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CONTINUOUS-IN-TIME FINANCIAL MODEL FOR PUBLIC COMMUNITIES ∗Emmanuel Frénod1 and Mohamad Safa2Abstra
t. The a
hievement of a proje
t requires tools to monitor and adjust its evolution over time.Rather than to 
he
k at mid-term whether the obje
tives will be a
hieved or not, and adjust them, itis interesting to develop a 
ontrol tool in order to e�e
tively 
ondu
t the proje
t's obje
tives. In thispaper, we improve the 
ontinuous-in-time �nan
ial model developed in Frénod & Chakkour [2℄, thatdes
ribes working of loan and repayment, in order to prepare its 
apability to be used in 
ontrol theoryapproa
h. The aim of this study is to determine the optimal loan s
hedule taking into a

ount theobje
tive of the proje
t, the in
ome and the spending. For that, we set out an optimal 
ontrol methodfor the strategy elaboration phase to better adjust the proje
t implementation.Résumé. La réalisation d'un projet né
essite des outils pour surveiller et ajuster son évolution au �ldu temps. Plut�t que de véri�er à mi-par
ours si les obje
tifs seront atteints ou non, et les adapter, il estintéressant de développer un outil de 
ontr�le a�n de mener e�
a
ement les obje
tifs du projet. Dans
et arti
le nous adaptons le modèle �nan
ier 
ontinu en temps, développé par Frénod & Chakkour [2℄ etqui dé
rit la façon d'emprunter et de rembourser, a�n l'utiliser dans le 
adre de la théorie de 
ontr�le.Le but 
'est de déterminer la stratégie d'emprunt optimal pour atteindre les obje
tifs d'un projet.Cette stratégie doit tenir 
ompte du délai du projet, du taux d'intérêt de l'emprunt, des re
ettes etdes dépenses 
ourantes. Une fois 
ette stratégie est établie, et tout au long du déroulement du projet,il est indispensable de 
ontr�ler la façon dont le plan de l'emprunt est implémenté. Pour 
ela, nousavons mis en pla
e une méthode de 
ontr�le optimal de la phase d'élaboration de la stratégie, a�n demieux ajuster la mise en ÷uvre de l'implémentation du projet.Introdu
tionA proje
t is a temporary a
tivity group designed to produ
e a produ
t, servi
e or result. A proje
t istemporary in that sense it has a de�ned beginning and end in time and so a lifetime. When the proje
t involvesa loan, it is ne
essary to �nd the best strategy in order to a
hieve the goals of the proje
t, minimizing the 
ostof the loan. This strategy should be able to a
hieve the proje
t goals on time under 
onstraints that may beimposed by law, taxes, banking institutions and more generally by the proje
t environment. It gives rise to theloan s
heme whi
h is the way that the amounts 
on
erned by the loan will be borrowed.On
e this strategy set out, and all along the proje
t implementation, it is needed to 
ontrol the way theloan s
heme is implemented. The obje
tive is to 
ounterbalan
e the gap between the reality of the environmentin whi
h the proje
t takes pla
e and the fore
ast made during the strategy elaboration.
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1 Univ. Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, Fran
e
2 Univ. Bretagne-Sud, UMR 6205, LMBA, F-56000 Vannes, Fran
e 
© EDP S
ien
es, SMAI 2013



2 ESAIM: PROCEEDINGSThere are several referen
es in the literature dealing with 
ontinuous-in-time �nan
ial model. Among themwe �nd: R. Merton [5℄ whi
h provides an overview and synthesis of �nan
e theory from the perspe
tive of
ontinuous-in-time analysis. In [7℄, S. Sundaresan surveys and assesses the development of 
ontinuous-in-timemethods in �nan
e during the period between 1970 and 2000. In addition, many studies have used 
ontrolengineering methods and te
hniques in �nan
e. For example Keel [4℄ explored and extended optimal portfolio
onstru
tion te
hniques 
urrently found in the literature. Grigorieva & Khailov [3℄ built a 
ontrolled system ofdi�erential equations modeling a �rm that takes a loan in order to expand its produ
tion a
tivities.In this paper we base on a 
ontinuous-in-time �nan
ial model developed in Frénod & Chakkour [2℄ thatdes
ribes working of loan and repayment. This model is not designed for the �nan
ial market but for the publi
institutions. The main obje
tive of this paper is to use this model in the framework of the 
ontrol theory. Forthat, we set out an optimal 
ontrol method for the strategy elaboration phase and an adaptive 
ontrol methodto better adjust the proje
t implementation.1. Continuous-in-time finan
ial modelIn this se
tion we improve the 
ontinuous-in-time �nan
ial model of Frénod & Chakkour [2℄ in order toa

