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Abstract

Despite more than 30 years of handwriting recognition research,
Recognizing the unconstrained sequence is still a challenge task. The
difficulty of segmenting cursive script has led to the low recognition
rate.

Hidden Markov Models (HMMSs) are considered as state-of-the-
art methods for performing non-constrained handwriting recognition.
However, HMMs have several well-known drawbacks. One of these is
that they assume the probability of each observation depends only on
the current state, which makes contextual effects difficult to model.
Another is that HMMs are generative, while discriminative models
generally give better performance in labelling and classification tasks.

Recurrent neural networks (RNNs) do not suffer from these limita-
tions, and would therefore seem a promising alternative to HMMs.
A novel type of recurrent neural network, termed as Bidirectional
Long Short-Term Memory (BLSTM) architecture, will be studied in
this thesis. A sequence concatenating technique called Connecionist
Temporal Classification (CTC) is applied. Finally, Three extended
decoding algorithm: Levenshtein Distance(LD), full path(FD), max
path(MD) are proposed insighted by HMM to have a lexicon-based
classification. The system BLSTM-CTC-FP is demonstrated to be
robust to lexicon-based recognition and reduce 50% error than the ex-
isting best model.

Keywords Handwriting recognition, Sequence modeling, Neural
network, Long short term memory, Lexicon-based.
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1 Introduction

1.1 Background

Handwriting is a skill that is personal to individuals. Fundamental char-
acteristics of handwriting are three folds. It consists of artificial graphical
marks on a surface; its purpose is to communicate something; this purpose is
achieved by virtue of the mark’s conventional relation to language. Writing
is considered to have made possible much of culture and civilization. Hand-
writing recognition is the task of transforming a language represented in the
spatial form of graphical marks into its symbolic representation.

Handwriting is still one of the most important communication methods
even effected by the widespread acceptance of digital computers nowadays.
For example, people are still requested to signed personally on documents
instead of printed ones. Besides, a pen-based interfaces in digital devices
are popular in the recent decades and will play a more important role in the
future due to its natural interaction way for human and machine.

Therefore, Some tasks have been put forward to understand the hand-
writing recognition by computers [26] ,which includes handwriting recogni-
tion, interpolation and identification. Handwriting Recognition is the task of
transforming a language represented in its spatial form of graphical marks
into its symbolic representation. Handwriting interpretation is the task of de-
termining the meaning of a body of handwriting, e.g, a handwritten address.
Finally Handwriting Identification is the task of determining the author of a
sample of handwriting from a set of writers, like signature verification.

On the other side, according the input data, Handwriting can be casted
into online and offline data. In the online case, the two-dimensional coordin-
ates of successive points of the writing as a function of time are stored in
order. In offline case, only the completed writing is available as an 2-D image.

To some extent, Handwriting Recognition is the basis to the other two
tasks. Although there are many existing application, the technology is not
fully matured. Thus the main contribution of this thesis will focus on hand-
writing recognition and only the online data is considered.



[ L i’
Natural cursive handuniting
Figure 1: different kinds of handwriting sequence data input.Line 1 is box
handwriting which the position of each letter is known; Line 2 is script hand-

writing in which each letter is isolated. Line 3 is natural handwriting which
maybe cursive and unconstrained

1.2 Scope and objective

There are still two kinds of different tasks in Handwriting Recognition, which
is to recognized isolated character and sequence. Unsurprisingly, the latter
on is more difficult. Isolated character recognition has been achieved a good
performance, about 99% percent for different language [34] [11] [9]

For sequence Recognition, There are different kinds of sequence input
data depending on whether the position of each letter in the stream of se-
quence has been defined. In the first situation of Figure[I] the writer is forced
to write each letter into a box, which the position is known. Also, the writer
can be asked to write each letter separately. In this case, each letter will be
isolated. the position is unknown but easy to obtain by applying some con-
ditional cuts. The previous two situations can be called constrained writing
because the writers writes according to some constraints. However, this does
not happen in humans actual writing habits, which usually is cursive and
unconstrained. Just like in the third line of the figure, each letter in a word
is unknown and difficult to achieve. Therefore, it is still challenge to develop
a robust and reliable system for that kind of sequence.

The main contribution of this thesis are as follows:

a). analyze the existing related sequence recognition system, point out the
limitation and the relationship between BLSTM-CTC

b). apply the BLSTM-CTC system to different handwriting recognition
¢). explore the optimal features for Long Short Term Memory(BLSTM)
d). extend the CTC technique to lexicon-based decoding using various
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method.
e). comparison of lexicon based BLSTM-CTC with state of art models, like
hybrid of HMM and NN.

1.3 Thesis Layout

The first section presents some background, the issue related to handwriting
recognition and the scope, aim and contribution of this thesis. The rest of
the thesis is organized as followed: Chapter 2 presents the state of the art
of handwriting sequence recognition, which has been categorized into two
taxonomy: implicit and explicit segment systems. Both will be listed the
main technique and related papers. The purpose of this section is trying to
link and distinguish the BLSTM-CTC with other systems.

In section 3, theoretical foundation of Long Short Term Memory (BLSTM).
LSTM is a multi-active recurrent neural network with a more sophisticated
hidden neuron called memory block. The topology of LSTM and its learning
algorithm Back propagation through time (BPTT) are also referred. Finally,
a forward and backward pass recurrent structure is applied to equip with
bidirection.

A word level concatenating technique is discussed in section 4, called
Connectionist Temporal Classification(CTC),which is used to transcribe the
character-based BLSTM error onto sequence error. It is actually a HMM
termilogy take advantage of some algorithm, like forward and backward, Vi-
terbi. Thanks to HMM, different decoding methods is proposed to transplant
on CTC in lexicon-based recognition.

Experiments are conducted in section 5 including framewise and temporal
sequence task. Lexicon-based evaluation is used to compared with some
state-of-art model.



2 State of art

2.1 Overview

The sequence recognition models can be casted into two category: explicit
segment and implicit segment. The overview of these two systems can be
seen in Figure . Both includes pre-process(here we just point out segment),
feature extraction, classifier and then get the final result(segments and se-
quence label). There are two main distinction points between implicit and
explicit, The first system needs dedicated cutting technique to be cut seen
like character. By contrast, the segment of second system is based on heur-
istics information. Secondly.In the explicit, we can not get the result unless
we know the segment, but the implicit segment system is the opposite, which
it first get the result then segments.

I
I Character Level
:
Segment | ’
g | |Cieds ol
l f
I

'CL\,\C‘_L{OQtL cinquante

segmentation Label

I |
Implicit !

Feature

Segment ol ‘quU. QUL tt
I

I Naive Level Extraction L

(_L{Uuq.l.l(él.l.kb. i |

Segmented

Figure 2: Sequence Recognition System Taxonomy

1.Explicit Segment

The recognition task of constrained handwriting sequence is similar to
isolated character recognition as we can achieve the segmentation of the se-
quence. Then a sequence level can be concatenating with characters. How-
ever, to recognize the unconstrained sequence data is much more complicated
since the segmentation information is unknown. One approach is to recognize
individual characters and map them onto complete words, which is the same
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as the previous case. This needs to first classify each segment. However, seg-
mentation is difficult for cursive or unconstrained text, at least as difficult as
to recognize. In this case, if the segmentation is not reliable, the recognition
will be even harder. On the other hand, segmentation is not finally defined
unless the words has been recognized. This will create a circular dependency
between segmentation and recognition referred to as Sayre’s paradox [12].

2.Implicit Segment

Another approach to the unconstrained sequence is to simply ignore the
Sayre’s paradox, and carry out segmentation without "much effort" just seg-
ment them into basic strokes, slices or points, rather than characters. this
will be much easier. for example, for online data, the stroke boundaries can
be defined as the minimum of the velocity. For offline data, we can cut each
sequence at the minimum vertical histogram. The segmentation and recogni-
tion is usually at the same. The final segmentation can not be defined unless
the recognition result is known.

This Chapter has been put forward the taxonomy of sequence recognition
system in Section 1. The overview of explicit segment system will be in
Section 2, including the segment technique and classifiers. Section 3 will
describe implicit system. Section 4 comes to the conclusion.

