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Abstract

This article analyses the behaviour of helicoidal ends of properly embedded minimal sur-
faces, namely properly embedded infinite total curvature minimal annuli of parabolic type,
satisfying a growth condition on the curvature via the Gauss map, and a geometric transver-
sality condition. Then we show that embeddedness forces the end to be asymptotic either
to a plane, or a helicoid or a spiraling helicoid. In all three cases, the Gauss map can be
described in very simple terms. Finally this local result yields a global corollary stating the
rigidity of embedded minimal helicoids.

Key words: minimal surface, infinite total curvature, annular end, helicoid, embedded-
ness, essential singularity.
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1 Introduction

In this paper we tackle a relatively new problem in minimal surface theory (or rather an old
problem with a new approach): the problem of embeddedness for surfaces with infinite total
curvature. Indeed, most of the minimal surfaces discovered so far have been of finite total
curvature (see [10] for a good overview), and this condition has been crucial in their finding
and understanding. However surfaces with infinite total curvature, such as the helicoid, have
been known to exist since the very beginning of the theory. Obviously, all periodic minimal
examples but the plane have infinite total curvature (and often infinite genus too), although
they were often studied in R® modulo periods, thus becoming finite total curvature and finite



genus examples ([6]). It was not known until recently whether there could exist a non-periodic
surface, which was truly of infinite total curvature. Eventually D. Hoffman, H. Karcher and
F. Wei proved the existence of genus one “helicoid” (see [4])!. Conversely some non-existence
results have been obtained for the two-ended case and the Nitsche conjecture ([1], [10]). It it
thus quite natural to wonder which such surfaces can be embedded in R® and this is what this
article is concerned about.

The idea behind the results presented hereafter is to generalize the theorem of Osserman [7]
linking finite total curvature to finite topology:

THEOREM [OSSERMAN] : Let M be a complete minimal surface in R® with finite total cur-
vature; then M is conformally equivalent to a closed Riemann surface M with a finite number
of punctures. Furthermore the Enneper-Weierstrass data extends meromorphically on M.

We hope indeed to show that embedded minimal surfaces of finite topological type with infi-
nite total curvature — provided the curvature does not grow too fast — are described by simple
algebraic data i—g where g is the corresponding Gauss map. Indeed such is the case for helicoidal
ends as we will see in the following. Notice that the hypothesis of embeddedness is essential, as
will become clear later on (see also [12]). More information on this topic can be found in [11].

We take the example of the helicoid as a starting point. It can be parameterized globally by
the Weierstrass-Enneper data (g, n) through X (z) = Re [*(¢7' - ¢,i(¢7 1+ ¢),2)n, where g and
7 are respectively a meromorphic function and a méromorphic 1-form on the complex plane.

Then
g=¢
n=1dz

describes the helicoid. There are two ways of generalizing the family of the helicoid: one is to
find minimal embeddings of the complex plane, the other is to understand locally the behavior
of the end, when the end is conformally a punctured annulus. In both cases we will impose the
following geometric condition: the end F intersects each horizontal plane in a single open curve.
That implies that, up to a reparameterization, the 1-form 7 is just ¢dz (as in the case of the
helicoid); consequently, the tangent plane is never horizontal, and the Gauss map g never takes
the values 0 or oco.

Because the analysis of meromorphic data on C is largely determined by the behavior at
infinity, the second approach encompasses the first one, and gives additional information too.
We will now state the results:

Theorem 1 (local) Let M be a properly embedded minimal surface in R?, conformally equiv-
alent to a punctured disk, such that its intersection with any horizontal plane is transversal and
consists of either one curve diffeomorphic to R, or two half-curves diffeomorphic to Ry (up
to a rotation of the surface). If the Gauss map g, seen as a meromorphic map through the

'Tts end is asymptotic to a helicoid, hence embedded. It not proven yet whether the whole surface is embedded.



stereographic projection, has finite order in the sense of Nevanlinna, then X is asymptotic to a
spiraling helicoid, or the helicoid, or the plane.

Corollary 2 (global) Let M be a properly embedded minimal plane in R®, which meets all but
a finite number of horizontal planes (up to a rotation in space) transversely in a single open
curve. If the Gauss map g, seen as a meromorphic map through the stereographic projection,
has finite order in the sense of Nevanlinna, then X is the helicoid or the plane.