ount for the proje
t notion and to prepare its 
apability to be used in 
ontrol theory approa
h. The timedomain is the interval [0,Θ], where Θ > 0 is the lifetime of the proje
t. We 
onsider that beyond Θ the spendingasso
iated with the proje
t are done, the loan asso
iated with the proje
t is 
ompletely paid o� and the proje
tis �nished.1.1. Variables of the modelTo 
hara
terize the budget of a proje
t, we introdu
e the loan density κE and the density of repayment ρKwhi
h is 
onne
ted, as explained in Frénod & Chakkour [2℄, to the loan density by a 
onvolution operator:
ρK(t) = (κE ∗ γ)(t), (1)where γ is the repayment pattern. Sin
e the whole amount asso
iated with the loan has to be repaid, γ has tosatis�es:
∫ +∞

−∞

γ(t)dt = 1. (2)We denote by KRD the 
urrent debt, given as the solution to the following di�erential equation:
dKRD(t)

dt
= κE(t)− ρK(t)− ρIK(t), (3)where ρIK(t) is the density of repayment of the 
urrent debt KRD(0) at the beginning of the period. It is 
alledinitial debt repayment s
heme. Initial 
ondition for equation (3) is given by:

KRD(0) =

∫ +∞

0

ρIK(t)dt. (4)We denote by ρI(t) the density of interest de�ned by:
ρI(t) = α(t)KRD(t), (5)where α(t) is the �oating rate interest. The algebrai
 spending density is denoted σ(t), it takes into a

ountthe spending and the in
ome and it is given by:
σ(t) = β(t) + σg(t), (6)



ESAIM: PROCEEDINGS 3where β(t) ≥ 0 is the ��nan
ing needs density�, it is the density of spending that are intended for the proje
tonly. σg(t) is the 
urrent spending density. We assume that β(t) ≥ 0 be
ause only spending are 
on
erned.The fa
t that the initial time of the proje
t is 0 and the lifetime is Θ translates as:supp (κE) ⊂ [0,Θ], supp (κE) + supp (γ) ⊂ [0,Θ], supp (ρIK) ⊂ [0,Θ], (7)where supp (f) is the support of f .1.2. Obje
tives of the proje
tIntegrating (3) over [0, t], we obtain using (1) the following relation:
KRD(t) = KRD(0) +

∫ t

0

(κE − κE ∗ γ)(s)ds−

∫ t

0

ρIK(s)ds, (8)and using (4), we obtain:
KRD(t) =

∫ t

0

(κE − κE ∗ γ)(s)ds+

∫ ∞

t

ρIK(s)ds. (9)We want that the spending density balan
es the in
ome density. In our model we have the following densities:
σ whi
h, depending on its sign, stands alternately for in
ome or spending, κE whi
h is an in
ome density and
ρK , ρI , ρ̃

I
K whi
h are spending densities. Hen
e the balan
e relation reads:

σ(t) = κE(t)− ρK(t)− ρI(t)− ρIK(t). (10)Using (9) and (5), we dedu
e the following relation:
σ(t) = κE(t)− (κE ∗ γ)(t)− α(t)KRD(t)− ρIK(t)

= (L[κE ])(t) − α(t)

∫ ∞

t

ρIK(s)ds− ρIK(t), (11)where the operator L is de�ned by:
(L[κE ])(t)

.
= κE(t)− (κE ∗ γ)(t)− α(t)

∫ t

0

(κE − κE ∗ γ)(s)ds, (12)is the algebrai
 in
ome density asso
iated to the loan. In other words, it is the di�eren
e between the in
omedensity indu
ed by the loan density on the one hand and the spending density asso
iated with the repaymentdensity and the interest payment density on the other hand. Using (6) we have then:
β(t) = (L[κE ])(t)− α(t)

