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ON HELICOIDAL ENDS OF MINIMAL SURFACESPASCAL ROMONCentre de Math�ematiques et Leurs ApplicationsUnit�e de Recherche Associ�ee CNRS 1611�Ecole Normale Sup�erieure de Cachan61 avenue du Pr�esident Wilson94235 Cachan Cedex, FRANCEAbstractThis article analyses the behaviour of helicoidal ends of properly embedded minimal sur-faces, namely properly embedded in�nite total curvature minimal annuli of parabolic type,satisfying a growth condition on the curvature via the Gauss map, and a geometric transver-sality condition. Then we show that embeddedness forces the end to be asymptotic eitherto a plane, or a helicoid or a spiraling helicoid. In all three cases, the Gauss map can bedescribed in very simple terms. Finally this local result yields a global corollary stating therigidity of embedded minimal helicoids.Key words: minimal surface, in�nite total curvature, annular end, helicoid, embedded-ness, essential singularity.MSC classi�cation: 53A10.1 IntroductionIn this paper we tackle a relatively new problem in minimal surface theory (or rather an oldproblem with a new approach): the problem of embeddedness for surfaces with in�nite totalcurvature. Indeed, most of the minimal surfaces discovered so far have been of �nite totalcurvature (see [10] for a good overview), and this condition has been crucial in their �ndingand understanding. However surfaces with in�nite total curvature, such as the helicoid, havebeen known to exist since the very beginning of the theory. Obviously, all periodic minimalexamples but the plane have in�nite total curvature (and often in�nite genus too), althoughthey were often studied in R3 modulo periods, thus becoming �nite total curvature and �nite1



genus examples ([6]). It was not known until recently whether there could exist a non-periodicsurface, which was truly of in�nite total curvature. Eventually D. Ho�man, H. Karcher andF. Wei proved the existence of genus one \helicoid" (see [4])1. Conversely some non-existenceresults have been obtained for the two-ended case and the Nitsche conjecture ([1], [10]). It itthus quite natural to wonder which such surfaces can be embedded in R3 and this is what thisarticle is concerned about.The idea behind the results presented hereafter is to generalize the theorem of Osserman [7]linking �nite total curvature to �nite topology:theorem [Osserman] : Let M be a complete minimal surface in R3 with �nite total cur-vature; then M is conformally equivalent to a closed Riemann surface ~M with a �nite numberof punctures. Furthermore the Enneper-Weierstrass data extends meromorphically on ~M .We hope indeed to show that embedded minimal surfaces of �nite topological type with in�-nite total curvature { provided the curvature does not grow too fast { are described by simplealgebraic data dgg where g is the corresponding Gauss map. Indeed such is the case for helicoidalends as we will see in the following. Notice that the hypothesis of embeddedness is essential, aswill become clear later on (see also [12]). More information on this topic can be found in [11].We take the example of the helicoid as a starting point. It can be parameterized globally bythe Weierstrass-Enneper data (g; �) through X(z) = Re R z(g�1� g; i(g�1+ g); 2)�, where g and� are respectively a meromorphic function and a m�eromorphic 1-form on the complex plane.Then ( g = ez� = i dzdescribes the helicoid. There are two ways of generalizing the family of the helicoid: one is to�nd minimal embeddings of the complex plane, the other is to understand locally the behaviorof the end, when the end is conformally a punctured annulus. In both cases we will impose thefollowing geometric condition: the end E intersects each horizontal plane in a single open curve.That implies that, up to a reparameterization, the 1-form � is just idz (as in the case of thehelicoid); consequently, the tangent plane is never horizontal, and the Gauss map g never takesthe values 0 or 1.Because the analysis of meromorphic data on C is largely determined by the behavior atin�nity, the second approach encompasses the �rst one, and gives additional information too.We will now state the results:Theorem 1 (local) Let M be a properly embedded minimal surface in R3, conformally equiv-alent to a punctured disk, such that its intersection with any horizontal plane is transversal andconsists of either one curve di�eomorphic to R, or two half-curves di�eomorphic to R+ (upto a rotation of the surface). If the Gauss map g, seen as a meromorphic map through the1Its end is asymptotic to a helicoid, hence embedded. It not proven yet whether the whole surface is embedded.2