2 The behavior of helicoidal ends

Let X be an immersion from the punctured disk centered at infinity Dy = {z € C;|z| > ro},
satisfying the hypotheses of theorem 1. We contend that up to reparameterization, we have
1n = tdz. To prove that just apply the following lemma to X35 :

Lemma 1 Let u be a proper harmonic map defined on DY such that the preimage u"t(c) is
diffeomorphic either to R or to two copies of Ry. Then, up to reparametrization, u is linear.

PROOF : Take any strip of the surface X3 '([c, ¢+ 1]); for ¢ large enough, it is bounded by two
curves. Its conformal type is a disk minus two disjoint curves a and 3; we claim that these curves
are actually just points. Heuristically, we see that going to infinity on the strip is just a way of
going to the puncture in D27, To prove this assertion consider a half-strip ¥ in Dy°, and define
a harmonic map on ¥ going to infinity at the end, namely z — log|z|. By simple connectivity
there exists a holomorphic map f having log |z| as real part; if the boundary at infinity of ¥ were
conformally a curve o (seen in the Poincaré disk for instance) then f would be infinite along
a curve, which is impossible. So the conformal type of any strip X3 '([a,b]) for |a|, |b| large
enough, is a disk minus two points; furthermore these two points correspond to the same point
at infinity in D7, In particular we map the strip conformally to Q = {7 € C;0 < Im[2] < 1}.
We conclude by using the Phragmén-Lindel6f theorem (see [13]) : assume for simplicity that
X35(z) = 0 (respectively 1) if Im[z] = 0 (respectively 1); let ¢ be a holomorphic mapping from
the strip such that X3 = Re[¢], and F' = ¢?t%. Obviously |F| = e*3(*)=Iml2] is bounded on
Q, and equal to one on 9. Then we can use an extended maximum principle, and state that
|F| =1 on Q, proving that X35 coincides with — Im[z], and 7 with idz. ]

As a consequence, we claim that the Gauss map never takes the values 0 and oco. Indeed the
metric ds? = (|g| + |g|71)%|n|* has to be well defined and non-zero. As will be seen later on, g
can be written as 2*ef for some integer k and some holomorphic function f on Dps.

Let us study the geometry of the level curves, which correspond in our parameterization to
the map t — il +1, for fixed {. The normal vector to the curve is obviously v = ¢/|g|, identifying
the plane of the curve with the complex plane. Then the Frenet frame is (1,v) = (—ikg]—|7 |§—|).



We can now derive the curvature; notice that the derivative % along the curve coincides with

the complex derivative.
dr g
2N = Iml[
(G = (2]

where (,) is the standard metric in R? ~ C. Denoting by s the arclength,

dr dt dr <d_;’/>
R(t) = (= v) = () = m
So /
 mf]
R(t) = o+ gl "

From now on we assume that the function f defined above has bounded degree at infinity, i.e.
f € O(z) for some a > 0 (in other words f is sum of a polynomial and a holomorphic term
vanishing at infinity). We let n denote the degree of f, and suppose that n > 2. Since we are
interested in horizontal curves Im z = [ for constant [, we will restrict ourselves to non-negative
[; we can then define on the upper half plane a complex logarithm and write ¢ = e with

H(z) = f(z) + klog z. Also h will be the derivative H’. We rewrite (1) as

2 Im[h]

~lt) = cosh Re[H]

(2)
then the curve &(¢t) = (X1 +iX2) (¢l + t) satisfies the equation

d —1 :
g = 72 cosh Re[H]e! ]
The curves & may be very complex, and increasingly complex as n grows. However we are able

to show a very simple asymptotic behavior. For this we will need the

Lemma 2 For any a define x,(t) = (&(t),e'®). Let t, be the sequence of local mazima (resp.
minima) of x,. For |l| large enough, there exists t independent of a such that the sequence
2o (t,) is increasing (resp. decreasing) to infinity, when t > t.

