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CONTINUOUS-IN-TIME FINANCIAL MODEL FOR PUBLIC COMMUNITIES ∗Emmanuel Frénod1 and Mohamad Safa2Abstrat. The ahievement of a projet requires tools to monitor and adjust its evolution over time.Rather than to hek at mid-term whether the objetives will be ahieved or not, and adjust them, itis interesting to develop a ontrol tool in order to e�etively ondut the projet's objetives. In thispaper, we improve the ontinuous-in-time �nanial model developed in Frénod & Chakkour [2℄, thatdesribes working of loan and repayment, in order to prepare its apability to be used in ontrol theoryapproah. The aim of this study is to determine the optimal loan shedule taking into aount theobjetive of the projet, the inome and the spending. For that, we set out an optimal ontrol methodfor the strategy elaboration phase to better adjust the projet implementation.Résumé. La réalisation d'un projet néessite des outils pour surveiller et ajuster son évolution au �ldu temps. Plut�t que de véri�er à mi-parours si les objetifs seront atteints ou non, et les adapter, il estintéressant de développer un outil de ontr�le a�n de mener e�aement les objetifs du projet. Danset artile nous adaptons le modèle �nanier ontinu en temps, développé par Frénod & Chakkour [2℄ etqui dérit la façon d'emprunter et de rembourser, a�n l'utiliser dans le adre de la théorie de ontr�le.Le but 'est de déterminer la stratégie d'emprunt optimal pour atteindre les objetifs d'un projet.Cette stratégie doit tenir ompte du délai du projet, du taux d'intérêt de l'emprunt, des reettes etdes dépenses ourantes. Une fois ette stratégie est établie, et tout au long du déroulement du projet,il est indispensable de ontr�ler la façon dont le plan de l'emprunt est implémenté. Pour ela, nousavons mis en plae une méthode de ontr�le optimal de la phase d'élaboration de la stratégie, a�n demieux ajuster la mise en ÷uvre de l'implémentation du projet.IntrodutionA projet is a temporary ativity group designed to produe a produt, servie or result. A projet istemporary in that sense it has a de�ned beginning and end in time and so a lifetime. When the projet involvesa loan, it is neessary to �nd the best strategy in order to ahieve the goals of the projet, minimizing the ostof the loan. This strategy should be able to ahieve the projet goals on time under onstraints that may beimposed by law, taxes, banking institutions and more generally by the projet environment. It gives rise to theloan sheme whih is the way that the amounts onerned by the loan will be borrowed.One this strategy set out, and all along the projet implementation, it is needed to ontrol the way theloan sheme is implemented. The objetive is to ounterbalane the gap between the reality of the environmentin whih the projet takes plae and the foreast made during the strategy elaboration.
∗ This work is jointly funded by MGDIS ompany (http://www.mgdis.fr/) and the PEPS program Labex AMIES(http://www.agene-maths-entreprises.fr/)
1 Univ. Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, Frane
2 Univ. Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, Frane © EDP Sienes, SMAI 2013



2 ESAIM: PROCEEDINGSThere are several referenes in the literature dealing with ontinuous-in-time �nanial model. Among themwe �nd: R. Merton [5℄ whih provides an overview and synthesis of �nane theory from the perspetive ofontinuous-in-time analysis. In [7℄, S. Sundaresan surveys and assesses the development of ontinuous-in-timemethods in �nane during the period between 1970 and 2000. In addition, many studies have used ontrolengineering methods and tehniques in �nane. For example Keel [4℄ explored and extended optimal portfolioonstrution tehniques urrently found in the literature. Grigorieva & Khailov [3℄ built a ontrolled system ofdi�erential equations modeling a �rm that takes a loan in order to expand its prodution ativities.In this paper we base on a ontinuous-in-time �nanial model developed in Frénod & Chakkour [2℄ thatdesribes working of loan and repayment. This model is not designed for the �nanial market but for the publiinstitutions. The main objetive of this paper is to use this model in the framework of the ontrol theory. Forthat, we set out an optimal ontrol method for the strategy elaboration phase and an adaptive ontrol methodto better adjust the projet implementation.1. Continuous-in-time finanial modelIn this setion we improve the ontinuous-in-time �nanial model of Frénod & Chakkour [2℄ in order toaount for the projet notion and to prepare its apability to be used in ontrol theory approah. The timedomain is the interval [0,Θ], where Θ > 0 is the lifetime of the projet. We onsider that beyond Θ the spendingassoiated with the projet are done, the loan assoiated with the projet is ompletely paid o� and the projetis �nished.1.1. Variables of the modelTo haraterize the budget of a projet, we introdue the loan density κE and the density of repayment ρKwhih is onneted, as explained in Frénod & Chakkour [2℄, to the loan density by a onvolution operator:
ρK(t) = (κE ∗ γ)(t), (1)where γ is the repayment pattern. Sine the whole amount assoiated with the loan has to be repaid, γ has tosatis�es:
∫ +∞