2.2 Explicit Segment System

For the explicit segment sequence recognition system, there are usually four
steps: pre-process, segmentation,feature extraction, classifier. There are some
common operations in sequence preprocessing, like noise removal, slant angle
correction, smoothing, which will be the same to the implicit Segment Sys-
tem.

2.2.1 Segmentation

Character segment is crucial to the following step classifier in this kind of
recognition system. if the segments is not correct, the result will be wrong
no matter how robust the classifier is. Then researchers spend no effort
to improve the performance of character segmentation. Some segmentation
techniques [10] is listed as followed:

1.Dissection technique



Dissection is applied for many years, like projection analysis, connected
component processing, and contextual post processing grapheme. more in-
formation of these methods is shown in the figure

Space and Pitch: In machine printing, vertical whitespace often serves
to separate successive characters. This property can be extended to hand-
printed by providing separated boxes in which to print individual symbols.
The notion of detecting the vertical white space between successive charac-
ters has naturally been an important concept in dissecting images of machine
print or handprinted.

Projection: projection is shown in Figure Figure (a), vertical projec-
tion is applied in the offline handwriting image. It is an easy matter to detect
white columns between characters. but it fails to make the character O-M
separation. Line 2 in (a) apply the differencing measure for column splitting
and it will give a clear peak at the separated point. However, O-M case still
fails. Line 3 in (b) difference after column ANDing. The image transformed
by an AND of adjacent columns, which leads a better peak in between O-M.

Connect Component Analysis: Figure [3| (b) shows how connected
component works. The example illustrates characters that consists of two
components or more than one components will have wrong segments.

Grapheme: in Figure 3| (c), Here, a Markov model is postulated to rep-
resent splitting and merging as well as misclassification in a recognition pro-
cess. The system seeks to correct such errors by minimizing an edit distance
between recognition output and words in a given lexicon. An alternative ap-
proach still based on dissection is to divide the input image into sub-images
that are not necessarily individual characters. The dissection is performed
at stable image features that may occur within or between characters.as for
example, a sharp downward indentation can occur in the center of an "M’ or
at the connection of two touching characters.

2.Ligatures and Concavity

Dissection is not efficient for cursive handwriting script. Other improving
features like ligatures and concavities [22] are also used for cutting point.Marks
an x-coordinates as a ligatures point where the distance between y-coordinates
of the upper half and lower half of the outer contour for a x-coordinate is less
than or equal to the average stroke width. Besides, concavity features in the
upper contour and convexities in the lower contour are used in conjunction
with ligatures. The process is in following Figure [4]
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Figure 3: Dissection technique. (a)Line 1: vertical projection; Line 2: differ-
ence of vertical projection; Line 3: differencing measure of ANDing column;
(b)connected component Analysis; (c)Grapheme

(a) (b)
| 1 ! { # \ “ h /__J

(€) (f)

Figure 4: Segmentation of cursive script by ligature feature (a) Ori-
ginal test image. (b) slant normalization.(c) Splitting upper and lower
contours.(c)Ligatures based on the average stroke width.(e) Concavit-
ies/convexities. (f)Segmentation points.
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3.0ver Segment

However, the segments result is still unreliable without considering the
recognition feedback. Therefore a more modern way is a hybrid of segment
and recognition. A dissection algorithm is applied to the image, but the in-
tent is to "over-segment", i.e, to cut the sequence in sufficiently many places
that the correct segmentation boundaries are included among the cuts made,
as in Figure [o]

Once this is assured, the optimal segmentation is defined by a subset of
the cuts made and the classification is brought to choose the most promising
segmentation. The strategy is in two steps. In the first step, a set of likely
cutting paths is determined, and the input image is divided into elementary
components by separating along each path. In the second steps, segmentation
hypotheses are generated by forming combinations of the components. All
combinations meeting certain acceptability constraints(such as size, position,
etc.) are produced and scored by classification confidence. An optimization
algorithm is typically implemented on dynamic programming principle. One
example is shown in figure
RGN
|_(p) Immm—

I
!
1 (5)
1
1

—
W
- —

H

(1)

Figure 5: Over segment strategy. There are seven sub paths, and the optim-
ized combination path is 1-2-5-7.

2.2.2 Character-base Classifier

After the segmentation, we assume the result is character-based, as the clas-
sifier and segmentation is independent, various character-based classifier can
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be chosen, like HMM (hidden Markov model) [25], neural network [34], sup-
port vector machine(SVM)[4].

2.3 Implicit Segment

Implicit Segment System is quite different from the previous one. It is not
possible to surely say what common procedures they need. Since segmenta-
tion and recognition don’t separate so clearly, and some models even don’t
need a segments. But we can cast them into three catalogs according to the
types of the classifier in Figure [l These are generative, discriminative, and
the hybrid of both. Each of them will be discussed in this section.

implicit
Segment System

Generation Generation & Discrimination Discrimination
Model Hybrid Model Model

Hidden Markov Model Generation ! Discrimination
* Word based HMM ]
* ConcatenatingHMMs

Recurrent Neural Nety

Hidden Markov Model pjscriminativein character Level
in Sequence Level » With MLP [

* With Time Delay NN

* With SVM

Figure 6: Implicit Segment Sequence Recognition System Taxonomy

2.3.1 Generative Model

The most famous generative model dealing with sequential data is hidden
Markov model(HMM). before starting, this subsection first go through some
basic theory which is also related to the technique of the thesis main word
in later section, and then the model applied HMM to handwriting sequence
recognition.
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HMM [5] is a statistical model of Markov process, which succeeds to treat
with sequential data by observations and underlying states. The Markov hy-
potheses define that the probabilistic description is truncated to just the
current state and the predecessor state, Also, the observation is not determ-
inistic which depend on the current state. Each HMM is represented by a
set of parameter A = (A, B,m), where A denotes the transition matrix, B
the matrix of emission, and 7 the initial state distribution. With an HMM,
the first stochastic process is represented by the probability that the HMM
generated observations and second by the sequence of state transitions un-
dertaken. There are two basic types of HMM: discrete and continuous. In the
case of discrete HMM, the matrix B contains discrete probabilities to each
observation while in continuous, B is not directly a matrix, but represents
mixtures of Gaussian or other PDFs.

There are three algorithms that are respective related to three main issues
of HMM.

Forward and Backward Algorithm

One the main issue of HMM is recognition. Given several HMMs models
i, recognition is to classify the model with most probabilities that a given
string belong tol. This is to calculate argmax; P(O|)\;). The problem is to
sum up all the paths of states that equal to the given observation, which is
a time-consuming work. Forward and backward algorithm is generated to
calculate this sum value efficiently. Since we can compare this with LSTM
forward and backward algorithm in later section, we go a little further about
it.

The main idea of the algorithm is to compute a forward variable afand
backward variable Sf, in which a! denotes the probability of all the paths
equal to the partial observation ending at time ¢ with state ¢ and meanwhile
B! denotes the probability of all the paths equal to given observation starting
a time ¢ with state i. Assume there are N states, T time length, then the

probability of a given HMM model of an observation can be translated to.

N N N

PO = > (D (afasb + 16, + 1)) = Y (aip) (1)

i=1 j=1 =1

Forward and backward variable is like the 'save points’ in the paths. It is
not able to retrieve the probability of each path through this algorithm. But
it doesn’t matter since we only need the final sum probability, which can be
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achieved by adding the ’save points’.

Viterbi Algorithm

Another issue of HMM is decoding. Given a string of observation and a
model A, how to extract the optimal underlying states path. We can also
compare it with the later proposed CTC decoding issue in Section It is sim-
ilar to the forward and backward algorithm. We have the ’'save points’ of
each sub path call ¢f. The differences to o and f! is 0! is not a sum value
but maximum. It denotes maximum probability path ending at time t of
state ¢ among all the partial paths. Finally, the optimal state path can be
obtained by traced back from time T to time 1 by choose the state with max
6! at each time ¢. Since the it is proposed by A.Viterbi [3], the algorithm is
called Viterbi .