PROOF : Let A(t), B(t) denote the real and imaginary parts of H (il 4 t) respectively; then the
extrema of z, are exactly the zeros of sin(B(t) — ). We will suppose always that « is chosen
in [0,27[. Moreover A(t) ~ Agt® and B(t) ~ Byt® for some non-negative? integers a and b, since
deg(f) = n > 2. Since b > 0, obviously B is strictly increasing or decreasing for some [ large and
t large, independently of a. Say for simplicity that B is increasing, then B is a diffeomorphism
for large t; let 1) be its inverse. Finally let

up = P(kr + )

?However it is possible for B to “drop in degree”, i.e. let b = 0 for a finite set of values of [ .



correspond to the k-th extremum for large & € N. Then the variation of 2, between two
successive extrema is:

Uk 41 (k+1)m
Ay = % / cosh A(u)sin(B(u) — o) du = % / cosh(¢(t + o)) sin(t)y' (t + «) dt
Uk km

We want to compare it with Ap_; using a change of variable

s

k
/ cosh(¢(t + o+ 7)) sin()Y'(t + o+ 7) dt
(k—1)m

Ap=-

N | —

Since a > 0, cosh A(¢(u))9'(u) is a positive increasing function and so is its derivative; then for
all u greater than some 4.

cosh A(¥(u+ 7)) (u 4+ 7) > 2+ cosh A(¢(u)) v (u)

by the mean value theorem. So that Ap and Aj_; always have opposite signs and |Ag| >
1+ |Ag—y]| for all & > k. We conclude that the maximal values (resp. minimal) of z, increase
(resp. decrease) towards infinity. |

Using this lemma, we can prove that & is asymptotically a diverging spiral, i.e. there exist
functions p and  both going to infinity, @ strictly monotone, such that &(t) = p(t)e®®, when ¢
is large enough. To construct those functions consider a ray from the origin, with angle 8. Using
the intermediate values theorem, we deduce from the previous lemma that the ray meets our
curve a infinite number of time, at least for t > ¢ (just consider o = 6 + 7/2). If the ray does
not meet the curve tangentially, we can parameterize locally in polar coordinates. If that is not
so, then g/, has an extremum at that point, with a value of zero. This contradicts again
the lemma, so we can parametrize globally in polar coordinate, which proves that # is strictly
monotonic. Suppose now that we can find ¢; arbitrarily large, such that p(¢1) is smaller than
some fixed value p. Let €%t be a tangent vector to & at ¢y, then Tg, 4r/2 has an extremum at
t1; but we know that for ¢ big enough, |24, . /5(t)| > p. [ ]

We now have a good description of the asymptotic behavior of the curve & for almost all [.
Both infinite branches are spirals.

REMARK 1 : If b = deg(B) is odd, the curve is obviously not embedded (see figure 1). In-
deed both branches spiral to infinity with opposite winding directions; they are bound to meet
each other infinitely many times. Indeed compare the two branches: ¢t — & (¢) and ¢t — &(—t)
when ¢ — +o00. By the previous calculations we obtain almost identical results, except for the
angle 6(¢): in one case it is increasing, in the other, decreasing (or just notice that the curvature
r has the same sign when ¢t — +00).



Figure 1: Example of non-embedded disk when deg(B) is odd. Here g = ¢* and B(t) = 2ilt.



3 A geometrical criterion for self-intersection

We will now give a criterion for any plane curve that will ensure self-intersection. Let v be
such a curve, parameterized by its tangential angle # in complex coordinates; namely

d'y _ eié’
dg  k(6)
where £ is the curvature (of the curve).
Lemma 3 Let 0y be such that
(i) K is non-negative increasing on [0y — 37”, 6o],

(i) K is non-negative decreasing on [6g, 0o + 37”],

(iii) k(7) < K(=F) and K(—7) < K(F),

then v has a self-intersection between 6y — 37” and 6y + 37” The same is true if k is replaced
by —k.

Figure 2: Typical case
PROOF : By rotating and translating the curve in the plane, we can assume that g = 0 and

v(0) = 0. Then hypothesis (i) (respectively (ii)) implies that Re[y(—n)] is positive (respectively
Re[y(7)] < 0), and both imaginary parts are positive. Indeed:

/2
cos f 1
0/ @ = W

while




The same goes for v(—n). If v does not already self-intersect between —7 and =, then one of
the two branches is under the other one (see figure 2). Say Im[vy(7)] < Im[y(—7)]. In that case,
a sufficient condition for ~v([7,37/2]) to intersect v([—=,0]) is Re[y(—7/2)] > Re[v(37/2)] by
continuity. Namely, from 7 to 37 /2, Re[y] decreases at least from:

3m/2 3m/2
/COSH< /COSO_ 1 <0
K(0) = ) w(m)  R(T)
Conversely, Re[y(—n/2)] is bounded below by ,1(—_77:/2) Hence the condition (iii). |

4 An analytical criterion for self-intersection

We now give an analytical criterion on the holomorphic Gauss map g for self-intersection,

using the previous geometrical criterion.