stereographic projection, has �nite order in the sense of Nevanlinna, then X is asymptotic to aspiraling helicoid, or the helicoid, or the plane.Corollary 2 (global) Let M be a properly embedded minimal plane in R3, which meets all buta �nite number of horizontal planes (up to a rotation in space) transversely in a single opencurve. If the Gauss map g, seen as a meromorphic map through the stereographic projection,has �nite order in the sense of Nevanlinna, then X is the helicoid or the plane.2 The behavior of helicoidal endsLet X be an immersion from the punctured disk centered at in�nity D1r0 = fz 2 C; jzj � r0g,satisfying the hypotheses of theorem 1. We contend that up to reparameterization, we have� = idz. To prove that just apply the following lemma to X3 :Lemma 1 Let u be a proper harmonic map de�ned on D1r0 such that the preimage u�1(c) isdi�eomorphic either to R or to two copies of R+. Then, up to reparametrization, u is linear.proof : Take any strip of the surface X�13 ([c; c+ 1]); for c large enough, it is bounded by twocurves. Its conformal type is a disk minus two disjoint curves � and �; we claim that these curvesare actually just points. Heuristically, we see that going to in�nity on the strip is just a way ofgoing to the puncture in D1r0 . To prove this assertion consider a half-strip � in D1r0 , and de�nea harmonic map on � going to in�nity at the end, namely z 7! log jzj. By simple connectivitythere exists a holomorphic map f having log jzj as real part; if the boundary at in�nity of � wereconformally a curve � (seen in the Poincar�e disk for instance) then f would be in�nite alonga curve, which is impossible. So the conformal type of any strip X�13 ([a; b]) for jaj, jbj largeenough, is a disk minus two points; furthermore these two points correspond to the same pointat in�nity in D1r0 . In particular we map the strip conformally to 
 = fz 2 C; 0 � Im[z] � 1g.We conclude by using the Phragm�en-Lindel�of theorem (see [13]) : assume for simplicity thatX3(z) = 0 (respectively 1) if Im[z] = 0 (respectively 1); let � be a holomorphic mapping fromthe strip such that X3 = Re[�], and F = e�+iz . Obviously jF j = eX3(z)�Im[z] is bounded on
, and equal to one on @
. Then we can use an extended maximum principle, and state thatjF j � 1 on 
, proving that X3 coincides with � Im[z], and � with idz.As a consequence, we claim that the Gauss map never takes the values 0 and 1. Indeed themetric ds2 = (jgj+ jgj�1)2j�j2 has to be well de�ned and non-zero. As will be seen later on, gcan be written as zkef for some integer k and some holomorphic function f on D1r0 .Let us study the geometry of the level curves, which correspond in our parameterization tothe map t 7! il+ t, for �xed l. The normal vector to the curve is obviously � = g=jgj, identifyingthe plane of the curve with the complex plane. Then the Frenet frame is (�; �) = (�i gjgj ; gjgj).3



We can now derive the curvature; notice that the derivative ddt along the curve coincides withthe complex derivative. hd�dt ; �i = Im[g0g ]where h; i is the standard metric in R2 ' C. Denoting by s the arclength,�(t) = hd�ds ; �i = dtds hd�dt ; �i = hd�dt ; �i(jgj�1+ jgj)So �(t) = Im[g0g ]jgj�1 + jgj (1)From now on we assume that the function f de�ned above has bounded degree at in�nity, i.e.f 2 O(z�) for some � > 0 (in other words f is sum of a polynomial and a holomorphic termvanishing at in�nity). We let n denote the degree of f , and suppose that n � 2. Since we areinterested in horizontal curves Im z = l for constant l, we will restrict ourselves to non-negativel; we can then de�ne on the upper half plane a complex logarithm and write g = eH withH(z) = f(z) + k log z. Also h will be the derivative H 0. We rewrite (1) as�(t) = 2 Im[h]coshRe[H ] (2)then the curve �l(t) = (X1 + iX2)(il+ t) satis�es the equationd�ldt = �i2 coshRe[H ]ei Im[H ]The curves �l may be very complex, and increasingly complex as n grows. However we are ableto show a very simple asymptotic behavior. For this we will need theLemma 2 For any � de�ne x�(t) = h�l(t); ei�i. Let tn be the sequence of local maxima (resp.minima) of x�. For jlj large enough, there exists t̂ independent of � such that the sequencex�(tn) is increasing (resp. decreasing) to in�nity, when t > t̂.proof : Let A(t); B(t) denote the real and imaginary parts of H(il+ t) respectively; then theextrema of x� are exactly the zeros of sin(B(t) � �). We will suppose always that � is chosenin [0; 2�[. Moreover A(t) � A0ta and B(t) � B0tb for some non-negative2 integers a and b, sincedeg(f) = n � 2. Since b > 0, obviously B is strictly increasing or decreasing for some l large andt large, independently of �. Say for simplicity that B is increasing, then B is a di�eomorphismfor large t; let  be its inverse. Finally letuk =  (k�+ �)2However it is possible for B to \drop in degree", i.e. let b = 0 for a �nite set of values of l .4