−∞

γ(t)dt = 1. (2)We denote by KRD the urrent debt, given as the solution to the following di�erential equation:
dKRD(t)

dt
= κE(t)− ρK(t)− ρIK(t), (3)where ρIK(t) is the density of repayment of the urrent debt KRD(0) at the beginning of the period. It is alledinitial debt repayment sheme. Initial ondition for equation (3) is given by:

KRD(0) =

∫ +∞

0

ρIK(t)dt. (4)We denote by ρI(t) the density of interest de�ned by:
ρI(t) = α(t)KRD(t), (5)where α(t) is the �oating rate interest. The algebrai spending density is denoted σ(t), it takes into aountthe spending and the inome and it is given by:
σ(t) = β(t) + σg(t), (6)



ESAIM: PROCEEDINGS 3where β(t) ≥ 0 is the ��naning needs density�, it is the density of spending that are intended for the projetonly. σg(t) is the urrent spending density. We assume that β(t) ≥ 0 beause only spending are onerned.The fat that the initial time of the projet is 0 and the lifetime is Θ translates as:supp (κE) ⊂ [0,Θ], supp (κE) + supp (γ) ⊂ [0,Θ], supp (ρIK) ⊂ [0,Θ], (7)where supp (f) is the support of f .1.2. Objetives of the projetIntegrating (3) over [0, t], we obtain using (1) the following relation:
KRD(t) = KRD(0) +

∫ t

0

(κE − κE ∗ γ)(s)ds−

∫ t

0

ρIK(s)ds, (8)and using (4), we obtain:
KRD(t) =

∫ t

0

(κE − κE ∗ γ)(s)ds+

∫ ∞

t

ρIK(s)ds. (9)We want that the spending density balanes the inome density. In our model we have the following densities:
σ whih, depending on its sign, stands alternately for inome or spending, κE whih is an inome density and
ρK , ρI , ρ̃

I
K whih are spending densities. Hene the balane relation reads:

σ(t) = κE(t)− ρK(t)− ρI(t)− ρIK(t). (10)Using (9) and (5), we dedue the following relation:
σ(t) = κE(t)− (κE ∗ γ)(t)− α(t)KRD(t)− ρIK(t)

= (L[κE ])(t) − α(t)

∫ ∞

t

ρIK(s)ds− ρIK(t), (11)where the operator L is de�ned by:
(L[κE ])(t)

.
= κE(t)− (κE ∗ γ)(t)− α(t)

∫ t

0

(κE − κE ∗ γ)(s)ds, (12)is the algebrai inome density assoiated to the loan. In other words, it is the di�erene between the inomedensity indued by the loan density on the one hand and the spending density assoiated with the repaymentdensity and the interest payment density on the other hand. Using (6) we have then:
β(t) = (L[κE ])(t)− α(t)

∫ ∞

t

ρIK(s)ds− ρIK(t)− σg(t). (13)The isolated spending density β(t) is the di�erene between the algebrai inome density assoiated with theloan, and the spending densities related to the following: urrent spending, initial debt repayment and paymentof the interests of this latter.We de�ne an objetive as a ouple olletion (ci,Θi), i ∈ {1, . . . , N}, where ci is the amount whih has tobe spent for the projet at the moment Θi ∈]0,Θ[. We suppose that 0 < Θ1 < Θ2 < . . . < ΘN < Θ, and to beonsistant we need that 0 ≤ c1 ≤ c2 ≤ . . . ≤ cN . We say that the objetive is reahed if:
∫ Θi

0

β(t)dt ≥ ci, ∀i = 1, . . . , N. (14)



4 ESAIM: PROCEEDINGSThe above equation indiating that at any Θi the amount alloated to the projet is at least the amount neededfor the projet.Using this model we will establish the strategy, i.e. �nd the loan whih allows the objetives (ci,Θi) to bereahed. Furthermore, this loan is not hosen at random but have to satisfy some onditions. Typially, it mustminimize the ost of the loan. This strategy an be written as an optimal ontrol problem whih is developedin the next setion. 2. Strategy elaboration: optimize loan oastAmong all the variables introdued in the previous setion, the only one that an be modi�ed is the loandensity κE . We onsider that the repayment pattern γ and the interest rate α are essentially imposed by bankinginstitutions. The density of algebrai spending σ is imposed by the projet environment. Hene γ, α and σ are,at the level of the strategy elaboration, foresights of what they will be when the projet will be implemented.We introdue the loan ost whih is indued by interest payments CI [κE ] and whih is de�ned as:
CI [κE ] =

