B ˙̄θd

, ∀t ≥ 0.
4a. Let σ33 be a generalized saturation function with

bound M33 such that2

M33 < M
¯ 32 − M̄31 − M̄30 (23)

2Note that the satisfaction of (15b) ensures positivity of the right-
hand side of inequality (23).

Let us further define the positive function V1 =
θ̇2/2. Its derivative along the trajectories of the
closed-loop rotational motion dynamics is given
by V̇1 = θ̇θ̈, i.e.

V̇1 = θ̇
[
σ30(θ̈d)− σ31

(
k31(θ − θd)

)
− σ32

(
k32(θ̇ − θ̇d)

)]
which may be rewritten as

V̇1 = −θ̇σ33(θ̇)+θ̇
[
σ30(θ̈d)−σ31

(
k31(θ−θd)

)
− σ32

(
k32(θ̇ − θ̇d)

)
+ σ33(θ̇)

]
(24)

Observe, from item 3 of the statement and the
strictly increasing character of σ32, that3

θ̇ ≥ B+

θ̇
,
σ−1

32 (M̄30 + M̄31 +M33)

k32
+B ˙̄θd

> 0

=⇒ θ̇ − θ̇d ≥
σ−1

32 (M̄30 + M̄31 +M33)

k32

+B ˙̄θd
− θ̇d

≥ σ−1
32 (M̄30 + M̄31 +M33)

k32

=⇒ σ32

(
k32(θ̇ − θ̇d)

)
≥ M̄30 + M̄31 +M33

=⇒ σ32(·)− σ30(·) + σ31(·)− σ33(·)
≥ M̄30 − σ30(·) + M̄31 + σ31(·)

+M33 − σ33(·) ≥ 0

=⇒ σ30(θ̈d)− σ31

(
k31(θ − θd)

)
− σ32

(
k32(θ̇ − θ̇d)

)
+ σ33(θ̇) ≤ 0

while analogous developments show that

θ̇ ≤ B−
θ̇

,
σ−1

32 (−M̄30 − M̄31 −M33)

k32
−B ˙̄θd

< 0

=⇒ σ30(θ̈d)− σ31

(
k31(θ − θd)

)
− σ32

(
k32(θ̇ − θ̇d)

)
+ σ33(θ̇) ≥ 0

From these expressions we see that

|θ̇| ≥ max
{
B+

θ̇
, −B−

θ̇

}
=⇒ θ̇

[
σ30(θ̈d)− σ31

(
k31(θ − θd)

)
− σ32

(
k32(θ̇ − θ̇d)

)
+ σ33(θ̇)

]
≤ 0

3Let us note that its strictly increasing character renders σ32 an
invertible function mapping R onto (−M−

32,M
+
32) —and conse-

quently σ−1
32 is a well-defined function mapping (−M−

32,M
+
32) onto

R— and observe that, by (23), we have that M̄30 + M̄31 +M33 ∈
(0,M

¯ 32) ⊂ (−M−
32,M

+
32).



whence, in view of (24), we conclude that

V̇1 ≤ −θ̇σ33(θ̇) ∀|θ̇| ≥ max
{
B+

θ̇
, −B−

θ̇

}
with θ̇σ33(θ̇) being a positive definite function of
θ̇ in view of the strictly passive character of σ33.
Then, according to [Khalil, 2002, Theorem 4.18],4

there exists a finite time t1 ≥ 0 such that |θ̇(t)| ≤
max

{
B+

θ̇
, −B−

θ̇

}
, Bθ̇, ∀t ≥ t1.

