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Abstract— Camera-based estimation of drivable image areas 

is still in evolution. These systems have been developed for 

improved safety and convenience, without the need to adapt 

itself to the environment. Machine Vision is an important tool to 

identify the region that includes the road in images. Road 

detection is the major task of autonomous vehicle guidance. In 

this way, this work proposes a drivable region detection 

algorithm that generates the region of interest from a dynamic 

threshold search method and from a drag process (DP). 

Applying the DP to estimation of drivable image areas has not 

been done yet, making the concept unique. Our system was has 

been evaluated from real data obtained by intelligent platforms 

and tested in different types of image texture, which include 

occlusion case, obstacle detection and reactive navigation. 

I. INTRODUCTION 

HE perception of the environment is a major issue in 
autonomous and (semi)-autonomous systems. In the last 

three decades, visual navigation for mobile robots has 
become a source of countless research contributions [1]. The 
development of autonomous or driverless vehicles capable of 
moving on unknown and dynamic environments could 
provide important benefits to: patrolling, search and rescue, 
outdoor and indoor building inspection, real-time 
monitoring, autonomous cruise control, collision avoidance 
system and pre-crash system, intelligent speed adaptation, 
etc [1], [2].  

However, the challenge to construct robust methods, and, 
in most cases, optimized systems, remains an open problem. 
Some of these applications include: the Grand Challenge [3]; 
Urban Challenge [4]; Advanced Driver Assistance Systems 
(ADAS) [5]; autonomous perception system [6], [7]. These 
applications have a common issue: providing to the 
robot/vehicle platform the capability of perceiving and 
interacting with its neighbour environment. 

In this way, perception vision systems have been designed 
to investigate the information’s road, and different 
techniques on automatic and semi-automatic road extraction 
methods using monocular vision were proposed in the 
literature [6], [8], [9], [10], [11], [12]. The ability to identify 
the region that includes the road in images captured using 
vehicle mounted cameras is a useful function [13]. 
Determining the area of free road ahead is a key component 
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of several driving assistance modules [10]. Monocular 
camera systems are preferred to stereo camera systems 
because monocular systems have advantages in terms of 
reduced costs and the facility with which they can be fitted to 
vehicles [13]. The monocular vision contribution to the 
DARPA Grand Challenge [9] shows that the range of lasers 
was approximately 22 meters, whereas the monocular vision 
module often looks 70 meters ahead. 

In this way, we propose a machine vision algorithm 
capable of identifying the free-navigable area (region of 
interest). Our proposed monocular system was tested in 
different types of road surfaces, which include occlusion 
case, obstacle detection and reactive navigation. 

The paper is organized as follows. In Section II we present 
the sensor perception review and road detection 
contributions. Our proposed method is presented in Section 
III. From the Section IV the results are presented and the 
conclusions are given in Section V. 

II. RELATED WORKS 

The perception layer, on-boarded in intelligent 
transportation systems, uses many types of sensors, including 
ultrasonic sensors, laser rangefinders, radar, cameras, etc. 
However, these sensors are not perfect: ultrasonic sensors 
are cheap but suffer from specular reflections, and laser 
rangefinders and radar provide better resolution but are more 
complex and more expensive [6]. 

According to [8], the vision-based sensors are defined as 
passive sensors and it can be used for some specific 
applications: road marking localization, traffic signs 
recognition and obstacle identification. However, vision 
sensors are less robust than millimeter-wave radars in foggy, 
night, or in direct sun-shine conditions. On the other hand, 
range-based obstacle detection systems have difficulty for 
detecting small or flat objects on the ground, and range 
sensors are also unable to distinguish between different types 
of ground surfaces [6]. Notwithstanding, the main problem 
with the use of active sensors is represented by interference 
among sensors of the same type, hence, foreseeing a massive 
and widespread use of these sensing agents, the use of 
passive sensors obtains key advantages [8]. 

Additionally, when incorporating several types of sensors, 
there is an increase of autonomy and “intelligence” degrees, 
especially in relation to navigation in unknown 
environments. In contrast, the type and quantity of sensors 
determine the volume of data for processing that requires, in 
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most cases, a high computational cost. For unstructured 
environments, the scenario for study is dynamic, with several 
elements in motion. Thus, running an autonomous or semi-
autonomous system involves carrying out complex, and non-
deterministic operations in real time. 

