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DISTRIBUTIVE ENVELOPES AND

TOPOLOGICAL DUALITY FOR LATTICES

VIA CANONICAL EXTENSIONS

MAI GEHRKE AND SAMUEL J. VAN GOOL

Abstract. We establish a topological duality for bounded lattices. The two
main features of our duality are that it generalizes Stone duality for bounded
distributive lattices, and that the morphisms on either side are not the stan-
dard ones. A positive consequence of the choice of morphisms is that those on
the topological side are functional.
Towards obtaining the topological duality, we develop a universal construction
which associates to an arbitrary lattice two distributive lattice envelopes with
a Galois connection between them. This is a modification of a construction of
the injective hull of a semilattice by Bruns and Lakser, adjusting their concept
of ‘admissibility’ to the finitary case.
Finally, we show that the dual spaces of the distributive envelopes of a lattice
coincide with completions of quasi-uniform spaces naturally associated with
the lattice, thus giving a precise spatial meaning to the distributive envelopes.

1. Introduction

Topological duality for Boolean algebras [27] and distributive lattices [28] is a useful
tool for studying relational semantics for propositional logics. Canonical extensions
[22, 23, 16, 15] provide a way of looking at these semantics algebraically. In the
absence of a satisfactory topological duality, canonical extensions have been used
[6] to treat relational semantics for substructural logics. The relationship between
canonical extensions and topological dualities in the distributive case suggests that
canonical extensions should be taken into account when looking for a topological
duality for arbitrary bounded1 lattices. The main aim of this paper is to investigate
this line of research.
Several different approaches to topological duality for lattices exist in the literature,
starting from Urquhart [29]. Important contributions were made, among others, by
Hartung [20, 21], who connected Urquhart’s duality to the Formal Concept Analysis
[12] approach to lattices. However, as we will show in Section 4 of this paper, a
space which occurs in Hartung’s duality can be rather ill-behaved. In particular,
such a space need not be sober, and therefore it need not occur as the Stone dual
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The PhD research project of the second-named author has been made possible by NWO grant
617.023.815 of the Netherlands Organization for Scientific Research (NWO). The authors also
thank the organizations of the conference TACL 2011 (Marseille) and the workshop Duality ‘12
(Oxford) for giving them the opportunity to present their work there.

1From here on, we will drop the adjective ‘bounded’, adopting the convention that all lattices
considered in this paper are bounded.
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2 M. GEHRKE AND S. J. VAN GOOL

space of any distributive lattice. By contrast, the spaces that occur in the duality in
Section 4 of this paper are Stone dual spaces of certain distributive lattices that are
naturally associated to the given lattice. In topological duality for lattices [21], the
morphisms in the dual category are necessarily relational rather than functional.
In this paper, we exhibit a class of lattice morphisms for which the morphisms in
the dual category can still be functional.
In order to obtain these results, we first develop a relevant piece of order theory
that may be of independent interest. The ideas that play a role here originate
with the construction of the injective hull of a semilattice [3], which, as it turns
out, is a frame. In Section 3, we recast this construction in the finitary setting to
obtain a construction of a pair of distributive lattices from a given lattice, which
we shall call the distributive envelopes of the lattice. Moreover, as we will also see
in Section 3, these two distributive envelopes correspond to the meet- and join-
semilattice-reducts of the lattice of departure and are linked by a Galois connection
whose lattice of Galois-closed sets is isomorphic to the original lattice. In Section 4,
we then use Stone-Priestley duality for distributive lattices [28, 26] and the theory
of canonical extensions to find an appropriate category dual to the category of
lattices, using this representation of a lattice as a pair of distributive lattices with
a Galois connection between them. Particular attention is devoted to morphisms;
the algebraic results from Section 3 will guide us towards a notion of ‘admissible
morphism’ between lattices, which have the property that their topological duals
are functional. Finally, in Section 5, we will propose quasi-uniform spaces as an
alternative to topology for studying set representations of lattices.

2. Canonical extensions

Canonical extensions [22, 16] provide an algebraic version of the Stone and Priestley
dualities for distributive lattices. The algebraic characterization of the canonical
extension as a particular lattice completion led to its generalization to arbitrary lat-
tices in [15]. Recently, a “canonical envelope” for spatial preframes was constructed
[8, Section 9], which, in the case where the preframe is a coherent frame, coincides
with the canonical extension of the distributive lattice of compact elements of that
frame. In this section we recall the basic facts about canonical extensions that are
relevant to this paper; our main reference will be [15].

Definition 2.1. Let L be a lattice. A canonical extension of L is an embedding
e : L֌ C of L into a complete lattice C satisfying

(i) for all u ∈ C, we have
∨{∧

e[S] | S ⊆ L,
∧
e[S] ≤ u

}
= u =

∧{∨
e[T ] | T ⊆ L, u ≤

∨
e[T ]

}
;

(ii) for all S, T ⊆ L, if
∧
e[S] ≤

∨
e[T ] in C, then there are finite S′ ⊆ S and

T ′ ⊆ T such that
∧
S′ ≤

∨
T ′ in L.

The first property is commonly referred to as denseness, the second as compactness.

Theorem 2.2. Let L be a lattice. There exists a canonical extension e : L ֌ C.
Moreover, if e : L ֌ C and e′ : L ֌ C′ are canonical extensions of L, then there
is a complete lattice isomorphism φ : C → C′ such that φ ◦ e = e′.

Proof. See [15, Prop. 2.6 and 2.7]. �
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As is common in the literature and justified by this theorem, we will speak of the
canonical extension of a lattice L and we will denote it by Lδ. We will also omit
reference to the embedding e, and regard L as a sublattice of Lδ. The closure of L
under infinite meet inside Lδ is isomorphic to the filter completion F(L) of L, and
its elements are therefore known as the filter elements of Lδ. Similarly, the join-
closure of L inside Lδ is isomorphic to the ideal completion I(L) of L and consists
of the ideal elements of Lδ. The elements of L are characterized in Lδ as exactly
those which are both filter and ideal elements. See [15, Lemma 3.3] for proofs of
the facts mentioned in this paragraph.
To end this preliminary section we recall one more important fact, the proof of
which relies on the axiom of choice. This proposition states that the canonical
extension of a lattice ‘has enough points’ and therefore it is crucial for obtaining
set-theoretic representations of lattices via canonical extensions.

Proposition 2.3 (Canonical extensions are perfect lattices). Let L be a lattice.
The set of completely join-irreducible elements J∞(Lδ) of the canonical extension∨
-generates Lδ, and the set of completely meet-irreducible elements M∞(Lδ) of the

canonical extension
∧
-generates in Lδ.

Proof. See [15, Lemma 3.4]. �

3. Distributive envelopes

In this section we introduce the two distributive envelopes D∧(L) and D∨(L) of a
lattice L. After giving the universal property defining the envelope, we will give
both a point-free and a point-set construction of it, and investigate the categorical
properties of the envelopes. Finally, we will show how the two distributive envelopes
are linked by a Galois connection which enables one to recover the original lattice
L. Some of the results in this section can be seen as finitary versions of the results
on injective hulls of semilattices of Bruns and Lakser [3]. We will relate our results
to theirs in Remark 3.16. However, the reader who is not familiar with [3] should
be able to read this section independently.
The following definition is central, being the finitary version of the definition of
admissible given in [3].

Definition 3.1. Let L be a lattice. A finite subset M ⊆ L is join-admissible if its
join distributes over all meets with elements from L, i.e., if, for all a ∈ L,

a ∧
∨
M =

∨

m∈M

(a ∧m).

We say that a function f : L1 → L2 between lattices preserves admissible joins if,
for each finite join-admissible set M ⊆ L1, we have f(

∨
M) =

∨
m∈M f(m).

The formal definition of the distributive ∧-envelope is now as follows.

Definition 3.2. Let L be a lattice. An embedding η∧L : L֌ D∧(L) of L into a dis-
tributive lattice D∧(L) which preserves meets and admissible joins is a distributive
∧-envelope of L if it satisfies the following universal property:

For any function f : L→ D into a distributive lattice D that preserves

finite meets and admissible joins, there exists a unique lattice homomorphism

f̂ : D∧(L) → D such that f̂ ◦ η∧L = f , i.e., the following diagram commutes:
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L D∧(L)

D

f
f̂!

η∧L

The definition of the distributive ∨-envelope D∨(L) of L is order dual, cf. Re-
mark 3.17 below.

Let us give some intuition for the above definitions. The join-admissible subsets
of L are those subsets whose joins ‘are already distributive’ in L. A distributive
∧-envelope of a lattice L is a universal solution to the question of embedding L
as a ∧-semilattice into a distributive lattice while preserving all admissible joins.
Clearly, a non-admissible join can not be preserved by any ∧-embedding into a
distributive lattice; in this sense, a distributive ∧-envelope adds ‘as few joins as
possible’ to make L distributive.
The main aim of this section is to show that the distributive ∧-envelope of a lattice
always exists (Theorem 3.9); it is then clearly unique up to isomorphism. The same
results of course hold for the distributive ∨-envelope. In proving these theorems,
two different representations of D∧(L) will be useful, one is point-free, the other
uses the set of ‘points’ J∞(Lδ) of the canonical extension of L.
We first give the point-free construction of the distributive ∧-envelope D∧(L) of L.
To construct D∧(L), we want to ‘add joins’ to L. This can of course be done with
ideals. In the case of D∧(L) the required ideals will be closed under admissible
joins. We thus define “a-ideals” as follows.

Definition 3.3. A subset A ⊆ L is called an a-ideal if (i) A is a downset, i.e., if
a ∈ A and b ≤ a then b ∈ A, and (ii) A is closed under admissible joins, i.e., if
M ⊆ A is join-admissible, then

∨
M ∈ A.