4b. Notice that Eq. (19) may be rewritten as

¨̄v1(t) = −σ′′12(s12)

[
−k12u1 sin θ+σ′11(k11x)∆

]2

− σ′12(s12)

[
−
(
k12u̇1 + k11u1σ

′
11(k11x)

)
sin θ

− k12u1θ̇ cos θ + σ′′11(k11x)∆2

]
with ∆ = k11

k12

(
s12 − σ11(k11x)

)
. Thus, by apply-

ing Lemma 3.1 and considering items 3 and 4a of
the statement, we have that (along the closed-loop
system trajectories)

|¨̄v1(t)| ≤ k2
12A

0,2
12 B

2
u1

+ 2k11Bu1
A0,1

11

(
A1,2

12 +A0,2
12 M11

)
+

(
k11A

0,1
11

k12

)2(
A2,2

12 + 2A1,2
12 M11 +A0,2

12 M
2
11

)
+A0,1

12 C1 +

(
k11

k12

)2

A0,2
11

(
A2,1

12 + 2A1,1
12 M11

+A0,1
12 M

2
11

)
, B¨̄v1

∀t ≥ t1, with

C1 ,

√(
k12Bu̇1 + k11Bu1A

0,1
11

)2

+
(
k12Bu1Bθ̇

)2
Following a similar procedure for Eq. (21), we get

|v̈2(t)| ≤ k2
22A

0,2
22 (Bu1

+ 1)2

+ 2k21(Bu1
+ 1)A0,1

21

(
A1,2

22 +A0,2
22 M21

)
+

(
k21A

0,1
21

k22

)2(
A2,2

22 + 2A1,2
22 M21 +A0,2

22 M
2
21

)
+A0,1

22

(
C2 + k21A

0,1
21

)
+

(
k21

k22

)2

A0,2
21

(
A2,1

22 + 2A1,1
22 M21

+A0,1
22 M

2
21

)
, Bv̈2

4Theorem 4.18 of [Khalil, 2002] is being applied by considering
the closed-loop rotational motion dynamics a first order subsystem
with respect to θ̇, i.e. d

dt
θ̇ = u2(t, θ̇) where (along the closed loop

trajectories) the rest of the system variables, involved in u2, are con-
sidered time-varying functions.

∀t ≥ t1, with

C2 ,

√(
k22Bu̇1

+ k21Bu1
A0,1

21

)2

+
(
k22Bu1

Bθ̇
)2

Furthermore, note that the right-hand-side equa-
tion in (17) may be rewritten as

¨̄θd =
v̄1v̈2

u2
1

−
¨̄v1 cos θd + 2u̇1

˙̄θd
u1

whence we get that

| ¨̄θd(t)| ≤
M12Bv̈2

(1−M+
22)2

+
B¨̄v1 + 2Bu̇1B ˙̄θd

1−M+
22

, B ¨̄θd

∀t ≥ t1. Hence, from the left-hand-side equation
in (17), we conclude that |θ̈d(t)| = k0| ¨̄θd(t)| ≤
k0B ¨̄θd

, ∀t ≥ t1.
5. From items 4b of the statement and 4 of Definition

3.3, one sees that by choosing a sufficiently small
value of k0 —such that k0B ¨̄θd

≤ L30—, we have

(along the system trajectories) that σ30(θ̈d(t)) =
θ̈d(t), ∀t ≥ t1. Then, from t1 on, the rotational
motion dynamics becomes

θ̈ = θ̈d − σ31

(
k31(θ − θd)

)
− σ32

(
k32(θ̇ − θ̇d)

)
By defining e1 = θ − θd and e2 = θ̇ − θ̇d, this
subsystem adopts a state-space representation of
the form

ė1 = e2 , ė2 = −σ31(k31e1)− σ32(k32e2)

Thus, by Lemma 3.4 and Remark 3.1, we con-
clude that (e1, e2) = (0, 0) is a globally finite-
time stable equilibrium of this subsystem. Hence,
θd(t) becomes a globally finite-time stable solu-
tion of the rotational motion closed-loop dynam-
ics, or equivalently, it becomes a stable solution of
this subsystem and, for any (θ, θ̇)(t1) ∈ R2, there
exists a finite time t2 ≥ t1 such that θ(t) = θd(t),
∀t ≥ t2.