Proposition 4 If there exists a sequence of z, going to infinity such that
(1) lg(zn)l =1,
(ii)  Let e = h(z,)/|h(2,)|; then e is different from 1,44 |

B (z,+1t)
h?(2n)

(iii) max
It|<

‘ € o(sin? 6, cos* 4,,)

2m
S onlnten)] tE

then lemma 3 applies.

PROOF: The key idea is to make an appropriate change of variable (or “zooming”) around the
Zn. We will prove that close to z,, there is a maximum or minimum of the curvature, while the
tangent angle varies enough around z, to satisfy the conditions of lemma 3.

Close to z,, g does not vanish, hence we can integrate h into H, and write ¢ = ¢/ with the as-
sumption that Re[H (z,)] = 0. We now make the following change of variable: u = sin 8, |h(z,)|t,
and denote H(u) = H(z, +t(u)), h(u) = dH/du = %. Asymptotically, u is the tangent
angle. We rewrite the hypotheses at z,, as:

() Re[H(0)] =0
(i) €% =sin6,h(0) and ¢ is different from 41, +i.
L/
(

(iii”) max u)‘ € o(cos* 4,,)

w€[—2m,27)




By integrating (iii’) one derives the following inequalities:

/Ouiz’(v)dv
// W (w) dw dv

We now write the expression for the curvature and its derivative:

max € o(cos®0,,)

w€[—2m,27)

max € o(cos? 0,,)

—2m, 27r

1 _ Im[A]
2 wlu) = cosh Re[H]

1ds  Tm[l(u)] — Re[h] Im[h] tanh(Re[F])

du cosh Re[H]

Let us write the expansion of the above quantities, taking u to be bounded (say |u| < 27):

= H(z,) + (cot b, + )u+ R(u)

= [ B () dw do

()] = cot6, u + Re[R(w)]

tanh(Re[H (u)]) = cot 8, u + Re[R(u)] + o(u? + |R|*(u))

then the numerator of %dm/du is:

Im[R"(u)] — (cot 8,, + Re[R'(u)]) (1 + Im[R'(u)])(cot 8, u + Re[R(u)] + o(u?® + |R|*(u))
= Im[R"(u)] — cot? 8, u + o(cot? 4,,)

because u is bounded. That implies that dx/du vanishes at some point ug within the bounds, for
n big enough. Indeed hypothesis (ii’) guarantees that cot§,, is well-defined and different from
zero; thus

R// (uo)
cot? 4,

< o(1)

Uy —

Since actually R”(u)tan? 8, € o(sin?8,,), uo —2 0.

Now that we have a local maximum at ug for (), there remains to prove the growth conditions
for lemma 3. Let uy, be the first time that the tangent angle Im[H] hits the value Im[H (ug)]+km /2

for some integer k:
kr
5 = (up — uo) + Im[R(ug) — R(ug)]
Obviously for |k| < 3 and large n, uj remains within the bounds of the hypotheses, and we are

entitled to write



Clearly k increases on [u_3, ug] and decreases on [ug, us]. We finally evaluate

() = 14+ Im[R'(u)] B 14 Im[R'(u)]
M cosh(cot 8, (ug + o(1)))  cosh(cot 8, (kr/2 + o(1)))

Since cosh is an even function that increases on Ry, we get

cosh(cot 8, (7 + o(1)))
cosh(cot 8, (7/2+ o(1)))

>1

for large n. So k(u_g) < k(u1) and k(ug) < K(u_y). |

The assertion (iii) of the proposition 4 can be readily modified into a more usable condition.

