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Introduction

The present article deals with the seminal work of André Weil on the Heisenberg representation and the metaplectic group. In [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] the author gives an interpretation of the behavior of theta functions throughout the definition of the metaplectic group with a complex linear representation attached to it, known as the Weil or metaplectic representation. A central tool in his construction is the group T = {z ∈ C : |z| = 1}, in which most computations are developed. We replace T with the multiplicative group of an integral domain R and we construct a Weil representation in this more general context. The scope is to help fitting Weil's theory to give applications in the setting of modular representations (see, for example, [START_REF] Minguez | Correspondance de Howe ℓ-modulaire : paires duales de type II[END_REF]).

The classical results of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] are the following. Let X be a finite dimensional vector space over a local field k, X * its dual and W = X × X * . Let A(W ) be the product W × T with the Heisenberg group structure as defined in section 2.1 below. The author studies the projective representation of the symplectic group Sp(W ), coming from the action of Sp(W ) over a complex representation of A(W ). This projective representation lifts to an actual representation of a central extension Mp(W ) of Sp(W ), called metaplectic group. The lift is called nowadays Weil representation or metaplectic representation. The author shows also that the metaplectic group contains properly a subgroup Mp 2 (W ) which is a two-folded cover of Sp(W ) on which the Weil representation can be restricted. Moreover, if k = C, it is not possible to restrict the Weil representation to Sp(W ).

Let us recall another construction for the Weil representation in the complex case (cfr. for example [START_REF] Moeglin | Correspondances de Howe sur un corps p-adique[END_REF]). The starting point is the Stone-von Neumann theorem, asserting that, given a non-trivial character χ : k → C × , there exists an infinite dimensional irreducible Crepresentation of the Heisenberg group

ρ : W × k → Aut(S)
with central character χ, and that it is unique up to isomorphism. The symplectic group acts on the Heisenberg group by σ.(w, x) → (σw, x) and this action is trivial on the center. Then, for every σ ∈ Sp(W ), the representation ρ σ : (w, x) → ρ(σw, x) is irreducible and has the same central character χ, so it is isomorphic to ρ. This means that there exists Ψ σ ∈ Aut(S) such that Ψ σ • ρ • Ψ -1 σ = ρ σ . Notice that Ψ σ is unique up to multiplication by an element of C × , by Schur's Lemma. We obtain in this way a faithful projective representation

Sp(W ) → Aut(S)/C × σ → Ψ σ .

Defining

Mp C (W ) := Sp(W ) × Aut(S)/C × Aut(S)

the metaplectic group comes out, by definition, with a representation that lifts the projective represntation of Sp(W ): the complex Weil representation.

Notice that this construction is more abstract than the one in [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] and that repose on the irreducibility of ρ, which in general is not given when we replace C by R. We want to avoid the use of Stone-Von Neumann theorem and to give an explicit description of the Weil representation. This is why we choose to follow the approach of Weil rather than this construction.

Let F be a locally compact, non-discrete, non-archimedean field of characteristic = 2. Let p > 0 be the characteristic and q the cardinality of its residue field. We let X be a F -vector space of finite dimension, we note W = X ×X * and we replace the group T by the multiplicative group of an integral domain R such that p ∈ R × , R contains p n -th roots of unity for every n (to ensure the existence of a nontrivial smooth character F → R × ) and a square root of q. The object of this work is to show that the strategy of proof used by Weil can be adapted in this setting. Weil's techniques can be exploited in the same way whenever a result involves just the field F , like the intrinsic theory of quadratic forms over X and the description of the symplectic group. Nevertheless, different kinds of problems occur in the new generality. The main issues are the lack of complex conjugation and complex absolute value. Because of this, Fourier and integration theory in the present work are different from the complex case; mainly we consider Haar measures with values in R and operators acting over the space of R-valued Schwartz functions over an F -vector space instead of L 2 -functions, using Vignéras' approach (section I.2 of [START_REF] Vignéras | Représentations ℓ-modulaires d'un groupe réductif p-adique avec ℓ = p[END_REF]). Moreover, allowing R to be of positive characteristic makes it necessary to change some formulas, for example in the proof of Theorem 4.1 to include the case where q 2 = 1 in R.

The central result of this paper is the existence of the reduced metaplectic group, which is defined in the following way. The starting point is the definition of the metaplectic group Mp(W ) and the existence of a non-split short exact sequence

1 -→ R × -→ Mp(W )-→Sp(W ) -→ 1. (⋆)
Theorem 5.3 and Theorem 5.4 give a description of a minimal subgroup of Mp(W ) which is a non-trivial extension of Sp(W ). We can summarize them in a unique statement:

Theorem. Let char(R) = 2. There exists a subgroup Mp 2 (W ) of Mp(W ) such that the short exact sequence (⋆) restricts to a short exact sequence

1 -→ {±1} -→ Mp 2 (W )-→Sp(W ) -→ 1 (⋆⋆)
that does not split.

This result permits the definition of a Weil representation of Mp(W ), that we describe explicitly.

Let us describe the main body of the article.

Section 1 contains a brief explanation of basic notations and definitions where essentially no new result appears. However some features differ from the one in [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF]. We introduce the integration theory in our setting that is slightly different from the complex one. Over a F -vector space, we consider a R-valued Haar measure as in [START_REF] Vignéras | Représentations ℓ-modulaires d'un groupe réductif p-adique avec ℓ = p[END_REF], that exists since p ∈ R × and the R-module of Schwartz functions, i.e. compactly supported locally constant functions, in place of L 2 -functions. The main differences with the complex case are that may exist non-empty open subsets of the vector space with zero volume if the characteristic of R is positive, and that integrals of Schwartz functions are actually finite sums. This theory permits also the definition of a Fourier transform and of its inverse. In the end of the section we study element of Sp(W ) as matrices acting over W . We consider this as a left action (rather than on the right, as in [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF]) but we want to show the same formulas. Then we have to change some definitions ad hoc.

In section 2 we define the faithful Heisenberg representation U of A(W ) on the R-module of Schwartz functions of X and we introduce the groups B 0 (W ) of automorphisms of A(W ) acting trivially on the center and B 0 (W ), the normalizer of U (A(W )) in Aut(S(X)). After that we define Mp(W ), as a fibered product of Sp(W ) and B 0 (W ) over B 0 (W ), and the sequence (⋆), proving that it is exact. This fact is a direct consequence of the Theorem 2.5, stating the exactness of a sequence of the form

1 -→ R × -→ B 0 (W ) π 0 -→ B 0 (W ) -→ 1.
The proof of the analogue of Theorem 2.5 in sections 8, 9, 10 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] uses a construction that has been introduced by Segal in the setting of complex unitary operators for L 2 -functions (cfr. chapter 2 of [START_REF] Irving | Transforms for operators and symplectic automorphisms over a locally compact abelian group[END_REF]). It is indeed possible to mimic it for Schwartz functions over R, but this does not yield surjectivity of π 0 when R has not unique factorization. In fact Lemma 2 in [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] does not hold in our setting. To get around this problem we give explicit generators of B 0 (W ) and we show that they are in the image of π 0 .

In section 3 we define the Weil factor γ(f ) ∈ R × , associated to a quadratic form f over F . It is the constant that permits to transpose some relations between maps taking values in B 0 (W ), to the liftings of those maps, that take values in B 0 (W ). We prove some properties of the map γ : f → γ(f ) and an explicit summation formula for γ(f ).

In section 4 we go further into the study of properties of the Weil factor. In Theorem 4.1 we prove that γ(n) = -1, where n is the reduced norm over the quaternion algebra over F . To prove this theorem we can not use directly the proof in [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] since the author shows that γ(n) is a negative real number of absolute value 1 and computes integrals on subsets that may have volume zero when R is of positive characteristic. The key tool is the summation formula proved in section 3. We also show that γ respects the Witt group structure over the set of quadratic forms and, combining this with known results over quadratic forms, we show that γ(f ) is at most a fourth root of unity in R × . Finally, in section 5, we use the results from previous sections to construct the reduced metaplectic group and prove the main theorem: we build up a R-character of Mp(W ), whose restriction on R × is the map x → x 2 , and we define Mp 2 (W ) as its kernel. We prove that Mp 2 (W ) is a cover of Sp(W ) with kernel the group of square roots of unity in R, so that if char(R) = 2 the sequence (⋆) splits.

The existence of a Weil representation over R is a result which is strongly motivated by recent research problems. Minguez studies local theta correspondences in [START_REF] Minguez | Correspondance de Howe explicite : paires duales de type II[END_REF] and p-adic reductive pairs in the ℓ-modular case in [START_REF] Minguez | Correspondance de Howe ℓ-modulaire : paires duales de type II[END_REF]. Here he asks how does Howe correspondence behave with respect to reduction modulo ℓ and he suggests that a Weil representation over Fℓ has to be constructed and the theory of the metaplectic group has to be extended. A general construction with a strong geometric flavor is given by Shin to study the case of representations over Fp , which is not possible to treat following a naive approach. In [START_REF] Woo | Abelian varieties and the Weil representations[END_REF], the author defines in great generality p-adic Heisenberg group schemes over a noetherian scheme. He proves a geometric analogue of Stone-Von Neumann theorem and Schur's lemma. Thanks to this he is able to construct a Weil representation provided the existence of a (geometric) Heisenberg representation. Showing that the latter exists for every algebraically closed field in every characteristic, he is able to define the new notion of mod p-Weil representation. The great advantage of his construction is in fact the possibility to treat the case where char(R) = p (in this case every character F → R × is trivial, so one does really need another approach). On the other hand an elementary approach, like the one in the present article, permits to define a Weil representation over integral domains that are not fields. The possibility of working in this generality is motivated, among other things, by the recent interest in representation theory of reductive groups over discrete valuation rings. We cite, for example, the paper [START_REF] Emerton | The local Langlands correspondence for GL(n) in families[END_REF] of Emerton and Helm on Langlands correspondences "in families". Finally we shall mention the works of Gurevich and Hadani (see, for example, [START_REF] Gurevich | The geometric Weil representation[END_REF] and [START_REF] Gurevich | Quantization of symplectic vector spaces over finite fields[END_REF]) that generalize several constructions of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF], still remaining in the context of complex representations (i.e. with R = C).

Notation and definitions

Let F be a locally compact non-archimedean field of characteristic different from 2. We write O F for the ring of integers of F , we fix a uniformizer ̟ of O F , we denote p the residue characteristic and q the cardinality of the residue field of F . Let R be an integral domain such that p ∈ R × . We assume that there exists a smooth non-trivial character χ : F -→ R × , that is a group homomorphism from F to R × whose kernel is an open subgroup of F . These properties assure the existence of an integer l = min{j ∈ Z | ̟ j O F ⊂ ker(χ)} called the conductor of χ.