Baum-Welch Algorithm

The training problem is crucial since a optimized model is basic guar-
antee to recognition and decoding. However, there is no known analytical
solution that exists for the learning problem. The popular solution is iter-
ative algorithm: Baum-Welch algorithm [2]. It is a generalized expectation-
maximization(EM) algorithm for finding maximum likelihood estimates and
posterior mode estimates for the parameters.

The algorithm perform alternatively between E step and M step. In E
step, it calculate an expected count of the particular transition-observation
pair while in M step, we update the parameters by maximizing the expected
likelihood found on the E step. The parameters found on the M step are
then used to begin another E step.

HMM is first distinguished itself by speech sequence processing and re-
cognition. on-line handwriting is very similar to the problem of continuously
speech recognition. Online handwriting can be viewed as a signal (x,y) over
time, just like in speech. Then more and more researchers started to extend
HMM to handwriting recognition. The work includes [32] [16] [7] [19] [37]
[36)apply HMM in cursive handwriting recognition.

A classic application is handwriting word recognition using word-level
HMM framework [7].The meaning of word-level is that each word in the
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dictionary forms an HMM J\;, the recognition is performed by presenting
the observations to all HMMs and select the model with greatest probabil-
ity P(O|\;) using forward and backward algorithm. Usually, it is a holistic
method, segmentation is not necessary. All the classifier knows is the whole
word, but it can’t define which characters it contains. Therefore, we only can
classify the exact word that occurs in the training set.The problem is that we
have millions of words although we can have a small and limited alphabet(26
for English lowercase, and 65 for French). It is impossible to model all the
word as an HMM and it will cost time for recognizing. Therefore this is
always limited to small lexicon size.

The most common solution is to model each character in the alphabet
as an HMM then concatenating them as a word. [32] developed a two-level
based HMMs for online cursive handwriting recognition: letter-level and word
level. The input data is sampling points, each of them first are represented
by 6 features(x,y,0z,0y, penup/pendown, x —max(x)) then clustered into 64
centers. There is no segments needed and each point finally describe into 64
discrete value. 53 HMMs with 7-states left-right topology are formed to rep-
resent a single symbol including 52 character and one for white space.Since
the penning of a script often differs depending on the letters written before
and after, additional HMMs are used to model these contextual information.

[19] uses the similar structure for offline cursive handwriting . The se-
quence data first are segmented into letters or pseudo letters by ligature fea-
tures. The letters or pseudo letters are described by some histogram feature,
which need to be tantalized. For training, Each symbol HMM is discrete and
characterized by a more delicates topology which takes the under-segments,
over-segments and null value into consideration. The word model is made
up by concatenation of appropriate letter models consisting of elementary
HMM. The Viterbi algorithm is used in recognizing the letters in a word.

Compared with the previous discrete HMM, [37] apply a continuous dens-
ity two-level continuous HMM for offline data. The segment is replaced
by cutting the image into overlapping sliding windows, which are extracted
pixel-based low level feature. Letter-based HMMs are generated by assuming
the features in Gaussian mixture distribution.

In conclusion, there are some commons in word-level and concatenating
HMDMs. First, compared with the previous explicit segment system, the seg-
ment in HMMs is easier or even not necessary. Besides, the segment does
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not take all the risk as HMM have a hidden states. Second, both word-level
and concatenating HMMs directly recognize the result word without knowing
each observation belong to which letter in the word. It means that we get the
result even not awaring the segments. The segments can then be retrieved
by the Viterbi algorithm, which is quite different to explicit segment system.

On the other hand, the above HMM models suffer from some drawbacks.
First, word-level HMM is limited to small lexicon size while in two-level
HMDMs, it is difficult to train the letter-base HMMs since the train data-
sets usually don’t provided the segments. Either the system can segment
sequence data into letter by hand or use another isolated character dataset.
The latter lose the contextual information while the former is time consum-
ing and not practical when the amount is large. Secondly, considering the a
handwriting recognition system , where each HMM represents a letter, the
HMM corresponding to a given letter only train by the samples of this let-
ter. So an given symbol HMM neither takes the number of classes nor the
similar symbol into account. Its generative capability does not maximize
the distance between classes. Thirdly, both HMMs model are subjected to
some assumption which may be restrict in practice. In discrete model, The
features will lose information after quantizing. However, continuous model
still suffers by assuming several Gaussian mixture model.

2.3.2 Hybrid of Generative and Discriminative Model

Given the drawbacks of HMM, the reason is mainly due to its arbitrary
parametric assumption that given the estimation of a generative model from
data. However, it is well known that for classification problems, instead of
constructing a model independently for each class, a discriminative approach
should be used to optimize the separation of classes.

As a consequence, by combining HMMs and discriminative model, such as
neural network(NN) it is expected to take advantage of both. The researchers
has explored to apply different kinds of NN associated with HMM to boost
the performance of handwriting recognition. such as MLP, TDNN,RNN.
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Table 1: state-of-art model: HMM Hybrid with different kinds of Neural Net-
work applied to Handwriting recognition

# NN Author Segment & Detail
Feature (function of NN, raining )
1 Rigoll, G, -segment free. -VQ is replaced by a neural
Kosmala A, offline | each point is network,.
represented by 5 | -Both are trained jointly by
2 Brakensiek, A online_and 9 M aximum M utual
online bitmap Information(MM ) principle
3 M arukatat -segment free. - emission probability are
Sanparith each point is approximated with predict of
MLP online represented by MLP.

15 features -iteratively train. First letter
achieved, then K-M eans
algorithm applied to
parameter re-estimate.

4 Yong HaurTay -letter - NN as character-based
offline hypothesescut classifier and approximate the
for NN; 140 mixtureGaussian for HMM.
grapheme -1.NN is trained by isolate
features. letter produced by Viterbi of

-discrete HMM an additional discrete

using image HMM Then it is refined

frame and vector | several times by the hybrid

quantization resulet.
S Schenkel -segment free, -NN as letter-based classifier
online each point is and approximate the
extracted 9 mixureGaussian for HMM
features -training for 3 steps, TDNN
with character level(hand
segmented),nil class train,
word level train
6 | TDNN S.Jager -TDNN for character-base
online -training on hand-segmented
data with Viterbi constrained
to the same duration in each
state, then same training with
unconstrained Viterbi; word
level

17




7 Emilie Caillault Global discriminative
online trainingMixing MLMMI and
TDNN.
8 | RNN Joachim Schenk -segment free, -RNN for character classifier,
online each point is the outputs approximates
extracted same to [ HMM density function
[ -RNN trained by isolated
character.

However, Neither the structure of how to combine NN and HMM nor how
to train them is surely final defined. Thus the optimal hybrid modeling with
NN and HMM is still an open question. Some related work is shown in the
following Table [I]

In the initial combination paper No.l and 2 in Table [1] [28] [§], VQ in
a discrete HMM is realized by replacing the usual k-means V(@ by a neural
network. It allows to eliminate the quantization error. Maximize the MMI
principle of HMM enables to backprobagate the error to train the neural
network. Paper No.3 [24] is a similar case but apply to continuous HMM,
where the emission probability is approximated with predict of NN.

Although the early system contain neural network, but it is not able
to involve much discriminative information. Paper No.4 in Table 1] [33] is
a breakthrough in the merge of NN and HMM. NN is the character-based
classifier. The isolated training data is extracted by Viterbi from baseline
recognizer. The output of NN divided by the letter class prior are used dir-
ectly as observation probability for the letter-level HMM. A ligature HMM
and word HMMs are also designed in the system. The training process can
be iterated by using the segment from the hybrid model.

The function of NN in Paper No.5 in Table [1| [29] is same to No.4[33] as
approximate the Gaussian density function.

Paper No.5 [31] describe a similar structure as Paper No.4, where the
mixture Gaussian is replaced by outputs of NN divided by the probability
class except RNN is able to memorize and each output node of RNN is linked
to just one state of a HMM. The problem is the amount of training data re-
quired for neural nets, which can be higher than for pure HMM system.
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2.3.3 Discriminative Model

Although the NN-HMM hybrid well outperforms the HMMs model, it’s still
in the generation loop and constrained by distribution assumption. Discrim-
inative models doesn’t suffer from this problem. However, it is difficult to
design a sequence recognition model only with discriminative model since it
lack the ability to handle time varying sequences.