This definition is a special case of a Z-join ideal in the sense of, e.g., [10], and it
would be interesting to see if the results in this section could be obtained using the
general ideas from that line of research.
Note that any (lattice) ideal of a lattice L is in particular an a-ideal. Moreover, the
poset aidl(L) of all a-ideals of L is a closure system: any intersection of a-ideals is
again an a-ideal. Therefore, for any subset T of L, there exists a smallest a-ideal
containing T . We will denote this a-ideal by 〈T 〉ai and call it the a-ideal generated
by T . As usual, we say that an a-ideal A is finitely generated if there is a finite
set T such that A = 〈T 〉ai. Note that, in a distributive lattice D, all joins are
admissible, and a-ideals coincide with lattice ideals. The finitely generated a-ideals
form a distributive lattice which will be (up to isomorphism) the distributive ∧-
envelope of L, cf. Theorem 3.9 below. It is possible to prove Theorem 3.9 directly,
in a manner similar to the proof of [3, Theorem 2]. We give an alternative proof
using the canonical extension and the ‘point-set’ intuition that it provides. To this
end we first show that, from the perspective of the canonical extension Lδ, a set
is join-admissible if, and only if, the join-irreducibles behave like join-primes with
respect to the join of that set.

Lemma 3.4. Let L be a lattice and M ⊆ L a finite subset. The following are
equivalent:

(i) M is join-admissible;
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(ii) For any x ∈ J∞(Lδ), if x ≤
∨
M , then x ≤ m for some m ∈M .

Proof. (i) ⇒ (ii). Suppose M is join-admissible, and let x ∈ J∞(Lδ) such that
x ≤

∨
M . Define x′ :=

∨
m∈M (x ∧m). It is obvious that x′ ≤ x. We show that

x ≤ x′. Let y be an ideal element of Lδ such that x′ ≤ y. Then, for each m ∈ M ,
we have x ∧m ≤ y, so by compactness, there exists am ∈ L such that x ≤ am and
am ∧m ≤ y. Let a :=

∧
m∈M am. Since M is join-admissible, we get

x ≤ a ∧
∨
M =

∨

m∈M

(a ∧m) ≤
∨

m∈M

(am ∧m) ≤ y.

Since y was an arbitrary ideal element above x′, by one of the equivalent properties
of denseness ([15, Lemma 2.4]) we conclude that x ≤ x′. So x = x′ =

∨
m∈M (x∧m).

Since x is join-irreducible, we get x = x ∧m for some m ∈M , so x ≤ m.
(ii) ⇒ (i). Let a ∈ L be arbitrary. Because the other inequality is obvious, we only
need to show that a ∧

∨
M ≤

∨
m∈M (a ∧m) holds in L. We show the inequality

holds in Lδ and use that L ֌ Lδ is an embedding. Let x ∈ J∞(Lδ) such that
x ≤ a ∧

∨
M . By (ii), pick m ∈ M such that x ≤ m. Then x ≤ a ∧ m, which

is below
∨

m∈M (a ∧ m). Since x ∈ J∞(Lδ) was arbitrary, by Proposition 2.3 we
conclude a ∧

∨
M ≤

∨
m∈M (a ∧m). �

The above lemma will be our main tool in studying admissible sets. It is a typical
example of the usefulness of canonical extensions: one can formulate an algebraic
property (join-admissibility) in a spatial manner (using the ‘points’, i.e., completely
join-irreducibles, of the canonical extension).
Note that the same proof goes through without the restriction that M is finite, if
one extends the definition of join-admissibility to include infinite sets. We will not
expand on this point here, because we will only need the result for finite sets, but
we merely note that this observation can be used to give an alternative proof of the
results in [3].
Let us define, for any a ∈ L, â := {x ∈ J∞(Lδ) : x ≤ a}. Lemma 3.4 then says that

M is join-admissible if, and only if,
∨̂
M =

⋃
m∈M m̂. We can use this formulation

to obtain the following characterization of the a-ideal generated by a finite subset.

Lemma 3.5. Let L be a lattice, T ⊆ L a finite subset and b ∈ L. The following
are equivalent:

(i) b ∈ 〈T 〉ai;

(ii) b̂ ⊆
⋃

a∈T â;
(iii) There exists a finite join-admissible M ⊆ ↓T such that b =

∨
M .

Proof. (i) ⇒ (ii). Note that A := {b ∈ L : b̂ ⊆
⋃

a∈T â} is an a-ideal which contains
T : it is clearly a downset, and it is closed under admissible joins, using Lemma 3.4.
Hence, b ∈ 〈T 〉ai ⊆ A, as required.
(ii) ⇒ (iii). Let M := {b ∧ a | a ∈ T }. We claim that b =

∨
M and M is

join-admissible. Note that
∨
M ≤ b, so

∨̂
M ⊆ b̂. Using (iii), we also get:

b̂ = b̂ ∩
⋃

a∈T

â =
⋃

a∈T

(̂b ∩ â) =
⋃

a∈T

b̂ ∧ a =
⋃

m∈M

m̂ ⊆
∨̂
M ⊆ b̂.

Therefore, equality holds throughout, and in particular we have that b =
∨
M and⋃

m∈M m̂ =
∨̂
M , so that M is join-admissible by Lemma 3.4.
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(iii) ⇒ (i). Since 〈T 〉ai is a downset containing T , 〈T 〉ai contains M , and therefore,
being closed under admissible joins, it contains b =

∨
M . �

We can now give the following set-representation of the poset of finitely generated
a-ideals.

Proposition 3.6. Let φ be the function which sends a finitely generated a-ideal
A = 〈T 〉ai to the set

⋃
a∈T â. Then φ is a well-defined order isomorphism between

the poset of finitely generated a-ideals and the sublattice of P(J∞(Lδ)) generated
by the collection {â | a ∈ L}.

Proof. Let T and U be finite subsets of L. Note that if 〈T 〉ai = A = 〈U〉ai, then in

particular b ∈ 〈T 〉ai for each b ∈ U , so b̂ ⊆
⋃

a∈T â by Lemma 3.5. Hence,
⋃

b∈U b̂ ⊆⋃
a∈T â. The proof of the other inclusion is symmetric, so indeed

⋃
a∈T â =

⋃
b∈U b̂,

and φ is well defined. This argument also shows that φ is order preserving. Finally, if

φ(〈U〉ai) =
⋃

b∈U b̂ ⊆
⋃

a∈T â = φ(〈T 〉ai), then for each b ∈ U we have b̂ ⊆
⋃

a∈T â,
so by Lemma 3.5 we get b ∈ 〈T 〉ai. Since this holds for each b ∈ U , we get
〈U〉ai ⊆ 〈T 〉ai, so φ is order reflecting. To see that φ is surjective, note first that, for

any finite subset T ⊆ L, we have
⋂

a∈T â =
∧̂
T . Hence, if B is an arbitrary element

of the sublattice generated by the sets â, then, using distributivity in P(J∞(Lδ)),
we can write B =

⋃
a∈T â for some finite set T ⊆ L. Now B = φ(〈T 〉ai). �

Note that this proposition implies in particular that the finitely generated a-ideals
form a distributive lattice. In this lattice, the join of two finitely generated a-ideals
is the a-ideal generated by the union of the sets of generators. The meet is simply
given by intersection, as we will prove now.

Proposition 3.7. Let L be an arbitrary lattice, and let T and U be finite subsets
of L. Then

〈T 〉ai ∩ 〈U〉ai = 〈t ∧ u | t ∈ T, u ∈ U〉ai.

In particular, the intersection of two finitely generated a-ideals is again finitely
generated.

Proof. By Lemma 3.5, we have that

〈T 〉ai ∩ 〈U〉ai = {b ∈ L | b̂ ⊆

(⋃

t∈T

t̂

)
∩

(⋃

u∈U

û

)
}.

Note that (⋃

t∈T

t̂

)
∩

(⋃

u∈U

û

)
=

⋃

t∈T,u∈U

(t̂ ∩ û) =
⋃

t∈T,u∈U

t̂ ∧ u.

So we get that 〈T 〉ai∩〈U〉ai = {b ∈ L | b̂ ⊆
⋃

t∈T,u∈U t̂ ∧ u} = 〈t∧u | t ∈ T, u ∈ U〉ai,
again by Lemma 3.5. �

We are now ready to prove that the lattice of finitely generated a-ideals is indeed a
distributive envelope of L. Let us denote by η∧L the embedding which sends a ∈ L

to the a-ideal generated by a, which is simply the downset of a in L.

Lemma 3.8. Let L be a lattice. Then η∧L preserves finite meets and admissible
joins.
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Proof. Clearly, η∧L preserves finite meets. Let M be a finite join-admissible set.
Then

∨
m∈M η∧L(m) = 〈M〉ai. By Lemma 3.5, we have b ∈ 〈M〉ai if, and only if,

b̂ ⊆
⋃

m∈M m̂, and
⋃

m∈M m̂ =
∨̂
M by Lemma 3.4, since M is join-admissible.

Therefore, b ∈
∨

m∈M η∧L(m) = 〈M〉ai if, and only if, b̂ ⊆
∨̂
M if, and only if,

b ∈ 〈
∨
M〉ai = η∧L(

∨
M). �

Theorem 3.9. Let L be a lattice. The embedding η∧L of L into the finitely generated
a-ideals of L is a distributive ∧-envelope of L.

Proof. Let us writeD∧(L) for the distributive lattice of finitely generated a-ideals of
L. Lemma 3.8 shows that η∧L preserves finite meets and admissible joins. It remains
to show that it satisfies the universal property. Let f : L→ D be a function which
preserves meets and admissible joins. If g : D∧(L) → D is a homomorphism such
that g ◦ η∧L = f , then, for any finite subset T ⊆ L, we have

g(〈T 〉ai) = g

(∨

t∈T

η∧L(t)

)
=
∨

t∈T

g(η∧L(t)) =
∨

t∈T

f(t).

So there is at most one homomorphism g : D∧(L) → D satisfying g ◦ η∧L = f . Let

f̂ : D∧(L) → D be the function defined for a finite subset T ⊆ L by

f̂(〈T 〉ai) :=
∨

t∈T

f(t).