∫ ∞

0

(

ρI [κE ]
)

(t)dt, (15a)where ρI is the funtional that links loan density κE to density of interest ρI :
(

ρI [κE ]
)

(t) = α(t)KRD(t) = α(t)

(
∫ t

0

(κE − κE ∗ γ)(s)ds+

∫ ∞

t

ρIK(s)ds

)

, (15b)and the total amount of the loan CE [κE ] is de�ned by:
CE [κE ] =

∫ ∞

0

κE(t)dt. (16)Minimizing loan oast onsists in �nding loan density κE that minimizes the loan oast CI [κE ].We introdue now the following two optimization problems in a intuitive and not mathematially ompletelyrigorous way. Those problems alled (O1) and (O2) will then be inserted within rigorous framework in the nextsetion.2.1. O1. Optimization of the spending.Given (ci,Θi), i ∈ {1, . . . , N}, �nd the loan density κ̆E solution to:
CI [κ̆E ] = min

κE

CI [κE ], (17a)subjet to:
∫ Θi

0

β(t)dt ≥ ci, ∀i = 1, . . . , N. (17b)In this problem we seek the optimal loan density κ̆E(t) that minimizes the ost of the loan, onsidering that theamount alloated to the projet until Θi ∈]0,Θ[ is at least the amount ci needed for the projet at Θi. Thereis no uniqueness of the solution to problem (O1). Among its solution of problem (O1) some are subjeted toperturbations whih are numerial arti�es that are irrelevant from �nanial slant. We will therefore build amethod based on �ltering theory to eliminate those perturbations. Several �lters will be investigated in nextsetion to hoose a suitable one to be inorporated in our method. We introdue here the general framework ofthe �ltering based problem whih is set in terms of an optimization problem.



ESAIM: PROCEEDINGS 52.2. O2. Filtering perturbed solutions to (O1) by an optimization problem.From all solutions κ̆E(t) resulting from (O1), we denote by “κE(t) the desired unperturbed solution obtainedby eliminating the perturbations in κ̆E(t), whih is de�ned by:
“κE(t) = κ̆E(t)− “G(t), (18)where “G(t) represents the perturbations density. “G(t) is obtained as the result of the following optimizationproblem (alled (O2)) whih an be written generially as: given κ̆E(t), �nd “G(t) solution of:

min
G

F (κ̆E , G), (19a)where the de�nition of the funtional F is given in Setion (4.1) and depends on the �lter whih is used. Theproblem (19a) is subjet to the following onstraints:
∫ Θi

0

β(t)dt ≥ ci, ∀i = 1, . . . , N. (19b)Moreover, sine G is the perturbation to be removed, it satis�es:
∫ Θ

0

G(t)dt = 0. (19)This is then a supplementary onstraint for optimization problem (O2).3. Optimization problem (O1)3.1. Mathematial framework of optimization problem (O1)The objetive of this setion is to build the mathematial framework of the optimal ontrol problem. Wesuppose that κE(t), γ(t) and ρIK(t) introdued in setion 1.1 are in L2([0,Θ]) and α(t),KRD(t) are in L∞([0,Θ]).Let U be the set of admissible loan densities κE(t) ∈ L2[0,Θ], suh that κmax
E (t) ≥ κE(t) ≥ 0, where κmax

E (t) ∈
L∞([0,Θ]) is the maximal loan densities that an be borrowed. The admissible loan density should allow tohave a positive �naning needs:

β(t) ≥ 0. (20)By using (13), equation (20) is equivalent to write:
(

L[κE ]
)

(t) ≥ σg(t) + α(t)

∫ ∞

t

ρIK(s)ds+ ρIK(t), (21)and equation (17b) an be written in the next form:
∫ Θi

0

(L[κE ])(t)dt ≥ ci +

∫ Θi

0

[

α(t)

∫ ∞

t

ρIK(s)ds+ ρIK(t) + σg(t)

]

dt, ∀i = 1, . . . , N. (22)We an rewrite the optimization problem in a rigorous form. Denoting U the set of funtion κE(t) ∈ L2[0,Θ]whih satisfy the onditions:



6 ESAIM: PROCEEDINGS
κmax
E ≥ κE(t) ≥ 0, (23a)

(

L[κE ]
)