Quadratic forms

We denote by G any finite dimensional vector space over F . We recall that a quadratic form on G is a continuous map f : G → F such that f (ux) = u 2 f (x) for every x ∈ G and u ∈ F and (x, y) -→ f (x + y)f (x)f (y) is F -bilinear. A character of degree 2 of G is a map ϕ : G → R × such that (x, y) -→ ϕ(x + y)ϕ(x) -1 ϕ(y) -1 is a bicharacter (i.e. a smooth character on each variable) of G × G. We denote by Q(G) the F -vector space of quadratic forms on G, by X 2 (G) the group of characters of degree 2 of G endowed with the pointwise multiplication and by X 1 (G) the multiplicative group of smooth R-characters of G, that is a subgroup of X 2 (G).

We denote by G * = Hom(G, F ) the dual vector space of G. We write

[x, x * ] = x * (x) ∈ F and x, x * = χ ([x, x * ]) ∈ R × for every x ∈ G and x * ∈ G * . We identify (G * ) * = G by means of [x * , x] = [x, x * ]. We have a group isomorphism G * -→ X 1 (G) x * -→ • , x * .
(1) Indeed if x, x * = 1 for every x ∈ X then [x, x * ] ∈ ker(χ) for every x ∈ X and this implies that x * = 0 since ker(χ) = F . The surjectivity follows by Theorem II.3 of [START_REF] Weil | Basic Number Theory[END_REF] and I.3.9 of [START_REF] Vignéras | Représentations ℓ-modulaires d'un groupe réductif p-adique avec ℓ = p[END_REF].

Definition 1.1. Let B be the bilinear map from

(G × G * ) × (G × G * ) to F defined by B (x 1 , x * 1 ), (x 2 , x * 2 ) = [x 1 , x * 2 ] and let F = χ • B.
For a F -linear map α : G → H we denote by α * : H * → G * its transpose. If H = G * and α = α * we say that α is symmetric. We associate to every quadratic form f on G the symmetric homomorphism ρ = ρ(f ) : G → G * defined by ρ(x)(y) = f (x+y)-f (x)-f (y) for every x, y ∈ G.

Since char(F ) = 2, the map f → ρ(f ) is an isomorphism from Q(G) to the F -vector space of symmetric homomorphisms from G to G * with inverse the map sending ρ to the quadratic form

f (x) = [x, ρ(x) 2 ]. We say that f ∈ Q(G) is non-degenerate if ρ(f
) is an isomorphism and we denote by Q nd (G) the subgroup of Q(G) of non-degenerate quadratic forms on G. We remark that the composition with the character χ gives an injective group homomorphism from Q(G) to X 2 (G).

Integration theory

Let dg be a Haar measure on G with values in R (see I.2 of [START_REF] Vignéras | Représentations ℓ-modulaires d'un groupe réductif p-adique avec ℓ = p[END_REF]). We denote by S(G) the R-module of compactly supported locally constant functions on G with values in R. We can write every Φ ∈ S(G) as Φ = h∈K 1 /K 2 x h ½ h+K 2 where K 1 and K 2 are two compact open subgroups of G, x h ∈ R, ½ h+K 2 is the characteristic function of h + K 2 and the sum is taken over the finite number of right cosets of K 2 in K 1 .

The Fourier transform of Φ ∈ S(G) is the function from G * to R defined by

F Φ(g * ) = G Φ(g) g, g * dg (2) 
for every g * ∈ G * .

For every compact open subgroup

K of G let K * = {g * ∈ G * | k, g * = 1 ∀ k ∈ K} define a subgroup of G * . Notice that the map K → K * is inclusion-reversing. If L is any O F -lattice of G and l is the conductor of χ, then L * = {g * ∈ G * | g * (L) ⊂ ̟ l F O F }. Explicitly, if L = i ̟ a i
F O F (with a i ∈ Z for all i) with respect a fixed basis (e 1 , . . . , e N ) of G, then L * = i ̟ l-a i F O F with respect to the dual basis of (e 1 , . . . , e N ) of G * . These facts imply that K * is a compact open subgroup of G * for every compact open subgroup K of G.

Given a Haar measure dg on G such that vol(K ′ , dg) = 1 we call dual measure of dg the Haar measure dg * on G * such that vol(K ′ * , dg * ) = 1. The inverse Fourier transform of Ψ ∈ S(G * ) is the function from G to R defined by

F -1 Ψ(g) = G * Ψ(g * ) g, -g * dg *
(3) for every g ∈ G.

For every Ψ 1 , Ψ 2 ∈ S(G * ), we denote by Ψ 1 * Ψ 2 ∈ S(G * ) the convolution product defined by

(Ψ 1 * Ψ 2 )(x * ) = G * Ψ 1 (g * )Ψ 2 (x * -g * )dg * for every x * ∈ G * .
Proposition 1.2. Formulas (2) and (3) give an isomorphism of R-algebras from S(G), endowed with the pointwise product, to S(G * ), endowed with the convolution product.

Proof. The R-linearity of F and F -1 is clear from their definitions. Let now K be a compact open subgroup of G and h ∈ G; we have that

F ½ h+K (g * ) = G ½ K (g -h) g, g * dg = h, g * K g, g * dg.
Moreover we have K g, g * dg = k, g * K g, g * dg for every k ∈ K and, since R is an integral domain, we obtain that F ½ h+K (g * ) = vol(K, dg) h, g * ½ K * (g * ). Then F Φ ∈ S(G * ) for every Φ ∈ S(G), since F is R-linear and Φ is a finite sum of the form h x h ½ h+K 1 with x h ∈ R and

K 1 a compact open subgroup of G. Denoting K * * = {g ∈ G | g, g * ∀g * ∈ K * } we have that F -1 F ½ h+K (g) = vol(K, dg) G * h, g * ½ K * (g * ) g, -g * dg * = vol(K, dg) K * h -g, g * dg * = vol(K, dg)vol(K * , dg * )½ h+K * * . Moreover if L = i ̟ a i F O F is an O F -lattice of G as above then L * * = i ̟ l-(l-a i ) F
O F = L. Let now L be an O F -lattice and K be a compact open subgroup of G such that L ⊂ K; we can write ½ K = h∈K/L I h+L and then we obtain

F -1 F ½ K = vol(K, dg)vol(K * , dg * )½ K * * = vol(L, dg)vol(L * , dg * ) h∈K/L ½ h+L * * = vol(L, dg)vol(L * , dg * )½ K . This implies that K = K * * and vol(K, dg)vol(K * , dg * ) = 1 for every compact open subgroup K of G. This proves that F is an isomorphism whose inverse is F -1 . Finally for every Ψ 1 , Ψ 2 ∈ S(G * ) we have F -1 (Ψ 1 * Ψ 2 )(g) = G * G * Ψ 1 (g * 1 )Ψ 2 (g * 2 -g * 1 )dg * 1 -g, g * 2 dg * 2 = G Ψ 1 (g * 1 ) G Ψ 2 (g * 3 ) -g, g * 3 + g * 1 dg * 3 dg * 1 = F -1 (Ψ 1 )(g) • F -1 (Ψ 2 )(g)
where we have used the change of variables

g * 2 -→ g * 3 = g * 2 -g * 1 .
Definition 1.3. Let G and H be two finite dimensional F -vector spaces and let dx and dy be two Haar measures on G and H. If ν : G -→ H is an isomorphism then the module of ν is the constant |ν| = d(νx) dy , which means that we have

H Φ(y)dy = |ν| G Φ(ν(x))dx
where Φ ∈ S(H). Notice that it is an integer power of q in R.

If dx * and dy * are the dual measures on G * and H * of dx and dy,

then |ν| = |ν * | for every isomorphism ν : G -→ H. Indeed if K is a compact open subgroup of G then vol(K, dx) = |ν| -1 vol(ν(K), dy) = |ν| -1 vol(ν(K) * , dy * ) -1 = |ν| -1 |ν * |vol(ν * (ν(K)) * , dx * ) -1 and ν * (ν(K)) * = {g * ∈ G * | ν(k), ν * -1 (g * ) = 1 ∀ k ∈ K} = K * . Then |ν| = |ν * |.
Moreover if G = H and dx = dy we have that |ν| is independent of the choice of the Haar measure dx on G.

The symplectic group

From now on, let X be a finite dimensional F -vector space and let W be the F -vector space X × X * . We denote by Sp(W ) the group of symplectic automorphisms of W , said to be the symplectic group of W , that is the group of automorphisms of W such that

B σ(w 1 ), σ(w 2 ) -B σ(w 2 ), σ(w 1 ) = B(w 1 , w 2 ) -B(w 2 , w 1 ), (4) 
or equivalently, by (1), such that F σ(w 1 ), σ(w 2 ) F σ(w 2 ), σ(w 1 )

-1 = F(w 1 , w 2 )F(w 2 , w 1 ) -1 .
Proposition 1.4. Every group automorphism σ : W -→ W which satisfies (4) is F -linear.

Proof. Applying the change of variables w 1 → uw 1 with u ∈ F in the equality (4), we obtain B σ(uw 1 ), σ(w 2 ) -B σ(w 2 ), σ(uw 1 ) = u B(w 1 , w 2 ) -B(w 2 , w 1 ) and then using (4) again we obtain B σ(uw 1 )uσ(w 1 ), σ(w 2 ) = B σ(w 2 ), σ(uw 1 )uσ(w 1 ) for every w 1 , w 2 ∈ W . This implies that B σ(uw 1 )uσ(w 1 ), σ(w 2 ) = 0 for every w 2 ∈ σ -1 (0 × X * ) and B σ(w 2 ), σ(uw 1 )uσ(w 1 ) = 0 for every w 2 ∈ σ -1 (X × 0). Then σ(uw 1 ) = uσ(w 1 ) for every w 1 ∈ W .

We can write every σ ∈ Sp(W ) as a matrix of the form α β γ δ where α :

X → X, γ : X → X * , β : X * → X and δ : X * → X * are F -linear. The transpose of σ is σ * = α * γ * β * δ * which is an automorphism of W * = X * × X such that |σ * | = |σ|. Furthermore if ξ : X × X * -→ X * × X is the isomorphism defined by (x, x * ) -→ (-x * , x) and σ I = ξ -1 σ * ξ = δ * -β * -γ * α * , then we have |σ| = |σ I |.
With these definitions, an element σ ∈ Aut(W ) is symplectic if and only if σ I σ = 1 and then the module of every symplectic automorphism is equal to 1.

Moreover we can remark that if σ ∈ Sp(W ) then α * γ = γ * α : X -→ X * and β * δ = δ * β : X * -→ X are symmetric homomorphisms and α * δ -γ * β = 1 and δ * α -β * γ = 1.
We associate to every σ ∈ Sp(W ) the quadratic form defined by

f σ (w) = 1 2 B(σ(w), σ(w)) -B(w, w) . It is easy to check that f σ 1 •σ 2 = f σ 1 • σ 2 + f σ 2 for every σ 1 , σ 2 ∈ Sp(W ) and that f σ (w 1 + w 2 ) -f σ (w 1 ) -f σ (w 2 ) = B(σ(w 1 ), σ(w 2 )) -B(w 1 , w 2 ) (5) 
for every σ ∈ Sp(W ) and w 1 , w 2 ∈ W .