Recurrent Neural Networks are a particular category of ANNs, which is
capable of storing memories and dynamically driven compared with other
feedforward NN like MLP. There are various topology of RNN, one classic
example is that there is one hidden layer. All the inputs are connected to
hidden layer which is fully connected to itself. The recurrent link is actually
a time delay connection, which if unfolded can be drawn as in Figure[7] The
weights learning always use the algorithm of backpropagation through time.

Figure 7: Classic Recurrent Neural Network

-3

t-1 t t+1
& I nputlayer ﬂ hiddenlayer D outputlayer

But at the same time, RNN has its own problem when applied to hand-
writing recognition:

the current architecture fails to have long term memory. The reason is
that the influence of a given input on the hidden layer, and therefore on
the network output, either decays or blows up exponentially as it cycles
around the network’s recurrent connection. This shortcoming is called van-
ishing gradient problem. more theoretical information can be found in [I§]
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[6] which point out that it is hard for RNN to bridge gaps of more than
10 time steps between relevant input and target events, which is obviously
unpractical for handwriting sequence.

The traditional RNN can not be directly used to sequence labeling since
the objective function is unable to concatenating the sequence error.

A.Gers has solved the above problems. The gradient vanish problem is
solved a multi-active structure of RNN called Long Short Term Memory
(LSTM) [13] , while a HMM terminology objective function [15] is generated
to deal with the second problem. Both techniques will be illustrated in the
following section and will be the main work of this thesis.

2.4 Summary

This section first introduces the taxonomy of handwriting sequence recogni-
tion system, which is explicit and implicit segment. In the explicit system,
the sequence recognition is obtained after the segment is decided, while we
directly get the recognition result in implicit model, which can then be used
to achieve the segment. Besides, the state-of-art of handwriting recognition
system is then listed to further their feature and own problem. For expli-
cit segment model, it suffers in the ambiguity and unreliability of segment
process. On the other hand, implicit model is outperformed in generative
classifier and the hybrid of generative and discriminative. However, the ex-
isting models are limited by the HMM generation condition.

The sequence recognition model BLSTM-CTC is similar to the previous
discussed HMM-NN hybrid except it is fully discriminative. Like the hybrid,
an NN structure is used for character-based discrimination, which is role of
BLSTM. Besides, in the hybrid, HMM is responsible for sequence concaten-
ating while in BLSTM-CTC, it use some forward backward algorithm and
HMM idea to translate the sequence error into LSTM model. All will be
detailed discussed in the later section.

But here we can first forecast the superiority compared with the previous
HMM-NN hybrid models. First, the character-based discriminative classifier
is trained by the data which is exactly sequence data containing contextual
information without hand segment or isolation procedure. Second, character-
based classifier can also fulfill the word-level recognition by a concatenating
objective function. All is due to the main difference between BLSTM-CTC
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and the existing hybrid which get rid of the constraints of HMM.
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3 Long Short Term Memory

3.1 Overview

As discussed in previous section, recurrent neural networks is able to deal
with sequence data by storing variant time series, However, it fails to have
long term memory.In this section, a discriminative model called Long Short
Term Memory will be discussed, which is capable to deal with long time se-
quence. LSTM was first introduced by Sepp Hochreiter [I7], The main idea
of LSTM is to design a constant error cell by multi-active hidden neurons.
The structure of the neurons has been modified over ten years to have better
performance.

The rest context will be organized as followed: The evolution of LSTM
structure is shown in Section 1, which includes input, output, forget gate and
peephole connection. After defined the neurons, Section 2 describe different
topology. A directional technique is added in section 3 along with the al-
gorithm. Section 4 describe the learning algorithm needed: backprobagation
through time(BPTT). Summary is given in Section 5.

3.2 LSTM architecture evolution

This subsection will be illustrated evolution of multi-active unit used in
LSTM. First we define some annotation as followed:

- Subscription w;;: is from unit j to j”. As traditional classic RNN archi-
tecture, there are input layer, recurrent layers and output layer. The hidden
layer is constructed by hidden neuron, which is called memory block(MB).
One memory block can contain one or several memory cell(MC). For annota-
tion of the nodes, ¢ denotes the unit index in the input layer. Greek letter
p, T, @ is the subscription of input gate, output gate, and forget gate in the
recurrent layer. c refer to one of the cells in a block. s’ is the state of cell
c at time t. Note that only the cell output connected to other block in the
hidden layer, other LSTM activation like state is only visible in the block.
We use h to refer to the cell output from other blocks in the hidden layer.

- Inputs and Outputs of Units: trigger to read and write x§ is the
network input to any unit j at time ¢. For example z! is the network input
from unit 4 in the input layer at time ¢ y! is value of 2 after activation.
For example, any cell output unit after activation at time ¢ in a block can
be expressed as y’. f is the activation function of the gates while g,h are
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activation function of cell input and output respectively.

- Units Number Let [ be the number of nodes in input layer, K be
the size of output layer and H be the number of cells in the hidden layer. C
denotes the number of memory cells in one block.

3.2.1 Input and Output Gate

Memory cell was introduced by J.Schmidhuber [6] to have a constant error
flow. The main idea is that as time goes, the NN is able to protect stored
information from perturbation while outputs also require protection against
perturbation. Therefore an input and output gate is generated in the memory
cell, where input is the switch of reading while output is the trigger to writer.
The cell in the hidden layer is not able to receive the information to store
unless the input gate is open. Also, only when the output gate is open, can
the cell emits the store information to output layer or to recurrent link.

Thus, Memory cell is actually a multi-active neurons with input and
output gate activation. The architecture of memory cell is shown in Figure

The equation is shown as followed:
Input Gates :

I H

t_ t t—1

Ty = E :wipxi + E :whpyh (2)
i=1 h=1

frominputlayer  fromrecurrent

Cells :
I H
o Z Wit + Z Wheyh ! (4)
i=1 h=1

t __ t—1 t t
Se = Se + ypg(xc) (5)
previous state  current statex
input gate

Outputs Gates :

I H
rl = Z Wizt + Z Whalh, (6)
i=1 h=1

frominputlayer  fromrecurrent
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Cell Outputs :
Ye = Yrh(se) (7)

® CELL OUTPUT

INPUT GATE x5

® CELL INPUT

Figure 8: LSTM memory block with one cell, containing input gate and
output gate. The self-recurrent(with weight 1.0) indicates feedback with a
delay of one time step.There are two operation: a squarish activation and a
multiplier. The number shows the updating steps.

3.2.2 Forget Gate activation: button to forget

The original LSTM allows information to be stored across arbitrary time lag,
and error signals to be carried far back in time. However, if we present a
continuous input stream, the cell states may grow in unbounded fashion. It
is also not practical since we need to reset the cell states occasionally in the
real task, e.g, at the beginning of a new character sequence.

Thus, an adaptive forget gate is added [14]. which is the same to previous

LSTM except the accumulate states not adding the previous directly but with
some adjustment. Architecture can be seen as Figure [J)
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® CELL OUTPUT

INPUT GATE x5

AT

@ CELL INPUT

Figure 9: LSTM memory block with one cell,adding forget gate, which is an
adjustment to the previous stat. The number indicates the updating order.

The forget gate is defined as same as input and output gate, and calcu-
lated before cell state.

Forget Gates :

1 H
zh= Y wigrt + Y whgyh! (8)
=1 h=1
t t
Yo = [(x) (9)
Cells states :
se= Uit yelal) (10)
S~ ~——
previous state current statex
adjustment input gate

3.2.3 Peephole Connection: immediate supervisor

LSTM is equipped with long short term memory and able to reset, but how
do it know how long of memory the model needs. For example, when output
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gate is close, each gate receive none from the cell output. The solution is to
allow all gates to inspect the current cell state even when the output gate
is closed. The adding connection is called "peephole" [13|, which can be
founded in Figure

@& CELL OUTPUT

INPUT GATE x5

@ CELLINPUT

Figure 10: LSTM memory block with " peephole" connection, with which
all the gates can supervise the cell state.

