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This article analyses the behaviour of helicoidal ends of properly embedded minimal surfaces, namely properly embedded in nite total curvature minimal annuli of parabolic type, satisfying a growth condition on the curvature via the Gauss map, and a geometric transversality condition. Then we show that embeddedness forces the end to be asymptotic either to a plane, or a helicoid or a spiraling helicoid. In all three cases, the Gauss map can be described in very simple terms. Finally this local result yields a global corollary stating the rigidity of embedded minimal helicoids.

Introduction

In this paper we tackle a relatively new problem in minimal surface theory (or rather an old problem with a new approach): the problem of embeddedness for surfaces with in nite total curvature. Indeed, most of the minimal surfaces discovered so far have been of nite total curvature (see 10] for a good overview), and this condition has been crucial in their nding and understanding. However surfaces with in nite total curvature, such as the helicoid, have been known to exist since the very beginning of the theory. Obviously, all periodic minimal examples but the plane have in nite total curvature (and often in nite genus too), although they were often studied in R 3 modulo periods, thus becoming nite total curvature and nite 1 genus examples [START_REF] Lawson | Lectures on minimal submanifolds[END_REF]). It was not known until recently whether there could exist a non-periodic surface, which was truly of in nite total curvature. Eventually D. Ho man, H. Karcher and F. Wei proved the existence of genus one \helicoid" (see 4]) 1 . Conversely some non-existence results have been obtained for the two-ended case and the Nitsche conjecture [START_REF] Collin | Topologie et courbure des surfaces minimales de R 3 , personal communication[END_REF], 10]). It it thus quite natural to wonder which such surfaces can be embedded in R 3 and this is what this article is concerned about.

The idea behind the results presented hereafter is to generalize the theorem of Osserman 7] linking nite total curvature to nite topology:

theorem Osserman] : Let M be a complete minimal surface in R 3 with nite total curvature; then M is conformally equivalent to a closed Riemann surface M with a nite number of punctures. Furthermore the Enneper-Weierstrass data extends meromorphically on M.

We hope indeed to show that embedded minimal surfaces of nite topological type with innite total curvature { provided the curvature does not grow too fast { are described by simple algebraic data dg g where g is the corresponding Gauss map. Indeed such is the case for helicoidal ends as we will see in the following. Notice that the hypothesis of embeddedness is essential, as will become clear later on (see also 12]). More information on this topic can be found in 11].

We take the example of the helicoid as a starting point. It can be parameterized globally by the Weierstrass-Enneper data (g; ) through X(z) = Re R z (g 1 g; i(g 1 + g); 2) , where g and are respectively a meromorphic function and a m eromorphic 1-form on the complex plane. Then ( g = e z = i dz describes the helicoid. There are two ways of generalizing the family of the helicoid: one is to nd minimal embeddings of the complex plane, the other is to understand locally the behavior of the end, when the end is conformally a punctured annulus. In both cases we will impose the following geometric condition: the end E intersects each horizontal plane in a single open curve. That implies that, up to a reparameterization, the 1-form is just idz (as in the case of the helicoid); consequently, the tangent plane is never horizontal, and the Gauss map g never takes the values 0 or 1.

Because the analysis of meromorphic data on C is largely determined by the behavior at in nity, the second approach encompasses the rst one, and gives additional information too. We will now state the results: Theorem 1 (local) Let M be a properly embedded minimal surface in R 3 , conformally equivalent to a punctured disk, such that its intersection with any horizontal plane is transversal and consists of either one curve di eomorphic to R, or two half-curves di eomorphic to R + (up to a rotation of the surface). If the Gauss map g, seen as a meromorphic map through the stereographic projection, has nite order in the sense of Nevanlinna, then X is asymptotic to a spiraling helicoid, or the helicoid, or the plane.

Corollary 2 (global) Let M be a properly embedded minimal plane in R 3 , which meets all but a nite number of horizontal planes (up to a rotation in space) transversely in a single open curve. If the Gauss map g, seen as a meromorphic map through the stereographic projection, has nite order in the sense of Nevanlinna, then X is the helicoid or the plane.