We show that f̂ is a well-defined homomorphism. For well-definedness, suppose
that 〈T 〉ai = 〈U〉ai for some finite subsets T, U ⊆ L. Let u ∈ U be arbitrary. We
then have u ∈ 〈T 〉ai. By Lemma 3.5, u =

∨
M for some finite join-admissible

M ⊆ ↓T . Using that f preserves admissible joins and order, we get

f(u) = f
(∨

M
)
=
∨

m∈M

f(m) ≤
∨

t∈T

f(t).

Since u ∈ U was arbitrary, we have shown that
∨

u∈U f(u) ≤
∨

t∈T f(t). The proof
of the other inequality is the same. We conclude that

∨
t∈T f(t) =

∨
u∈U f(u), so

f̂ is well-defined.

It is clear that f̂ ◦ η∧L = f . In particular, f̂ preserves 0 and 1, since f does. It

remains to show that f̂ preserves ∨ and ∧. Let T, U ⊆ L be finite subsets. Then
〈T 〉ai ∨ 〈U〉ai = 〈T ∪ U〉ai, so

f̂(〈T 〉ai ∨ 〈U〉ai) =
∨

v∈T∪U

f(v) =
∨

t∈T

f(t) ∨
∨

u∈U

f(u) = f̂(〈T 〉ai) ∨ f̂(〈U〉ai).

Using Proposition 3.7 and the assumptions that D is distributive and f is meet-
preserving, we have

f̂(〈T 〉ai ∧ 〈U〉ai) =
∨

t∈T,u∈U

f(t ∧ u) =
∨

t∈T,u∈U

(f(t) ∧ f(u))

=
∨

t∈T

f(t) ∧
∨

u∈U

f(u) = f̂(〈T 〉ai) ∧ f̂(〈U〉ai).�

We now investigate the categorical properties of the distributive ∧-envelope con-
struction a bit further. In particular, we will deduce that the assignment L 7→
D∧(L) extends to an adjunction between categories. We first define the appropriate
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categories. We denote by DL the category of distributive lattices with homomor-
phisms. The relevant category of lattices is defined as follows.

Definition 3.10. We say that a function f : L1 → L2 between lattices is a
(∧,a∨)-morphism if f preserves finite meets and admissible joins, and, for any
join-admissible set M ⊆ L1, f [M ] is join-admissible. We denote by L∧,a∨ the cate-
gory of lattices with (∧,a∨)-morphisms between them. (The reader may verify that
L∧,a∨ is indeed a category.)

Note that if the lattice L2 is distributive, then the condition that f sends join-
admissible sets to join-admissible sets is vacuously true, since any subset of a dis-
tributive lattice is join-admissible. This explains why we did not need to state the
condition that f preserves join-admissible sets in the universal property of D∧(L).
However, the following example shows that in general the condition ‘f sends join-
admissible sets to join-admissible sets’ can not be omitted from the definition of
(∧,a∨)-morphism.

Example 3.11. The composition g ◦ f of functions f : L1 → L2 and g : L2 → L3

between lattices which preserve meets and admissible joins need not preserve admis-
sible joins.
Let L1 be the diamond distributive lattice, let L2 be the three-element antichain
with 0 and 1 adjoined, and let L3 be the Boolean algebra with 3 atoms, as in
Figure 1 below. Note that L3 = D∧(L2).

L1

0

1

a1 b1

L2

0

1

a2 b2c2

L3

0

1

a3 b3c3

Figure 1. The lattices L1, L2 and L3 from Example 3.11.

Let f : L1 → L2 be the homomorphism defined by f(x1) = x2 for x ∈ {a, b}.
Let g : L2 → L3 be the function η∧L2

, i.e., g is the (∧, a∨)-morphism sending x2
to x3 for x ∈ {a, b, c}. The composition gf does not preserve (admissible) joins:
gf(a1 ∨ b1) = gf(1) = 1, but gf(a1)∨ gf(b1) = a3 ∨ b3 6= 1. Note that f , despite it
being a homomorphism, does not send join-admissible sets to join-admissible sets:
the image of {a1, b1} is {a2, b2}, which is not join-admissible in L2.

However, the following proposition shows that for surjective maps, the condition ‘f
sends join-admissible sets to join-admissible sets’ can be omitted. It was already
observed by Urquhart [29] that surjective maps are well-behaved for duality, and
accordingly our duality in Section 4 will also include all surjective lattice homomor-
phisms.

Proposition 3.12. Suppose f : L1 → L2 is a surjective function which pre-
serves finite meets and admissible joins. Then f sends join-admissible sets to
join-admissible sets (and therefore f is a morphism in L∧,a∨).

Proof. Suppose M ⊆ L1 is a join-admissible set. To show that f [M ] is join-
admissible, first let a ∈ L1 be arbitrary. Note that it follows from the definition
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of join-admissibility that {a ∧m | m ∈M} is also join-admissible in L1. So, using
that f preserves meets and admissible joins, we get

f(a) ∧
∨

m∈M

f(m) = f(a ∧
∨
M) = f

( ∨

m∈M

(a ∧m)

)
=
∨

m∈M

(f(a) ∧ f(m)).

Since f is surjective, any b ∈ L2 is of the form b = f(a) for some a ∈ L1. Hence,
f [M ] is join-admissible. �

Note that, if L1 and L2 are distributive, then (∧,a∨)-morphisms from L1 to L2

are exactly bounded lattice homomorphisms. Hence, we have a full inclusion of
categories I∧ : DL ֌ L∧,a∨. The following is now a consequence of the universal
property.

Corollary 3.13. The functor D∧ : L∧,a∨ → DL, which sends L to D∧(L) and a
(∧,a∨)-morphism f : L1 → L2 to the unique homomorphic extension of the function
η∧L2

◦ f : L1 → D∧(L2), is left adjoint to I∧ : DL ֌ L∧,a∨ and η∧ is the unit of
the adjunction. Moreover, the counit ǫ∧ : D∧ ◦ I → 1DL is an isomorphism.

As a last general consideration about the distributive ∧-envelope, we give a char-
acterization which is closer in spirit to the one given for the infinitary version by
Bruns and Lakser [3, Corollary 2]. To do so, it will be useful to know that the
extension of an injective map to D∧(L) is injective.

Proposition 3.14. Let L be a lattice, D a distributive lattice, and f : L → D a
function which preserves finite meets and admissible joins. If f is injective, then

the unique extension f̂ : D∧(L) → D is injective.

Proof. Note that f is order reflecting, since f is meet-preserving and injective.

Suppose that f̂(〈U〉ai) ≤ f̂(〈T 〉ai). We need to show that 〈U〉ai ⊆ 〈T 〉ai. Let u ∈ U

be arbitrary. Then f(u) ≤ f̂(〈U〉ai) ≤ f̂(〈T 〉ai) =
∨

t∈T f(t). For any a ∈ L, we
then have

f(a ∧ u) = f(a ∧ u) ∧
∨

t∈T

f(t) =
∨

t∈T

(f(a ∧ u) ∧ f(t))

=
∨

t∈T

f(a ∧ u ∧ t) ≤ f

(∨

t∈T

(a ∧ u ∧ t)

)
.

Since f is order reflecting, we thus get a ∧ u ≤
∨

t∈T (a ∧ u ∧ t). Since the other
inequality is clear, we get

a ∧ u =
∨

t∈T

(a ∧ u ∧ t).

In particular, putting a = 1, we see that u =
∨

t∈T (u ∧ t), and the above equation
then says that {u ∧ t | t ∈ T } is join-admissible. So u ∈ 〈T 〉ai. We conclude that
U ⊆ 〈T 〉ai, and therefore 〈U〉ai ⊆ 〈T 〉ai. �

The following characterisation of D∧(L) now follows easily.

Corollary 3.15. Let L be a lattice. If D is a distributive lattice and f : L→ D is
a function such that

(i) f preserves meets and admissible joins,
(ii) f is injective,
(iii) f [L] is join-dense in D,
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then D is isomorphic to D∧(L) via the isomorphism f̂ .

Proof. The homomorphism f̂ is injective by Proposition 3.14. It is surjective be-

cause f [L] is join-dense in D and f̂ [D∧(L)] = {
∨
f [T ] | T ⊆ L}, by the construction

of f̂ in the proof of Theorem 3.9. �

Remark 3.16. We compare our results in this section so far to those of Bruns
and Lakser [3]. The equivalence of (i) and (ii) in Lemma 3.5 is very similar to the
statement of Lemma 3 in [3]. Our proofs are different from those in [3] in making
use of the canonical extension of L; in particular Lemma 3.4 has proven to be useful
here. Our Corollary 3.15 is a finitary version of the characterisation in Corollary 2
of [3]. The fact that D∧ is an adjoint to a full inclusion can also be seen as a finitary
analogue of the result of [3] that their construction provides the injective hull of
a meet-semilattice. Note that our construction of D∧(L) could also be applied to
the situation where L is only a meet-semilattice, if we modify our definition of join-
admissible sets to require that the relevant joins exist in L. The injective hull of L
that was constructed in [3] can now be retrieved from our construction by taking
the free directedly complete poset (dcpo) over the distributive lattice D∧(L). This
is a special case of a general phenomenon, where frame constructions may be seen
as a combination of a finitary construction, followed by a dcpo construction [24].

Remark 3.17. We outline the order-dual version of the construction given above
for later reference. A finite subset M ⊆ L is meet-admissible if for all a ∈ M ,
a∨
∧
M =

∧
m∈M (a∨m). The universal property of the distributive ∨-envelope is

defined as in Definition 3.2, interchanging the words ‘join’ and ‘meet’ everywhere in
the definition. An a-filter is an upset which is closed under admissible meets. The
distributive ∨-envelope can be realized as the poset of finitely generated a-filters of
L, ordered by reverse inclusion. The distributive ∨-envelope is also anti-isomorphic
to the sublattice of P(M∞(Lδ)) that is generated by the sets

qa := {y ∈M∞(Lδ) | a ≤ y},

by sending the a-filter generated by a finite set T to
⋃

a∈T qa. Note that the order
on a-filters has to be taken to be the reverse inclusion order, to ensure that the
unit embedding η∨L of the adjunction will be order-preserving. On the other hand,
the order in P(M∞(Lδ)) is the inclusion order, which explains why D∨(L) is anti-
isomorphic to a sublattice of P(M∞(Lδ)). We say that f : L1 → L2 is a (∨,a∧)-
morphism if it preserves finite joins, admissible meets, and sends meet-admissible
sets to meet-admissible sets. Then D∨ is a functor from the category L∨,a∧ to
DL which is left adjoint to the full inclusion I∨ : DL → L∨,a∧. We denote the
unit of the adjunction by η∨ : 1L∨,a∧

→ I∨ ◦ D∨. Finally, D∨(L) is the (up to
isomorphism) unique distributive meet-dense extension of L which preserves finite
joins and admissible meets.