So state function stay the same, while each gate function modified:
Input Gates :

I H c

t_ ¢ -1 t—1

Lp = E :wipxi + § WY, +§ :wwsc (11)
i=1 h=1 =l

J/

vV TV
frominputlayer  fromrecurrent  from cell;state

y, = f(a}) (12)
Forget Gate :
I H C
aly = Z WigTh + Z Wheyh '+ Z Wepst (13)
i=1 h=1 =1
Yo = f(xh) (14)



State function is calculated as , Noting that the input and output gate is
related to previous t — 1 state, output gate is refer to current ¢ state:
OutputsGate :

I H C
Th= Wikl + > Whah + D Wers, (15)
=1 h=1 c=1
t __ t

3.3 Topology

After clearly discussing the architecture of memory block in LSTM, which
includes an input gate, output gate and forget gate along with peephole con-
nection. The next step is to define the whole neural network layout.

In terms to application, the more difficult the task is, more dense and
complicated connection is needed. for example, we can:

1. Increase the cell number in a block.

2. Increase recurrent neurons.

3. Direct shortcut from input layer to output layer.

But more dense the network connection is, more time will be needed for
training and testing.For experiments proves that one cell in a block is suffi-
cient to handwriting recognition. Thus a not so dense topology is introduced
and applied to the experiment in Chapter 5.The topology is shown in Fig-
ure , in which input layer is all connected to the hidden layer(gates and
cell inputs). Besides, The cell outputs are fully time delay recurrent to the
hidden layer and feedforward to the output layer. There is only one cell in
the hidden layer constrained by the figure size. In hidden layer, more cells
added will increase the input stream to cell inputs and gates.

Here supposed a classification task with output layer size O. input layer
size I. We can set block size in hidden layer to H, There are C cells in one
block, which share the same input, forget and output gate. The total number
weights can be added by the following three items:

From Input Layer :

IxHxC+3xIxH (17)

~
To Cell Input ToGates
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Figure 11: LSTM topology with one single-cell block in the hidden layer. The
solid line indicates the feedforward connection(from input layer & to output
layer), and the shade line refers to the recurrent link from cell output.noting
that the peephole connection is not drawn in the figure due to the size limits.

From Output Layer :
OxHxC (18)
—_————

From Cell Output

From Recurrent :

(HxC)x (HxCO)+(HxC)x3xH)+ 3xH (19)
~~ Z N ~ - SN——
To Cell Output To Block Gates CPeeph(t)?e

3.4 Backprobagation through Time: learning weights

Backpropagation is the most widely used tool in the field of artificial neural
networks. The Basic backpropagation has been well applied to feedforward
neural network. Its further extension, called backpropagation through time
(BPTT) was first introduced in [20] , which can deal with dynamic system
like recurrent neural network.

Here is the BPTT algorithm pseudo-code applied to LSTM can be de-
tailed seen in [13].
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3.5 Bi-direction Extension: BLSTM

The previous LSTM with input, forget and output gate is capability with
long time lag, state reset and resolve temporal distance. But all states are
accumulated forward. In real task, the system is usually requested to take
backward information into consideration. For example, the cursive handwrit-
ing script is one character connected with another, Thus the character after
is as important as the character before.

[30] proposed a bi-directed RNN structure to overcome the limitation of
single direction. The idea is to split the state neurons of a regular RNN in
a part that is responsible for positive time direction(forward states) and the
negative direction(backward states). Outputs from forward states is not con-
nected to backward states. This is like two separate hidden layer which both
linked from input layer and meets at output layer. The unfolded topology is
shown in figure [12]

FORWARD
STATES

BACKWARI
STATES

1 t t+l
@ Input layer ﬂhi{l(len layer I:lnulput layer

Figure 12: General structure of the bidirectional recurrent neural network
shown unfolded in time for three time steps.

The bi-direction structure are also can applied to LSTM, just modifying
the hidden neurons by memory blocks. The extended structure can be called
BLSTM(bi-direction long short term memory).The training is the same al-
gorithm as stated in Section 3.3 because there are no interaction between
the two types of state neurons. However, BPTT is used the forward and
backward pass procedure is slightly complicated because the update of state
and output neurons can no longer be done one at a time. It will need to save
time series in one sequence for both direction.
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Supposed the one piece of sequence is from time 0 to time 7', the forward
and backward pass algorithm is followed by:

Forward Pass feed all input data for the sequence into BLSTM and
calculate all predict output.

e Do forward pass for forward states (from time 0 to time T),save all the
cell output through time

e Do forward pass for backward states (from time 7" to 0),save all the
cell output through time

e Do forward pass for output layer by add two saving result

Backward Pass Calculate the error function derivation for the sequence
used in the forward pass

e Do backward pass for output neuron

e Do backward pass for forward states (from time 7" to time 0). Then do
backward pass for backward states (from time 0 to T')

3.6 Summary

This section first reviewed the architecture of memory blocks in LSTM. It
contains an input gate, a forget gate and an output gate along with peephole
connection, which is to directly link the gates with state. This structure en-
able the neural network with have long time dependency, state resetting and
instant supervising. Then topology and the widely used learning algorithm
call backpropagation through time is also discussed. Finally, considering
the practical task, an enhanced BLSTM is described to have forward and
backward state recurrent.
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4 Connectionist Temporal Classification

4.1 Overview

In Section 2.4, we forecast the BLSTM-CTC is similar to HMM-NN model,
which an NN is responsible to character discrimination and an HMM struc-
ture for sequence modeling. Thus, there are two steps first is to find an NN,
BLSTM is that kind of NN illustrated in Section 3. It can not only classify
letter but also store memory and indicate a letter starting and ending point
in the sequence. What makes difference is the second step. Get insight from
HMM, CTC can concatenates in sequence level using some HMM techniques,
like forward and backward algorithm, but without constrained by the distri-
bution assumption.

Three issue need to be considered: First, how to express from character
level to sequence level. A multi-to-one mapping rule and forward backward
algorithm is illustrated in Section 4.1; Second, What is the objective func-
tion? Some equations are described in Section 4.2; Finally, Section 4.3 talk
about recognition problem: decoding and propose three lexicon-based decod-
ing algorithm.

4.2 From Timestep Error to Sequence Error

In the Section 3.3, the learning is based on the ¢ time error. Actually in
temporal classification task, we don’t know the t time’s error instead the
whole sequence error. So this section temporal classification is how to back
propagate the sequence error to each t time using a HMM framework [15] on
the output layer.

Let the training S be a set of training examples, each element of S is
a pair of sequences(zx, z). Sequence z is an input sequence given length T’
where x = 1, 2o, ..., 7 We refer to the distinct points in the input sequence
as timesteps, while z is a target sequence with at most as long as the input
sequence z = 21, 29,...,2y,U < T.

Supposed that each timestep output is conditionally independent, so the
given the elements 7 € LT is the joint probability of each output yi, 7 is

called the path ,y} is the softmax normalized output of the NN at time t unite
k(k € |L'| , where L' is the alphabet adding a blank option, L' = L N blank.

p(rlz,8) = [ [ v (20)
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Next is the definition of a many-to-one mapping B : L'l — L=T from
the set of paths onto the set L of all possible labellings. The operator B
is executed by removing the first the repeated labels and then blank from
the paths. B(a — ab) = B(—aaa — —abb) = aab ('—" means blank). The
probability to a given sequence label z € L= is the sum probability of all
the paths m which have B(m) = z.

pizlz) = > T[4k (21)
)tZl

meB~1(z

As the time sequence is long, there are a plenty of paths to sum, which is
expensive time consuming. Fortunately, there is a similar problem in HMM
to calculate the P(O|X). In HMM the multi paths is due to the probability
relation between the hidden states and observations, While here the multi
option is due to transition mapping between the path 7 and the target z.

Inspired by HMM, the main idea is to apply forward and backward al-
gorithm to have saving point, just like in Section 2.3.1.