To investigate the information’s road, different techniques 
on automatic and semi-automatic road extraction methods 
are proposed in the literature: for a system trained by driving 
a robot through its environment, a vision-based obstacle 
detection allows to classify each individual image pixel as 
either an obstacle or a ground based on its color appearance 
[6]; for robot navigation in agricultural environments or 
hazardous related areas, a method for extracting and tracking 
man-made roads segments color images in small areas was 
proposed. These small areas are characterized later by color 
and texture attributes, and features are classified using the K-
NN rule or the Support Vector Machines method [8]; a 
method for identifying drivable surfaces in difficult unpaved 
and off-road terrain conditions was proposed based on 
computer vision and lidar. Computer vision then construct 
appearance models to find drivable surface outward into the 
far range [9]; from a previously extracted road segments 
(manually or semi-automatically) in a traffic-free reference 
video record on a first drive, a road-detection method to 
infer the areas of the image depicting road surfaces without 
performing any image segmentation was presented by [10]. It 
uses a dynamic background subtraction based on Otsu 
thresholding algorithm; a partition-based algorithm for 
classification of outdoor terrains using monocular camera 
was proposed by [11]. This work was based on learning from 
the data by fruitfully exploiting the data obtained on the fly; 
a vision-based road detection method was proposed by [12] 
to realize visual guiding navigation for autonomous land 
vehicles. In this case, the images are segmented into road 
and non-road region by using Otsu thresholding algorithm, 
which included the Monte Carlo method with the road 
boundary extraction based on Canny. 

Aware that in the majority of the navigation systems, the 
machine vision system is working together with other 
sensors, added to its low cost, we present a monocular 
vision-based system that includes a robust road detection 
algorithm. Because it uses simple techniques and fast 
algorithms, the system is capable to present a good 
performance, where the commitment between processing 
time and images acquisition is fundamental. 

Furthermore, although extremely complex and highly 
demanding, thanks to the great deal of information it can 
deliver, the machine vision is a powerful means for sensing 
the environment and has been widely employed to deal with 
a large number of tasks in the automotive field [15]. 
However, complex machine-vision systems can lead to some 
losses due to the processing time. Thinking about the 
existing relation between a real-time decision system and a 
camera acquisition system that operates in a specific 
acquisition rate, the decision for a more complex machine 

vision system possibly leads to an excessively slow system 
for an independent real-time application. The great amount 
of information would not necessarily lead to better decisions 
and could also harm the performance of the system, 
overloading it. 

With respect to these previous works, the road detection 
method proposed in this article presents a major contribution 
related to the performance and efficiency computation, 
responding to the real-time requirements. Then, taking into 
account that it has been estimated that humans perceive 
visually about 90% of the environment information required 
for driving [15], it is not a bad idea to reduce information 
acquired by a vision system, in order to reduce processing 
time. In that case, based on the idea to reduce information 
acquired and in order to reduce processing time, the road 
detection method proposed here is based on an automatic 
image discarding criteria [16], which is based on Pearson’s 
Correlation Coefficient (PCC), and on a low complexity and 
easy implemented solution. It improves the performance of a 
real-time system by choosing, in an automatic way, which 
images should be discarded and which ones should be 
treated at the visual perception system. Additionally, in most 
real-world systems, there is little knowledge of future input 
events and Dynamic Power Management (DPM) decisions 
have to be taken based on uncertain predictions. Thus, 
according to [17], the rationale in all predictive techniques is 
that of exploiting the correlation between the past history of 
the workload and its near future in order to make reliable 
predictions about future events. Moreover, workload 
observation and prediction should not consume significant 
energy. Therefore, taking into account the temporal 
coherence between consecutive frames, we have also 
proposed a new DPM methodology applied to a robotic 
visual machine perception, which includes a Cumulative 
Impact Data Management [18]. 

Finally, in order to decrease the volume of data for 
processing, some systems have been designed to investigate 
only a small portion of the road ahead of the vehicle where 
the absence of other vehicles can be assumed [15]. 
Otherwise, the sky region is not a region of interest, and the 
horizon line threshold is applied to generate a road image 
[19]. Stanford Racing Team [9] implemented the horizon 
finding algorithm originally proposed by [20] to eliminate all 
pixels above that horizon. In this way, to compose our road 
detection method, we have proposed a robust horizon finding 
algorithm that finds the horizon line and apply it to generate 
the free-navigable area (region of interest) [21]. 

III. DRIVABLE IMAGE AREA 

Many works have focused upon the obstacle avoidance 
problem. In a general way, the primary purpose is to detect 
the free space immediately around the mobile robot. These 
algorithms carry through operations on images, with the 
purpose to reduce noise and to segment them. 

One way to perform segmentation of an image is to use 



  

thresholds. This type of segmentation technique, called 
thresholding, is very simple and computationally fast, 
however the identification of the ideal threshold can be 
sufficiently complicated. The best thing to do in this case is 
to use techniques and algorithms that search the thresholds 
automatically. Thresholding methods are divided in two 
groups: global and local. The global ones divide the image 
using only one threshold and the local ones are those that 
divide the image in sub-images and for each one of them a 
threshold is defined [22]. 