correspond to the k-th extremum for large k 2 N. Then the variation of x� between twosuccessive extrema is:�k = 12 uk+1Zuk coshA(u) sin(B(u)� �) du = 12 (k+1)�Zk� cosh( (t+ �)) sin(t) 0(t+ �) dtWe want to compare it with �k�1 using a change of variable�k = � 12 k�Z(k�1)� cosh( (t+ �+ �)) sin(t) 0(t + �+ �) dtSince a > 0, coshA( (u)) 0(u) is a positive increasing function and so is its derivative; then forall u greater than some û.coshA( (u+ �)) 0(u+ �) � 2 + coshA( (u)) 0(u)by the mean value theorem. So that �k and �k�1 always have opposite signs and j�kj �1 + j�k�1j for all k � k̂. We conclude that the maximal values (resp. minimal) of x� increase(resp. decrease) towards in�nity.Using this lemma, we can prove that �l is asymptotically a diverging spiral, i.e. there existfunctions � and � both going to in�nity, � strictly monotone, such that �l(t) = �(t)ei�(t), when tis large enough. To construct those functions consider a ray from the origin, with angle �. Usingthe intermediate values theorem, we deduce from the previous lemma that the ray meets ourcurve a in�nite number of time, at least for t > t̂ (just consider � = � + �=2). If the ray doesnot meet the curve tangentially, we can parameterize locally in polar coordinates. If that is notso, then x�+�=2 has an extremum at that point, with a value of zero. This contradicts againthe lemma, so we can parametrize globally in polar coordinate, which proves that � is strictlymonotonic. Suppose now that we can �nd t1 arbitrarily large, such that �(t1) is smaller thansome �xed value ~�. Let ei�1 be a tangent vector to �l at t1, then x�1+�=2 has an extremum att1; but we know that for t big enough, jx�1+�=2(t)j > ~�.We now have a good description of the asymptotic behavior of the curve �l for almost all l.Both in�nite branches are spirals.remark 1 : If b = deg(B) is odd, the curve is obviously not embedded (see �gure 1). In-deed both branches spiral to in�nity with opposite winding directions; they are bound to meeteach other in�nitely many times. Indeed compare the two branches: t 7! �l(t) and t 7! �l(�t)when t ! +1. By the previous calculations we obtain almost identical results, except for theangle �(t): in one case it is increasing, in the other, decreasing (or just notice that the curvature� has the same sign when t! �1). 5



Figure 1: Example of non-embedded disk when deg(B) is odd. Here g = ez2 and B(t) = 2ilt.6



3 A geometrical criterion for self-intersectionWe will now give a criterion for any plane curve that will ensure self-intersection. Let 
 besuch a curve, parameterized by its tangential angle � in complex coordinates; namelyd
d� = ei��(�)where � is the curvature (of the curve).Lemma 3 Let �0 be such that(i) � is non-negative increasing on [�0 � 3�2 ; �0],(ii) � is non-negative decreasing on [�0; �0 + 3�2 ],(iii) �(�) � �(� �2 ) and �(��) � �(�2 ),then 
 has a self-intersection between �0 � 3�2 and �0 + 3�2 . The same is true if � is replacedby ��.
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(0) = 0. Then hypothesis (i) (respectively (ii)) implies that Re[
(��)] is positive (respectivelyRe[
(�)]� 0), and both imaginary parts are positive. Indeed:�=2Z0 cos ��(�) d� � 1�(�=2)while �Z�=2 j cos�j�(�) d� � 1�(�=2)7