∫ ∞

t

ρIK(s)ds− ρIK(t)− σg(t). (13)The isolated spending density β(t) is the di�eren
e between the algebrai
 in
ome density asso
iated with theloan, and the spending densities related to the following: 
urrent spending, initial debt repayment and paymentof the interests of this latter.We de�ne an obje
tive as a 
ouple 
olle
tion (ci,Θi), i ∈ {1, . . . , N}, where ci is the amount whi
h has tobe spent for the proje
t at the moment Θi ∈]0,Θ[. We suppose that 0 < Θ1 < Θ2 < . . . < ΘN < Θ, and to be
onsistant we need that 0 ≤ c1 ≤ c2 ≤ . . . ≤ cN . We say that the obje
tive is rea
hed if:
∫ Θi

0

β(t)dt ≥ ci, ∀i = 1, . . . , N. (14)



4 ESAIM: PROCEEDINGSThe above equation indi
ating that at any Θi the amount allo
ated to the proje
t is at least the amount neededfor the proje
t.Using this model we will establish the strategy, i.e. �nd the loan whi
h allows the obje
tives (ci,Θi) to berea
hed. Furthermore, this loan is not 
hosen at random but have to satisfy some 
onditions. Typi
ally, it mustminimize the 
ost of the loan. This strategy 
an be written as an optimal 
ontrol problem whi
h is developedin the next se
tion. 2. Strategy elaboration: optimize loan 
oastAmong all the variables introdu
ed in the previous se
tion, the only one that 
an be modi�ed is the loandensity κE . We 
onsider that the repayment pattern γ and the interest rate α are essentially imposed by bankinginstitutions. The density of algebrai
 spending σ is imposed by the proje
t environment. Hen
e γ, α and σ are,at the level of the strategy elaboration, foresights of what they will be when the proje
t will be implemented.We introdu
e the loan 
ost whi
h is indu
ed by interest payments CI [κE ] and whi
h is de�ned as:
CI [κE ] =

∫ ∞

0

(

ρI [κE ]
)

(t)dt, (15a)where ρI is the fun
tional that links loan density κE to density of interest ρI :
(

ρI [κE ]
)

(t) = α(t)KRD(t) = α(t)

(
∫ t

0

(κE − κE ∗ γ)(s)ds+

∫ ∞

t

ρIK(s)ds

)

, (15b)and the total amount of the loan CE [κE ] is de�ned by:
CE [κE ] =

∫ ∞

0

κE(t)dt. (16)Minimizing loan 
oast 
onsists in �nding loan density κE that minimizes the loan 
oast CI [κE ].We introdu
e now the following two optimization problems in a intuitive and not mathemati
ally 
ompletelyrigorous way. Those problems 
alled (O1) and (O2) will then be inserted within rigorous framework in the nextse
tion.2.1. O1. Optimization of the spending.Given (ci,Θi), i ∈ {1, . . . , N}, �nd the loan density κ̆E solution to:
CI [κ̆E ] = min

κE

CI [κE ], (17a)subje
t to:
∫ Θi

0

β(t)dt ≥ ci, ∀i = 1, . . . , N. (17b)In this problem we seek the optimal loan density κ̆E(t) that minimizes the 
ost of the loan, 
onsidering that theamount allo
ated to the proje
t until Θi ∈]0,Θ[ is at least the amount ci needed for the proje
t at Θi. Thereis no uniqueness of the solution to problem (O1). Among its solution of problem (O1) some are subje
ted toperturbations whi
h are numeri
al arti�
es that are irrelevant from �nan
ial slant. We will therefore build amethod based on �ltering theory to eliminate those perturbations. Several �lters will be investigated in nextse
tion to 
hoose a suitable one to be in
orporated in our method. We introdu
e here the general framework ofthe �ltering based problem whi
h is set in terms of an optimization problem.