The behavior of helicoidal ends

Let X be an immersion from the punctured disk centered at in nity D 1 r 0 = fz 2 C; jzj r 0 g, satisfying the hypotheses of theorem 1. We contend that up to reparameterization, we have = idz. To prove that just apply the following lemma to X 3 : Lemma 1 Let u be a proper harmonic map de ned on D 1 r 0 such that the preimage u 1 (c) is di eomorphic either to R or to two copies of R + . Then, up to reparametrization, u is linear.

proof : Take any strip of the surface X 1 3 ( c; c + 1]); for c large enough, it is bounded by two curves. Its conformal type is a disk minus two disjoint curves and ; we claim that these curves are actually just points. Heuristically, we see that going to in nity on the strip is just a way of going to the puncture in D 1 r 0 . To prove this assertion consider a half-strip in D 1 r 0 , and de ne a harmonic map on going to in nity at the end, namely z 7 ! log jzj. By simple connectivity there exists a holomorphic map f having log jzj as real part; if the boundary at in nity of were conformally a curve (seen in the Poincar e disk for instance) then f would be in nite along a curve, which is impossible. So the conformal type of any strip X 1 3 ( a; b]) for jaj, jbj large enough, is a disk minus two points; furthermore these two points correspond to the same point at in nity in D 1 r 0 . In particular we map the strip conformally to = fz 2 C; 0 Im z] 1g.

We conclude by using the Phragm en-Lindel of theorem (see 13]) : assume for simplicity that X 3 (z) = 0 (respectively 1) if Im z] = 0 (respectively 1); let be a holomorphic mapping from the strip such that X 3 = Re ], and F = e +iz . Obviously jFj = e X 3 (z) Im z] is bounded on , and equal to one on @ . Then we can use an extended maximum principle, and state that jFj 1 on , proving that X 3 coincides with Im z], and with idz.

As a consequence, we claim that the Gauss map never takes the values 0 and 1. Indeed the metric ds 2 = (jgj + jgj 1 ) 2 j j 2 has to be well de ned and non-zero. As will be seen later on, g can be written as z k e f for some integer k and some holomorphic function f on D 1 r 0 . Let us study the geometry of the level curves, which correspond in our parameterization to the map t 7 ! il +t, for xed l. The normal vector to the curve is obviously = g=jgj, identifying the plane of the curve with the complex plane. Then the Frenet frame is ( ; ) = ( i g jgj ; g jgj ).

We can now derive the curvature; notice that the derivative d dt along the curve coincides with the complex derivative.

h d dt ; i = Im g 0 g ]
where h; i is the standard metric in R2 ' C. Denoting by s the arclength,

(t) = h d ds ; i = dt ds h d dt ; i = h d dt ; i (jgj 1 + jgj) So (t) = Im g 0 g ] jgj 1 + jgj (1) 
From now on we assume that the function f de ned above has bounded degree at in nity, i.e. f 2 O(z ) for some > 0 (in other words f is sum of a polynomial and a holomorphic term vanishing at in nity). We let n denote the degree of f, and suppose that n 2. Since we are interested in horizontal curves Im z = l for constant l, we will restrict ourselves to non-negative l; we can then de ne on the upper half plane a complex logarithm and write g = e H with H(z) = f(z) + k log z. Also h will be the derivative H 0 . We rewrite (1) as

(t) = 2 Im h] cosh Re H] (2) 
then the curve l (t) = (X 1 + iX 2 )(il + t) satis es the equation d l dt = i 2 cosh Re H]e iIm H] The curves l may be very complex, and increasingly complex as n grows. However we are able to show a very simple asymptotic behavior. For this we will need the Lemma 2 For any de ne x (t) = h l (t); e i i. Let t n be the sequence of local maxima (resp. minima) of x . For jlj large enough, there exists t independent of such that the sequence x (t n ) is increasing (resp. decreasing) to in nity, when t > t.