We end this section by examining additional structure which links the two distribu-
tive envelopes D∧(L) and D∨(L), and enables us to retrieve L from the lattices
D∧(L) and D∨(L). Recall from [1, Section V.7] that a tuple (X,Y,R), where X
and Y are sets and R ⊆ X×Y is a relation, is called a polarity and naturally induces
a Galois connection2 u : P(X) ⇆ P(Y ) : l. Let uL : P(J∞(Lδ)) ⇆ P(M∞(Lδ)) : lL

2 As in [1], we use the term Galois connection for what is sometimes called a contravariant

adjunction, i.e., a pair of order-preserving functions u : P ⇆ Q : l between posets satisfying
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be the Galois connection associated to the polarity (J∞(Lδ),M∞(Lδ),≤Lδ), that
is,

uL(V ) := {y ∈M∞(Lδ) | ∀x ∈ V : x ≤Lδ y} (V ⊆ J∞(Lδ)),

lL(W ) := {x ∈ J∞(Lδ) | ∀y ∈W : x ≤Lδ y} (W ⊆M∞(Lδ)).

Note that if V = â for some a ∈ L, then uL(V ) = uL(â) = qa. Recall from
Proposition 3.6 that the distributive lattice D∧(L) can be regarded as a sublattice
of P(J∞(Lδ)), and, by Remark 3.17, D∨(L)op can be regarded as a sublattice of
P(M∞(Lδ)). We then have:

Proposition 3.18. For any lattice L, the maps uL and lL restrict to a Galois
connection uL : D∧(L) ⇆ D∨(L)op : lL. The lattice of Galois-closed elements of
this Galois connection is isomorphic to L.

N.B. The restricted Galois connection in this proposition is between D∧(L) and the
order dual of D∨(L). Therefore, it is also a (covariant) adjunction between D∧(L)
and D∨(L).

Proof. Note that D∧(L) consists of finite unions of sets of the form â. If T ⊆ L,
then we have

uL

(⋃

a∈T

â

)
=
⋂

a∈T

qa = qt,

where t :=
∨
T . From this, it follows that uL(D

∧(L)) ⊆ D∨(L), and the analogous
statement for lL is proved similarly. The lattice of Galois-closed elements under
this adjunction is both isomorphic to the image of uL in D∨(L) and the image of
lL in D∧(L). Both of these lattices are clearly isomorphic to L. �

In the presentation of D∧(L) and D∨(L) as finitely generated a-ideals and a-filters,
the maps uL and lL act as follows. Given an a-ideal I which is generated by a finite
set T ⊆ L, uL(I) is the principal a-filter generated by

∨
T . Conversely, given an

a-filter F which is generated by a finite set S ⊆ L, lL(F ) is the principal a-ideal
generated by

∧
S.

In light of Proposition 3.18, we can combine D∧ and D∨ to obtain a single functor
D into a category of adjoint pairs between distributive lattices. On objects, this
functor D sends a lattice L to the adjoint pair uL : D∧(L) ⇆ D∨(L) : lL (see
Proposition 3.18 above). For the morphisms in the domain category of D, we take
the intersection of the set of morphisms in L∧,a∨ and the set of morphisms in L∨,a∧.
This intersection is defined directly in the following definition.

Definition 3.19. A function f : L → M between lattices is an admissible ho-
momorphism if it is a lattice homomorphism which sends join-admissible subsets
of L to join-admissible subsets of M and meet-admissible subsets of L to meet-
admissible subsets of M . We denote by La the category of lattices with admissible
homomorphisms.

Indeed, f is an admissible homomorphism if and only if it is a morphism both in
L∧,a∨ and in L∨,a∧. Any homomorphism whose codomain is a distributive lattice
is admissible. Also, any surjective homomorphism between arbitrary lattices is
admissible, by Proposition 3.12. This may be the underlying reason for the fact

id ≤ ul and id ≤ lu. We reserve the word adjunction for covariant adjunctions. Both for a Galois
connection and for an adjunction, we use the adjective Galois-closed for the elements p ∈ P such
that lu(p) = p, and for the q ∈ Q such that ul(q) = q.
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that both surjective homomorphisms and morphisms whose codomain is distributive
have proven to be ‘easier’ cases in the existing literature on lattice duality (see, e.g.,
[29, 20]). Of course, not all homomorphisms are admissible, cf. Example 3.11 above.
In the next section, we will develop a topological duality for the category La.
Let us end this section with a historical remark. The first construction of a canonical
extension for lattices (although lacking an abstract characterization) was given in
[19]. This construction depended on the fact that any lattice occurs as the Galois-
closed sets of some Galois connection. In this section we have given a ‘canonical’
choice for this Galois connection. We will leave the precise statement of this last
sentence to future work; also see the concluding section of this paper.

4. Topological duality

In this section, we show how the results of this paper can be applied to the topolog-
ical representation theory of lattices. First, we will focus our discussion on how the
existing topological dualities for lattices by Urquhart [29] and Hartung [20] relate
to canonical extensions. We subsequently exploit this perspective on Hartung’s
duality to obtain examples of lattices for which the dual space is not sober, or does
not have a spectral soberification (Examples 4.1 and 4.2, respectively). The rest of
the section will be devoted to obtaining an alternative topological duality for the
category of lattices La. In our duality, the spaces occurring in the dual category
will be spectral.
As already remarked in [15, Remark 2.10], the canonical extension can be used
to obtain the topological polarity in Hartung’s duality for lattices [20]. We now
briefly recall how this works. As is proved in [15, Lemma 3.4], the set J∞(Lδ) is
in a natural bijection with the set of filters F which are maximally disjoint from
some ideal I, and the set M∞(Lδ) is in a natural bijection with the set of ideals
which are maximally disjoint from some filter F . These are exactly the sets used by
Hartung [20] in his topological representation for lattices. The topologies defined
in [20] can be recovered from the embedding L֌ Lδ, as follows (cf. Figure 2).

Lδ

L

J∞(Lδ)

M∞(Lδ)

a

â

qa

Figure 2. Topological spaces from the embedding of a lattice L
into its canonical extension Lδ.

For a ∈ L we define â := ↓a ∩ J∞(Lδ) and qa := ↑a ∩M∞(Lδ). Let τJc be the
topology on J∞(Lδ) given by taking {â : a ∈ L} as a subbasis for the closed sets.
Let τMc be the topology on M∞(Lδ) given by taking {qa : a ∈ L} as a subbasis
for the closed sets. Finally, let RL be the relation defined by xRL y if, and only
if, x ≤Lδ y. This topological polarity ((J∞(Lδ), τJc ), (M

∞(Lδ), τMc ), RL) is now
exactly (isomorphic to) Hartung’s topological polarity Kτ (L) from [20, Definition
2.1.6].
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Before Hartung, Urquhart [29] had already defined the dual structure of a lattice to
be a doubly ordered topological space (Z, τ,≤1,≤2) whose points are maximal pairs
(F, I). We briefly outline how this structure can be obtained from the canonical
extension. Let P be the subset of J∞(Lδ)×M∞(Lδ) consisting of pairs (x, y) such
that x �Lδ y, i.e., P is the set-theoretic complement of the relation RL in Hartung’s
polarity. Then P inherits the subspace topology from the product topology τJc ×τMc
on J∞(Lδ)×M∞(Lδ). We define an order � on P by (x, y) � (x′, y′) iff x ≥Lδ x′

and y ≤Lδ y′; in other words, � is the restriction of the product of the dual order
and the usual order of Lδ. Urquhart’s space (Z, τ) then corresponds to the subspace
of �-maximal points of P , and the orders ≤1 and ≤2 correspond to the projections
of the order � onto the first and second coordinate, respectively.
In the following two examples, we prove that the spaces which occur in Hartung’s
duality may lack the nice properties that dual spaces of distributive lattices always
have.

Example 4.1 (A lattice whose dual topology is not sober). Let L be a countable
antichain with top and bottom, as depicted in Figure 3.

L
.....

Figure 3. The lattice L, a countable antichain with top and bottom.

One may easily show that id : L→ L is a canonical extension, so L = Lδ. The set
J∞(L) is the countable antichain (as is the set M∞(L)). The topology τJc is the
cofinite topology on a countable set, which is not sober: the entire space is itself a
closed irreducible subset which is not the closure of a point.
Also note that if one instead would define a topology on J∞(L) by taking the sets
â, for a ∈ L, to be open, instead of closed, then one obtains the discrete topology
on J∞(L), which is in particular not compact. �

In the light of the above example, one may wonder whether the soberification of
the space (J∞(L), τJc ) might have better properties, and in particular whether it
will be spectral. However, the following example shows that it cannot be, since the
frame of opens of the topological space (J∞(L), τJc ) in the following example fails
to have the property that intersections of compact elements are compact.

Example 4.2 (A lattice whose dual topology is not arithmetic). Consider the
lattice K depicted in Figure 4. In this figure, the elements of the original lattice
K are drawn as filled dots, and the three additional elements a, b and c of the
canonical extension Kδ are drawn as unfilled dots.
The set J∞(Kδ) is {bi, ci, zi | i ≥ 0} ∪ {b, c}. We take {â : a ∈ K} as a subbasis
for the closed sets, so {(â)c : a ∈ K} is a subbasis for the open sets.