Symplectic realizations of forms

We introduce some applications, similar to those in 33 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF], with values in Sp(W ) and we give some relations between them. When comparing our calculations with those of sections 6 and 7 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] it shall be remarked that we change most of the definitions because we consider matrices acting on the left rather than on the right, to uniform notation to the contemporary standard. This affects also the formulas that explicit the relations between these applications.

Definition 1.5. We define the following maps.

• An injective group homomorphism from Aut(X) to Sp(W ):

d : Aut(X) -→ Sp(W ) α -→ α 0 0 α * -1 .
• An injective map from Iso(X * , X) to Sp(W ) where Iso(X * , X) is the set of isomorphisms from X * to X: d

′ : Iso(X * , X) -→ Sp(W ) β -→ 0 β -β * -1 0 .
We remark that d ′ (β) -1 = d ′ (-β * ) for every β ∈ Iso(X * , X).

• An injective group homomorphism from Q(X) to Sp(W ):

t : Q(X) -→ Sp(W ) f -→ 1 0 -ρ 1
where ρ = ρ(f ) is the symmetric homomorphism associated to f .

• An injective group homomorphism from Q(X * ) to Sp(W ):

t ′ : Q(X * ) -→ Sp(W ) f ′ -→ 1 -ρ ′ 0 1 where ρ ′ = ρ(f ′ ) is the symmetric homomorphism associated to f ′ . Let G be either X or X * . If f ∈ Q(G) and α ∈ Aut(G) we write f α for f • α.
Proposition 1.6.

(i) Let f ∈ Q(X), f ′ ∈ Q(X * ) and α ∈ Aut(X). Then d(α) -1 t(f )d(α) = t(f α ) and d(α)t ′ (f ′ )d(α) -1 = t ′ (f ′α * ). (ii) Let α ∈ Aut(X), β ∈ Iso(X * , X). Then d ′ (αβ) = d(α)d ′ (β) and d ′ (βα * -1 ) = d ′ (β)d(α).
Proof.

(i) We have d(α) -1 t(f )d(α) = α -1 0 0 α * 1 0 -ρ 1 α 0 0 α * -1 = 1 0 -α * ρα 1
. It is easy to check that the symmetric homomorphism associated to f α is -α * ρα. With similar explicit calculations the second equality can be proven as well.

(ii

) We have d(α)d ′ (β) = α 0 0 α * -1 0 β -β * -1 0 = 0 αβ -α * -1 β * -1 0 = d ′ (αβ), and 
d ′ (β)d(α) = 0 β -β * -1 0 α 0 0 α * -1 = 0 βα * -1 -(βα * -1 ) * -1 0 = d ′ (βα * -1 ). We have d(α)d ′ (β)d(α) -1 = d ′ (α • β • α *
) so that the group d(Aut(X)) acts on the set d ′ (Iso(X * , X)) by conjugacy in Sp(W ).

A set of generators for the symplectic group

Let us provide a description of Sp(W ) by generators and relations. We denote by Ω(W ) the subset of Sp(W ) of elements σ = α β γ δ such that β is an isomorphism. The set Ω(W ) is a set of generators for Sp(W ) (cf. 42 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF]). The precise statement is as follows.

Proposition 1.7. The group Sp(W ) is generated by the elements of Ω(W ) with relations σσ ′ = σ ′′ for every σ, σ ′ , σ ′′ ∈ Ω(W ) such that the equality σσ ′ = σ ′′ holds in Sp(W ).

Weil states also the following fact about the set Ω(W ) (cf. formula (33) of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF]).

Proposition 1.8. Every element σ ∈ Ω(W ) can be written as

σ = t(f 1 )d ′ (β ′ )t(f 2 ) for unique f 1 , f 2 ∈ Q(X) and β ′ ∈ Iso(X * , X). Remark 1.9. Let α β γ δ ∈ Ω(W ). Then σ = t(f 1 )d ′ (β)t(f 2 )
where f 1 and f 2 are the quadratic forms associated to the symmetric homomorphisms -δβ -1 and -β -1 α. In particular we have the formula

α β γ δ = 1 0 δβ -1 1 0 β -β * -1 0 1 0 β -1 α 1 .
2 The metaplectic group Following Weil's strategy we define the metaplectic group, attached to R and χ, as a central extension of the symplectic group by R × . To do so, we shall construct the groups B 0 (W ) and B 0 (W ). In particular, in Theorem 2.5 we characterize B 0 (W ) as central extension of B 0 (W ) by R × . This characterization permits to define the metaplectic group as fiber product over B 0 (W ) of the symplectic group and B 0 (W ) and to show that the metaplectic group is a central extension of the symplectic group by R × .

The main issue related to this group, rather than its formal definition, is to study the maps µ : Sp(W ) → B 0 (W ) and π 0 : B 0 (W ) → B 0 (W ), that depend both on R.

The group B 0 (W )

Let A(W ) be the group whose underlying set is W × R × with the multiplication law

(w 1 , t 1 )(w 2 , t 2 ) = (w 1 + w 2 , t 1 t 2 F(w 1 , w 2 ))
where F is as in Definition 1.1. Its center is

Z = Z(A(W )) = {(0, t), t ∈ R × } ∼ = R × .
We denote by B 0 (W ) the subgroup of Aut(A(W )) of group automorphisms of A(W ) acting trivially on

Z, i.e. B 0 (W ) = {s ∈ Aut(A(W )) | s |Z = id Z }. Proposition 2.1. Let s ∈ B 0 (W ).
Then there exists a unique pair (σ, ϕ) ∈ Sp(W ) × X 2 (W ) satisfying the property

ϕ(w 1 + w 2 )ϕ(w 1 ) -1 ϕ(w 2 ) -1 = F σ(w 1 ), σ(w 2 ) F(w 1 , w 2 ) -1 (6) such that s(w, t) = (σ(w), ϕ(w)t) for every w ∈ W and t ∈ R × . Conversely if the pair (σ, ϕ) ∈ Sp(W ) × X 2 (W ) satisfies (6), then (w, t) → (σ(w), ϕ(w)t) defines an element of B 0 (W ). Proof. Let η : A(W ) -→ W and θ : A(W ) -→ R × such that s(w, t) = (η(w, t), θ(w, t)). For every w 1 , w 2 ∈ W and t 1 , t 2 ∈ R × we have s((w 1 , t 1 )(w 2 , t 2 )) = η(w 1 + w 2 , t 1 t 2 F(w 1 , w 2 )), θ(w 1 + w 2 , t 1 t 2 F(w 1 , w 2 )) s(w 1 , t 1 )s(w 2 , t 2 ) = η(w 1 , t 1 ) + η(w 2 , t 2 ), θ(w 1 , t 1 )θ(w 2 , t 2 )F(η(w 1 , t 1 ), η(w 2 , t 2 )) .
Since s is a homomorphism then η is so and since s |Z = id Z then η(0, t) = 0 for every t ∈ R × . These two facts imply that η(w, t) = η(w, 1) for every t ∈ R × so that σ, defined by σ(w) = η(w, 1), is a group endomorphism of W . We have also

θ(w 1 + w 2 , t 1 t 2 F(w 1 , w 2 )) = θ(w 1 , t 1 )θ(w 2 , t 2 )F(σ(w 1 ), σ(w 2 )). (7) 
Setting w 2 = 0 and t 1 = 1 and using the fact that θ(0, t) = t for every t ∈ R × (since s |Z = id Z ) we obtain that θ(w 1 , t 2 ) = θ(w 1 , 1)t 2 for every w 1 ∈ W and t 2 ∈ R × . So, if we set ϕ(w) = θ(w, 1), we obtain that s(w, t) = (σ(w), ϕ(w)t) and (7) becomes

ϕ(w 1 + w 2 )t 1 t 2 F(w 1 , w 2 ) = ϕ(w 1 )t 1 ϕ(w 2 )t 2 F(σ(w 1 ), σ(w 2 ))
that is exactly the condition (6). Furthermore, if we take σ ′ ∈ End(W ) and ϕ ′ :

W -→ R × such that s -1 (w, t) = (σ ′ (w), ϕ ′ (w)t), then (w, t) = s(s -1 (w, t)) = (σ(σ ′ (w)), ϕ(σ ′ (w))ϕ ′ (w)t)
that implies that σ is a group automorphism of W with σ -1 = σ ′ . Now, the left-hand side of ( 6) is symmetric on w 1 and w 2 , so σ verify the symplectic property and by Proposition 1.4, σ ∈ Sp(W ). Furthermore the right-hand side of ( 6) is a bicharacter and so ϕ is a character of degree 2 of W .

For the vice-versa, it is easy to check that (w, t) → (σ(w), ϕ(w)t) is an endomorphism of A(W ) thanks to the property (6), and that it is invertible with inverse (w, t) → (σ -1 (w), (ϕ(σ -1 w)) -1 t).

Notice that it acts trivially on Z, so it is an element of B 0 (W ).

From now on, we identify an element s ∈ B 0 (W ) with the corresponding pair (σ, ϕ) such that s(w, t) = (σ(w), ϕ(w)t). If s 1 , s 2 ∈ B 0 (W ) and (σ 1 , ϕ 1 ) and (σ 2 , ϕ 2 ) are their corresponding pairs, then the composition law of B 0 (W ) becomes

s 1 • s 2 = (σ 1 , ϕ 1 )(σ 2 , ϕ 2 ) = (σ 1 • σ 2 , ϕ)
where ϕ is defined by ϕ(w) = ϕ 2 (w)ϕ 1 (σ 2 (w)). We observe that the identity element is (id, 1) and the inverse of (σ, ϕ) is (σ -1 , (ϕ • σ -1 ) -1 ).

The projection

π ′ : B 0 (W ) -→ Sp(W ) defined by π ′ (σ, ϕ) = σ is a group homomorphism whose kernel is {(id, τ ), τ ∈ X 1 (W )}.
Furthermore, by ( 5) and ( 6), we have an injective group homomorphism

µ : Sp(W ) -→ B 0 (W ) σ -→ (σ, χ • f σ ) (8) 
such that π ′ • µ is the identity of Sp(W ). This means that B 0 (W ) is the semidirect product of {(id, τ ), τ ∈ X 1 (W )} and µ(Sp(W )) and in particular, by Propositions 1.7 and 1.8, it is generated by µ(t(Q(X))), µ(d ′ (Iso(X * , X))) and {(id, τ ), τ ∈ X 1 (W )}.

Let us define some applications with values in B 0 (W ), similar to those in 6 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF], composing those with values in Sp(W ) with µ. We call them

d 0 = µ • d, d ′ 0 = µ • d ′ , t 0 = µ • t and t ′ 0 = µ • t ′ .