6. Observe from item 2 of the statement that up
to t2 (and actually for any arbitrarily long finite
time), the closed-loop system solutions exist and
are bounded. Further, from item 5 of the statement,
the definitions of θd in (13) and u1 in (9), and Eqs.
(2), one sees that, from t2 on, we have that ẍ1 =
−u1 sin θd = v1 and ÿ1 = u1 cos θd − 1 = v2

with v1 and v2 as defined in Eqs. (10)-(11), i.e.
the translational motion closed-loop dynamics in
the transformed coordinates becomes

ẍ = −k0σ12

(
k12ẋ+ σ11(k11x)

)
ÿ = −σ22

(
k22ẏ + σ21(k21y)

) (25)



By defining z ,
(
x, ẋ, y, ẏ

)T
, this subsystem

adopts a consequent state-space representation
ż = f(z) with f(04) = 04. More precisely,

ż1 = z2 (26a)

ż2 = −k0σ12

(
k12z2 + σ11(k11z1)

)
(26b)

ż3 = z4 (26c)

ż4 = −σ22

(
k22z4 + σ21(k21z3)

)
(26d)

Let us now define the continuously differentiable
scalar function

V2 =
z2

2

2k0
+

∫ z1

0

σ12

(
σ11(k11s)

)
ds

+
z2

4

2
+

∫ z3

0

σ22

(
σ21(k21s)

)
ds

Note, under the consideration of Lemma 3.2 and
Remark 3.1, that V2(z) is radially unbounded and
positive definite. Its derivative along the system
trajectories is given by

V̇2 =
z2ż2

k0
+ z2σ12

(
σ11(k11z1)

)
+
z4ż4

k0
+ z4σ22

(
σ21(k21z3)

)
From Lemma 3.3 —in view of the strictly increas-
ing character of σi2, i = 1, 2— one sees that
V̇2(z) ≤ 0, ∀z ∈ R4, with V̇2(z) = 0 ⇐⇒
z2 = z4 = 0, whence 04 is concluded to be a
stable equilibrium of the state equations (26), or
equivalently (x, y)(t) ≡ (0, 0) is concluded to be
a stable solution of subsystem (25). Further, from
Eqs. (26) and the strictly passive character of the
involved generalized saturation functions, one sees
that

(
z2(t) ≡ 0

)
∧
(
z4(t) ≡ 0

)
=⇒

(
ż2(t) ≡

0
)
∧
(
ż4(t) ≡ 0

)
=⇒

(
z1(t) ≡ 0

)
∧
(
z3(t) ≡ 0

)
.

Then, from La Salle’s invariance principle, one
concludes that, for any z(t2) ∈ R4, z(t) → 04 as
t→∞. Finally, observe from this asymptotic con-
vergence that, since (along the closed-loop system
trajectories) (θ, θ̇)(t) = (θd, θ̇d)(t), ∀t ≥ t2, and,
as functions of the system variables, θd(z)

∣∣
z=04

=

θ̇d(z)
∣∣
z=04

= 0, then (θ, θ̇)(t) = (θd, θ̇d)(t)→ 02

as t→∞.

5 Output-feedback global stabilizer
With u , (u1, u2)T , let u(x, ẋ, y, ẏ, θ, θ̇) represent

the (state) feedback controller presented in the prece-
dent section. Suppose now that position measurements
are available while the velocity signals are not. In
this case we show that the globally stabilizing objec-
tive is achievable through the precedent algorithm with
the velocities replaced by estimation variables coming

from a finite-time observer defined through a general-
ized dynamics that includes that used in [Frye, Ding,
Qian and Li, 2010] as a particular case. More specifi-
cally, we consider the closed loop generated by taking
u = u(x, ẑ2, y, ẑ4, θ, ẑ6) under the additional consider-
ation of the auxiliary dynamics

˙̂z1 = ẑ2 + σ41

(
k41(x− ẑ1)