Forward variable is defined as sum probability of all paths with length ¢
mapping to sequence label ly.5/5. s is the index for I, where I’ is sequence
with the blanks added to the beginning , the end and each pair of labels in
L(JI'| =2Jl|4+1). Thus s/2 allows the sequence task to transform from blank
added label to just label. s/2 will approximates using rounded down integer.

t
of = > ], (22)

rTeNT t'=1
B(ﬂ'l:t):llzs/Q

The initialization of o, can be: where b means blank in the sequence.

aj =y, (23)
ay =y, (24)
al =0Vs>2 (25)

The forward algorithm is to calculate of based on alpha't — 1).According
to the mapping rule B, o, is surely ending with label [/ at time ¢. Thus the
recursion can be written as :

t i ifli=borl_, =1,
i . (26)
; otherwise



s=1

§= A AA; -A -A; AAA; -AA

§=

AAB; -AB; A-B; |)
\ ABB P(1]x)
AB- J

Figure 13: Forward algorithm with ' =" — A— B —" L' =5,T = 3, while
point means blank(non-label) while black points means label. the table is
filled from ¢ = 1to 3, arrows denotes the recursion direction. A block means
the paths that forward variable contains.

AB

a,
O
@
=3 O A- AA-; -A-3 A--
®
@)

s:

Here is the example for the recursion , we suppose 1" = 3 for observation
sequence, | = AB, sol' = —A — B — with|l'| = 5, the algorithm of initial
and recursion is shown in Figure

In the above figure, the paths in the block means sum probability of that
forward variable. For example, when t = 2, there are three paths mapping to
l: m="——A”7AAA”)” — AA”. Thus, i = P(" — —A”)+ P("AAA”) +
P(” — AA”), The forward variables can be initialized by the first column and
row. Then others can be calculated by the previous column (see the arrow
direction). Finally the probability of [ is then the sum of the total probability
of I’ with and without the final blank at time 7.

p(l|z) = a% + 04|Tl/|_1 (27)

Similarly, the backward variables is defined as the summed probability of
all paths whose suffixes start at ¢t map onto the suffix of [ starting at label
s/2

= > II . (28)

7eNT t'=t+1
B(me.m)=1g/2.)1)
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The initialization and recursion is
T 1
ﬁ|zl| =Y
T 1
5|L'|—1 =,
Bl =0vs<|l| -1

g [ES AT ifl=borl, =1, (29)
TSy otherwise
The same example as forward algorithm is given in Figure
Bt
s t=1 t=2 t=3
=1 O AB
5= @ | |AB:-B:-B:BB B
§= . -.B 1
s=4 O 1
Figure 14: Backward algorithm with ' =" — A— B—" L' =5,T = 3, while

point means blank(non-label) while black points means label. the table is
filled from ¢t = 3to 1, arrows denotes the recursion direction. A block means
the paths that backward variable contains.

And then the label sequence is given by the sum of the products of the
forward and backward variable. It means that for a labeling [, the product
of the forward and backward variables at a given s and ¢ is the probability
of all the paths corresponding to [ that go through the symbol Ilat time ¢.

||
p(llz) =) alfs (30)
s=1

One example is to use the above two tables(Figure (13| and to have

a product at each point. The result will be in Figure 15 The sum of each
column through ¢ is the the probability p(l|z).
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aSﬁS t=1 t=2 t=

§=2 AAB:A-B;| [AAB;
® A-B;ABB -AB

s=3 O A-B

4 ABB; AAB; -AB;

= @ ABB A-B; ABB

s=4 O AB-

o I !

p ) p(x) p )

Figure 15: Product of forward and backward variable, noting that the
product will be zeros if one of the variable is zeros. Sum of the column
will be the probability p(l|z).

4.3 Sequence Objective Function

The objective function through all the samples in dataset is defined as the
negative log probability of correctly labeling the entire training set:

Oz, 1) == > In(p(l]x)) (31)

(z,l)es

In the training process, a coordinate gradient descend is usually used to
loop from each sample. Thus in terms of a given piece of samplel,x, the
deviation to the weight is equation where v} is the kth output of LSTM
at time t.

00(z,1) _ ~In(p(il)) _ v}

ow oyt ow

The second item is solved by BPTT algorithm [20] in Section 3.4. The first
item is re-expressed in [33] using forward and backward algorithm. Denoting
lab(l,k)=s:U's=k

(32)

Bl _ 25 i &

ayz yli s€lab(l,k)
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To backpropagate the gradient through output layer, af is the output
value before the softmax function, and

Oy

dal = YOk — Yilh (34)

Therefore
00 <~ 1 L1
o~ 5 o, ol

k=1 Yk s€lab(z,k)

)) (yltcfskk' - ?JZ?JZ') (35)

Noting that 0,0 k # k', so

t ot 1 t ot
8ak, ykz Z ss)_m > alpl (36)

l b(x,k) lab(z,k")

4.4 Decoding

vi B('——a———1t)="at
‘blank?® | (-96F==6-879 — 0.10 (=82 0.02
‘a’ 0.001 | 0.001 0750 0.1 0.003
‘bt 0.003 | 0.003 0.08 0.007 0.004
“®t? 0.002 | 0.001 0.001 0.001 080
[
‘ . . - -
iz’ 0.001 | 0.0002 0.002 0.002 0.001
=1 T

Figure 16: Decoding. The table shows the LSTM outputs at each time in
the sequence. A recognition path is chosen by picking up the label with the
maximum probability. Then a multi-to-one mapping rule B is used
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Decoding is to translate plenty of paths into one sequence label [* when
we use the model to recognize sequence. The easiest way is to form a path
choosing the label with the highest probability at each time step. Then using
the mapping rule B to transcribe it as shown in Equation . The main idea
can be seen in Figure

I* = B(argmax p(m|z)) (38)
—Lexicon-based task

The above classification task is very challenge, because even a very slight
mistake will lead to the word error. And in most situation, the dictionary is
known, therefore, we want to constrain the output labeling sequence accord-
ing to a lexicon. Some post-progress need to be added, first method, we can
try to match the above result [* to the words W

in the lexicon. Second, we skip the process to classify the word but directly to
compare the word probability given a specific word W in the lexicon p(W|x).
All will be detail discussed.

4.4.1 Levenshtein Distance (LD)

In this method, we directly use the result of decoding. After recognizing
the label [*, we want to compare it with the words in the dictionary. One
possible approach is to calculate the edit distance, which define a way to
measure the difference between two strings by transforming one string into
the other, applying a series of edit operation on individual character. For
every character in the first string, a sequence of the operations insert, delete
and replace can be performed. The edit distance between two strings is then
defined as the minimum number of edit operation needed to transform. Since
scientist V.I.Levenshtein introduced that distance, it is commonly known as
Levenshtein distance [23].

The edit distance D between two strings S; and S5 can be calculated by a
dynamic programming algorithm in recursion. And lexicon-based recognition
using Levenshtein distance can be written as

w* = argmin D(I*, word) (39)

wordée Dict

The problem is that I* is not so reliable, because it will be wrong even
there is only little mistake in path 7. For example, there is the path for word
'at'ism = ———aa———1i————t', the middle 'i’ is an ’accidentally mistake’
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in the long sequence. To avoid the effect of this, an improved Levenshtein
distance can be applied considering the operating cost to each character in
the sequence. The main idea is to product the confidence of this character
in I*, like p("?'|' — —aa — —i — — — ') = y/, , then the cost to delete and
substitute '¢’ is y%,. The meaning is that more confident the result, more cost
needed to pay.

Let A(n) = by,by,...,z, be the classification sequence and B(m) =
bi,bs, ..., b, be a given word in the lexicon. where two strings with re-
spective length n and m,Y}: be the confidence value of recognizing [ The
distance recursion value D(r, k):

D(r,k) = min(D(r — 1,k — 1) + c(a,, by,) * Y2,
D(r—1,k) 4+ c(ar, A) « Y, D(r, k — 1) + (A, b)) (40)

In Equation [40] the first item is substitution, second is deletion while the
third is insertion. Only the substitution and deletion are multiplied with
the confidence of the classification. Since there are several consecutive time
output label equal to [}, we choose Y« by

Vi = min yj. , where m, = Iy (41)

4.4.2 Full Path Decoding (FP)

The previous decoding method will lack the ability to reject, which we build
by a post probability. As words in the dictionary is given word|word € Dict,
the one with the highest probability will be the winner. Therefore the prob-
lem has become

I"=arg max p(word|x) (word € Dict) (42)

wor

There are plenty of path m mapping to a given word. Full path decoding
is to consider all of these path. The problem is the same to calculate p(l|x).
A forward algorithm can be applied:

p(word\x) = a\fuord\ + a\fvord\—l (43)

The advantage is that we considered all the possibilities, which is the same
criteria with training process. But it is time consuming when the dictionary
size is large.
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4.4.3 Max Path Decoding (MP)

Since we want a fast way to compute a given recognition, a max path probab-
ility is computed instead of the full paths added. But how to know which path
is with highest probability. Fortunately, thanks to the Viterbi algorithm, we
can apply it here.