We propose a global thresholding method, which seeks 
not the ideal threshold for the whole image, but an ideal 
threshold associated with the region of interest, i.e. navigable 
area. In this case, we apply the sky removal method 
proposed in [21], because once using a global segmentation 
method, not always the analysis of a bigger image portion 
can contribute for a better result in the most critical region 
(region closer to the vehicle) where obstacles should be 
detected and avoided as fast as possible. On the contrary, 
when discarding the superior portion of the original image, 
sky removal, we are capable to get a more efficient 
segmentation and to distinguish with higher precision the 
obstacles from the navigable area. Moreover, for land 
vehicle navigation, Fig. 2 illustrates that probably for images 
that possess the horizon (sky) in its composition, the 
algorithm may not have a satisfactory result. On the other 
hand, in our methodology, after sky removal, the new result 
can be seen in Fig. 2 (c). 

 

 
Fig. 1 – Block diagram of our system. 

 

 
Fig. 2 – (a) Original image; (b) Free-area before sky 

removal; (c) Free-area after sky removal [21]; (d) Otsu 
threshold (104) to (a); Otsu threshold (32) to (c). 

A. Image pre-processing 

Most research groups face this problem using highly 
sophisticated image filtering algorithms [15]. In this work we 
use a color or gray-level image and smooth them using a 

Gaussian filter. The Gaussian smoothing operator is a 2-D 
convolution operator. It acts as low-pass frequency filters 
[23]. In order to reduce the number of data, it includes the 
resolution reduction of image (to 96x72). 

For find the drivable surfaces, [3] projects drivable area 
from the laser scan analysis into the camera image. This 
quadrilateral area is between 10 and 20 meters ahead of the 
robot. In this real-time approach, the basic idea is to consider 
a given region in the actual image as drivable. It assumes that 
the bottom center of the image contains road pixels for a 
large majority of the time [27]. This technique was first 
presented by [6]. 

In our proposed method, if the image is colored, in order 
to utilize the most important information of the color image, 
the candidate color channel that was dominant in the bottom 
center of the image is selected to generate the histogram 
image [12], Fig. 3 (a): yellow region. It is described by Eq. 
(1). 
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whereCc means the dominant color channel. 

B. Image segmentation based on Otsu method 

In this work, the purpose of segmentation is the road 
detection. Right after the images pre-processing, we can start 
searching for an ideal threshold based on Otsu [14]. 

The main characteristic of Otsu method is the 
maximization of the intra-classes variance of the image. The 
thresholding process is seen as the partitioning of pixels of 
an image in two classes: C1 (object) and C2 (background). 
This method is recursive and searches the maximization for 
the cases: C1 = {0, 1,…, T} and C2 = {T+1, T+2,…, N−1}, 
where T is the chosen threshold and N the number of 
intensity levels of the image. This method searches 
exhaustively for the threshold that minimizes the intra-
classes variance, defined as a weighted sum of variances of 
the two classes, it is described by Eq. (2).  
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Finally, the individual class variances are: 
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where H is the histogram of the selected channel in Eq. (1). 

 
One of the great advantages of this method is that it does 

not restrict itself to the type of histogram of the image, that 
is, it can be applied to unimodal, bimodal or multimodal 
histograms, but it presents better performance in images with 
bigger intensity variance. Its main disadvantage is its 
sensitivity to noise in the image, what can be reduced with 
the application of a filter.  

Region recognition can be handled by popular 
thresholding algorithm such as Maximum Entropy, Invariant 
Moment and Otsu thresholding method (OTM). For road 
detection, because OTM supplies a more satisfactory 
performance in image segmentation, it was used to overcome 
the negative impacts caused by environmental variation [12]. 

Furthermore, some authors consider the OTM as one of 
the best choices for real-time applications in machine vision 
[24], [25]. It still remains one of the most referenced 
thresholding methods [26]. 

C. Estimation of Drivable Image Area 

From the image processing and sky removal steps, in 
order to obtain a multimodal 2D drivability free-area, 

wFA , 

i.e. free-navigable area detection, the algorithm performs the 
following tasks: 

1. Task 1: Due to the different image textures on different 
roads, the original image, Figure 3 (a), and its 
negated, Fig. 3 (c), are submitted to the Otsu's method 
in Eq. (2). The algorithm then selects an image with 
the highest percentage of navigable area (white 
points) in the bottom center of the image, as shown in 
Fig. 3 (a): yellow area. The original image and its 
Otsu's result, +

Os , can be seen in the Fig. 3 (a) and 

(b). The negated image and its Otsu's result, −
Os , can 

be seen in the Fig. 3 (c) and (d). 
2. Task 2: Whereas there are homogeneous regions in the 

image, and in order to identify the limits of the road 
(which includes the obstacles), the Canny edge 
detector [28] was employed as input of Hough 
transform [29] due to its robust performance and 
accurate edge localization. Respectively, the results 
can be seen in the Fig. 3 (e) and (f). Then, from the 
bottom center of the image, the algorithm concludes 
by finding a single image mass, Hc , Fig. 3 (g). It may 
also help to identify the textureless regions classified 
as road region, specular surfaces, traffic markings, 
etc. 