Lemma 5 Let ¢ be any meromorphic function on the plane, (z,) a given sequence of complex
numbers, and (e,), (K,) two sequences of non-negative real numbers, such that K,e, = 0.
Then (a) implies (b):

¢'(2)

Ofe,

“ |Z_Z,f?saf:{g—g)|‘¢(z>2 =0
¢'(2)

b n

m s |5 €0

[$(zn)|

PROOF: Since

A AC) <¢(Z) )2
¢(zn)?  $(2)? \o(2n)

there remains to estimate |p(2)/¢(z,)| for |z — z,| < K,./|¢(2,)|. If (a) is true, the derivative

4 (1/¢) is bounded by O(e,) on that same interval; thus:

1 1 K,
50~ g S 0 < o)
w 6(2) ,
‘ o) - 1‘ < O(Knen)njoo

We apply lemma 5 to proposition 4 with ¢ = h = ¢'/g, K,, = 27 /sin6,, and ¢, = §,sin?(26,,)
with &, :> 0. The condition K¢, :> 0 is obviously satisfied. Hence we can replace condition
e o] e o]

(iii) with an analytically more satisfying criterion.

10



5 Functions of finite order of growth

We now turn to functions g, meromorphic in a neighborhood of infinity DY = {z € C;|z| >
ro}. We define as usual (see [3] for instance) A(r) to be the area of the image of ro < |z| < r
by ¢ on the Riemann sphere, counted with multiplicity, divided by 47. Then the characteristic
function (according to Ahlfors-Shimizu) for g is:

T(r) = / A(? dt

0

and the growth order of g is equal to:

We use this terminology and the following

Lemma 6 If g is a non-vanishing holomorphic function on DY and g has finite order of growth
in the sense defined above, then h = ¢'/g extends meromorphically at infinity (in particular
|h(2)] € O(2%) for some positive k).

PROOF: for a beautiful self-contained proof of this, see [11].

Finally we derive the main result:

PROOF OF THE THEOREM : Using the previous lemma, we conclude that h can be written
with a Laurent expansion around infinity containing a finite number of positive exponents:

k=p
h(z) = Z a2

k=—c0

We proceed to prove the following;:

e Hypothesis (iii) of the analytic criterion (proposition 4) is always satisfied, provided p > 0
(if not see below). Indeed, using lemma 5 we simply consider the derivative of 1/h, which
vanishes at infinity. Thus the hypothesis is strongly satisfied, indeed

b (2 + 1)

(o £ 1) € O(zPh

max ‘

teR

for any sequence z, such that |Im z,| — oc.
n— 0o

e There remains to find such a sequence with appropriate angle conditions. Suppose p > 1.
We write z, as a zero of log |g| = Re [*[h] :

ag

loglgl=>_ Re[m

1
S a_logz] = Re[a—pzp+1](1 +0(-))
k<pht—1 pt1 o

11



It will soon be obvious that the exact modulus of a, does not matter, so let us assume
that a, = €’|a,|. Then the argument a, of z, may take the following values:

a, = m__ P + o(1) mod -
2(p+1) p+1 p+1
Consider now en = h(z,)/|h(z,)|. Since h(z) ~ a,2?, so 6, is congruent to 3 + pa, +
o(1) mod 27
g pr pr
0, = + 4+ 0(1) mod
p+1 2(p+1) @ p+1
The adherence of the 8,, is contained in z% + % + ]%Z, which cannot be included
into any $Z, unless z% = 0 mod 27. That may happen only if p = 1, and § = x/2 mod

7. That case has a very particular behavior and requires a special proof; see lemma 7
below. Otherwise we deduce easily that the €7 stay uniformly away from 1,4, for
some sequence z, satisfying |¢(z,)| = 1. We conclude using proposition 4. See figure 3 for

an example of the loops, existing for most level curves.

o If p = 0, we have something that is very much like the helicoid or one of its conjugates:

g(z) = 2Fer0tet00/2) for some integration constant ¢. Thus

B(t) = arg[g(t + )] = Im[ag]t + Re[ag]l + k arg(t 4 il) + Im[c] + O(1/2)

If Im[ag] # 0, deg(B) is odd, and using remark 1 (page 5) we see that the surface self-
intersects obviously. If on the contrary ag is real, a necessary condition for embeddedness
is |[k| < 1 (otherwise, for large [, B(t) would be increasing and span k=, thus forcing
self-intersection). If & = £1, this argument cannot be applied, and the upper (or lower)
half-plane is embedded; but not the whole surface, which is not well defined, because there
is a period around the end®. Indeed we show that