ESAIM: PROCEEDINGS 52.2. O2. Filtering perturbed solutions to (O1) by an optimization problem.From all solutions κ̆E(t) resulting from (O1), we denote by “κE(t) the desired unperturbed solution obtainedby eliminating the perturbations in κ̆E(t), whi
h is de�ned by:
“κE(t) = κ̆E(t)− “G(t), (18)where “G(t) represents the perturbations density. “G(t) is obtained as the result of the following optimizationproblem (
alled (O2)) whi
h 
an be written generi
ally as: given κ̆E(t), �nd “G(t) solution of:

min
G

F (κ̆E , G), (19a)where the de�nition of the fun
tional F is given in Se
tion (4.1) and depends on the �lter whi
h is used. Theproblem (19a) is subje
t to the following 
onstraints:
∫ Θi

0

β(t)dt ≥ ci, ∀i = 1, . . . , N. (19b)Moreover, sin
e G is the perturbation to be removed, it satis�es:
∫ Θ

0

G(t)dt = 0. (19
)This is then a supplementary 
onstraint for optimization problem (O2).3. Optimization problem (O1)3.1. Mathemati
al framework of optimization problem (O1)The obje
tive of this se
tion is to build the mathemati
al framework of the optimal 
ontrol problem. Wesuppose that κE(t), γ(t) and ρIK(t) introdu
ed in se
tion 1.1 are in L2([0,Θ]) and α(t),KRD(t) are in L∞([0,Θ]).Let U be the set of admissible loan densities κE(t) ∈ L2[0,Θ], su
h that κmax
E (t) ≥ κE(t) ≥ 0, where κmax

E (t) ∈
L∞([0,Θ]) is the maximal loan densities that 
an be borrowed. The admissible loan density should allow tohave a positive �nan
ing needs:

β(t) ≥ 0. (20)By using (13), equation (20) is equivalent to write:
(

L[κE ]
)

(t) ≥ σg(t) + α(t)

∫ ∞

t

ρIK(s)ds+ ρIK(t), (21)and equation (17b) 
an be written in the next form:
∫ Θi

0

(L[κE ])(t)dt ≥ ci +

∫ Θi

0

[

α(t)

∫ ∞

t

ρIK(s)ds+ ρIK(t) + σg(t)

]

dt, ∀i = 1, . . . , N. (22)We 
an rewrite the optimization problem in a rigorous form. Denoting U the set of fun
tion κE(t) ∈ L2[0,Θ]whi
h satisfy the 
onditions:
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κmax
E ≥ κE(t) ≥ 0, (23a)

(

L[κE ]
)

(t) ≥ µ(t), (23b)
∫ Θi

0

(L[κE ])(t)dt ≥ ci +

∫ Θi

0

µ(t)dt, ∀i = 1, . . . , N, (23
)where
µ(t) = σg(t) + α(t)

∫ ∞

t

ρIK(s)ds+ ρIK(t), (24)we sear
h a solution κE(t) of the following optimization problem :
CI [κ̆E ] = min

κE∈U
CI [κE ]. (25)It is re
alled that fun
tions σg(t), ρIK(t), α(t) and γ(t) are 
onsidered as known and are model inputs.From now on, we work with a �xed interest rate α, in this 
ase we 
an show that solving the problem (25)is equivalent to solve the following problem:

CE [κ̆E ] = min
κE∈U

CE [κE ], (26)whi
h means: minimize the 
ost of the loan is equivalent to minimize the total amount of the loan. The latteris the problem that we will be interested in. We have the following lemma:Lemma 1. For a �xed α ≥ 0, ea
h fun
tion κE ∈ L2([0,Θ]) solution of (25) is also solution of (26) and vi
eversa.3.2. Existen
e of solutions for optimization problem (O1)In this se
tion we show the existen
e of solutions for optimization problem (26). By introdu
ing the followingnotation:
Fg

.
=
{

f ∈ L2[0,Θ]; f ≥ g
}

, for g ∈ L2[0,Θ], (27)and the 
ontinuous fun
tionals Ψi, i = 1, . . . , N , de�ned by:
Ψi : L

2[0,Θ] → R

f 7−→ Ψi(f) =

∫ Θi

0

L(f(t))dt,
(28)we 
an then rewrite U in the next form:

U = F0 ∩ −F−κmax

E
∩ L−1(Fµ(t)) ∩

[

N
⋂

i=1

Ψ−1
i

(

[ci +

∫ Θi

0

µ(s)ds,+∞[

)]

. (29)We will invoke the following theorem whi
h proof 
an be found in Cohen [1℄.Theorem 2. Let V be a subspa
e of a Hilbert spa
e. If J : V 7→ R̄ is a lower semi-
ontinuous fun
tion, 
onvexeand 
oer
ive on V , if V is 
onvexe and 
losed, if
Dom(J) ∩ V 6= ∅, where Dom(J) = {x ∈ V ; J(x) < +∞} ,then there exists at least a solution of the optimization problem: min

x∈V
J(x).



ESAIM: PROCEEDINGS 7Using Theorem 2 we obtain the next theorem:Theorem 3. If set U given by (29) is su
h that U 6= ∅, then optimization problem (26) has at least one solution.Proof. The set U given by (29) is 
onvex and 
losed be
ause it is the interse
tion of 
losed sets. In fa
t Fg is a
losed set, L is a 
ontinuous linear operator and Ψ is a 
ontinuous operator. The fun
tional:
CE : L2[0,Θ] → R

f 7−→ CE [f ] =

∫

Θ

0

f(t)dt,
(30)is a 
ontinuous fun
tion. In addition, CE is a 
onvex fun
tion be
ause it is linear on U and 
oer
ive be
ause Uis a bounded set (
onstraint (23a)). Sin
e Dom(CE) = L2([0,Θ]) and a

ording to Theorem 2, if U 6= ∅ thenoptimization problem (26) has at least one solution. �4. Optimization problem (O2)4.1. Mathemati
al framework of optimization problem (O2)In this se
tion we build a mathemati
al framework for the optimization problem (O2) introdu
ed in Se
tion 2.We suppose the optimal loan density κ̆E(t) and the perturbation density “G(t) are in L2([0,Θ]). The fun
tional

F introdu
ed in Se
tion 2 is a map from L2[0,Θ]×L2[0,Θ] to R. Having κ̆E(t) resulting from (O1), we sear
h
“G(t) solution of the next optimization problem. Given κ̆E(t), �nd “G(t) solution of:

min
G

F (κ̆E , G) (31)subje
ted to the same 
onstraints of (O1), where κE(t) is repla
ed by κ̆E(t) − G(t) in formulas (23), and to
onstraint (19
). We 
an rewrite this optimization problem 
alled (O2) in a rigorous form. Denoting U2 the setof fun
tion G ∈ L2([0,Θ]) whi
h satisfy the 
onditions:
κ
max

E ≥ κ̆E(t)−G(t) ≥ 0, (32a)
(

L[κ̆E −G]
)

(t) ≥ µ(t), (32b)
∫

Θi

0

(L[κ̆E −G])(t)dt ≥ ci +

∫

Θi

0

µ(t)dt, ∀i = 1, . . . , N, (32
)
∫

Θ

0

G(t)dt = 0. (32d)where µ(t) is de�ned by (24). For given κ̆E(t) obtained from the optimization problem (O1), we sear
h “G(t)solution of the next optimization problem:
min
G∈U2

F (κ̆E , G), (33)and we thus obtain the unperturbed solution “κE(t) = κ̆E(t)− “G(t). The type of �lter that we will use dependson the 
hoi
e of F . We will investigated two types of �lters: the �rst one is based on the thresholding methodand the se
ond on the total variation denoising (TVD).4.1.1. Thresholding methode.It 
onsists in eliminating the low and very high frequen
y of a signal, by writing the fun
tional F , for all Yand G in L2[0,Θ], as the following form:
F (Y,G) = λ1

∫ +∞

−∞

|G(t)|2 dt+ λ2

∫ +∞

−∞

∣

∣

∣

∣

F−1

(

F

(

∂(Y −G)

∂t

)

ρη

)∣

∣

∣

∣

dt, (34)where F is the Fourier transform operator and for �xed η > 0, ρη(t) = 0 if |t| > η. The se
ond member of (34)
olle
ts the mid-frequen
y of the derivative of (Y −G)(t).