The group B 0 (W )

We define A(W ) as the image of a faithful infinite dimensional representation of A(W ) over R and B 0 (W ) as its normalizer in Aut(S(X)). Then we show that in fact B 0 (W ) is a central extension of B 0 (W ) by R × .

A(W ) and B 0 (W )

For every w = (v, v * ) ∈ X × X * = W and every t ∈ R × , we denote by U (w, t) the R-linear operator on S(X) defined by

U (w, t)Φ : x → tΦ(x + v) x, v *
for every function Φ ∈ S(X). It can be directly verified that U (w, t) lies in Aut(S(X)) for every w ∈ W and t ∈ R × . With a slight abuse of notation we write U (w) = U (w, 1) for every

w ∈ W . Let A(W ) = {U (w, t) ∈ Aut(S(X)) | t ∈ R × , w ∈ W }.
It is not hard to see that it is a subgroup of Aut(S(X)) and that its multiplication law is given by

U (w 1 , t 1 )U (w 2 , t 2 ) = U (w 1 + w 2 , t 1 t 2 F(w 1 , w 2 )). (9) 
Lemma 2.2. The map

U : A(W ) -→ A(W ) (w, t) -→ U (w, t).
is a group isomorphism.

Proof. By (9) the map U preserves operations and it is cleraly surjective. For injectivity we have to prove that if tΦ(x + v) x, v * = Φ(x) for every Φ ∈ S(X) and every x ∈ X then t = 1 and (v, v * ) = (0, 0). If we take x = 0 and Φ the characteristic function ½ K of any compact open subgroup K of X, we obtain that t½ K (v) = 1 for every K and so t = 1 and v = 0. Therefore we have that x, v * = 1 for every x ∈ X and so v * = 0 by (1).

Remark 2.3. The homomorphism U is a representation of A(W ) on the R-module S(X).

The group B 0 (W ) acts on A(W ) and so on A(W ) via the isomorphism in Lemma 2.2. This action is given by

B 0 (W ) × A(W ) -→ A(W ) ((σ, ϕ), U (w, t)) -→ U (σ(w), tϕ(w)).
Moreover, we can identify B 0 (W ) with the group of automorphisms of A(W ) acting trivially on the center

Z(A(W )) = {t • id S(X) ∈ Aut(S(X)) | t ∈ R × } ∼ = R × .
We denote by B 0 (W ) the normalizer of A(W ) in Aut(S(X)), that is

B 0 (W ) = s ∈ Aut(S(X)) | sA(W )s -1 = A(W ) .
So, if s is an element of B 0 (W ), conjugation by s, denoted by conj(s), is an automorphism of A(W ).

Lemma 2.4. The map

π 0 : B 0 (W ) -→ B 0 (W ) s -→ conj(s) is a group homomorphism Proof. Clearly conj(s) is trivial on Z(A(W )) = {t • id S(X) ∈ Aut(S(X)) | t ∈ R × }
and so it lies in B 0 (W ). Moreover conj(s 1 s 2 ) = conj(s 1 )conj(s 2 ) so that π 0 preserves the group operation.

Theorem 2.5. The following sequence is exact:

1 -→ R × -→ B 0 (W ) π 0 -→ B 0 (W ) -→ 1 where R × injects in B 0 (W ) by t → t • id S(X) .
We prove this theorem in paragraph 2.2.3. Before that, we need to construct, as proposed in 13 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF], some "liftings" to B 0 (W ) of the applications d 0 , d ′ 0 and t 0 .

Realization of forms on B 0 (W )

We fix a Haar measure dx on the finite dimensional F -vector space X with values in R. We denote by dx * the dual measure of dx on X * and dw = dxdx * the product Haar measure on W .

From now on, we suppose that there exists a fixed square root q 1 2 of q in R. If ν is an isomorphism of F -vector spaces and |ν| = q a is its module, we denote |ν|

1 2 = (q 1 2 ) a ∈ R.
Definition 2.6. We define the following maps.

• A group homomorphism d 0 : Aut(X) -→ Aut(S(X)) defined by d 0 (α)Φ = |α| -1 2 (Φ • α -1 ) for every α ∈ Aut(X) and every Φ ∈ S(X).

• A map d ′ 0 : Iso(X * , X) -→ Aut(S(X)) defined by d ′ 0 (β)Φ = |β| -1 2 (F Φ • β -1
) for every β ∈ Iso(X * , X) and every Φ ∈ S(X), where F Φ is the Fourier transform of Φ as in (2). We remark that d ′ 0 (β

) -1 = d ′ 0 (-β * ) = |β| 1 2 F -1 (Φ • β). • A group homomorphism t 0 : Q(X) -→ Aut(S(X)) defined by t 0 (f )Φ = (χ • f ) • Φ for every f ∈ Q(X)
and every Φ ∈ S(X).

We shall now to prove that they are actually onto B 0 (W ) and that they lift in B 0 (W ) the applications d 0 , d ′ 0 and t 0 .

Proposition 2.7. The images of d 0 , d ′ 0 and t 0 are in B 0 (W ) and they satisfy

π 0 • d 0 = d 0 π 0 • d ′ 0 = d ′ 0 and π 0 • t 0 = t 0 .
Proof. For every α ∈ Aut(X), Φ ∈ S(X), w = (v, v * ) ∈ W and x ∈ X we have

d 0 (α)U (w)d 0 (α) -1 Φ(x) = d 0 (α)U (w)|α| 1 2 (Φ • α)(x) = Φ(α(α -1 (x) + u)) α -1 (x), v * = Φ(x + α(u)) x, α * -1 (v * ) = d 0 (α)U (w)Φ(x).
For every β ∈ Iso(X * , X), Φ ∈ S(X), w = (v, v * ) ∈ W and x ∈ X we have

d ′ 0 (β)U (w)d ′ 0 (β) -1 Φ(x) = d ′ 0 (β)U (w)|β| 1 2 F -1 (Φ • β)(x) = X X * Φ(β(x * )) x 1 + v, -x * dx * x 1 , v * x 1 , β -1 (x) dx 1 = X X * Φ(β(x * )) -v, x * x 1 , -x * dx * x 1 , v * + β -1 (x) dx 1 = Φ(β(v * + β -1 (x))) -v, v * + β -1 (x) = Φ(x + β(v * )) x, -β * -1 (v) v, -v * = d ′ 0 (β)U (w)Φ(x).
For every f ∈ Q(X), Φ ∈ S(X), w = (v, v * ) ∈ W and x ∈ X we have

t 0 (f )U (w)t 0 (f ) -1 Φ(x) = χ(f (x))χ(f (x + v)) -1 Φ(x + v) x, v * = χ(f (v)) -1 x, ρ(v) -1 Φ(x + v) x, v * = t 0 (f )U (w)Φ(x).
These equalities prove at the same time that the images of d 0 , d ′ 0 and t 0 are in B 0 (W ) and that they lift in B 0 (W ) respectively the applications d 0 , d ′ 0 and t 0 .

Proposition 2.7 and the injectivity of d 0 and t 0 entail injectivity for d 0 and t 0 . Moreover Propositions 1.6 and 2.7 say that for every f ∈ Q(X), α ∈ Aut(X) and β ∈ Iso(X * , X), the three elements

d 0 (α) -1 t 0 (f )d 0 (α), d ′ 0 (α • β) and d ′ 0 (β • α * -1 ) of B 0 (W ) differ, respectively from t 0 (f α ), d 0 (α)d ′ 0 (β) and d ′ 0 (β)d 0 (α) just by elements of R × . A direct calculation gives d 0 (α) -1 t 0 (f )d 0 (α) = t 0 (f α ) d ′ 0 (α • β) = d 0 (α)d ′ 0 (β) d ′ 0 (β • α * -1 ) = d ′ 0 (β)d 0 (α) (10)
so that in fact these elements are the identity.

Proof of Theorem 2.5

In this paragraph we give a proof of Theorem 2.5 that is fundamental for the definition of the metaplectic group.

Firstly we prove that π 0 is surjective: we know that B 0 (W ) is generated by µ(t(Q(X))), µ(d ′ (Iso(X * , X))) and {(id, τ ), τ ∈ X 1 (W )} so that it is sufficient to prove that every element in these sets is in the image of π 0 . By Proposition 2.7, this is proved for the sets µ(t(Q(X))) and µ(d ′ (Iso(X * , X))). Moreover by (1) we have that every character τ of W is of the form τ (v, v * ) = a, v * v, a * for suitable a ∈ X and a * ∈ X * . For every w = (v, v * ) ∈ W and t ∈ R × we have (1, τ )U (w, t) = U (w, t • τ (w)) = U (w, t a, v * v, a * ) = U (a, -a * )U (w, t)U (-a, a * , a, -a * ) and so (id, τ ) = π 0 (U (a, -a * )).

Let us now calculate the kernel of π 0 . For φ ∈ S(X × X * ) we denote by U(φ) the operator on S(X) defined by

U(φ) = W U (w, φ(w))dw = W φ(w)U (w)dw.
This means that for every Φ ∈ S(X) and every x ∈ X we have

U(φ)Φ(x) = W φ(w)(U (w)Φ)(x)dw = W φ(v, v * )Φ(x + v) x, v * dvdv *
where w = (v, v * ). Given P, Q ∈ S(X) we denote by φ P,Q ∈ S(X × X * ) the function defined by

φ P,Q (v, v * ) = X P (v ′ )Q(v ′ + v) -v ′ , v * dv ′ for every v ∈ X, v * ∈ X * .
With this definition we obtain

U(φ P,Q )Φ(x) = X Φ(x + v) X * X P (v ′ )Q(v ′ + v) x -v ′ , v * dv ′ dv * dv
and using Proposition 1.2 we have

U(φ P,Q )Φ(x) = X Φ(x + v)P (x)Q(x + v)dv = X Φ(v)Q(v)dvP (x).
If we denoted by [P, Q] = X P (x)Q(x)dx for every P, Q ∈ S(X) we have U(φ P,Q )Φ = [Φ, Q]P . Now, s is in the kernel of π 0 if and only if it lies in the centralizer of A(W ) in Aut(S(X)).

If this is the case, then s commutes with U(φ) in End(S(X)) for every φ ∈ S(X × X * ), i.e. s(U (φ)Φ) = U (φ)(s(Φ)). In particular s commutes with operators of the form U(φ P,Q ) for every

P, Q ∈ S(X), that is [sΦ, Q]P = [Φ, Q]sP for every Φ, P, Q ∈ S(X). If we choose Φ = Q = ½ K where K is a compact open subgroup of X with vol(K, dx) ∈ R × , we can write sP = [sΦ, Q] [Φ, Q] P.
In other words s is of the form Φ → tΦ for a suitable t ∈ R and t has to be invertible since s is an automorphism. Hence ker(π

0 ) ⊆ {t • id S(X) ∈ Aut(S(X)) | t ∈ R × }.
The converse is true because the center of a group is always contained in its centralizer.

Remark 2.8. In proving Theorem 2.5 the techniques used in [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] could be adapted to show that ker(π 0 ) ∼ = R × , but not to prove surjectivity of π 0 .