proof : Let A(t); B(t) denote the real and imaginary parts of H(il + t) respectively; then the extrema of x are exactly the zeros of sin(B(t) ). We will suppose always that is chosen in 0; 2 . Moreover A(t) A 0 t a and B(t) B 0 t b for some non-negative 2 integers a and b, since deg(f) = n 2. Since b > 0, obviously B is strictly increasing or decreasing for some l large and t large, independently of . Say for simplicity that B is increasing, then B is a di eomorphism for large t; let be its inverse. Finally let u k = (k + ) correspond to the k-th extremum for large k 2 N. Then the variation of x between two successive extrema is:

k = 1 2 u k+1 Z u k cosh A(u) sin(B(u) ) du = 1 2 (k+1) Z k cosh( (t + )) sin(t) 0 (t + ) dt
We want to compare it with k 1 using a change of variable

k = 1 2 k Z (k 1)
cosh( (t + + )) sin(t) 0 (t + + ) dt

Since a > 0, cosh A( (u)) 0 (u) is a positive increasing function and so is its derivative; then for all u greater than some û. cosh A( (u + )) 0 (u + ) 2 + cosh A( (u)) 0 (u) by the mean value theorem. So that k and k 1 always have opposite signs and j k j 1 + j k 1 j for all k k. We conclude that the maximal values (resp. minimal) of x increase (resp. decrease) towards in nity.

Using this lemma, we can prove that l is asymptotically a diverging spiral, i.e. there exist functions and both going to in nity, strictly monotone, such that l (t) = (t)e i (t) , when t is large enough. To construct those functions consider a ray from the origin, with angle . Using the intermediate values theorem, we deduce from the previous lemma that the ray meets our curve a in nite number of time, at least for t > t (just consider = + =2). If the ray does not meet the curve tangentially, we can parameterize locally in polar coordinates. If that is not so, then x + =2 has an extremum at that point, with a value of zero. This contradicts again the lemma, so we can parametrize globally in polar coordinate, which proves that is strictly monotonic. Suppose now that we can nd t 1 arbitrarily large, such that (t 1 ) is smaller than some xed value ~ . Let e i 1 be a tangent vector to l at t 1 , then x 1 + =2 has an extremum at t 1 ; but we know that for t big enough, jx 1 + =2 (t)j > ~ .

We now have a good description of the asymptotic behavior of the curve l for almost all l.

Both in nite branches are spirals.

remark 1 : If b = deg(B) is odd, the curve is obviously not embedded (see gure 1). Indeed both branches spiral to in nity with opposite winding directions; they are bound to meet each other in nitely many times. Indeed compare the two branches: t 7 ! l (t) and t 7 ! l ( t) when t ! +1. By the previous calculations we obtain almost identical results, except for the angle (t): in one case it is increasing, in the other, decreasing (or just notice that the curvature has the same sign when t ! 1). 3 A geometrical criterion for self-intersection

We will now give a criterion for any plane curve that will ensure self-intersection. Let be such a curve, parameterized by its tangential angle in complex coordinates; namely d d = e i ( ) where is the curvature (of the curve).

Lemma 3 Let 0 be such that (i) is non-negative increasing on 0 3

2 ; 0 ], (ii) 
is non-negative decreasing on 0 ; 0 + 3 2 ], (iii) ( ) ( 2 ) and ( ) ( 2 ), then has a self-intersection between 0 3 2 and 0 + 3 2 . The same is true if is replaced by .

0 π/2 π 3π/2 -3π/2 -π -π/2
Figure 2: Typical case proof : By rotating and translating the curve in the plane, we can assume that 0 = 0 and (0) = 0. Then hypothesis (i) (respectively (ii)) implies that Re ( )] is positive (respectively Re ( )] 0), and both imaginary parts are positive. Indeed:

=2 Z 0 cos ( ) d 1 ( =2) while Z =2 j cos j ( ) d 1 ( =2)
The same goes for ( ). If does not already self-intersect between and , then one of the two branches is under the other one (see gure 2). Say Im ( )] Im ( )]. In that case, a su cient condition for ( ; 3 =2]) to intersect ( ; 0]) is Re ( =2)] Re (3 =2)] by continuity. Namely, from to 3 =2, Re ] decreases at least from:

3 =2 Z cos ( ) 3 =2 Z cos ( ) = 1 ( ) < 0
Conversely, Re ( =2)] is bounded below by 1 ( =2) . Hence the condition (iii).