The same goes for 
(��). If 
 does not already self-intersect between �� and �, then one ofthe two branches is under the other one (see �gure 2). Say Im[
(�)]� Im[
(��)]. In that case,a su�cient condition for 
([�; 3�=2]) to intersect 
([��; 0]) is Re[
(��=2)] � Re[
(3�=2)] bycontinuity. Namely, from � to 3�=2, Re[
] decreases at least from:3�=2Z� cos ��(�) � 3�=2Z� cos ��(�) = � 1�(�) < 0Conversely, Re[
(��=2)] is bounded below by �1�(��=2) . Hence the condition (iii).4 An analytical criterion for self-intersectionWe now give an analytical criterion on the holomorphic Gauss map g for self-intersection,using the previous geometrical criterion.Proposition 4 If there exists a sequence of zn going to in�nity such that(i) jg(zn)j = 1,(ii) Let ei�n = h(zn)=jh(zn)j; then ei�n is di�erent from �1;�i ,(iii) maxjtj� 2�sin �njh(zn)j ;t2R ����h0(zn + t)h2(zn) ���� 2 o(sin2 �n cos2 �n)then lemma 3 applies.proof: The key idea is to make an appropriate change of variable (or \zooming") around thezn. We will prove that close to zn, there is a maximum or minimum of the curvature, while thetangent angle varies enough around zn to satisfy the conditions of lemma 3.Close to zn, g does not vanish, hence we can integrate h into H , and write g = eH with the as-sumption that Re[H(zn)] = 0. We now make the following change of variable: u = sin �njh(zn)jt,and denote Ĥ(u) = H(zn+ t(u)), ĥ(u) = dĤ=du = h(zn+t(u))sin �njh(zn)j . Asymptotically, u is the tangentangle. We rewrite the hypotheses at zn as:(i') Re[Ĥ(0)] = 0(ii') ei�n = sin �nĥ(0) and ei�n is di�erent from �1;�i.(iii') maxu2[�2�;2�] ���ĥ0(u)��� 2 o(cos2 �n) 8



By integrating (iii') one derives the following inequalities:maxu2[�2�;2�] ����Z u0 ĥ0(v)dv���� 2 o(cos2 �n)maxu2[�2�;2�] ����Z u0 Z v0 ĥ0(w) dwdv���� 2 o(cos2 �n)We now write the expression for the curvature and its derivative:12 �(u) = Im[ĥ]coshRe[Ĥ]12 d�du = Im[ĥ0(u)]� Re[ĥ] Im[ĥ] tanh(Re[Ĥ])coshRe[Ĥ]Let us write the expansion of the above quantities, taking u to be bounded (say juj � 2�):Ĥ(u) = H(zn) + (cot �n + i)u+ R(u)R(u) = R u0 R v0 ĥ0(w) dwdvRe[Ĥ(u)] = cot �n u+ Re[R(u)]tanh(Re[Ĥ(u)]) = cot �n u +Re[R(u)] + o(u2 + jRj2(u))then the numerator of 12d�=du is:Im[R00(u)]� (cot �n +Re[R0(u)])(1+ Im[R0(u)])(cot�nu+ Re[R(u)] + o(u2 + jRj2(u))= Im[R00(u)]� cot2 �nu+ o(cot2 �n)because u is bounded. That implies that d�=du vanishes at some point u0 within the bounds, forn big enough. Indeed hypothesis (ii') guarantees that cot �n is well-de�ned and di�erent fromzero; thus ����u0 � R00(u0)cot2 �n ���� � o(1)Since actually R00(u) tan2 �n 2 o(sin2 �n), u0 �!n!1 0.Now that we have a local maximum at u0 for �(u), there remains to prove the growth conditionsfor lemma 3. Let uk be the �rst time that the tangent angle Im[Ĥ] hits the value Im[Ĥ(u0)]+k�=2for some integer k: k�2 = (uk � u0) + Im[R(uk)�R(u0)]Obviously for jkj � 3 and large n, uk remains within the bounds of the hypotheses, and we areentitled to write uk = k�2 + o(cos2 �n) � k�29



Clearly � increases on [u�3; u0] and decreases on [u0; u3]. We �nally evaluate�(uk) = 1 + Im[R0(u)]cosh(cot �n(uk + o(1))) = 1 + Im[R0(u)]cosh(cot �n(k�=2 + o(1)))Since cosh is an even function that increases on R+, we getcosh(cot �n (� + o(1)))cosh(cot �n (�=2+ o(1))) > 1for large n. So �(u�2) < �(u1) and �(u2) < �(u�1).The assertion (iii) of the proposition 4 can be readily modi�ed into a more usable condition.Lemma 5 Let � be any meromorphic function on the plane, (zn) a given sequence of complexnumbers, and (�n); (Kn) two sequences of non-negative real numbers, such that Kn�n �!n!1 0.Then (a) implies (b): (a) maxjz�zn j� Knj�(zn)j ���� �0(z)�(z)2 ���� 2 O(�n)(b) maxjz�zn j� Knj�(zn)j ���� �0(z)�(zn)2 ���� 2 O(�n)proof: Since �0(z)�(zn)2 = �0(z)�(z)2 � �(z)�(zn)�2there remains to estimate j�(z)=�(zn)j for jz � znj � Kn=j�(zn)j. If (a) is true, the derivativeddz (1=�) is bounded by O(�n) on that same interval; thus:���� 1�(z) � 1�(zn) ���� � jz � znjO(�n) � Knj�(zn)jO(�n)so �����(zn)�(z) � 1���� � O(Kn�n) �!n!1 0We apply lemma 5 to proposition 4 with � = h = g0=g, Kn = 2�= sin �n and �n = �n sin2(2�n)with �n �!n!1 0. The condition Kn�n �!n!1 0 is obviously satis�ed. Hence we can replace condition(iii) with an analytically more satisfying criterion.10