Since there is no hidden states in LSTM, it is much easier. First we
initialized the Viterbi operaotor % same as forward variable o, as in . Second
we recursive from ¢ = 1 to T using the following equation.

t t r_ 1y A Y
5U41) = o max(6s — 1)*, 6¢s)") I="b ?rls =1(s—2) (44)
max(dcs —2)F, §s — 1), §¢s)")  otherwise
at the same time, the trelix as the max path is recorded by:
arg max o. UL="borl,=10(s—2)
* i€s—1,s
Ty = (45)
arg _max 255 others
1€5—1,s,5—

Since there is no hidden states in LSTM, it doesn’t need to back trace
like Viterbi in HMM. the probability for a given word is approximate to
probability of its max path 7 as:

T T
p<w0rd|x) ~ max(6|wo7“d|7 0 ) (46)

|word|—1

4.5 Summary

This Section first reviewed the Connectionist Temporal Classification tech-
nique, which can equip a recurrent neural network with the ability to sequence
recognition. Modified forward and backward algorithm is used to compute
the observation probability. For lexicon-based recognition task, Three kinds
of decoding algorithm is proposed. First, a fast decoding method is ap-
plied using improved Levenshtein distance. Second, a full path method is
calculated by the previous forward algorithm. Third, inspired by HMM, a
modified Viterbi is applied to LSTM as the max path decoding.
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5 Experiment

5.1 Overview

Compared with the HMM and HMM-NN hybrid, LSTM-CTC is totally a
discriminative model along with the ability of long time sequence depend-
ency without the limitation of generative distribution assumption in HMM.
Three improved decoding methods are proposed for the lexicon-based task.
There are various issues that need to be addressed in order to make the im-
plementation of the system successful. We make use of an available databases

IRONOFF [35] for the experiments to test the system.

There are two kinds of experiment are designed: framewise and temporal
experiment. In a framewise experiment the label for each time frame is given
and no sequence level technique needed. The purpose of this experiment is
to compare it with other classic neural network structure, like MLP, RNN.
In the second kind of experiment, The evolution of LSTM will first be con-
sidered to compared. Also we compared the model BLSTM-CTC with other
state-of-art models in lexicon-base recognition to prove its superiority.

Therefore, this chapter is organized as followed: Section 5.2 describe the
dataset IRONOFF. The first kind of experiment is implemented in Section
5.3 while temporal recognition is conducted in Section 5.4. Section 5.5 gives
the summary.

5.2 TRONOFF Dataset

The IRONOFF database is collected by Christian Viard-Gaudin from IR-
CCyn laboratory in 1999. It contains both online and offline handwriting
data. Different kind of data is included: isolated digits, lower case letter,
upper case letter, signs and words. Both Train and Test set is previously
defined. More specific number can be founded in Table[2] All the words are
unconstrained and were written by about 700 different writers. The various
writing style from the same word "soixante" can be seen in Figure [17]

In framewise experiment, the digit set will be used for baseline experi-
ment. In the temporal experiment, the Cheque Word set (CHEQUE) and
the whole word set(IRONOFF-197) are both tested. CHEQUE is a subset
of word sequence, only with 30 lexicon. The words are from the French bank
checks. For the whole word set(IRONOFF-197), there is 197 words in dic-
tionary. Although there online and offline data, we only use the online data
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Table 2: IRONOFF dataset details

Type Training Samples | Test Samples | Total
Digit 3059 1510 4086
Lowercase 7952 3916 10685
Uppercase 7953 3926 10679
Cheque word 7956 3978 11934
English Word 1793 896 2689
French Word 19105 9552 28657
IRONOFF-197 20898 10448 31346

for experiment.
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Figure 17: Word "soixante" in IRONOFF from six writers

5.3 Framewise Recognition

—Data Pre-process & Feature Extraction

The digit set online data in IRONOFF is used. Each of the samples is
isolated digit comprising by invariant time length. In the pre-process, be-
cause there are two kinds of network is compared;feed-forward and recurrent.
In feed forward structure, since the network need to have the fix size of one
sample, each digit is first sampled by a fix number of points 30, while in
recurrent network, there is no need to sample the points, because recurrent
can deal with variant length . Second, size normalization is applied. All
are limited to [-1,1] bounding box depending on the larger size of width and
height.

7 features (x,y, Az, Ay, A(Az), A(A(y)), pen — on) are extracted to each
point of the digit, which is similar in [§]

—Neural Networks topology
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Table 3: Digits Results

MLP Classic LSTM | BLSTM
Recurrent
Frame Level - 0.3% 0.06% | 0.043%
Digit Level Last | 2.86% 2.27% 2.06% | 1.7%
frame
Digit Level - 2.6% 2.06% | 1.7%
multi-to-one
mapping B
Weights 8740 1450 4960 9910

Four kinds of NN are applied for comparison:

MLP: with one hidden layer, each input is fully connected to hidden
layer, and hidden is fully connected to output.

Recurrent Neural Network(RINN): classic recurrent neural model.

LSTM: in which hidden neuron cell is a block with input, output, forget
gate and peephole connection, the input layer is fully connected to neuron
cell and all gates. Hidden layer is fully recurrent to itself.

BLSTM : long short term model with two independent hidden layer,
both are connected to input and output layer. One is "forward state” layer,
the recurrent state is based on previous information. The other is "backward
state” layer, which account on the future information.

All the number of hidden neurons in the following structure is set to 30.
In MLP, the input will be the whole sequence points with 210 timesteps(30
sampling points, each by 7 features), and the output size is 10. For the other
three network, the input size is 7 and then it can accumulate the invariant
time step length along each digit. The output size is 10 plus 1 for blank,
since we assume that all the labels before the last time step is "not a digit”
while the label of the last time frame is set to the digit.

—Experiment Result

The result is shown in in Table[3] In recurrent network, Both frame level
and digit level recognition rate is evaluated. Frame level recognition rate
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is the correct frames through the total frame number while digit level the
correct digit through all the digits. When concatenating to digit level, two
techniques are used: mapping only depend on the the last frame or using the
multi-one mapping rule B in Section 4.2 to transcribe the path to sequence.

I* = B(arg mgxp(ﬂx)) (47)

In this translation mapping, the output may contain not only one digit
but several. The recognition rate is defined as only the sample correctly clas-
sified.

From the result, we can see that all the system achieve good result since
the simplicity of the dataset. All the recurrent systems are better than MLP,
where BLSTM is the best, obtaining 40% less error than MLP. Due to the
large input size of MLP, its weight is nearly two times as much as LSTM.
Compared the classic recurrent and two LSTM models, The interesting is that
classic recurrent get different results to two evaluation of digit level, while
both LSTM is the same. It means that in classic recurrent, some wrong
digits will be come up not until the last frame, and LSTM and BLSTM only
observe a label in the last frame. It shows LSTM structure can have more
stable performance by having memory cell.

5.4 Temporal Recognition

After the base recognition to digit, BLSTM achieved the best result. Now
BLSTM-CTC is applied to word sequence task using IRONOFF dataset,
some experiments are organized as followed:

a. Since in word sequence, 'x” will grows from the character left to right.
Thus this 'x’ feature is not reasonable for character-based discriminative
model. Some optional modification needed be applied for optimizing the
result.

b. To further understand the cell structure in LSTM, we compare the
evolution version of BLSTM in Section 3.2. First is classic RNN, then the
multi-active cell with only input and output gate, then adding forget,

peephole connection finally extended to BLSTM.