)
(27a)

˙̂z2 = −u1 sin θ + σ42

(
k42(x− ẑ1)

)
(27b)

˙̂z3 = ẑ4 + σ51

(
k51(y − ẑ3)

)
(27c)

˙̂z4 = u1 cos θ − 1 + σ52

(
k52(y − ẑ3)

)
(27d)

˙̂z5 = ẑ6 + σ61

(
k61(θ − ẑ5)

)
(27e)

˙̂z6 = u2 + σ62

(
k62(θ − ẑ5)

)
(27f)

where, for every i ∈ {4, 5, 6}, ki1 and ki2 are (ar-
bitrary) positive constants, σi1(s) is a strictly passive
function and σi2(s) is strongly passive, both being lo-
cally Lipschitz-continuous on R \ {0} and locally ri-
homogeneous of degree αi1 and αi2, respectively, for
some ri such that

αi2 = 2αi1 − ri > 0 > αi1 − ri (28)

As in the previous section, we denote
z = (x, ẋ, y, ẏ, θ, θ̇)T , while we define
ẑ , (ẑ1, ẑ2, ẑ3, ẑ4, ẑ5, ẑ6)T .

Proposition 5.1. Assuming input saturation bounds
U1 > 1 and U2 > 0, consider the PVTOL aircraft
dynamics (2) with u = u(x, ẑ2, y, ẑ4, θ, ẑ6), i.e. in
closed loop with the output feedback scheme generated
from the control algorithm considered in Proposition
4.1, with the horizontal, vertical, and rotational ve-
locity variables in the control law expressions (9) and
(12) respectively replaced by estimation variables ẑ2,
ẑ4, and ẑ6 dynamically computed through the auxil-
iary subsystem represented in Eqs. (27), under the sat-
isfaction of the parametric conditions (28) (concern-
ing the previously described functions σi1 and σi2,
i = 4, 5, 6) and the consideration of (arbitrary) pos-
itive constants kij , i = 4, 5, 6, j = 1, 2. Then, for any
(zT , ẑT )T (0) ∈ R12:

1. items 1 and 2 of Proposition 4.1 hold, i.e. along
the closed loop trajectories, input saturation is
avoided and the position and velocity variables ex-
ist and are bounded at any finite time;

2. there exists a finite time t0 ≥ 0 such that ẑ(t) =
z(t), ∀t ≥ t0;

3. from t0 on, items 3–6 of Proposition 4.1 are re-
trieved with t1 ≥ t0, i.e. in particular, there exist
a finite time t1 ≥ t0 such that |θ̈d(t)| ≤ k0B ¨̄θd

,
∀t ≥ t1, and a finite time t2 ≥ t1 such that, pro-
vided that k0 is sufficiently small, θ(t) = θd(t),
∀t ≥ t2, and such that, from t2 on, (x, y)(t) ≡
(0, 0) becomes a stable solution of the transla-
tional motion closed-loop dynamics and, for any



(x, y, ẋ, ẏ)(t2) ∈ R4, (x, y, θ)(t) → (0, 0, 0) as
t→∞.

Proof.

1. By reproducing the proof of items 1 and 2 of
Proposition 4.1 under the consideration of esti-
mation auxiliary states replacing the velocity vari-
ables in the control law expressions, one observes
that both items hold, whence item 1 of the state-
ment is concluded.

2. Let us define the observation error variables z̄i =
zi− ẑi, i = 1, . . . , 6. From the closed-loop system
equations, the observation error variable dynamics
is obtained as

˙̄zi = z̄j − σi1(ki1z̄i) , ˙̄zj = −σj2(kj2z̄i)

for all i ∈ {1, 3, 5}, with j = i + 1. Hence, from
Lemma 3.5, item 2 of the statement is concluded.