In particular, (b̂0)
c and (ĉ0)

c are compact open sets. However, their intersection is

not compact: {(ân)
c}∞n=0 is an open cover of (b̂0)

c ∩ (ĉ0)
c = {zi : i ≥ 0} with no

finite subcover. �
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K ֌ Kδ

b2 c2

a2
b1 c1

a1
b0 c0

a0

..
.

..
.

..
.

0

b

a

c
z0z1z2. . .

Figure 4. The lattice K, for which (J∞(Kδ), τc) is not spectral.

The above examples indicate that the spaces obtained from Hartung’s duality can
be badly behaved. In particular, they do not fit into the framework of the duality
between sober spaces and spatial frames. The individual spaces which occur in
Hartung’s duality may fail to be the Stone duals of any distributive lattice.
In the remainder of this section, we combine the facts from Section 3 with the exist-
ing Stone-Priestley duality for distributive lattices to obtain a duality for a category
of lattices with admissible homomorphisms (see Definition 3.19 below). Since the
L∧,a∨-morphisms are exactly the morphisms which can be lifted to homomorphisms
between the D∧-envelopes, these morphisms also correspond exactly to the lattice
morphisms which have functional duals between the X-sets of the dual polarities;
the same remark applies to L∨,a∧-morphisms and the Y -sets of the dual polarities.
The duals of admissible morphisms will be pairs of functions; one function being
the dual of the ‘L∧,a∨-part’ of the admissible morphism, the other being the dual
of the ‘L∨,a∧-part’ of the morphism.
We will now first define an auxiliary category of ‘doubly dense adjoint pairs between
distributive lattices’ (daDL) which has the following two features:

(i) The category La can be embedded into daDL as a full subcategory (Propo-
sition 4.4);

(ii) There is a natural Stone-type duality for daDL (Theorem 4.13).

We will then give a dual characterization of the ‘special’ objects in daDL which are
in the image of the embedding of La from (i), calling these dual objects tight (cf.
Definition 4.18). The restriction of the natural Stone-type duality (ii) will then yield
our final result: a topological duality for lattices with admissible homomorphisms
(Theorem 4.19).

Definition 4.3. We denote by aDL the category with:

• objects: tuples (D,E, f, g), where D and E are distributive lattices and
f : D ⇆ E : g is a pair of maps such that f is lower adjoint to g;

• morphisms: an aDL-morphism from (D1, E1, f1, g1) to (D2, E2, f2, g2) is
a pair of homomorphisms h∧ : D1 → D2 and h∨ : E1 → E2 such that
h∨f1 = f2h

∧ and h∧g1 = g2h
∨, i.e., both squares in the following diagram

commute:
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D1 E1

D2 E2

f1

g1

f2

g2
h∧ h∨

We call an adjoint pair (D,E, f, g) doubly dense if both g[E] is join-dense in D and
f [D] is meet-dense in E. We denote by daDL the full subcategory of aDL whose
objects are doubly dense adjoint pairs.

Proposition 4.4. The category La is equivalent to a full subcategory of daDL.

Proof. Let D : La → daDL be the functor defined by sending:

• a lattice L to D(L) := (D∧(L), D∨(L), u, l),
• an admissible morphism h : L1 → L2 to the pair D(h) := (D∧(h), D∨(h)).

We show that D is a well-defined full and faithful functor.
For objects, note that D(L) is a doubly dense adjoint pair by Corollary 3.15 and
Proposition 3.18 in the previous section.
Let h : L1 → L2 be an admissible morphism. We need to show that D(h) is
a morphism of daDL, i.e., that uL2

◦ D∧(h) = D∨(h) ◦ uL1
and lL2

◦ D∨(h) =
D∧(h)◦lL1

. SinceD∧(L1) is join-generated by the image of L1, and both uL2
◦D∧(h)

and D∨(h) ◦ uL1
are join-preserving, it suffices to note that the diagram commutes

for elements in the image of L1. This is done by the following diagram chase:

uL2
◦D∧(h) ◦ η∧L1

= uL2
◦ η∧L2

◦ h = η∨L2
◦ h = D∨(h) ◦ η∨L1

= D∨(h) ◦ uL1
◦ η∧L1

,

where we have used that η∧ is a natural transformation and that uL ◦ η∧L = η∨L.
The proof that lL2

◦D∨(h) = D∧(h) ◦ lL1
is similar.

It remains to show that the assignment h 7→ D(h) is a bijection between La(L1, L2)
and daDL(D(L1),D(L2)). If (h∧, h∨) : D(L1) → D(L2) is a daDL-morphism,
then h∧ maps lattice elements to lattice elements. That is, the function h∧ ◦ η∧L1

:
L1 → D(L2) maps into im(η∧L2

) = im(lL2
), since

h∧ ◦ η∧L1
= h∧ ◦ lL1

◦ uL1
◦ η∧L1

= lL2
◦ h∨ ◦ uL1

◦ η∧L1
.

We may therefore define h : L1 → L2 to be the function (η∧L2
)−1 ◦ h∧ ◦ η∧L1

. Note

that this function is equal to (η∨L2
)−1 ◦ h∨ ◦ η∨L1

, since

(η∨L2
)−1 ◦ h∨ ◦ η∨L1

= (η∨L2
)−1 ◦ h∨ ◦ uL1

◦ lL1
◦ η∨L1

= (η∨L2
)−1 ◦ uL2

◦ h∧ ◦ η∧L1

= (η∧L2
)−1 ◦ h∧ ◦ η∧L1

,

where we have used that, for any lattice L, lL ◦ η∨L = η∧L and uL ◦ η∧L = η∨L. So,
since (η∧L2

)−1 ◦ h∧ ◦ η∧L1
= h = (η∨L2

)−1 ◦ h∨ ◦ η∨L1
, it is clear that h is a homo-

morphism, since the left-hand-side preserves ∧ and the right-hand-side preserves ∨.
It remains to show that h is admissible, i.e., that h sends join-admissible subsets
to join-admissible subsets, and meet-admissible subsets to meet-admissible subsets.
Note that, by the adjunction in Corollary 3.13, if a function k : L → D admits a

homomorphic extension k̂ : D∧(L) → D, then k is (∧, a∨)-preserving, since it is
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equal to the composite k̂◦η∧L. In particular, the map η∧L2
◦h is (∧, a∨)-preserving, its

homomorphic extension being h∧. It follows from this that h sends join-admissible
subsets to join-admissible subsets, since join-admissible subsets are the only subsets
whose join is preserved by η∧L2

. The proof that h preserves meet-admissible subsets
is similar.
Now, since h∧ ◦ η∧L1

= η∧L2
◦ h, we have that h∧ = D∧(h), since D∧(h) was defined

as the unique homomorphic extension of η∧L2
◦ h, and similarly h∨ = D∨(h). We

conclude that (h∧, h∨) = D(h), so h 7→ D(h) is surjective.
It is clear that if h 6= h′, then D∧(h) 6= D∧(h′), so D(h) 6= D(h′). Hence, the
assignment h 7→ D(h) is bijective, as required. �

Example 4.5 (Not every object of daDL is the distributive envelope of a lattice).
Take any distributive lattice D and consider the daDL (F∨(D,∧), F∧(D,∨), f, g),
where F∨(D,∧) is the free join-semilattice generated by the meet-semilattice reduct
of D viewed as a distributive lattice, F∧(D,∨) is defined order dually, and f and g
both are determined by sending each generator to itself. Such a daDL is not of the
form we are interested in since the ∧- and ∨-envelopes of any distributive lattice
both are equal to the lattice itself since all joins are admissible.

The above example shows that the category La, that we will be most interested
in, is a proper subcategory of daDL, but we start by giving a description of the
topological duals of the objects of daDL. To this end, let (D,E, f, g) be a doubly
dense adjoint pair. If X and Y are the dual Priestley spaces ofD and E respectively,
then it is well-known that an adjunction (f, g) corresponds to a relation R satisfying
certain properties. In our current setting of doubly dense adjoint pairs, it turns
out that it suffices to consider the topological reducts of the Priestley spaces X
and Y (i.e., forgetting the order) and the relation R between them. Both the
Priestley orders of the spaces X and Y and the adjunction (f, g) can be uniquely
reconstructed from the relation R, as we will prove shortly. The dual of a doubly
dense adjoint pair will be a totally separated compact polarity (TSCP), which we
define to be a polarity (X,Y,R), where X and Y are Boolean spaces and R is a
relation from X to Y , satisfying certain properties (see Definition 4.6 for the precise
definition).
We now first fix some useful terminology for topological polarities, regarding the
closure and interior operators induced by a polarity, its closed and open sets, and
its associated quasi-orders.
Let X and Y be sets and R ⊆ X × Y . Then we obtain a closure operator ( ) on
X given by

S := {x ∈ X | R[x] ⊆ R[S]} for S ⊆ X.

The subsets S of X satisfying S = S we will call R-closed. The R-closed subsets
of X form a lattice in which the meet is intersection and join is the closure of the
union. We of course also obtain an adjoint pair of maps:

P(X) P(Y )

♦

�

given by

♦S = R[S] = {y ∈ Y | ∃x ∈ S xRy}
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and

�T =
(
R−1[T c]

)c
= {x ∈ X | ∀y ∈ Y (xRy =⇒ y ∈ T )}.

The relation with the closure operator on X is that S = �♦S. Note also that on
points of X this yields a quasi-order given by

x′ ≤ x ⇐⇒ R[x′] ⊆ R[x].

Similarly, on Y we obtain an interior operator

T ◦ = {y ∈ Y | ∃x ∈ X [xRy and ∀y′ ∈ Y (xRy′ =⇒ y′ ∈ T )]} = ♦�T

and a quasi-order on Y given by

y ≤ y′ ⇐⇒ R−1[y] ⊇ R−1[y′].

The range of ♦ is equal to the range of the interior operator, and we call these sets
R-open. This collection of subsets of Y forms a lattice isomorphic to the one of
R-closed subsets of X . In this incarnation, the join is given by union whereas the
meet is given by interior of the intersection. Note that the R-closed subsets of X
as well as the R-open subsets of Y all are down-sets in the induced quasi-orders.
We are now ready to define the objects which will be dual to doubly dense adjoint
pairs.