8 ESAIM: PROCEEDINGS4.1.2. Total Variation Denoising (TVD).It is a tool for noise redu
tion developed so as to preserve sharp edges in the underlying signal [6℄. In su
h
ases we 
an de�ne the fun
tional F as:
F (Y,G) = λ1

∫ +∞

−∞

|G(t)|2 dt+ λ2

∫ +∞

−∞

∣

∣

∣

∣

∂(Y −G)

∂t

∣

∣

∣

∣

dt. (35)In (34) and (35), λ1 > 0 and λ2 > 0 are two regularization parameters to 
ontrol the degree of smoothing.In
reasing λ2 gives more weight to the se
ond term whi
h measures the total variation of (Y −G)(t).Sin
e the fun
tion F (Y,G) is stri
tly 
onvex for a �xed Y and the set U2 de�ned by (32) is 
onvex, then wehave the uniqueness of the solution of the optimization problem (O2).5. Numeri
al simulationsWe solve the optimization problem (26) by using the simplex method. The numeri
al simulations wereperformed by using Matlab. We impose the repayment pattern γ, the 
urrent spending σg and we seek theoptimal loan κ̆E whi
h allows the obje
tives of the proje
t to be realized.5.1. Example 1In Example 1, the repayment is done in a 
onstant way between the �rst and 6th year after borrowing.We pay o� nothing outside this period. The 
urrent spending density σg alternates between positive values,
orresponding to periods where in
ome is less than spending and negative values, 
orresponding to periodswhere in
ome is larger than spending. The obje
tive to be a
hieved are �xed at the end of the 4nd and 14thyear. The optimal loan density is given in Figure 1. As we 
an see on the right side of Figure 1 the 
onstraintsare satis�ed. For this example we have taken:
Θ = 20, n = 1000, α = 0.01, ρIK = 0, Θ1 = 4, Θ2 = 14, c1 = 6, c2 = 17.
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u(t)Figure 1. On the left we have the optimal loan κ̆E obtained for given: repayment pattern γ,obje
tives c and 
urrent spending σg (for Example 1). On the right we 
he
k if the 
onstraintsare veri�ed (for Example 1)



ESAIM: PROCEEDINGS 9Figure 1 on the right shows the isolated spending density β(t) and the isolated spending ∫ Θ

0

β(t)dt obtainedfrom Example 1. As we 
an see, we get β(t) ≥ 0 and ∫ Θi

0

β(t)dt ≥ ci, i = 1, 2. This means that the 
onstraintsof the optimization problem (O1) are satis�ed and the proje
t obje
tives are rea
hed.5.2. Example 2In Example 2, the repayment is only made in an in
reasing way between the 7th and 11th year after borrowing.We pay o� nothing outside this period. The optimal loan density is given in Figure 2. For this example we havetaken:
Θ = 20, n = 1000, α = 0.01, ρIK = 0, Θ1 = 10, Θ2 = 12, c1 = 15, c2 = 20.

0 2 4 6 8 10 12 14 16 18 20
0

0.1
0.2
0.3

Repay Patterns

 

 
γ

0 2 4 6 8 10 12 14 16 18 20
−5

0

5
Current expense

 

 
σ

g

0 2 4 6 8 10 12 14 16 18 20
0

10

20
Objectives

 

 
c

0 2 4 6 8 10 12 14 16 18 20
0

10

20
Objectives

 

 
u

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

Density of optimal loan

 

 
κ

E
 optimal

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3
β(t) ≥ 0

 

 

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

∫ β(t)dt & c
i

 

 

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30
∫ β(t)dt & u(t)

 

 

β(t)

∫ β(t)dt
c

i

∫ β(t)dt
u(t)Figure 2. Optimal loan κE obtained for given: repayment pattern γ, obje
tives c and 
urrentspending σg.Figure 2 on the right shows the isolated spending density β(t) and the isolated spending ∫ Θ

0

β(t)dt obtainedfrom Example 1. As we 
an see, we get β(t) ≥ 0 and ∫ Θi

0

β(t)dt ≥ ci, i = 1, 2. This means that the 
onstraintsof the optimization problem (O1) are satis�ed and the proje
t obje
tives are rea
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