An analytical criterion for self-intersection

We now give an analytical criterion on the holomorphic Gauss map g for self-intersection, using the previous geometrical criterion. Proposition 4 If there exists a sequence of z n going to in nity such that (i) jg(z n )j = 1, (ii) Let e i n = h(z n )=jh(z n )j; then e i n is di erent from 1; i , (iii) max jtj 2 sin njh(zn )j ;t2R h 0 (z n + t) h 2 (z n ) 2 o(sin 2 n cos 2 n ) then lemma 3 applies.

proof: The key idea is to make an appropriate change of variable (or \zooming") around the z n . We will prove that close to z n , there is a maximum or minimum of the curvature, while the tangent angle varies enough around z n to satisfy the conditions of lemma 3. Close to z n , g does not vanish, hence we can integrate h into H, and write g = e H with the assumption that Re H(z n )] = 0. We now make the following change of variable: u = sin n jh(z n )jt, and denote Ĥ(u) = H(z n + t(u)), ĥ(u) = d Ĥ=du = h(zn+t(u)) sin njh(zn)j . Asymptotically, u is the tangent angle. We rewrite the hypotheses at z n as: (i') Re Ĥ(0)] = 0 (ii') e i n = sin n ĥ(0) and e i n is di erent from 1; i. We now write the expression for the curvature and its derivative:

1 2 (u) = Im ĥ] cosh Re Ĥ] 1 2 d du = Im ĥ0 (u)] Re ĥ] Im ĥ] tanh(Re Ĥ]) cosh Re Ĥ]
Let us write the expansion of the above quantities, taking u to be bounded (say juj 2 ):

Ĥ(u) = H(z n ) + (cot n + i)u + R(u) R(u) = R u 0 R v 0 ĥ0 (w) dwdv Re Ĥ(u)] = cot n u + Re R(u)] tanh(Re Ĥ(u)]) = cot n u + Re R(u)] + o(u 2 + jRj 2 (u)) then the numerator of 1 2 d =du is: Im R 00 (u)] (cot n + Re R 0 (u)])(1 + Im R 0 (u)])(cot n u + Re R(u)] + o(u 2 + jRj 2 (u)) = Im R 00 (u)] cot 2 n u + o(cot 2 n )
because u is bounded. That implies that d =du vanishes at some point u 0 within the bounds, for n big enough. Indeed hypothesis (ii') guarantees that cot n is well-de ned and di erent from zero; thus u 0 R 00 (u 0 )

cot 2 n o (1) 
Since actually R 00 (u) tan 2 n 2 o(sin 2 n ), u 0 ! n!1 0. Now that we have a local maximum at u 0 for (u), there remains to prove the growth conditions for lemma 3. Let u k be the rst time that the tangent angle Im Ĥ] hits the value Im Ĥ(u 0 )]+k =2 for some integer k: k 2 = (u k u 0 ) + Im R(u k ) R(u 0 )] Obviously for jkj 3 and large n, u k remains within the bounds of the hypotheses, and we are entitled to write

u k = k 2 + o(cos 2 n ) k 2
Clearly increases on u 3 ; u 0 ] and decreases on u 0 ; u 3 ]. We nally evaluate

(u k ) = 1 + Im R 0 (u)] cosh(cot n (u k + o(1))) = 1 + Im R 0 (u)] cosh(cot n (k =2 + o(1)))
Since cosh is an even function that increases on R + , we get cosh(cot n ( + o(1))) cosh(cot n ( =2 + o(1))) > 1 for large n. So (u 2 ) < (u 1 ) and (u 2 ) < (u 1 ).

The assertion (iii) of the proposition 4 can be readily modi ed into a more usable condition. Lemma 5 Let be any meromorphic function on the plane, (z n ) a given sequence of complex numbers, and ( n ); (K n ) two sequences of non-negative real numbers, such that K n n ! n!1 0. Then (a) implies (b):

(a) max jz znj Kn j (zn )j 0 (z)

(z) 2 2 O( n ) (b) max jz znj Kn j (zn )j 0 (z) (z n ) 2 2 O( n ) proof: Since 0 (z) (z n ) 2 = 0 (z) (z) 2 (z) (z n ) 2
there remains to estimate j (z)= (z n )j for jz z n j K n =j (z n )j. If (a) is true, the derivative d dz (1= ) is bounded by O( n ) on that same interval; thus:

1 (z) 1 (z n ) jz z n j O( n ) K n j (z n )j O( n ) so (z n ) (z) 1 O(K n n ) ! n!1 0
We apply lemma 5 to proposition 4 with = h = g 0 =g, K n = 2 = sin n and n = n sin 2 (2 n ) with n ! n!1 0. The condition K n n ! n!1 0 is obviously satis ed. Hence we can replace condition (iii) with an analytically more satisfying criterion.