5 Functions of �nite order of growthWe now turn to functions g, meromorphic in a neighborhood of in�nity D1r0 = fz 2 C; jzj �r0g. We de�ne as usual (see [3] for instance) A(r) to be the area of the image of r0 � jzj � rby g on the Riemann sphere, counted with multiplicity, divided by 4�. Then the characteristicfunction (according to Ahlfors-Shimizu) for g is:T (r) = rZr0 A(t) dttand the growth order of g is equal to: � = limr!1 logT (r)log rWe use this terminology and the followingLemma 6 If g is a non-vanishing holomorphic function on D1r0 and g has �nite order of growthin the sense de�ned above, then h = g0=g extends meromorphically at in�nity (in particularjh(z)j 2 O(zk) for some positive k).proof: for a beautiful self-contained proof of this, see [11].Finally we derive the main result:proof of the theorem : Using the previous lemma, we conclude that h can be writtenwith a Laurent expansion around in�nity containing a �nite number of positive exponents:h(z) = k=pXk=�1 akzkWe proceed to prove the following:� Hypothesis (iii) of the analytic criterion (proposition 4) is always satis�ed, provided p � 0(if not see below). Indeed, using lemma 5 we simply consider the derivative of 1=h, whichvanishes at in�nity. Thus the hypothesis is strongly satis�ed, indeedmaxt2R ���� h0(zn + t)h(zn + t)2 ���� 2 O(z�p�1)for any sequence zn such that j Im znj �!n!11.� There remains to �nd such a sequence with appropriate angle conditions. Suppose p � 1.We write zn as a zero of log jgj = Re R z [h] :log jgj = Xk�p;k 6=�1Re[ akk + 1zk+1 + a�1 log z] = Re[ app+ 1zp+1](1 +O(1z ))11



It will soon be obvious that the exact modulus of ap does not matter, so let us assumethat ap = ei�japj. Then the argument �n of zn may take the following values:�n � �2(p+ 1) � �p+ 1 + o(1) mod �p+ 1Consider now ei�n = h(zn)=jh(zn)j. Since h(z) � apzp, so �n is congruent to � + p�n +o(1) mod 2�: �n � �p+ 1 + p�2(p+ 1) + o(1) mod p�p+ 1The adherence of the �n is contained in �p+1 + p�2(p+1) + p�p+1Z, which cannot be includedinto any �2Z, unless 4p�p+1 � 0 mod 2�. That may happen only if p = 1, and � = �=2 mod�. That case has a very particular behavior and requires a special proof; see lemma 7below. Otherwise we deduce easily that the ei�n stay uniformly away from �1;�i, forsome sequence zn satisfying jg(zn)j = 1. We conclude using proposition 4. See �gure 3 foran example of the loops, existing for most level curves.� If p = 0, we have something that is very much like the helicoid or one of its conjugates:g(z) = zkea0z+c+O(1=z) for some integration constant c. ThusB(t) = arg[g(t+ il)] = Im[a0]t+ Re[a0]l+ k arg(t+ il) + Im[c] + O(1=z)If Im[a0] 6= 0, deg(B) is odd, and using remark 1 (page 5) we see that the surface self-intersects obviously. If on the contrary a0 is real, a necessary condition for embeddednessis jkj � 1 (otherwise, for large l, B(t) would be increasing and span k�, thus forcingself-intersection). If k = �1, this argument cannot be applied, and the upper (or lower)half-plane is embedded; but not the whole surface, which is not well de�ned, because thereis a period around the end3. Indeed we show thatZjzj=r (g + g�1) dz = 2�ie�cSay k = �1 (otherwise take g�1), thenZjzj=r g dz = ec Zjzj=r ea0z(1 +O(1=z)) dzz � ec Zjzj=r ea0z dzz as r !1Since ea0z=z extends to the whole complex plane, we can evaluate its residue at zero, andconclude. There remains only the possibility of k = 0, as in the case of the helicoid.Such an end can exist and be embedded, two possibilities exist: either the unknownterm O(1=z) vanishes completely, and we have exactly a helicoid, or there is a non-zeroterm in the Laurent expansion, and up to simple reparametrization, g(z) = eze�(z) where3It is obvious from the Weierstrass-Enneper representation that a residue for g or g�1 at any point means aperiod for X1 or X2 around that point. 12