Definition 4.6. A topological polarity is a tuple (X,Y,R), where X and Y are
topological spaces and R is a relation. A compact polarity is a topological polarity
in which both X and Y are compact. A topological polarity is totally separated if
it satisfies the following conditions:

(i) (R-separated) The quasi-orders induced by R on X and Y are partial
orders.

(ii) (R-operational) For each clopen down-set U of X , the image ♦U is clopen
in Y ; For each clopen down-set V of Y , the image �V is clopen in X ;

(iii) (Totally R-disconnected) For each x ∈ X and each y ∈ Y , if ¬(xRy) then
there are clopen sets U ⊆ X and V ⊆ Y with ♦U = V and �V = U so
that x ∈ U , and y 6∈ V .

In what follows, we often abbreviate “totally separated compact polarity” to TSCP.

Remark 4.7. In the definition of totally separated topological polarities, the first
property states that R separates the points of X as well as the points of Y . The
second property states that R yields operations between the clopen downsets of X
and of Y . Finally, the third property generalizes total order disconnectedness, well
known from Priestley duality, hence the name total R-disconnectedness.

The following technical observation about total R-disconnectedness will be useful
in what follows.

Lemma 4.8. If a topological polarity (X,Y,R) is totally R-disconnected, then the
following hold:

• If x′ � x then there exists U ⊆ X clopen and R-closed such that
x ∈ U and x′ 6∈ U.

• If y′ � y then there exists V ⊆ Y clopen and R-open such that
y ∈ V and y′ 6∈ V.
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Proof. Suppose that x′ � x. By definition of ≤, there exists y ∈ Y such that x′Ry
and ¬(xR y). By total R-disconnectedness, there exist clopen U and V such that
♦U = V , �V = U , x ∈ U and y 6∈ V . We now have x′ 6∈ U , for otherwise we would
get y ∈ ♦U = V . Since U = �V = �♦U , we get that U is R-closed, as required.
The proof of the second property is dual. �

Now, given a daDL (D,E, f, g), we call its dual polarity the tuple (X,Y,R), where
X and Y are the topological reducts of the Priestley dual spaces of D and E,
respectively (which are in particular compact), and R is the relation defined by

xR y ⇐⇒ f [x] ⊆ y,

where we regard the points of X and Y as prime filters of D and E, respectively.
Conversely, given a totally separated compact polarity (X,Y,R), we call its dual ad-
joint pair the tuple (D,E,♦,�), where D and E are the lattices of clopen downsets
of X and Y in the induced orders, respectively, and ♦ and � are the operations
defined above (note that these operations are indeed well-defined by item (ii) in the
definition of totally separated).
Note that if L is a distributive lattice, then its associated daDL is (L,L, id, id),
which has dual polarity (X,X,≤), where (X,≤) is the usual Priestley dual space
of L. Thus, the above definitions generalize Priestley duality.
The following three propositions constitute the object part of our duality for doubly
dense adjoint pairs.

Proposition 4.9. If (D,E, f, g) is a doubly dense adjoint pair, then its dual po-
larity (X,Y,R) is compact and totally separated.

Proof. Let (D,E, f, g) be a doubly dense adjoint pair, and let L be the lattice which
is isomorphic to both the image of g in D and to the image of f in E.
The dual polarity (X,Y,R) is compact because the dual Priestley spaces of D and
E are compact.
For R-separation, suppose that x 6= x′ in X . We need to show that R[x] 6= R[x′].
Without loss of generality, pick d ∈ D such that d ∈ x and d 6∈ x′. Since L is join-
dense in D and x is a prime filter, there exists a ∈ L with a ≤ d, such that a ∈ x.
Note that a 6∈ x′ since a ≤ d and d 6∈ x′. It follows that f(a) 6∈ f [x′]: if we would
have d′ ∈ x′ such that f(a) = f(d′), then we would get d′ ≤ gf(d′) = gf(a) = a,
contradicting that a 6∈ x′. By the prime filter theorem, there exists a prime filter
y ⊆ E such that f [x′] ⊆ y and f(a) 6∈ y. Since we do have f(a) ∈ f [x], it follows
that x′Ry and ¬(xR y), so R[x′] 6= R[x], as required. The proof that R induces a
partial order on Y is similar.

For R-operationality, it suffices to observe that, for any d ∈ D, we have ♦d̂ =

R[d̂] = f̂(d) and, for any e ∈ E, we have �ê = ĝ(e).
For total R-disconnectedness, suppose that ¬(xR y). This means that f [x] 6⊆ y, so
there is d ∈ D such that d ∈ x and f(d) 6∈ y. Since d ≤ gf(d), we get gf(d) ∈ x, so

we may put U := ĝf(d) and V := f̂(d). �

Proposition 4.10. If (X,Y,R) is a totally separated compact polarity, then its
dual adjoint pair is doubly dense.

Proof. From what was stated in the preliminaries above, it is clear that we get an
adjoint pair between the lattices of clopen downsets. We need to show that it is
doubly dense.
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To this end, let U be a clopen downset of X . We show that U is a finite union of
clopen R-closed sets. First fix x ∈ U . For any x′ 6∈ U , we have that x′ � x. By
L-separation, pick a clopen R-closed set Ux′ such that x ∈ Ux′ and x′ 6∈ Ux′ . Doing
this for all x′ 6∈ U , we obtain a cover {U c

x′}x′ 6∈U by clopen sets of the compact set U c.
Therefore, there exists a finite subcover {U c

i }
n
i=1 of U c. Let us write Vx :=

⋂n

i=1 Ui.
We then get that x ∈ Vx ⊆ U , and Vx is clopen R-closed, since each of the Ui is.
Doing this for all x ∈ U , we get a cover {Ux}x∈X by clopen R-closed sets of the
compact set U , which has a finite subcover. This shows that U is a finite union of
clopen R-closed sets.
The proof that clopen downsets of Y are finite intersections of clopen R-open sets
is essentially dual; we leave it to the reader. �

Proposition 4.11. Any totally separated compact polarity is isomorphic to its
double dual.
More precisely, if (X,Y,R) is a TSCP, let (X ′, Y ′, R′) be the dual polarity of the
dual adjoint pair of (X,Y,R). Then there are homeomorphisms φ : X → X ′,
ψ : Y → Y ′ such that xR y iff φ(x)R′ψ(y).

Proof. Note that if (X,Y,R) is a TSCP, then X and Y with the induced orders are
Priestley spaces: total-order-disconnectedness follows from Lemma 4.8 and the fact,
noted above, that R-closed and R-open sets are downsets in the induced orders.
Therefore, by Priestley duality we have homeomorphisms φ : X → X ′ and ψ : Y →
Y ′, both given by sending points to their neighbourhood filters of clopen downsets.
It remains to show that φ and ψ respect the relation R. Note that, by definition, we
have x′R′ y′ iff for any clopen downset U in x′, we have that R[U ] is in y′. Suppose
xRy, and that U ∈ φ(x). Then x ∈ U , so y ∈ R[U ], so R[U ] ∈ ψ(y). Conversely,
suppose that ¬(xR y). By total R-disconnectedness, we pick a clopen R-closed set
U with x ∈ U and y 6∈ ♦U = R[U ]. This set U is a clopen downset which witnesses
that ¬(φ(x)R′ ψ(y)). �

We can extend this object correspondence between daDL’s and TSCP’s to a dual
equivalence of categories. The appropriate morphisms in the category of totally
separated compact polarities are pairs of functions (sX , sY ), which are the Priest-
ley duals of (h∧, h∨). The condition that morphisms in daDL make two squares
commute (see Definition 4.3) dualizes to back-and-forth conditions on sX and sY ,
as in the following definition.

Definition 4.12. A morphism in the category TSCP of totally separated compact
polarities from (X1, Y1, R1) to (X2, Y2, R2) is a pair (sX , sY ) of continuous functions
sX : X1 → X2 and sY : Y1 → Y2, such that, for all x ∈ X1, x

′ ∈ X2, y ∈ Y1, y
′ ∈ Y2:

(forth) If xR1 y, then sX(x)R2 sY (y),
(♦-back) If x′R2 sY (y), then there exists z ∈ X1 such that z R1 y and sX(z) ≤ x′,
(�-back) If sX(x)R2 y

′, then there exists w ∈ Y1 such that xR1 w and y′ ≤ sY (w).

The conditions on these morphisms should look natural to readers who are familiar
with back-and-forth conditions in modal logic. More detailed background on how
these conditions arise naturally from the theory of canonical extensions can be
found in [13, Section 5].

Theorem 4.13. The category daDL is dually equivalent to the category TSCP.
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Proof. The hardest part of this theorem is the essential surjectivity of the functor
which assigns to a daDL its dual polarity. We proved this in Proposition 4.11. One
may then either check directly that the assignment which sends a daDL-morphism
(h∧, h∨) to the pair (sX , sY ) of Priestley dual functions between the spaces in
the dual polarities is a bijection between the respective Hom-sets, or refer to [13,
Section 5] for a more conceptual proof using canonical extensions. �

In particular, combining Theorem 4.13 with Proposition 4.4, the category La of
lattices with admissible homomorphisms is dually equivalent to a full subcategory
ofTSCP. The task that now remains is to identify which totally separated compact
polarities may arise as duals of doubly dense adjoint pairs which are isomorphic to
ones of the form (D∧(L), D∨(L), uL, lL) for some lattice L (not all doubly dense
adjoint pairs are of this form; cf. Example 4.5).
Given any daDL (D,E, f, g), there is an associated lattice L = im(g) ∼= im(f) and
this lattice embeds in D meet-preservingly and in E join-preservingly. We write
i : L ֌ D and j : L ֌ E for the embeddings of L into D and E, respectively.
These images generate D and E, respectively, because of the double denseness.
However, the missing property is that i and j need not preserve admissible joins
and meets, cf. Example 4.5. We will now give a dual description of this property.
To do so, we will use the canonical extension of the adjunction f : D ⇆ E : g and
of the embeddings i and j. For the definition and the general theory of canonical
extensions of maps we refer to [17, Section 2]. All maps in our setting are either join-
or meet-preserving, so that they are smooth and the σ- and π-extensions coincide.
We therefore denote the unique extension of a (join- or meet-preserving) map h by
hδ. Thus, we have maps f δ : Dδ ⇆ Eδ : gδ, iδ : Lδ → Dδ and jδ : Lδ → Eδ. For
our dual characterization, we will need the following basic fact, which is essentially
the content of Remark 5.5 in [15].