Functions of nite order of growth

We now turn to functions g, meromorphic in a neighborhood of in nity D 1 r 0 = fz 2 C; jzj r 0 g. We de ne as usual (see 3] for instance) A(r) to be the area of the image of r 0 jzj r by g on the Riemann sphere, counted with multiplicity, divided by 4 . Then the characteristic function (according to Ahlfors-Shimizu) for g is:

T(r) = r Z r 0 A(t) dt t
and the growth order of g is equal to:

= lim r!1 log T(r) log r
We use this terminology and the following Lemma 6 If g is a non-vanishing holomorphic function on D 1 r 0 and g has nite order of growth in the sense de ned above, then h = g 0 =g extends meromorphically at in nity (in particular jh(z)j 2 O(z k ) for some positive k).

proof: for a beautiful self-contained proof of this, see 11].

Finally we derive the main result: proof of the theorem : Using the previous lemma, we conclude that h can be written with a Laurent expansion around in nity containing a nite number of positive exponents:

h(z) = k=p X k= 1 a k z k
We proceed to prove the following: Hypothesis (iii) of the analytic criterion (proposition 4) is always satis ed, provided p 0 (if not see below). Indeed, using lemma 5 we simply consider the derivative of 1=h, which vanishes at in nity. Thus the hypothesis is strongly satis ed, indeed max t2R h 0 (z n + t) h(z n + t) 2 2 O(z p 1 ) for any sequence z n such that j Im z n j ! n!1 1. There remains to nd such a sequence with appropriate angle conditions. Suppose p 1. We write z n as a zero of log jgj = Re R z h] : log jgj = X k p;k6 = 1 Re a k k + 1 z k+1 + a 1 log z] = Re a p p + 1 z p+1 ](1 + O( 1 z ))

It will soon be obvious that the exact modulus of a p does not matter, so let us assume that a p = e i ja p j. Then the argument n of z n may take the following values:

n 2(p + 1) p + 1 + o(1) mod p + 1

Consider now e i n = h(z n )=jh(z n )j. Since h(z) a p z p , so n is congruent to + p n + o(1) mod 2 : n p + 1 + p 2(p + 1) + o(1) mod p p + 1

The adherence of the n is contained in p+1 + p 2(p+1) + p p+1 Z, which cannot be included into any 2 Z, unless 4p p+1 0 mod 2 . That may happen only if p = 1, and = =2 mod . That case has a very particular behavior and requires a special proof; see lemma 7 below. Otherwise we deduce easily that the e i n stay uniformly away from 1; i, for some sequence z n satisfying jg(z n )j = 1. We conclude using proposition 4. See gure 3 for an example of the loops, existing for most level curves.

If p = 0, we have something that is very much like the helicoid or one of its conjugates: g(z) = z k e a 0 z+c+O(1=z) for some integration constant c. Thus B(t) = arg g(t + il)] = Im a 0 ]t + Re a 0 ]l + k arg(t + il) + Im c] + O(1=z) If Im a 0 ] 6 = 0, deg(B) is odd, and using remark 1 (page 5) we see that the surface selfintersects obviously. If on the contrary a 0 is real, a necessary condition for embeddedness is jkj 1 (otherwise, for large l, B(t) would be increasing and span k , thus forcing self-intersection). If k = 1, this argument cannot be applied, and the upper (or lower) half-plane is embedded; but not the whole surface, which is not well de ned, because there is a period around the end 3 . Indeed we show that Z jzj=r (g + g 1 ) dz = 2 ie c Say k = 1 (otherwise take g 1 ), then Since e a 0 z =z extends to the whole complex plane, we can evaluate its residue at zero, and conclude. There remains only the possibility of k = 0, as in the case of the helicoid.