/ (g+ g7 dz = 2mie*e

|2|=r
Say k = —1 (otherwise take g=!), then
d d
gdz =€ / e (1+0(1/2)) e / RPN
z z

|2|=r |2|=r |2|=r

407 /= extends to the whole complex plane, we can evaluate its residue at zero, and

Since e
conclude. There remains only the possibility of & = 0, as in the case of the helicoid.
Such an end can exist and be embedded, two possibilities exist: either the unknown
term O(1/z) vanishes completely, and we have exactly a helicoid, or there is a non-zero

term in the Laurent expansion, and up to simple reparametrization, ¢g(z) = e?e??) where

®It is obvious from the Weierstrass-Enneper representation that a residue for g or g~! at any point means a
period for X; or Xz around that point.

12



Figure 3: example of application of the geometric criterion: surface with imbricated spirals for
g = 6237 where almost all level curves make a self-intersection loop.
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#(2) = az7"+0O(27""1). Such surfaces exist and are embedded; their level curves have an
asymptotic direction similar to the helicoids, but they are not asymptotic to lines. Indeed

6 % _ %Cosh(t + Re[g])ef(H+mleD
and :
i — —ie¥
|§l| t—Fo0
while d 1
<§7 e”} =3 cosh(t + Re[¢]) sin Im[¢]

notice now that Im[@] is asymptotically greater than ¢="~! times a constant, and
Jo~ coshitsint™~!dt is a diverging integral. So theses examples are qualitatively differ-
ent from the helicoid. They are embedded at the end though because of the asymptotic

behaviour just quoted above.

e If pis actually less than zero, then the surface has finite total curvature, and is necessarily
the plane. Notice indeed that the end is not horizontal (since X3 — foo when |z] — 00).
So the Gauss map has a finite non-zero limit at infinity, in particular & = 0. It is branched,
since lim .|, h(2) = 0 by hypothesis. The end cannot be catenoidal, is it asymptotic to

a plane. [ |

Lemma 7 With all the previous notations, suppose that h(z) ~ a1z and ay is pure imaginary;
then the surface is not embedded and actually not even proper.

PROOF : We write ¢ = ¢! where H(z) = a12?/2 + apz + klogz + ¢ + o(1), where ¢ is an
integration constant. Up to translation and dilation in C, we can assume that a; = ¢ and
ag = 0. We will construct a path on the surface which goes to infinity in C but stays at bounded
distance in R?. Let v(s) denote a path in C, not necessarily horizontal this time. Still writing
A = Re[H] and B = Im[H], we have the following equation for { = X oy +iX507:

d . _

id_i =P ety +e7 1)
We would like A o5 to be bounded, knowing that A(re?’) = —r?sin20 4 klogr + ¢ + o(1)
(¢ denotes any constant). If we choose # such that sin 20 = kl:2gr as r goes to infinity, and

denote by 7(s) that curve parameterized by its arclength (for the standard metric in C); then
A(y(s)) ~ ¢+ o(1). Notice also that [(s) = Im['y(s)]tjoo, t(s) = Re[y(s)] = s+ o(1) and
v'(s) L Thus

dg

¢ o Cleit(s)rz/z(cosh c+o(l)) = e’ 12 4 o(1)
s

C4,Cy appropriate complex constants. But this integral is definite, indeed

s 29 52 giu
e 1 ds :/ du
/0 0 V2u

The surface is not properly immersed (see figure 4). [ |

14



Figure 4: An example of non proper minimal immersion for g = et (only the points with

negative third coordinate are shown). The level curve for X5 = 0 does not go to infinity.

15



PROOF OF THE COROLLARY : We have a one-ended minimal surface, conformally equivalent
to C. Since is has only one end, the surface cannot have finite total curvature. The general form
of the Gauss map is

o(2) = B()e)
for some entire function ¢ and rational function R having poles and zeros where X3 has a critical
point (horizontal tangent plane). For some integer k, z=% R(2) = C' # 0,00 , 80 we can rewrite
zZ o]

R(z) as C'z%e¥(®) with 1 holomorphic on D:* for large r. Applying the theorem, we know that
k = 0 and the Gauss map can be written as

g(z) = Ce7ex?)

where x(z) € O(1/z) is entire. So x is identically zero, we have a helicoid. |
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