Proposition 4.14. Let f : D ⇆ E : g be an adjunction between distributive lattices
and let L be the lattice of Galois-closed elements. Then the following hold:

(i) f δ : Dδ ⇆ Eδ : gδ is an adjunction;
(ii) The image of gδ forms a complete

∧
-subsemilattice of Dδ which is isomor-

phic, as a completion of L, to Lδ;
(iii) The image of f δ forms a complete

∨
-subsemilattice of Eδ which is iso-

morphic, as a completion of L, to Lδ.

Proof. Item (i) is proved in [15, Proposition 6.6]. The image of an upper adjoint
between complete lattices always forms a complete

∧
-subsemilattice. To see that

the image of gδ is isomorphic to Lδ as a completion of L, it suffices by Theorem 2.2
to check that the natural embedding L ֌ im(gδ) (given by the composition L ֌

D ֌ Dδ) is compact and dense. Neither of these properties is hard to verify. The
proof of item (iii) is order-dual to (ii). �

Let M be a finite subset of the lattice L. Recall that by Lemma 3.4, M is join-
admissible if and only if, for each x ∈ J∞(Lδ), we have x ≤

∨
M implies x ≤ m

for some m ∈ M . In order to translate this to a dual condition, it is useful to get
a dual characterization of the elements of J∞(Lδ). In the following Lemma, we
will use the fact that the relation R can be alternatively defined using the lifted
operation f : regarding X as J∞(D∧(L)δ) and Y as J∞(D∨(L)δ), we have that
xRy ⇐⇒ y ≤ f δ(x).
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Lemma 4.15. Let (D,E, f, g) be a daDL, (X,Y,R) its dual polarity, L ∼= im(g) ∼=
im(f), with i : L ֌ D and j : L ֌ E the natural embeddings. Then the following
hold:

(i) J∞(Dδ) ⊆ iδ[F (Lδ)] and M∞(Eδ) ⊆ jδ[I(Lδ)].
(ii) For all x ∈ X = J∞(Dδ), the following are equivalent:

(a) x ∈ iδ[J∞(Lδ)],
(b) R[x] 6= R[{x′ ∈ X | x′ < x}].

(iii) For all y ∈ Y = J∞(Eδ), the following are equivalent:
(a) κ(y) ∈ jδ[M∞(Lδ)],
(b) R−1[y] 6= R−1[{y′ ∈ Y | y′ > y}].

Proof. (i) Let x ∈ X = J∞(Dδ). Then x ∈ F (Dδ), so x is equal
∧
F for some

F ⊆ D. For each d ∈ F , since im(i) = im(g) is join-dense in D, we may
pick Sd ⊆ L such that d =

∨
i(Sd). Let us write Φ for the set of choice

functions F →
⋃

d∈F Sd. Then, by distributivity of Dδ, we have

x =
∧
F =

∧
{
∨
i(Sd) | d ∈ F} =

∨
{
∧

d∈F

i(φ(d)) | φ ∈ Φ}.

Since x is completely join-irreducible in Dδ, we get that x =
∧

d∈F i(φ(d))

for some φ ∈ Φ. Since iδ is completely meet-preserving, we get x = iδ(x′)
where x′ :=

∧
d∈F φ(d) ∈ F (Lδ). The proof that M∞(Eδ) ⊆ jδ[I(Lδ)] is

order-dual.
(ii) For the direction (a) ⇒ (b), suppose that R[x] = R[{x′ ∈ X | x′ < x}]. By

definition of R, we then get that f δ(x) =
∨

x′<x f
δ(x′) holds in Eδ. Since

f δ is lower adjoint to gδ by Proposition 4.14(i), we get that

(⋆) x ≤ gδf δ

(∨

Dδ

{x′ ∈ X | x′ < x}

)
.

By item (i), we have that X ⊆ iδ[Lδ], so the right-hand-side of this in-
equality is equal to iδ(

∨
Lδ{v ∈ (iδ)−1(X) | iδ(v) < x}). It follows from

injectivity of iδ that if x = iδ(u), then u ≤
∨

Lδ{v ∈ (iδ)−1(X) | iδ(v) < x}.
Then u is actually equal to the join on the right-hand-side, so u is not join-
irreducible.

Conversely, if x 6∈ iδ[J∞(Lδ)], then (⋆) must hold for x, from which
it follows that R[x] = R[{x′ ∈ X | x′ < x}], using adjunction and the
definition of R again.

(iii) Order-dual to item (ii). �

Combining item (ii) of this Lemma with the characterization of join-admissibility
in Lemma 3.4, we now get the following. A finite set M ⊆ L being join-admissible
corresponds to saying that, for each x ∈ X with R[x] 6= R[{x′ ∈ X | x′ < x}],
we have R[x] ⊆ R [

⋃
{m̂ | m ∈M}] implies x ∈

⋃
{m̂ | m ∈ M}. Note that in its

dual incarnation this property does not really depend on M but only on the clopen
down-set

⋃
{m̂ | m ∈M}. Accordingly, we make the following definition.

Definition 4.16. Let (X,Y,R) be a TSCP, and U ⊆ X a clopen down-set. We say
that U is R-regular provided that, for each x ∈ X with R[x] 6= R[{x′ ∈ X | x′ < x}],
we have R[x] ⊆ R[U ] implies x ∈ U .
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Order dually, we say that a down-set V ⊆ Y is R-coregular provided that, for each
y ∈ Y with R−1[y] 6= R−1[y′ ∈ Y | y′ > y], we have R−1[y] ⊆ R−1[U ] implies
y ∈ U .

Recall that a clopen down-set U ⊆ X is R-closed provided that, for each x ∈ X ,
we have R[x] ⊆ R[U ] implies x ∈ U . Thus it is clear that every R-closed clopen
down-set in X is R-regular. Preserving admissible joins exactly corresponds to the
reverse implication: as soon as U is R-regular it must also be R-closed. To sum up:

Proposition 4.17. Let (D,E, f, g) be a daDL, and let (X,Y,R) be its dual polarity.
Then the following are equivalent:

(i) There exists a lattice L such that (D,E, f, g) ∼= (D∧(L), D∨(L), uL, lL);
(ii) The embedding im(g) ֌ D preserves admissible joins and the embedding

im(f) ֌ E preserves admissible meets.
(iii) In (X,Y,R), all R-regular clopen downsets in X are R-closed, and all

R-coregular clopen downsets in Y are R-open.

Proof. The equivalence (i) ⇐⇒ (ii) holds by the results in Section 3.
Throughout the proof of the equivalence (ii) ⇐⇒ (iii), let us write L for the lattice
im(g), in which meets are given as in D and

∨
L S = gf(

∨
M S), for any S ⊆ L.

In this proof, we regard L as a sublattice of D, suppressing the notation i for the
embedding L֌ D.
For the implication (ii) ⇒ (iii), let U be an R-regular clopen downset in X . Since
im(g) is dense in D, there exists M ⊆ im(g) such that U =

⋃
m∈M m̂. We show

that M is join-admissible in the lattice L, using Lemma 3.4. If x ∈ J∞(Lδ) and
x ≤

∨
LM = gf(

∨
DM), then f δ(x) ≤ f(

∨
DM). So, by definition of R and the

fact that f is completely join-preserving, we get that R[x] ⊆ R[
⋃

m∈M m̂] = R[U ].

Since U is R-regular and x ∈ J∞(Lδ), we get that x ∈ U , so x ≤ m for some
m ∈M . So M is join-admissible, so (ii) implies that

∨
LM = gf(

∨
DM) =

∨
DM .

That is, U = U , so U is R-closed. The proof that R-coregular clopen downsets in
Y are R-open is dual.
For the implication (iii) ⇒ (ii), let M ⊆ L be a join-admissible subset. Let U :=⋃

m∈M m̂ ⊆ X . Then U is clearly a clopen downset. We show that U is R-regular.
Let x ∈ X such that R[x] 6= R[{x′ ∈ X | x′ < x}] and R[x] ⊆ R[U ]. Then
x ∈ J∞(Lδ) and f δ(x) ≤ f(

∨
DM), so x ≤ gf(

∨
DM) =

∨
LM . So, since M

is join-admissible, there exists m ∈ M such that x ≤ m. In particular, we have
x ∈ U , as required. By the assumption (iii), we conclude that U is R-closed, i.e.,
U = U , so that

∨
LM = gf(

∨
DM) =

∨
DM . The proof that im(f) ֌ E preserves

admissible meets is dual. �

In the light of this proposition, we can now define a subcategory of TSCP’s which
will be dual to the category of lattices with admissible homomorphisms.

Definition 4.18. Let (X,Y,R) be a TSCP. We say that (X,Y,R) is tight if all
R-regular clopen downsets in X are R-closed, and all R-coregular clopen downsets
in Y are R-open. We denote by tTSCP the full subcategory of TSCP whose
objects are the tight TSCP’s.

We now obtain our topological duality theorem for lattices with admissible homo-
morphisms.
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Theorem 4.19. The category La of lattices with admissible homomorphisms is du-
ally equivalent to the category tTSCP of tight totally separated compact polarities.