Such an end can exist and be embedded, two possibilities exist: either the unknown term O(1=z) vanishes completely, and we have exactly a helicoid, or there is a non-zero term in the Laurent expansion, and up to simple reparametrization, g(z) = e z e (z) where Figure 3: example of application of the geometric criterion: surface with imbricated spirals for g = e z 3 , where almost all level curves make a self-intersection loop.
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(z) = az n +O(z n 1 ). Such surfaces exist and are embedded; their level curves have an asymptotic direction similar to the helicoids, but they are not asymptotic to lines. Indeed _ l = d l dt = i 2 cosh(t + Re ])e i(l+Im ]) and _ l j _ l j ! t! 1 ie il while h d l dt ; e il i = 1 2 cosh(t + Re ]) sin Im ] notice now that Im ] is asymptotically greater than t n 1 times a constant, and R 1 0 cosh t sin t n 1 dt is a diverging integral. So theses examples are qualitatively di erent from the helicoid. They are embedded at the end though because of the asymptotic behaviour just quoted above.

If p is actually less than zero, then the surface has nite total curvature, and is necessarily the plane. Notice indeed that the end is not horizontal (since X 3 ! 1 when jzj ! 1). So the Gauss map has a nite non-zero limit at in nity, in particular k = 0. It is branched, since lim jzj!1 h(z) = 0 by hypothesis. The end cannot be catenoidal, is it asymptotic to a plane.

Lemma 7 With all the previous notations, suppose that h(z) a 1 z and a 1 is pure imaginary; then the surface is not embedded and actually not even proper.

proof : We write g = e H where H(z) = a 1 z 2 =2 + a 0 z + k log z + c + o(1), where c is an integration constant. Up to translation and dilation in C, we can assume that a 1 = i and a 0 = 0. We will construct a path on the surface which goes to in nity in C but stays at bounded distance in R 3 . Let (s) denote a path in C, not necessarily horizontal this time. Still writing A = Re H] and B = Im H], we have the following equation for = X 1 + iX 2 :

i d ds = e iB (e A 0 + e A 0 ) We would like A to be bounded, knowing that A(re i ) = r 2 sin 2 + k log r + c + o(1) (c denotes any constant). If we choose such that sin 2 = k logr r 2 as r goes to in nity, and denote by (s) that curve parameterized by its arclength (for the standard metric in C); then A( (s)) c + o [START_REF] Collin | Topologie et courbure des surfaces minimales de R 3 , personal communication[END_REF]. Notice also that l(s) = Im (s)] ! t!1 0, t(s) = Re (s)] = s + o(1) and 0 (s) ! s!1 1. Thus i d ds = C 1 e it(s) 2 =2 (cosh c + o(1)) = C 2 e is 2 =2 + o(1) C 1 ; C 2 appropriate complex constants. But this integral is de nite, indeed proof of the corollary : We have a one-ended minimal surface, conformally equivalent to C. Since is has only one end, the surface cannot have nite total curvature. The general form of the Gauss map is g(z) = R(z)e (z) for some entire function and rational function R having poles and zeros where X 3 has a critical point (horizontal tangent plane). For some integer k, z k R(z) ! z!1 C 6 = 0; 1 , so we can rewrite R(z) as Cz k e (z) with holomorphic on D 1 r for large r. Applying the theorem, we know that k = 0 and the Gauss map can be written as g(z) = Ce z e (z) where (z) 2 O(1=z) is entire. So is identically zero, we have a helicoid.

Figure 1 :

 1 Figure 1: Example of non-embedded disk when deg(B) is odd. Here g = e z 2 and B(t) = 2ilt.

  is not properly immersed (see gure 4).

Figure 4 :

 4 Figure 4: An example of non proper minimal immersion for g = e iz 2 (only the points with negative third coordinate are shown). The level curve for X 3 = 0 does not go to in nity.

Its end is asymptotic to a helicoid, hence embedded. It not proven yet whether the whole surface is embedded.

However it is possible for B to \drop in degree", i.e. let b = 0 for a nite set of values of l .

It is obvious from the Weierstrass-Enneper representation that a residue for g or g 1 at any point means a period for X1 or X2 around that point.
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