The metaplectic group

We have just defined in (8) and Lemma 2.4 the group homomorphisms

µ : Sp(W ) -→ B 0 (W ) and π 0 : B 0 (W ) -→ B 0 (W ) σ -→ (σ, χ • f σ ) s -→ conj(s).
The first one is injective, while the second one is surjective with kernel isomorphic to R × . We remark that the definition of B 0 (W ) and these two homomorphisms depend on the choice of the integral domain R and the smooth non-trivial character χ.

Definition 2.9. The metaplectic group of W , attached to R and χ, is the subgroup

Mp R,χ (W ) = Sp(W ) × B 0 (W ) B 0 (W ) of Sp(W ) × B 0 (W ) of the pairs (σ, s) such that µ(σ) = π 0 (s).
From now on, we write Mp(W ) instead of Mp R,χ (W ). We have a group homomorphism

π : Mp(W ) -→ Sp(W ) (σ, s) -→ σ.
The morphism π 0 is surjective and surjectivity in the category of groups is preserved under base-change, therefore π is surjective. Moreover an element (σ, s) is in the kernel of π if and only if s is in the kernel of π 0 , that is isomorphic to R × . Thus we obtain:

Theorem 2.10. The following sequence is exact:

1 -→ R × -→ Mp(W ) π -→ Sp(W ) -→ 1 (11) 
where R × injects in Mp(W ) by t → (id, t • id S(X) ).

Since B 0 (W ) = B 0 (W )/R × and B 0 (W ) ⊂ Aut(S(X)), we may regard µ as a projective representation of the symplectic group. Then, the metaplectic group is defined in such a way that the map

Mp(W ) -→ B 0 (W ) (σ, s) -→ s (12)
is a faithful representation on the R-module S(X) that lifts µ.

The Weil factor

The sequence (11) constitutes the object of our study and the rest of the article is devoted to study its properties. Following the idea of Weil, we define in this section a map γ that associates to every non-degenerate quadratic form f on X an invertible element γ(f ) ∈ R × (cfr. 14 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF]). This object, that we call Weil factor, shows up at the moment of understanding the map π by lifting a description of Sp(W ) by generators and relations. The study of its properties is at the heart of the results in [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF]. We prove that similar properties hold for γ(f ) ∈ R × . The general idea is: we find the relation (14) in B 0 (W ) and we lift it into B 0 (W ) finding an element of R × thanks to Theorem 2.5. Then we proceed in two directions: on one hand we prove results that are useful to calculate γ(f ) while on the other we use the Weil factor to lift to Mp(W ) the relations of Proposition 1.7.

The Weil factor

Let f ∈ Q nd (X) be a non-degenerate quadratic form on X and let ρ ∈ Iso(X, X * ) be its associated symmetric isomorphism. Explicit calculations in Sp(W ) give the equality

d ′ (ρ -1 )t(f )d ′ (-ρ -1 )t(f ) = t(-f )d ′ (ρ -1 ). (13) 
Moreover, applying Proposition 1.6, ( 13) is equivalent to t(f

)d ′ (ρ -1 ) 3 = d ′ (ρ -1 )t(f ) 3 = 1.
It follows from equation ( 13) that

d ′ 0 (ρ -1 )t 0 (f )d ′ 0 (-ρ -1 )t 0 (f ) = t 0 (-f )d ′ 0 (ρ -1 ). ( 14 
)
We denote s = s(f

) = d ′ 0 (ρ -1 )t 0 (f )d ′ 0 (-ρ -1 )t 0 (f ) and s ′ = s ′ (f ) = t 0 (-f )d ′ 0 (ρ -1
). We have by Proposition 2.7 and equation ( 14), π 0 (s) = π 0 (s ′ ). Hence s and s ′ differ by an element of

R × Definition 3.1. Let γ(f ) ∈ R × be such that s = γ(f )s ′ . We call γ(f ) the Weil factor associated to f ∈ Q nd (X).
By formulas (10) we have γ(f

) = t 0 (f )d ′ 0 (ρ -1 ) 3 = d ′ 0 (ρ -1 )t 0 (f ) 3 .
We are now ready to investigate some properties of γ, starting from seeing what changes under the action of Aut(X).

Proposition 3.2. Let f ∈ Q nd (X). (i) We have γ(-f ) = γ(f ) -1 . (ii) For every α ∈ Aut(X) we have γ(f α ) = γ(f ).
Proof. Let f ∈ Q nd (X) be associated to the symmetric isomorphism ρ.

(i) We have γ(-f ) = t 0 (-f )d ′ 0 (-ρ -1 ) 3 = d ′ 0 (ρ -1 )t 0 (f ) -3 = γ(f ) -1 .
(ii) The symmetric isomorphism associated to f α is α * ρα. Then we have

γ(f α ) = t 0 (f α )d ′ 0 (α -1 ρ -1 α * -1 ) 3 = d 0 (α) -1 t 0 (f )d 0 (α)d 0 (α) -1 d ′ 0 (ρ -1 )d 0 (α) 3 = d 0 (α) -1 t 0 (f )d ′ 0 (ρ -1 ) 3 d 0 (α) = γ(f ).
Proposition 3.2 gives actually a strong result in a particular case: if -1 ∈ (F × ) 2 and a 2 = -1 with a ∈ F × then x → ax is an automorphism of X. By Proposition 3.2 we have γ(f ) = γ(-f ) = γ(f ) -1 , in other words γ(f ) 2 = 1. This does not hold in general for a local field F without square roots of -1.

Let f ∈ Q nd (X) be associated to ρ and define ϕ = χ • f . Notice that ϕ(-x) = ϕ(x). For every Φ ∈ S(X), we denote by Φ * ϕ the convolution product defined by

(Φ * ϕ)(x) = X Φ(x ′ )ϕ(x -x ′ )dx ′
for every x ∈ X. We have that Φ * ϕ ∈ S(X), indeed

(Φ * ϕ)(x) = X Φ(x ′ )ϕ(x -x ′ )dx ′ = ϕ(x) X Φ(x ′ )ϕ(-x ′ ) x, ρ(-x ′ ) dx ′ = ϕ(x) X Φ(x ′ )ϕ(x ′ ) x ′ , -ρ(x) dx ′ = |ρ| -1 2 t 0 (f )d 0 (-ρ -1 )t 0 (f )Φ(x)
where we have used that ϕ(x + y) = ϕ(x)ϕ(y) x, ρ(y) for every x, y ∈ X.

Now we state a proposition that gives a summation formula for γ(f ) and that allows us to calculate in Theorem 4.1 the value of γ for a specific quadratic form over F .

Proposition 3.3. Let f ∈ Q nd (X) be associated to the symmetric isomorphism ρ ∈ Iso(X, X * ) and let s, s ′ ∈ B 0 (W ) as in Definition 3.1. We set ϕ = χ • f . 1. For every Φ ∈ S(X) and for every x ∈ X we have

sΦ(x) = |ρ|F (Φ * ϕ)(ρ(x)) and s ′ Φ(x) = |ρ| 1 2 F Φ(ρ(x))ϕ(x) -1 .
2. For every Φ ∈ S(X) and for every x * ∈ X * we have

F (Φ * ϕ)(x * ) = γ(f )|ρ| -1 2 F Φ(x * )ϕ(ρ -1 x * ) -1 . ( 15 
)
3. There exists a sufficiently large compact open subgroup K 0 of X such that for every compact open subgroup K of X containing K 0 and for every x * ∈ X * , the integral K ϕ(x) x, x * dx does not depend on K. Moreover we have

K ϕ(x) x, x * dx = γ(f )|ρ| -1 2 ϕ(ρ -1 x * ) -1 (16)
and we denote F ϕ = K ϕ(x) x, x * dx.

4. If K is a sufficiently large compact open subgroup of X, we have

γ(f ) = |ρ| 1 2 K χ(f (x))dx. (17) 
Proof.

1. For every Φ ∈ S(X) and every x ∈ X we have

sΦ(x) = d ′ 0 (ρ -1 )t 0 (f )d ′ 0 (-ρ -1 )t 0 (f )Φ(x) = |ρ| X X Φ(x 1 )ϕ(x 1 ) x 1 , -ρ(x 2 ) ϕ(x 2 ) x 2 , ρ(x) dx 1 dx 2 = |ρ| X X Φ(x 1 )ϕ(-x 1 ) x 1 , -ρ(x 2 ) ϕ(x 2 ) x 2 , ρ(x) dx 1 dx 2 = |ρ| X X Φ(x 1 )ϕ(x 2 -x 1 ) x 2 , ρ(x) dx 1 dx 2 = |ρ|F (Φ * ϕ)(ρ(x)) and s ′ Φ(x) = t 0 (-f )d ′ 0 (ρ -1 )Φ(x) = t 0 (-f )|ρ| 1 2 F (Φ • ρ)(x) = ϕ(x) -1 |ρ| 1 2 F (Φ • ρ)(x).

By the equality s

= γ(f )s ′ we have |ρ|F (Φ * ϕ)(ρ(x)) = γ(f )|ρ| 1 2 F Φ(ρ(x))ϕ(x)
-1 and replacing ρ(x) by x * we obtain the equality (15).

Taking

Φ = ½ H for a compact open subgroup H of X in formula (15), we obtain X (½ H * ϕ)(x 1 ) x 1 , x * dx 1 = γ(f )|ρ| -1 2 F ½ H (x * )ϕ(ρ -1 x * ) -1 .
We want to calculate the integral in the left hand side. We can take a compact open subgroup K 0 of X large enough to contain both H and the support of ½ H * ϕ obtaining

X (½ H * ϕ)(x 1 ) x 1 , x * dx 1 = K 0 H ϕ | K 0 (x 1 -x 2 )dx 2 x 1 , x * dx 1 .
Now, we can prove that ϕ | K 0 is locally constant and that we can change the order of the two integrals, i.e.

X (½ H * ϕ)(x 1 ) x 1 , x * dx 1 = H K 0 ϕ | K 0 (x 1 -x 2 ) x 1 , x * dx 1 dx 2 = H K 0 ϕ | K 0 (x ′ 1 ) x ′ 1 + x 2 , x * dx ′ 1 dx 2 = F ½ H (x * ) K 0 ϕ | K 0 (x ′ 1 ) x ′ 1 , x * dx ′ 1 .
Since F ½ H = vol(H)½ H * and vol(H) = 0, we obtain the equality (16) for every x * ∈ H * and every H compact open subgroup of X. Now H * cover X * , varying H, and so the equality holds for every x * ∈ X * . It is clear that the equality holds also for every compact open subgroup K of X containing K 0 .