Proof. By Proposition 4.4, we have that La is equivalent to a full subcategory
of daDL. By Theorem 4.13, the category daDL is dually equivalent to TSCP.
By Proposition 4.17, the image of La in daDL under this dual equivalence is
tTSCP. �

The above theorem is not as general as possible: although we have only developed a
duality for La here, it should be possible to generalize this duality to the categories
L∧,a∨ and L∨,a∧. To do so, one would need to generalize the category tTSCP

to one where the morphisms are single functions instead of pairs of functions. We
leave this to future work.
In this section, in light of Examples 4.1 and 4.2, we set out to obtain a topological
duality for lattices in which the spaces are nicer than those occurring in Hartung’s
duality. Although the spaces obtained in our duality are as nice as can be (they are
compact, Hausdorff and totally disconnected), this comes at the price of a rather
complicated characterization. Therefore, we are inclined to draw as a negative con-
clusion that topology may not be the most opportune language to discuss ‘duality’
for lattices (unless the definition of a tTSCP can be simplified). Fortunately, the
perspective of canonical extensions provides an alternative to topology: we have
explained above how canonical extensions can be viewed as a point-free version of
Hartung’s duality, and we have used them to reason about the topological dual
spaces introduced in this paper. In the next section, we will propose quasi-uniform
spaces as a useful “spatial” alternative to topology in the context of set-theoretic
representations of lattices.

5. Quasi-uniform spaces associated with a lattice

In this section we will show that the distributive envelopes of a lattice, which were
defined by a universal property in Section 3, are also natural from a generalized
topological perspective. The appropriate framework is that of quasi-uniform spaces,
which generalize both quasi-orders and topologies (see [11], in particular Chapter 3,
for background on the theory of quasi-uniform spaces used in this section). In this
section we will associate two Pervin quasi-uniform spaces to a lattice L, and then
show in Theorem 5.3 that the completions of these quasi-uniform spaces coincide
with the dual spaces of the distributive envelopes of L. Thus, quasi-uniform spaces
give a precise spatial meaning to the distributive envelopes of L. Note that Pervin
spaces, uniform completions and compactifications have already been used by Erné
and Palko [7, 9] to obtain order-theoretic ideal completions.
Given a set X , we denote, for each subset A ⊆ X , by UA the subset

(Ac ×X) ∪ (X ×A) = {(x, y) | x ∈ A =⇒ y ∈ A}

of X × X . Given a topology τ on X , the filter Uτ in the power set of X × X

generated by the sets UA for A ∈ τ is a totally bounded transitive quasi-uniformity
on X [11, Proposition 2.1]. The quasi-uniform spaces (X,Uτ ) were first introduced
by Pervin [25] and are now known in the literature as Pervin spaces. Generalizing
this idea (also see [5]), given any subcollection K ⊆ P(X), we define (X,UK) to
be the quasi-uniform space whose quasi-uniformity is the filter generated by the
entourages UA for A ∈ K. Here we will call this larger class of quasi-uniform spaces
Pervin spaces.
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The first crucial point is that, for any collectionK ⊆ P(X), the bounded distributive
sublattice D(K) of P(X) generated by K may be recovered from (X,UK), even
though this cannot be done in general from the associated topology. The blocks of
a space (X,U) are the subsets A ⊆ X such that UA is an entourage of the space,
or equivalently, those for which the characteristic function χA : X → 2 is uniformly
continuous with respect to the Sierpiński quasi-uniformity on 2, which is the one
containing just 22 and {(0, 0), (1, 1), (1, 0)}. The following fact is well-known, but
we give a proof since it does not seem to be readily available in the literature.

Theorem 5.1. Let X be a set and K ⊆ P(X) a collection of subsets. The blocks
of the quasi-uniform space (X,UK) are exactly the elements of the sublattice D(K)
of P(X) generated by K.

Proof. The blocks of any quasi-uniform space form a lattice, since UA ∩ UB is
contained in both UA∩B and UA∪B, for any A,B ⊆ X . If A is a block of UK, then
by definition UA contains a set of the form

⋂
B∈F UB, where F ⊆ K is finite. From⋂

B∈F UB ⊆ UA, it follows easily that A =
⋃
{
⋂
{B | x ∈ B,B ∈ F} | x ∈ A} (cf.

[5, Lemma 2]). �

Further, it is not hard to see that if D ⊆ P(Y ) and E ⊆ P(X) are bounded
sublattices of the respective power sets, then a map f : (X,UE) → (Y,UD) is
uniformly continuous if and only if f−1 induces a lattice homomorphism from D to
E by restriction. Thus, the category of sublattices of power sets with morphisms
that are commuting diagrams

D E

P(Y ) P(X)

h

φ

where φ is a complete lattice homomorphism, is dually isomorphic to the category
of Pervin spaces with uniformly continuous maps.
To be able to state the main result from [14] that we want to apply here, we need
to recall the definition of bicompletion of a quasi-uniform space. For more details
see [11, Chapter 3]. Bicompleteness generalizes the notion of completeness for
uniform spaces, which is well-understood (see, e.g., [2, Chapter II.3]): a uniform
space (X,U) is complete if every Cauchy filter converges. Now let (X,U) be a
quasi-uniform space. A quasi-uniform space (X,U) is called bicomplete if and only
if its symmetrization (X,Us) is a complete uniform space. Here, recall that the
symmetrization, Us, of the quasi-uniformity U is defined as the filter of P(X ×X)
generated by the union of U and U−1. It has been shown by Fletcher and Lindgren
[11, Chapter 3.3] that the full subcategory of bicomplete quasi-uniform spaces forms
a reflective subcategory of the category of quasi-uniform spaces with uniformly
continuous maps. Thus, for each quasi-uniform space (X,U), there is a bicomplete

quasi-uniform space (X̃, Ũ) and a uniformly continuous map ηX : (X,U) → (X̃, Ũ)
with an appropriate universal property.
Now we are ready to state the main result of Section 1 of [14]:

Theorem 5.2. [14, Theorem 1.6] Let D be a bounded distributive lattice, and let
e : D →֒ P(X) be any bounded lattice embedding of D in a power set lattice and

denote by D the image of the embedding e. Let X̃ be the bicompletion of the Pervin

space (X,UD). Then X̃ with the induced topology is the Stone dual space of D.
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Alternatively, one can think of the quasi-uniform space (X̃, ŨD) as an ordered uni-

form space, as follows. Equip the uniform space (X̃, Ũs
D) with the order ≤ defined

by
⋂

a∈D Uâ. Then (X̃, Ũs
D,≤) is a uniform version of the Priestley dual space of D.

We now want to apply this theorem to the setting of this paper. Let L be a bounded
lattice, Lδ, the canonical extension of L, and XL = J∞(Lδ) and YL = M∞(Lδ).
Then L induces quasi-uniform space structures (XL,UL̂

) and (YL,UqL
) on XL and

YL, respectively. Here U
L̂
is the Pervin quasi-uniformity generated by the image

L̂ = {â | a ∈ L} and UqL
is the Pervin quasi-uniformity generated by the image

qL = {qa | a ∈ L}. By Theorem 5.2, the bicompletions of these Pervin spaces are
Stone spaces and the corresponding bounded distributive lattices are the sublattices

of P(XL) and P(YL) generated by L̂ and qL, respectively.
The following theorem now follows by combining Proposition 3.6, Theorem 3.9 and
Theorem 5.2.

Theorem 5.3. Let L be a lattice. The bicompletion of the associated quasi-uniform
Pervin space, (XL,UL̂

), is the dual space of the distributive ∧-envelope, D∧(L), of
L. Order dually, the bicompletion of the quasi-uniform Pervin space (YL,UqL

) is the
dual space of the distributive ∨-envelope, D∨(L), of L.

Example 5.4. For any finite lattice L, the distributive envelope D∧(L) is the
lattice of downsets of the poset J(L), with the order inherited from L. Thus, in
the finite case, the quasi-uniform space XL is already bicomplete, and hence equal
to its own bicompletion. The same of course holds for D∨(L) and YL. In the finite
case, XL and YL are just the spaces occurring in Hartung’s duality.
For the lattice L discussed in Example 4.1 above, the distributive envelopeD∧(L) is
(isomorphic to) the lattice consisting of all finite subsets of the countable antichain,
and a top element. Thus, in the bicompletion of XL, we find one new point,
corresponding to the prime filter consisting of only the top element.
For the lattice K discussed in Example 4.2, the distributive envelope D∧(K) is a
much bigger lattice than K, and the bicompletion of XL will contain many new
points. In particular, the bicompletion will not just be the soberification of XL.

Conclusion

In this paper, we developed the theory of distributive envelopes and used it to
obtain a topological duality for lattices. We see our methodology as an example of
the phenomenon that canonical extensions and duality may help to study lattice-
based algebras, even when they do not lie in finitely generated varieties. As a case
in point, the construction of the distributive envelopes in Section 3 made use of
canonical extensions of lattices as a key tool. Moreover, the work in that section
enabled us to identify the (∧, a∨)-morphisms between lattices, which are exactly the
ones which have functional duals on the X-components of the dual spaces defined
in Section 4. We believe that canonical extensions may be used in a similar way for
other varieties of algebras based on lattices, such as residuated lattices, to mention
just one example.
In Section 5, we provided an alternative view of set-representation of lattices, which
replaces topology by quasi-uniformity and completion. Theorem 5.3 opens the way
for obtaining an alternative duality for lattices, in which quasi-uniform spaces take
the place of topological spaces. To do so, an interesting first step would be to
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represent the adjunction D∧(L) ⇆ D∨(L) as additional structure on the pair of
quasi-uniform spaces. We leave the development of these ideas to further research.
Let us mention one more possible direction for further work. For distributive lat-
tices, the canonical extension functor is left adjoint to the inclusion functor of
perfect distributive lattices into distributive lattices. However, this is known to
be true for lattice-based algebras only in case all basic operations are both Scott
and dually Scott continuous (see [4, Proposition C.9, p. 196] for a proof in the
distributive setting). It follows from the results in Goldblatt [18] that the canon-
ical extension functor for modal algebras (i.e., Boolean algebras equipped with a
modal operator) can be viewed as a left adjoint. However, the codomain category
that is involved here is not immediately obvious: it is not the category of ‘perfect
modal algebras’ in the usual sense. We conjecture that the distributive envelope
constructions developed in Section 3 of this paper may be used to define a category
in which the canonical extension for lattices is a left adjoint. We also leave the
actual development of this line of thought to future research.
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