(t) ≥ µ(t), (23b)
∫ Θi

0

(L[κE ])(t)dt ≥ ci +

∫ Θi

0

µ(t)dt, ∀i = 1, . . . , N, (23)where
µ(t) = σg(t) + α(t)

∫ ∞

t

ρIK(s)ds+ ρIK(t), (24)we searh a solution κE(t) of the following optimization problem :
CI [κ̆E ] = min

κE∈U
CI [κE ]. (25)It is realled that funtions σg(t), ρIK(t), α(t) and γ(t) are onsidered as known and are model inputs.From now on, we work with a �xed interest rate α, in this ase we an show that solving the problem (25)is equivalent to solve the following problem:

CE [κ̆E ] = min
κE∈U

CE [κE ], (26)whih means: minimize the ost of the loan is equivalent to minimize the total amount of the loan. The latteris the problem that we will be interested in. We have the following lemma:Lemma 1. For a �xed α ≥ 0, eah funtion κE ∈ L2([0,Θ]) solution of (25) is also solution of (26) and vieversa.3.2. Existene of solutions for optimization problem (O1)In this setion we show the existene of solutions for optimization problem (26). By introduing the followingnotation:
Fg

.
=
{

f ∈ L2[0,Θ]; f ≥ g
}

, for g ∈ L2[0,Θ], (27)and the ontinuous funtionals Ψi, i = 1, . . . , N , de�ned by:
Ψi : L

2[0,Θ] → R

f 7−→ Ψi(f) =

∫ Θi

0

L(f(t))dt,
(28)we an then rewrite U in the next form:

U = F0 ∩ −F−κmax

E
∩ L−1(Fµ(t)) ∩

[

N
⋂

i=1

Ψ−1
i

(

[ci +

∫ Θi

0

µ(s)ds,+∞[

)]

. (29)We will invoke the following theorem whih proof an be found in Cohen [1℄.Theorem 2. Let V be a subspae of a Hilbert spae. If J : V 7→ R̄ is a lower semi-ontinuous funtion, onvexeand oerive on V , if V is onvexe and losed, if
Dom(J) ∩ V 6= ∅, where Dom(J) = {x ∈ V ; J(x) < +∞} ,then there exists at least a solution of the optimization problem: min

x∈V
J(x).



ESAIM: PROCEEDINGS 7Using Theorem 2 we obtain the next theorem:Theorem 3. If set U given by (29) is suh that U 6= ∅, then optimization problem (26) has at least one solution.Proof. The set U given by (29) is onvex and losed beause it is the intersetion of losed sets. In fat Fg is alosed set, L is a ontinuous linear operator and Ψ is a ontinuous operator. The funtional:
CE : L2[0,Θ] → R

f 7−→ CE [f ] =

∫

Θ

0

f(t)dt,
(30)is a ontinuous funtion. In addition, CE is a onvex funtion beause it is linear on U and oerive beause Uis a bounded set (onstraint (23a)). Sine Dom(CE) = L2([0,Θ]) and aording to Theorem 2, if U 6= ∅ thenoptimization problem (26) has at least one solution. �4. Optimization problem (O2)4.1. Mathematial framework of optimization problem (O2)In this setion we build a mathematial framework for the optimization problem (O2) introdued in Setion 2.We suppose the optimal loan density κ̆E(t) and the perturbation density “G(t) are in L2([0,Θ]). The funtional

F introdued in Setion 2 is a map from L2[0,Θ]×L2[0,Θ] to R. Having κ̆E(t) resulting from (O1), we searh
“G(t) solution of the next optimization problem. Given κ̆E(t), �nd “G(t) solution of:

min
G

F (κ̆E , G) (31)subjeted to the same onstraints of (O1), where κE(t) is replaed by κ̆E(t) − G(t) in formulas (23), and toonstraint (19). We an rewrite this optimization problem alled (O2) in a rigorous form. Denoting U2 the setof funtion G ∈ L2([0,Θ]) whih satisfy the onditions:
κ
max

E ≥ κ̆E(t)−G(t) ≥ 0, (32a)
(

L[κ̆E −G]
)

(t) ≥ µ(t), (32b)
∫

Θi

0

(L[κ̆E −G])(t)dt ≥ ci +

∫

Θi

0

µ(t)dt, ∀i = 1, . . . , N, (32)
∫

Θ

0

G(t)dt = 0. (32d)where µ(t) is de�ned by (24). For given κ̆E(t) obtained from the optimization problem (O1), we searh “G(t)solution of the next optimization problem:
min
G∈U2