4. Setting x * = 0 in ( 16) we obtain γ(f

) = |ρ| 1 2 K ϕ(x)dx = |ρ| 1 2 K χ(f (x))dx.
Remark 3.4. The second result in Proposition 3.2 is true more generally for every α ′ ∈ Iso(X ′ , X) where X ′ is a finite dimensional F -vector space. In fact if K ′ is a compact open subgroup of X ′ large enough, f ∈ Q nd (X) and α ∈ Iso(X ′ , X) by ( 17) we have

γ(f • α) = |α * ρα| 1 2 K ′ χ(f (α(x ′ )))dx ′ = |ρ| 1 2 |α| X ′ ½ α(K ′ ) (α(x ′ ))χ(f (α(x ′ )))dx ′ = |ρ| 1 2 X ½ α(K ′ ) (x)χ(f (x))dx ′ = γ(f ).
3.1.1 Symplectic generators in B 0 (W ) Definition 3.5. Let σ ∈ Ω(W ). By Proposition 1.8 we can write σ = t(f 1 )d ′ (β)t(f 2 ) for unique f 1 , f 2 ∈ Q(X) and β ∈ Iso(X * , X). We define a map r 0 : Ω(W ) → B 0 (W ) by

r 0 (σ) = t 0 (f 1 )d ′ 0 (β)t 0 (f 2 )
for every σ ∈ Ω(W ).

Now we state a theorem that says how an equality σ ′′ = σσ ′ in Ω(W ) lifts to 0 (W ). After a comparison with section 15 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF] the differences turn out to be the use of Fourier transform for Schwartz functions and previous changes in notations. Finally we have clarified some points and made them explicit.

Theorem 3.6. Let σ = α β γ δ , σ ′ = α ′ β ′ γ ′ δ ′ and σ ′′ = α ′′ β ′′ γ ′′ δ ′′ be elements of Ω(W ) such that σ ′′ = σσ ′ . Then r 0 (σ)r 0 (σ ′ ) = γ(f 0 )r 0 (σ ′′ )
where f 0 is the non-degenerate quadratic form on X associated to the symmetric isomorphism

-β -1 β ′′ β ′-1 : X → X * .
Proof. Since r 0 (σ)r 0 (σ ′ ) and r 0 (σ ′′ ) have the same image by π 0 , we can set r 0 (σ)r 0 (σ ′ ) = λr 0 (σ ′′ ) where λ ∈ R × depends on σ, σ ′ . By Definition 3.5 we have

t 0 (f 1 )d ′ 0 (β)t 0 (f 2 )t 0 (f ′ 1 )d ′ 0 (β ′ )t 0 (f ′ 2 ) = λt 0 (f ′′ 1 )d ′ 0 (β ′′ )t 0 (f ′′ 2 ) for suitable f 1 , f 2 , f ′ 1 , f ′ 2 , f ′′ 1 , f ′′ 2 ∈ Q(X). Setting f 0 = f 2 + f ′ 1 , f 3 = -f 1 + f ′′ 1 and f 4 = f ′′ 2 -f ′ 2 we obtain d ′ 0 (β)t 0 (f 0 )d ′ 0 (β ′ ) = d ′ 0 (β)t 0 (f 0 )d ′ 0 (-β ′ * ) -1 = λt 0 (f 3 )d ′ 0 (β ′′ )t 0 (f 4 )
where we have used that d ′ 0 (β ′ ) -1 = d ′ 0 (-β ′ * ). By Remark 1.9 the symmetric homomorphisms associated to f 2 and f ′

1 are ρ 2 = -β -1 α and ρ ′ 1 = -δ ′ β ′-1 , hence the symmetric homomorphism associated to f 0 is ρ 0 = ρ 2 + ρ ′ 1 = -β -1 (αβ ′ + βδ ′ )β ′-1 = -β -1 β ′′ β ′-1 = -β ′ * -1 β ′′ * β * -1
that is also an isomorphism. We set ϕ i = χ • f i for i = 0, 3, 4. For every Φ ∈ S(X) and x ∈ X we have

d ′ 0 (β)t 0 (f 0 )d ′ 0 (-β ′ * ) -1 Φ(x) = |β| -1 2 |β ′ | 1 2 F (F -1 (Φ • (-β ′ * )) • ϕ 0 )(β -1 x).
By Proposition 1.2 the Fourier transform of a pointwise product is the convolution product of the Fourier transforms and then

d ′ 0 (β)t 0 (f 0 )d ′ 0 (β ′ )Φ(x) = |β| -1 2 |β ′ | 1 2 (Φ • β ′ * ) * F ϕ 0 (β -1 x).
Using formula (16) we obtain

d ′ 0 (β)t 0 (f 0 )d ′ 0 (β ′ )Φ(x) = γ(f 0 )|ρ 0 | -1 2 |β| -1 2 |β ′ | 1 2 (Φ • β ′ * ) * (ϕ 0 • ρ -1 0 ) -1 (β -1 x) = γ(f 0 )|β ′′ | -1 2 |β ′ | (Φ • β ′ * ) * (ϕ 0 • ρ -1 0 ) -1 (β -1 x) = γ(f 0 )|β ′′ | -1 2 |β ′ | X * Φ(β ′ * (x * ))ϕ 0 (β * β ′′ * -1 β ′ * (x * ) -β ′ β ′′-1 (x)) -1 dx * = γ(f 0 )|β ′′ | -1 2 X Φ(x 1 )ϕ 0 (-β ′ β ′′-1 (x) + β * β ′′ * -1 (x 1 )) -1 dx 1
where in the last step we have used the change of variables β ′ * (x * ) → x 1 . Furthermore we have

t 0 (f 3 )d ′ 0 (β ′′ )t 0 (f 4 )Φ(x) = |β ′′ | -1 2 X Φ(x 1 )ϕ 4 (x 1 )ϕ 3 (x) x 1 , β ′′-1 x dx 1 and then γ(f 0 ) X Φ(x 1 )ϕ 0 (-β ′ β ′′-1 (x) + β * β ′′ * -1 (x 1 )) -1 dx 1 = λ X Φ(x 1 )ϕ 4 (x 1 )ϕ 3 (x) x 1 , β ′′-1 x dx 1 .
We observe that the two sides are of the form c i X Φ(x 1 )ϑ i (x 1 , x)dx 1 for i = 1, 2, where c i ∈ R × and ϑ i are characters of degree 2 of X × X. Since the equality holds for every Φ ∈ S(X) and every x ∈ X, we obtain that c 1 = c 2 and ϑ 1 = ϑ 2 and so γ(f 0 ) = λ.

Metaplectic realizations of forms

Definitions 1.5 and 2.6 allow us to define some applications from Aut(X), Iso(X * , X) and Q(X) to Mp(W ), similar to those in 34 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF], that satisfy relations analogous to those of d 0 , d ′ 0 and t 0 .

Definition 3.7. Let Mp(W ) be as in Definition 2.9. We define the following applications.

• The injective group homomorphism d : Aut(X) -→ Mp(W ) given by d(α) = (d(α), d 0 (α)) for every α ∈ Aut(X).

• The injective map d ′ : Iso(X * , X) -→ Mp(W ) given by d ′ (β) = (d ′ (β), d ′ 0 (β)) for every β ∈ Iso(X * , X).

• The injective group homomorphism t : Q(X) -→ Mp(W ) given by t(f ) = (t(f ), t 0 (f ))

for every f ∈ Q(X).

By Proposition 1.6 and by (10) we have

d(α) -1 t(f )d(α) = t(f α ) (18) 
for every f ∈ Q(X) and α ∈ Aut(X). We have also d

′ (α • β) = d(α)d ′ (β) and d ′ (β • α * -1 ) = d ′ (β)d(α)
for every α ∈ Aut(X) and β ∈ Iso(X * , X).

As in Definition 3.5, we can define a map from Ω(W ) to Mp(W ). By Proposition 1.8 every element σ ∈ Ω(W ) can be written uniquely as σ = t(f 1 )d ′ (β)t(f 2 ): we define

r(σ) = t(f 1 )d ′ (β)t(f 2 ) (19) 
that is equivalent to write r(σ) = (σ, r 0 (σ)).

Let σ = α β γ δ , σ ′ = α ′ β ′ γ ′ δ ′ and σ ′′ = α ′′ β ′′ γ ′′ δ ′′ be in Ω(W ) such that σσ ′ = σ ′′ . By Theorem 3.6 we have r(σ)r(σ ′ ) = γ(f 0 )r(σ ′′ ) (20) 
where f 0 is the non-degenerate quadratic form on X associated to the symmetric isomorphism

-β -1 β ′′ β ′-1 .

Fundamental properties of the Weil factor

In this section we find the possible values of γ(f ) for every non-degenerate quadratic form f over F . Proposition 3.3 gives a summation formula for γ(f ) and we use it to prove that γ(n) = -1 where n is the reduced norm of the quaternion division algebra over F . In Theorem 4.5 we see that γ is a R-character of the Witt group of F . Moreover we already know by Proposition 3.2 that γ(f ) 2 = 1 if F contains a square root of -1 and at the end of this section this is generalized by saying that, for any F , γ(f ) is a fourth root of unity in R.

For every positive integer m, we denote by q m the non-degenerate quadratic form q m (x) = m i=1 x 2 i defined on the m-dimensional vector space F m .

The quaternion division algebra over F

In this paragraph we use some results on quaternion algebras over F ( [START_REF] Vignéras | Arithmétique des Algèbres de Quaternions[END_REF]) to prove that if char(R) = 2 the map γ : Q nd (X) -→ R × is non-trivial by means of a concrete example.

Let Y, Z, T be three pro-p groups such that there exists an exact sequence of continuous maps

1 -→ Y i -→ Z j -→ T -→ 1.
We say that the Haar measures dy, dz, dt on Y, Z, T with values in R are compatible with the exact sequence above (II.4 of [START_REF] Vignéras | Arithmétique des Algèbres de Quaternions[END_REF]) if for every locally constant function ϑ : Z -→ R we have the equality The function Y ϑ(i(y)z)dy is invariant by z → i(y)z for every y ∈ Y and so we can see it as a function in the variable t.

By Theorem II.1.1 of [START_REF] Vignéras | Arithmétique des Algèbres de Quaternions[END_REF] we know that there exists a unique quaternion division algebra over F (up to isomorphism) that we denote by A. The reduced norm n : A -→ F is a nondegenerate quadratic form on the F -vector space underlying A and it induces a surjective group homomorphism n |A × : A × -→ F × . Moreover by Lemma II.1.4 of [START_REF] Vignéras | Arithmétique des Algèbres de Quaternions[END_REF], if v is a discrete valuation of F such that v(̟) = 1 then v • n is a discrete valuation of A; so we can consider the ring of integers

O A = {z ∈ A | n(z) ∈ O F } of A and fix a uniformizer ̟ A of O A such that ̟ 2 A = ̟.
The unique prime ideal of O A is ̟ A O A and the cardinality of the residue field of A is q 2 where q is the cardinality of the residue field of F .