Figure 3: example of application of the geometric criterion: surface with imbricated spirals forg = ez3 , where almost all level curves make a self-intersection loop.13



�(z) = az�n+O(z�n�1). Such surfaces exist and are embedded; their level curves have anasymptotic direction similar to the helicoids, but they are not asymptotic to lines. Indeed_�l = d�ldt = � i2 cosh(t+ Re[�])ei(l+Im[�])and _�lj _�lj �!t!�1�ieilwhile hd�ldt ; eili = 12 cosh(t+ Re[�]) sin Im[�]notice now that Im[�] is asymptotically greater than t�n�1 times a constant, andR10 cosh t sin t�n�1dt is a diverging integral. So theses examples are qualitatively di�er-ent from the helicoid. They are embedded at the end though because of the asymptoticbehaviour just quoted above.� If p is actually less than zero, then the surface has �nite total curvature, and is necessarilythe plane. Notice indeed that the end is not horizontal (since X3 ! �1 when jzj ! 1).So the Gauss map has a �nite non-zero limit at in�nity, in particular k = 0. It is branched,since limjzj!1 h(z) = 0 by hypothesis. The end cannot be catenoidal, is it asymptotic toa plane.Lemma 7 With all the previous notations, suppose that h(z) � a1z and a1 is pure imaginary;then the surface is not embedded and actually not even proper.proof : We write g = eH where H(z) = a1z2=2 + a0z + k log z + c + o(1), where c is anintegration constant. Up to translation and dilation in C, we can assume that a1 = i anda0 = 0. We will construct a path on the surface which goes to in�nity in C but stays at boundeddistance in R3. Let 
(s) denote a path in C, not necessarily horizontal this time. Still writingA = Re[H ] and B = Im[H ], we have the following equation for � = X1 � 
 + iX2 � 
:i d�ds = eiB(eA
 0 + e�A
 0)We would like A � 
 to be bounded, knowing that A(rei�) = �r2 sin 2� + k log r + c + o(1)(c denotes any constant). If we choose � such that sin 2� = k log rr2 as r goes to in�nity, anddenote by 
(s) that curve parameterized by its arclength (for the standard metric in C); thenA(
(s)) � c + o(1). Notice also that l(s) = Im[
(s)] �!t!10, t(s) = Re[
(s)] = s + o(1) and
 0(s) �!s!1 1. Thus i d�ds = C1eit(s)2=2(cosh c+ o(1)) = C2eis2=2 + o(1)C1; C2 appropriate complex constants. But this integral is de�nite, indeedZ S0 eis2=2 ds = Z S20 eiup2u duThe surface is not properly immersed (see �gure 4).14



Figure 4: An example of non proper minimal immersion for g = eiz2 (only the points withnegative third coordinate are shown). The level curve for X3 = 0 does not go to in�nity.15



proof of the corollary : We have a one-ended minimal surface, conformally equivalentto C. Since is has only one end, the surface cannot have �nite total curvature. The general formof the Gauss map is g(z) = R(z)e�(z)for some entire function � and rational function R having poles and zeros where X3 has a criticalpoint (horizontal tangent plane). For some integer k, z�kR(z) �!z!1C 6= 0;1 , so we can rewriteR(z) as Czke (z) with  holomorphic on D1r for large r. Applying the theorem, we know thatk = 0 and the Gauss map can be written asg(z) = Ceze�(z)where �(z) 2 O(1=z) is entire. So � is identically zero, we have a helicoid.AcknowledgmentsI am grateful to Harold Rosenberg for teaching me all the beauty of minimal surfaces, andparticularly for his suggestion of the proof of lemma 1. I also thank David Ho�man and thepeople at the Center for Geometry, Analysis, Numerics and Graphics, especially Jim Ho�man,David Oliver and Ed Thayer for helping me to create such striking and inspiring pictures. FinallyI thank my colleagues at the CMLA (Centre de Math�ematiques et Leurs Applications) for theirsupport in the making and writing of this article.
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