3. Let us first note that in view of item 1 of the state-
ment and the stability properties of the observa-
tion error dynamics, up to t0 (and actually for
any arbitrarily long finite time), all the closed-loop
system variables, and consequently all the expres-
sions involved in the definition of the control algo-
rithm, exist and are bounded. On the other hand,
in view of item 2 of the statement, from t0 on,
the state-feedback closed-loop dynamics consid-
ered in Proposition 4.1 is retrieved, and it is fur-
ther mirrored by the auxiliary subsystem in Eqs.
(27). Hence, from Proposition 4.1, item 3 of the
statement is concluded.

6 Simulation tests
Numerical tests were implemented under the consid-

eration of input bound values U1 = 10 and U2 =
10 (for the sake of simplicity, units will be omitted).
Defining the following generalized/homogeneous satu-
ration functions:

σij(s) = Mij tanh(s/Mij)

∀(i, j) ∈ N2 × N2 \ {(2, 2)}

σ22(s) =

{
M−22 tanh(s/M−22) ∀s < 0

M+
22 tanh(s/M+

22) ∀s ≥ 0

σ30(s) = M30 sat(s/M30)

σ31(s) = sign(s) min{|s|β31 ,M31}

σ32(s) =

sign(s)
L

1−β32
32

β32
|s|β32 ∀|s| < L32

sign(s)L32

β32
+ %(s) ∀|s| ≥ L32

with %(s) =
(
M32 − L32

β32

)
tanh

(
s−sign(s)L32

M32−L32/β32

)
, and

σmn(s) = sign(s)|s|βmn ∀(m,n) ∈ {4, 5, 6}×{1, 2}
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Figure 1. Simulation results

with M11 = M21 = 3, M12 = 7, M−22 = 6,
M+

22 = 0.9, M30 = M31 = 2, M32 = 6, L32 = 2,
β31 = 1/3, β32 = 1/2, β41 = β51 = β61 = 2/3,
β42 = β52 = β62 = 1/3, the simulations were run
fixing k0 = 0.1, k11 = k21 = 2, k12 = k22 =
3, kij = 1, i = 3, . . . , 6, j = 1, 2, and taking
z(0) = (x, ẋ, y, ẏ, θ, θ̇)(0) = (0, 0, 0, 8, 4π, 0) and
ẑ(0) = (3, 0, 3, 0, 0, 0). For comparison purposes, the
output-feedback algorithm of [Frye, Ding, Qian and Li,
2010] was implemented too taking β1 = α2 = 1/3,
β2 = 1/2, α1 = 2/3, and k1 = k2 = 1; input satura-
tion bounds were not included for this controller. Sev-
eral simulations were run involving model (1) with di-
verse nonnegative values of ε. The proposed controller
satisfactorily achieved the control objective, avoiding
input saturation, at every implemented test. This is ob-
served, for instance, in Fig. 1 where the results ob-
tained with ε = 0.5 are shown. Note from the graphs
that the rolling moment u2 produced by the algorithm
of [Frye, Ding, Qian and Li, 2010] takes absolute val-
ues greater than U2 = 10 during the transient; in a
bounded input context, this controller would have un-
dergone input saturation. Notice further that with the
algorithm of [Frye, Ding, Qian and Li, 2010] non-
negligible ripple effects are observed on some of the
closed loop variables.

7 Conclusions
An output feedback scheme for the global stabiliza-

tion of uncoupled PVTOL aircraft with bounded inputs
has been proposed. To deal with the lack of veloc-
ity measurements, the proposed algorithm involves a
finite-time observer. The generalized versions of the
involved finite-time stabilizers have not only permitted
to solve the output-feedback stabilization problem in
a bounded input context, but also give unlimited pos-
sibilities in the control design which may be used in
aid of performance improvements. Successful simula-



tion results corroborated the efficiency of the proposed
scheme. Future work will focus on the extension of
the developed study to the consideration of lateral force
coupling, i.e. ε ≥ 0, in the PVTOL aircraft dynamics.
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