According to Definition 1.3, we define the module of x ∈ F (resp. z ∈ A), denoted by |x| (resp. |z| A ), as the module of the multiplication (resp. right multiplication) by x (resp. z). We can easily prove that |x| = q -v(x) and |z| A = |n(z)| 2 . We denote by dx and dz the Haar measures on F and A such that vol(O F , dx) = vol(O A , dz) = 1 and by dx × = |x| -1 dx and dz × = |n(z)| -2 dz the Haar measures on F × and A × . It is easy to see that ), dy) = q -1 , the Haar measures dy, dz × , dx × are compatible with the exact se-

n |O × A : O × A -→ O × F and n |U 1 A : U 1 A = 1+̟ A O A -→ U 1 F = 1+̟O F are two sur- jective group homomorphisms. We observe that vol(U 1 A , dz × ) = vol(U 1 A , dz) = vol(̟ A O A , dz) = q -2 and vol(U 1 F , dx × ) = q -1 . Now, if
quence 1 -→ ker(n |U 1 A ) -→ U 1 A n -→ U 1 F -→ 1. Indeed, they are compatible if for every compact open subgroup K of U 1 A we have vol(K, dz × ) = U 1 F ker(n |U 1 A ) ½ K (yz)dy dx × = U 1 F vol(Kz -1 ∩ ker(n), dy)dx × (21) 
where the function z → vol(Kz -1 ∩ker(n), dy) is invariant by z → yz for every y ∈ ker(n |U 1

A

) and so we can see it as a function in the variable

x ∈ U 1 F . Now, if n(z) / ∈ n(K) then Kz -1 ∩ker(n) = ∅ while if n(z) = n(k) with k ∈ K then Kz -1 ∩ ker(n) = (K ∩ n -1 (n(z)))z -1 = n -1 |K (n |K (k))z -1 = (K ∩ ker(n))kz -1 . Then (21) becomes vol(K, dz × ) = vol(K ∩ ker(n), dy) • vol(n(K), dx × ) or equivalently q -2 [U 1 A : K] = q -1 [ker(n) : K ∩ ker(n)] • q -1 [U 1 F : n(K)
] that is clearly true.

Theorem 4.1. Let A be the quaternion division algebra over F and let n : A -→ F be the reduced norm of A. Then γ(n) = -1.

Proof. Let ρ n ∈ Iso(A, A * ) be the symmetric isomorphism associated to the quadratic form n.

For every λ ∈ Z, let

M λ = ̟ -λ A O A = {z ∈ A | n(z) ∈ ̟ -λ O F }. By (17) we have γ(n) = |ρ n | 1 2 M λ χ(n(z))dz
for λ ≥ 0 large enough. Let l be the conductor of χ; then

M -l χ(n(z))dz = vol(M -l ) = vol(̟ l A O A ) = q -2l
. Hence, if we choose λ ≥ 1l, we obtain

M λ χ(n(z))dz = vol(M -l ) + M λ -M -l χ(n(z))dz = q -2l + l-1 i=-λ ̟ i A O × A χ(n(z))dz = q -2l + l-1 i=-λ ̟ i A O × A χ(n(z))|n(z)| 2 dz × = q -2l + l-1 i=-λ q -2i ̟ i A O × A χ(n(z))dz × .

Now we fix a set of representatives Ξ

A of O × A /U 1 A .
Then, for every -λ ≤ i ≤ l -1, we have

̟ i A O × A χ(n(z))dz × = ξ∈Ξ A U 1 A χ(n(̟ i A ξz))dz × = ξ∈Ξ A U 1 A χ((-̟) i n(ξ)n(z))dz × . Remark 4.3. If ρ 1 : G 1 → G * 1 and ρ 2 : G 2 → G * 2 are the symmetric isomorphisms associated to f 1 and f 2 , then ρ 1 ⊕ ρ 2 : G 1 × G 2 → (G 1 × G 2 ) * , defined by (ρ 1 ⊕ ρ 2 )(y 1 ⊕ y 2 ) = ρ 1 (y 1 ) ⊕ ρ 2 (y 2 )
is the symmetric isomorphism associated to f 1 ⊕ f 2 . Indeed, calling this latter ρ 1,2 , we have

[x 1 ⊕ x 2 , (ρ 1 ⊕ ρ 2 )(y 1 ⊕ y 2 )] = f 1 (x 1 + y 1 ) -f 1 (x 1 ) -f 1 (y 1 ) + f 2 (x 2 + y 2 ) -f 2 (x 2 ) -f 2 (y 2 ) = = (f 1 ⊕ f 2 )(x 1 ⊕ x 2 + y 1 ⊕ y 2 ) -(f 1 ⊕ f 2 )(x 1 ⊕ x 2 ) -(f 1 ⊕ f 2 )(y 1 ⊕ y 2 ) = [x 1 ⊕ x 2 , ρ 1,2 (y 1 ⊕ y 2 )].
Definition 4.4. We say that f 1 ∈ Q nd (G 1 ) and f 2 ∈ Q nd (G 2 ) are equivalent (and we write f 1 ∼ f 2 ) if one can be obtained from the other by adding an hyperbolic quadratic form of dimension max{dim(G 1 ), dim(G 2 )} -min{dim(G 1 ), dim(G 2 )} (see [START_REF] Williard | Symmetric bilinear forms[END_REF]). We call Witt group of F the set of equivalence classes of non-degenerate quadratic forms over F endowed with the operation induced by

(f 1 , f 2 ) -→ f 1 ⊕ f 2 .
Theorem 4.5. The map f → γ(f ) is a R-character of the Witt group of F.

Proof. Let G 1 and G 2 be two finitely dimensional vector spaces over F ,

f 1 ∈ Q nd (G 1 ) and f 2 ∈ Q nd (G 2 ). Proposition 3.3 gives γ(f 1 ⊕ f 2 ) = |ρ 1 ⊕ ρ 2 | 1 2 K 1 ×K 2 χ((f 1 ⊕ f 2 )(x 1 ⊕ x 2 ))dx 1 dx 2
for compact open subgroups K 1 and K 2 of G 1 and G 2 , both large enough. Now, if we consider

½ K 1, * ∈ S(G * 1 ), ½ K 2, * ∈ S(G * 2 ) and ½ K 1, * ×K 2, * ∈ S(G * 1 × G * 2 ), Definition 1.3 gives |ρ 1 ||ρ 2 | G 1 ½ K 1, * (ρ 1 (x 1 ))dx 1 G 2 ½ K 2, * (ρ 2 (x 2 ))dx 2 = G * 1 ½ K 1, * (x * 1 )dx * 1 G * 2 (x * 2 )½ K 2, * dx * 2 = = G * 1 ×G * 2 ½ K 1, * ×K 2, * (x * 1 ⊕ x * 2 )dx * 1 dx * 2 = |ρ 1 ⊕ ρ 2 | G 1 ×G 2 ½ K 1, * ×K 2, * (ρ 1 (x 1 ) ⊕ ρ 2 (x 2 ))dx 1 dx 2 and then |ρ 1 ||ρ 2 | = |ρ 1 ⊕ ρ 2 |. Hence we obtain γ(f 1 ⊕ f 2 ) = |ρ 1 | 1 2 |ρ 2 | 1 2 K 1 χ(f 1 (x 1 ))dx 1 K 2 χ(f 2 (x 2 ))dx 2 = γ(f 1 )γ(f 2 ).
We shall now to check that γ is equivariant on the equivalence classes of bilinear forms. To see that, recall that f 1 ∼ f 2 if and only if there exist n ∈ N and an hyperbolic quadratic form h(x) = x i x i+n of rank 2n such that f 1 = f 2 ⊕ h. After what proven in the first part γ(f 1 ) = γ(f 2 ) if and only if γ(h) = 1 and since every hyperbolic form is a sum of the rank 2 form h 2 : (x 1 , x 2 ) → x 1 x 2 it's sufficient to show that γ(h 2 ) = 1. Now, if we apply the base change

x 1 → x 1 + x 2 and x 2 → x 1 -x 2 we obtain h 2 (x 1 + x 2 , x 1 -x 2 ) = (x 1 + x 2 )(x 1 -x 2 ) = x 2 1 -x 2 2
and Proposition 3.2 gives that γ(h 2 ) = γ(q 1 ⊕ (-q 1 )) = γ(q 1 )γ(q 1 ) -1 = 1.

The image of the Weil factor

We exploit some classical results on quadratic forms over F to prove that γ takes values in the group of fourth roots of unity in R.

Definition 4.6. Let G 1 , G 2 be two finite dimensional vector spaces over F and f 1 , f 2 be two non-degenerate quadratic forms on G 1 and G 2 . We say that f 1 and f 2 are isometric if there exists an isomorphism ϑ :

G 1 -→ G 2 such that f 1 (x) = f 2 (ϑ(x)) for every x ∈ G 1 .
Notice that, by Remark 3.4, if f 1 and f 2 are isometric then γ(f 1 ) = γ(f 2 ). We know also that there are only two isometry classes of non-degenerate quadratic forms on a 4-dimensional vector space over F whose discriminant is a square in F × . One class is represented by the norm n over the quaternion division algebra and the other by q 2 ⊕ -q 2 . Moreover, if a, b ∈ F × and a b is the Hilbert symbol with values in R × , the quadratic form x 2 1ax 2 2bx 2 3 + abx 2 4 lies in the first class if a b = -1 and in the second one if a b = 1. Furthermore by Theorems 4.5 and 4.1 we have that γ

(x 2 1 -ax 2 2 -bx 2 3 + abx 2 4 ) = a b . (22) 
In particular, for b = -1 we apply Theorem 4.5 to this formula to get the equalities γ(q 1 ) 2 γ(-aq 1 ) 2 = a -1 and γ(aq 1 ) 2 = a -1 γ(q 1 ) 2 by Proposition 3.2. Since every non-degenerate quadratic form is isometric to m i=1 a i x 2 i for suitable m ∈ N and a i ∈ F × , we have

γ(f ) 2 = m i=1 a i -1 γ(q 1 ) 2 = D(f ) -1 γ(q 1 ) 2m (23) 
where D(f ) is the discriminant of f . Notice that, since F is non-archimedean, then -1 is either a square or a norm in F ( √ -1). Therefore γ(q 4 ) = -1 -1 = 1 and it follows that γ(f ) 4 = 1 for every non-degenerate quadratic form f over F as announced. This is in fact the best possible result whenever -1 is not a square in F . Indeed, in this case, there exists at least an element a ∈ F × such that a -1 = -1. For such an a, formula (22) gives γ(q 1 ⊕ -aq 1 ) 2 = -1 and then a square root of -1 shall be in the image of γ.

Remark 4.7. This result shows also that, whenever -1 is not a square in F and char(R) = 2 (in which case X 4 -1 is a separable polynomial) then R contains a primitive fourth root of unity. This fact has an elementary explaination: denote ζ p an element of order p in R × and consider the Gauss sum τ = p-1 i=1 i p ζ i p ∈ R, where in this case i p is the Legendre symbol. The formula

τ 2 = -1 p p
holds thanks to a classical argument that can be found, for example, in 3.3 of [START_REF] Lemmermeyer | Reciprocity Laws: from Euler to Eisenstein[END_REF]. The fact that -1 is not a square in F implies that -1 p = -1 and that q = p f with f odd. Since R contains a square root of q, then there exists an element x ∈ R × such that x 2 = p and (τ • 1 x ) 2 = -1: there is a primitive fourth root of unity in R.