F (κ̆E , G), (33)and we thus obtain the unperturbed solution “κE(t) = κ̆E(t)− “G(t). The type of �lter that we will use dependson the hoie of F . We will investigated two types of �lters: the �rst one is based on the thresholding methodand the seond on the total variation denoising (TVD).4.1.1. Thresholding methode.It onsists in eliminating the low and very high frequeny of a signal, by writing the funtional F , for all Yand G in L2[0,Θ], as the following form:
F (Y,G) = λ1

∫ +∞

−∞

|G(t)|2 dt+ λ2

∫ +∞

−∞

∣

∣

∣

∣

F−1

(

F

(

∂(Y −G)

∂t

)

ρη

)∣

∣

∣

∣

dt, (34)where F is the Fourier transform operator and for �xed η > 0, ρη(t) = 0 if |t| > η. The seond member of (34)ollets the mid-frequeny of the derivative of (Y −G)(t).



8 ESAIM: PROCEEDINGS4.1.2. Total Variation Denoising (TVD).It is a tool for noise redution developed so as to preserve sharp edges in the underlying signal [6℄. In suhases we an de�ne the funtional F as:
F (Y,G) = λ1

∫ +∞

−∞

|G(t)|2 dt+ λ2

∫ +∞

−∞

∣

∣

∣

∣

∂(Y −G)

∂t

∣

∣

∣

∣

dt. (35)In (34) and (35), λ1 > 0 and λ2 > 0 are two regularization parameters to ontrol the degree of smoothing.Inreasing λ2 gives more weight to the seond term whih measures the total variation of (Y −G)(t).Sine the funtion F (Y,G) is stritly onvex for a �xed Y and the set U2 de�ned by (32) is onvex, then wehave the uniqueness of the solution of the optimization problem (O2).5. Numerial simulationsWe solve the optimization problem (26) by using the simplex method. The numerial simulations wereperformed by using Matlab. We impose the repayment pattern γ, the urrent spending σg and we seek theoptimal loan κ̆E whih allows the objetives of the projet to be realized.5.1. Example 1In Example 1, the repayment is done in a onstant way between the �rst and 6th year after borrowing.We pay o� nothing outside this period. The urrent spending density σg alternates between positive values,orresponding to periods where inome is less than spending and negative values, orresponding to periodswhere inome is larger than spending. The objetive to be ahieved are �xed at the end of the 4nd and 14thyear. The optimal loan density is given in Figure 1. As we an see on the right side of Figure 1 the onstraintsare satis�ed. For this example we have taken:
Θ = 20, n = 1000, α = 0.01, ρIK = 0, Θ1 = 4, Θ2 = 14, c1 = 6, c2 = 17.
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ESAIM: PROCEEDINGS 9Figure 1 on the right shows the isolated spending density β(t) and the isolated spending ∫ Θ

0

β(t)dt obtainedfrom Example 1. As we an see, we get β(t) ≥ 0 and ∫ Θi

0

β(t)dt ≥ ci, i = 1, 2. This means that the onstraintsof the optimization problem (O1) are satis�ed and the projet objetives are reahed.5.2. Example 2In Example 2, the repayment is only made in an inreasing way between the 7th and 11th year after borrowing.We pay o� nothing outside this period. The optimal loan density is given in Figure 2. For this example we havetaken:
Θ = 20, n = 1000, α = 0.01, ρIK = 0, Θ1 = 10, Θ2 = 12, c1 = 15, c2 = 20.
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β(t)dt ≥ ci, i = 1, 2. This means that the onstraintsof the optimization problem (O1) are satis�ed and the projet objetives are reahed.Referenes[1℄ G. Cohen. Convexité et optimisation. Cours, 2000.[2℄ E. Frénod and T. Chakkour. A ontinuous-in-time �nanial model. Work in progress, 2013.[3℄ E.V. Grigorieva and E.N. Khailov. Optimal ontrol of a ommerial loan repayment plan. Disret and ontinuous dynamialsystems, pages 345�354, 2005.[4℄ S.T. Keel. Optimal Portfolio Constrution and Ative Portfolio Management Inluding Alternative Investments. Phd thesis,ETH Zurih, 2006.[5℄ R.C. Merton. Continuous-Time Finane. Blakwell, 1st edition, 1992.[6℄ L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physia D: Nonlinear Phenomena,60(1-4):259�268, 1992.[7℄ S.M. Sundaresan. Continuous-time methods in �nane: A review and an assessment. Journal of Finane, pages 1569�1622,2000.