Lexicon-based Experiment:
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c. CHEQUE and IRONOFF-197 dataset are used to compare different
kinds of decoding methods. Dictionary is enlarge by adding redundant
words to see the robustness and efficiency of different decoding methods.

d. The best result of ¢ is used to compared with other state-of-art models.

—Data Pre-process & Feature Extraction

The rescaling procedure is a little different from previous step, because
we need to estimate the length of the word. The procedure is as followed:
first is centered at point (0,0), the height of word is in the range [-1,1], and
the width is in [-number of Stroke, number of stroke|, which want to adjust
the width depend on the stroke number in this word.

7 features is extracted as previous. But the problem is that the x co-
ordinate will grow as the word written, which depends on the length of the
word. Since the x value is used in the feature, some normalization is needed
to modify.

Lists of coordinate x normalization is:

Method a, noNorm: no normalization for x coordinates, in this case,
even for the same letter, the value depend on where it occurs in the word.

Method b, winMean: a sliding window is applied. Which the normal-
ized x equal to itself subtract the mean value of the point in this window.the

windows size is set to 3.

Method c, winNorm: after Method b, then apply linear normalization
divided by range in this window.

Method d, substract : each 'x’ just subtract the previous 'x’.
Method e, IR: subtract the value of linear regression curve t — x .
Some visualization of these methods applied to the word ’seize’ can be

seen in Figure [I8 Finally we want to define whether the previous method
are contributed or just adding noise, so
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Method h, wX: just remove the x-coordinate. And reduce the input to 6
dimensions.

Method a. noNorm Method b. winMean
4 4
2 fI\'/ 2 /'\/
- ‘/l "-'-.h-’.

o .--f D__.u-_._.-\,.q..;\__‘-._-.__,.. -
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Figure 18: Different kinds of x-coordinate normalization. blue line for no
normalization, which x increase as word written. red ones show different
kinds of normalization, which are fluctuated between the line.

—Neural network topology

We use a BLSTM structure, which there is two independent hidden layer
("forward’” and ’backward’ state). Each of them is fully connected to input
layer and recurrent to themselves. The Input layer size is 7. In CHEQUE
set, output size is 23(22 alphabet plus a blank unit), the hidden neuron is set
to 50 for each direction. Thus 25722 weights is achieved. While in full set,
the output layer size is 67(66 alphabet plus blank) and the hidden neuron
increase up to 80 to fit it. The hidden neuron number has not been search
to optimize.

—Experiment a: Compare x- coordinate
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Table 4: Normalization of coordinate 'x” in sequence on CHEQUE

Test Samples Train Samples

Rate Rate

Method a, noNorm 67.63 % 90.2%
Method b, winMean 80.02% 95.7%
Method ¢, winNorm 81.55 % 99.6%
Method d, substract 80.37% 99.5%
Method e, IR 76% 96.2 %
Method f, wX 79.63 % 99.9 %

The table 4| shows that different 'x’ normalization results on the CHQUE
set. Evaluation method is recognition rate of the correct samples through
all test set. To reduce the random phenomenon during the training, each
method system has been repeated five time to have an average recognition
rate.

From Figure , the no normalization input (blue line) is growing when
word written, which is not reasonable. What we want to retrieve the trivial
feature characteristic inside the letter since we can’t segment the sequence
to have the x coordinate for isolated letter. winMean and subtract method
seems to flat after normalization without carrying too much distinction in-
formation. LR adjust full curve and may be too much depend on the se-
quence. The results shows that no normalization method is pretty bad in
performance. LR seems over-modified. The 'winNorm’ is best one. Thus, in
the later experiment, we adjust the x-coordinate by method c.

—Experiment b: BLSTM evolution

BLSTM has evolved from classic RNN, multi-active cell only with input
and output gate, then adding forget gate and peephole connection. Then
finally extended to bidirection. IRONOFF-197 is applied to test. Evaluation
method is as previous: recognition rate of the correct samples through all test
set. To reduce the random phenomenon during the training, each method
system has been repeated five times to have an average recognition rate. The
result is shown in Table B

RNN is not able to deal with long time sequence. And without the reset
button it is still not working. There is a sharp increase by adding forget gate
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to adjust the accumulated memory. Peephole connection can boost the sys-
tem with about 10% increase by supervising the the inside cell state, while
bidirection is also important with another 10% increase.

Table 5: IRONOFF result on evolution of LSTM

Rec. Rate
RNN 1.62%
Input& Output Gate 7.05%
Input, Output & Forget 41.43%
Gate
LSTM 50.89%
BLSTM 62.62%

—Experiment c: Lexicon based experiment: different decoding
method

In the following experiment, all the result is based on the lexicon. Both
CHEQUE and IRONOFF-197 are used in Table [ Further comparison by
larger lexicon size can be seen in Table [, where IRONOFF-196 is used to
add redundant words to see the effect when dictionary size extending to 300
and 500. The time is calculated seconds per sample.

We can see full path decoding achieve the best satisfying result, followed
by max path and Levenshtein distance. However, as the dictionary size in-
crease, the time to compute full path increase nearly two times. while the
LD and MP nearly with the same time. All the decoding method will have
a slightly drop when lexicon size enlarge, but it is still robust. It needs to be
point out that [2I] only achieve 87.4% when lexicon size extended to 500.

—Experiment d: CHEQUE set compared with stat-of-art model

We compared the best result in Experiment b to exsisting IRONOFF
dataset, shown in Table [§] The first model [33] has been discussed in Sec-
tion 2.3.2, which NN is responsible to character-based recognition and the
outputs are used to approximate the observation probability. In the second
model [21], two kind of feature are extracted: low level and contour based.
The multi-stream character-based HMM is designed to combined two feature.
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Table 6: Decoding Methods on IRONOFF-CHEQUE & TRONOFF-197

Decoding Method Cheque Full Set-197
word-30
Levenshtein 97.99% 95.16%
Distance(LD)
Full Path(FP) 99.2% 97.45%
Max Path(MP) 98.7% 96.99%

Table 7: IRONOFF-197 performance using different lexicon size

Lexicon Size
Decoding 197 300 500
acc. time(sec.) acc. t acc. t
Levenshtein | 95.16% 0.033 95.14% 0.033 94.85% 0.033
Distance(LD)
Full 97.45% 0.065 96.64% 0.079 96.12% 0.108
Path(FP)
Maximum 96.99% 0.040 96.36% 0.041 96.49% 0.042
Path(MP)

Then the word-level HMM is constructed. The third model [I] is to combine
SVM and HMM, which SVM is referred to letter classifier. and actually no
HMM assumption is used in the system, but the Viterbi algorithm is used to
find the best path. therefore it is an explicit system, which first get the path
then the result. The final model ’bi-character’ [27] aims to model the HMM
which can recognized jointly with its neighboring character.

BLSTM-CTC has greatly outperformed SVM-HMM, and HMMs while it
is sightly outperform NN-HMM. However our model is 50% less error than
it. Besides, it should be mentioned that there are 140 sophisticated features
used in this model and a refined step is applied to boosting the result. The
first model without refine has 91.7% for full word set.
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Table 8: Commpared with other state-of-art model

Method IRONOFF- IRONOFF-196
CHEQUE
NN HMM hybrid [33] 98.2 % 96.1%(91.7%
without refine)
Multi stream HMM [21] 90.6% 83.8%
SVM HMM hybrid [1] 76.71 % 64.53%
Bi-character model [27] 83.8% (only 500 -
samples)
BLSTM-CTC-FP 99.2% 97.45%

6 Conclusion

This thesis has applied BLSTM-CTC framework to handwriting recognition,
which it is robust to sequence recognition. It is discriminative that without
the assumption constraints of HMM. Besides, The model can deal with long
time dependency, temporal distance supervisory and bi-direction. First we
explore the inputs of the model. Then we propose three decoding methods
subjected to the lexicon-based recognition task, trigger by the decoding in
HMM. As the parameters of the model have not been set delicately, such as
topology, number of hidden neurons, the optimization process can be fulfilled
to boost the performance in the future.
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