The reduced metaplectic group

The metaplectic group, associated with R and χ, is an extension of Sp(W ) by R × through the short exact sequence (11). We want to understand when this sequence does (or does not) split, looking for positive numbers n ∈ N yielding the existence of subgroups Mp n (W ) of Mp(W ) such that π |Mp n (W ) is a finite cyclic cover of Sp(W ) with kernel µ n (R). We show that, for F locally compact non-discrete non-archimedean field, it is possible to construct Mp 2 (W ). Then we prove that, when char(R) = 2, n = 1 does not satisfy the condition above, namely that the sequence (11) does not split. Finally we show what happens in the simpler case when char(R) = 2.

For a closer perspective we suppose that, for some n ∈ N, Mp n (W ) exists and we look at the following commutative diagram with exact rows and columns where µ n (R) is the group of n-th roots of unity in R. The existence of a homomorphism ψ n : Mp(W ) -→ R × such that its restriction on R × is the n-th power map implies the existence of the first line in the diagram. Indeed, if such ψ n exists, let Mp n (W ) be its kernel; then π induces a surjective homomorphism from Mp n (W ) to Sp(W ) whose kernel is

Mp n (W ) ∩ R × = µ n (R).
Then, as in 43 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF], the question to address is whether or not there exists

ψ n : Mp(W ) → R × such that ψ n| R × (x) = x n for every x ∈ R × . Lemma 5.1. A R-character ψ n : Mp(W ) -→ R × whose restriction on R × is the n-th power map is completely determined by ψ n = ψ n • r : Ω(W ) -→ R × where r is as in (19).
Proof. Let (σ, s) ∈ Mp(W ). By Proposition 1.7 we can write σ as a product σ = i σ i with σ i ∈ Ω(W ). We set (σ, s ′ ) = i r(σ i ) where r is as in (19). Then, since ker(π) = R × , we have that (σ, s) = c(σ, s ′ ) for a suitable c ∈ R × . This implies that the values of ψ n at (σ, s) is ψ n (c(σ, s ′ )) = c n i ψ n (σ i ).

By (20), the morphism ψ n of Lemma 5.1 shall verify the condition

ψ n (σ) ψ n (σ ′ ) = γ(f 0 ) n ψ n (σ ′′ ) (24) 
for every σ = α β γ δ , σ ′ = α ′ β ′ γ ′ δ ′ and σ ′′ = α ′′ β ′′ γ ′′ δ ′′ in Ω(W ) satisfying σ ′′ = σσ ′ , where f 0 is a non-degenerate quadratic form on X associated to the symmetric isomorphism -β -1 β ′′ β ′-1 . Conversely we have: Lemma 5.2. If ψ n : Ω(W ) -→ R × satisfies (24), then there exists a unique R-character ψ n of Mp(W ) such that its restriction to R × is the n-th power map and ψ n • r = ψ n .

Proof. Let (σ, s) ∈ Mp(W ). By Proposition 1.7 we can write σ as a product σ = i σ i with σ i ∈ Ω(W ) and (σ, s) = c r(σ i ) for a suitable c ∈ R × . We define ψ n (σ, s) = c n i ψ n (σ i ). We have to prove that it is well defined. Let σ = j σ j be another presentation of σ that differs from i σ i by a single relation σσ ′ = σ ′′ ; by (20) we obtain

(σ, s) = c i r(σ i ) = γ(f 0 )c j r(σ j )
for a suitable f 0 ∈ Q nd (X) and by (24) we have ψ n (σ, s) = c n i ψ n (σ i ) = c n γ(f 0 ) n j ψ n (σ j ) = (c γ(f 0 )) n j ψ n (σ j ). Now, since every presentation σ = k σ k with σ k ∈ Ω(W ) differs from i σ i by a finite number of relations σσ ′ = σ ′′ , the definition ψ n (σ, s) = c n i ψ n (σ i ) makes sense.

After these results the existence of a character ψ n , and then of a subgroup Mp n (W ) of Mp(W ) as above, is equivalent to the existence of ψ n : Ω(W ) -→ R × that satisfies (24).

First of all we suppose that -1 is a square in F . By Proposition 3.2 we have γ(f ) 2 = 1 for every f ∈ Q nd (X) and so ψ 2 = 1 satisfies (24) with n = 2.

We suppose now that -1 is not a square in F . We fix a basis over the F -vector space X and its dual basis over X * . By definition of Ω(W ) we have that the determinant det(β) of β with respect to these basis is not zero for every σ = α β γ δ ∈ Ω(W ). Moreover, since f 0 is associated to the symmetric isomorphism -β -1 β ′′ β ′-1 we have that the discriminant of f 0 is D(f 0 ) = det(-β) -1 • det(-β ′′ ) • det(-β ′ ) -1 . Hence taking ψ 2 (σ) = det(-β) -1 γ(q 1 ) 2m

for every σ = α β γ δ ∈ Ω(W ) and using formula (23) we obtain the equality (24) with n = 2.

We have then proved the Theorem 5.3. There exists a subgroup Mp 2 (W ) of Mp(W ) that is a cover of Sp(W ) with kernel µ 2 (R). In particular, when char(R) = 2, Mp 2 (W ) is a 2-cover of Sp(W ).

Now we want to see if this reduction is optimal in the sense that there does not exist any Mp 1 (W ) fitting into the diagram. If this is the case, then the group Mp 2 (W ) is the minimal subgroup of Mp(W ) which is a central extension of Sp(W ) and therefore is called reduced metaplectic group.

Theorem 5.4. Let char(R) = 2. Then there does not exist a character ψ : M p(W ) → R × such that ψ |R × = id.

Proof. Let suppose the existence of such ψ. Then there exists a character ψ ′ : Mp(F ×F * ) → R × such that ψ ′ |R × = id. In fact the extension by triviality ι : Ω(F × F * ) → Ω(W )

a b c d →     a 0 b 0 0 ½ n-1 0 ½ n-1 c 0 d 0 0 ½ n-1 0 ½ n-1    
is such that σ ′′ = σσ ′ yields ι(σ ′′ ) = ι(σ)ι(σ ′ ). Then ψ ′ := ψ • ι satisfies the relation

ψ ′ (σ ′′ ) = γ(f 0 ) -1 ψ ′ (σ) ψ ′ (σ ′ )
and Lemma 5.2 implies the existence of ψ ′ . Clearly ψ ′ takes values 1 on the group of commutators of Mp(F × F * ). By (18) we have

t c 1 -a 2 x 2 d a -1 t - c 1 -a 2 x 2 d (a) = t c 1 -a 2 x 2 t - ca 2 1 -a 2 x 2 = t cx 2
for every a / ∈ {0, 1, -1} in F and every c ∈ F . Then for every quadratic form f on F , t(f ) is a commutator of Mp(F × F * ) and so ψ ′ (t(f )) = 1. By Definition 3.1 we obtain the equality d ′ (ρ -1 )t(f )d ′ (-ρ -1 )t(f ) = γ(f )t(-f )d ′ (ρ -1 ) in Mp(F × F * ) for every f ∈ Q nd (F ) associated to ρ and applying ψ ′ we obtain γ(f ) = ψ ′ (d ′ (ρ -1 )). So, if we denote by ρ a the symmetric isomorphism associated to aq 1 : x -→ ax 2 we obtain γ (aq 1 ) = ψ ′ (d ′ (ρ -1 a )) = ψ ′ (d(2a))ψ ′ (d ′ (ρ -1 1 )). Now, since every quadratic form f over F is of the form f (x) = m i=1 a i x 2 i , we can conclude that γ(f ) = m i=1 ψ ′ (d(2a i ))ψ ′ (d ′ (ρ -1 1 )) m depends only on m and on the discriminant. But this implies that γ takes the same value on every non-degenerate quadratic form on a 4-dimensional vector space over F with discriminant equal to 1. But this contradicts Theorem 4.1.

We shall remark that, if R has characteristic 2, then necessarily γ(f ) = 1 for every quadratic form f . Then Theorem 5.4 is clearly false and the sequence (11) splits yielding the existence of Mp 1 (W ) ∼ = Sp(W ).

We conclude by saying that we can restrict the representation of the metaplectic group given by (12) to a representation of the reduced metaplectic group. This is the Weil representation defined over R. As pointed out in the introduction, the relevance of having an explicit form for this representation lies in the fact that its understanding has important applications. Considering R in whole generality may help understand more deeply the essential features underlying results like Howe and Shimura correspondences. A more concrete question is the following. Given a morphism of rings R 1 → R 2 and fixed two smooth non-trivial characters χ 1 : F → R 1 and χ 2 : F → R 2 , it would be interesting to study the relationships between metaplectic groups and the Weil representation respectively over R 1 and R 2 .

  we take the Haar measure dy on the kernel of n |U 1

	A	such
	that vol(ker(n |U 1 A	

We already know that vol(ker(n |U 1 A ), dy) = q -1 , so using the compatibility of dy, dz × , dx × we obtain

The morphisms n |O

and hence

We observe that we have ̟ j O F χ(x)dx = q -j if j ≥ l and 0 otherwise. Indeed if j < l, then there exists

Finally we obtain γ

. By Definition 1.3, where we set Φ = ½ (O A ) * , we have

Moreover it is easy to show that ρ n (z 1 )(z 2 ) = tr(z 1 z2 ) for every z 1 , z 2 ∈ A, where z → z is the conjugation of A (cf. page 1 of [START_REF] Vignéras | Arithmétique des Algèbres de Quaternions[END_REF]). Then the following are equivalent

We know that {z ∈ A | tr(zO A ) ⊂ O F } is a fractional ideal (its inverse is called codifferent ideal), and by Corollary II.1.7 of [START_REF] Vignéras | Arithmétique des Algèbres de Quaternions[END_REF] it is exactly

Remark 4.2. The Theorem 4.1 corresponds to Proposition 4 of [START_REF] Weil | Sur certains groupes d'opérateurs unitaires[END_REF]. Weil proves it showing that γ(n) is a negative real number of absolute value 1 and hence we need further remarks to conclude the proof. Calculating explicitly the volume vol(ρ -1 ((O A ) * ), dz) we could conclude for R of characteristic zero.

In the general case we are no more sure that we are calculating integrals over subsets of non-zero volume so we can solve the problem making integrals over pro-p-groups.

The Witt group

In this paragraph we introduce the definition of Witt group of F and we prove that γ defines a of this group.

Let G 1 , G 2 be two finite dimensional vector spaces over F and f 1 , f 2 be two non-degenerate quadratic forms on G 1 and G 2 . We define

) + f 2 (x 2 ) for every x 1 ∈ G 1 and x 2 ∈ G 2 .