A multimodal road image is then triggered based on the 
weighted average of the images intensities. It is described in 
Eq. (7). 
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where 

),( yxwFA  (left) is the intensity of the ith pixel after 

update in the new image 
wFA , 

),( yxwFA (right) is the intensity 

of the ith pixel in the old image 
),( yxwFA , 

),( yxOs is the 

intensity of the ith pixel in image obtained in Task 1, 

),( yxHc is the intensity of the ith pixel in image obtained in 

Task 2. 

 
Fig. 3 – (a) Original image after sky removal and its Otsu's 

result in (b); (c) negated image and its Otsu's result in (d); (e) 
Canny edge detection result; (f) Hough transform result; (g) 

a single mass in the image (f). 
 
Due the small variance of shades between objects, false 

path-markings, false route-markings, shadows, etc, the next 
step is applied to re-project this 2D drivability free-navigable 
area by considering a drag process presented in the next 
section. 

D. Drag forces: process 

In fluid dynamics, drag forces act in a direction opposite 
to the oncoming flow velocity, i.e. forces (or resistance) that 
oppose the relative motion of an object through a fluid [30]. 
Coming again to the domain of image, our objective is to 
classify the road image in terms of fluidity and navigability. 
In this case, the obstacles represent the forces that oppose the 
relative motion of a robot through a route. A new multimodal 
2D drivability free-area by considering the drag process is 
described in Eq. (8): 
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where for each image column x : (1) the algorithm initiates 
by analyzing each image row y , from bottom to top; (2) the 

drag forces, Df , and flow velocities , Fv , are initialized with 

a value by default equal to 255*h , where h  is the image 
height and 255 the highest intensity level of a pixel. Then, 
for 1−= hy to 0=y , the Df and Fv  values are updated by: 
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where
),( iyxdFA is the intensity of the ith pixel in the image. 

If 0<=Fv then 0=Fv . The velocity, reference area and drag 
coefficient attributes are equal to 1. 
 

Right after applying the equations Eq. (7) to Eq. (10), the 
final result to Fig. 3(a) is shown in Fig. 4 (b). Additionally, a 
hypothetical multimodal 2D drivability road image 5x5 is 
presented in Fig.5 as an example of this drag process. 

 

 
Fig. 4 – (a) The drag process; (b) The final result to Fig. 3(a) 

is a new multimodal 2D drivability free-navigable by 
considering the drag process: pixel 

intensities 10),( >=
iyxdFA . 

 

 
Fig. 5 – (a) Hypothetical multimodal 2D drivability road 

image 5x5; (b) Right after apply the Eq. (8), the new result 
by considering the drag process. 

IV. EXPERIMENTAL RESULTS 

As has been shown above in Section III.C, the Fig. 4 (a) 
and (b) show the application of our proposed method in 
desert context [31]. In this section, we present results on real, 
dynamic and unknown environments. These results were 
obtained using two experimental vehicles. As shown in Fig. 
9 (a) and (b), both vehicles are equipped with a camera to 
acquire color images and a CAN-bus gateway to provide the 
speed of the rear-wheels. 

At first stage of testing, in order to evaluate the proposed 
algorithm performance, we used an urban and real 
experimental test-bank. These data from Fig. 6 to Fig. 7 were 
obtained using the vehicle shown in Fig. 9 (a). A typical 
urban environment was selected and its results are presented 
in Fig. 6. All false-navigable areas (red) in Fig. 6 (c) are 
eliminated by applying the drag process resulting in Fig. 6 
(d). Additionally, different types of image texture (road 
surfaces) were selected and its results are presented in Fig. 7 
(a) to (f). A result for a shadow context is presented in Fig. 7 
(d). An occlusion case (vehicle) is shown in Fig. 7 (b).  

At second stage of testing, in order to evaluate the 
proposed algorithm performance to autonomous 
displacement, the experiments on real-time conditions were 

performed using the vehicle VERO shown in Fig. 9 (b). In 
Fig. 8 (a), (b) and (c) show the successful task execution to 
go through a gate in off-road context. Fig. 8 (d) and (e) 
present the obstacle detection and an open-loop reactive 
navigation [32]. In all experiments there was no collision. 
Additionally, different type of image texture (road surfaces) 
was also selected and its result is presented in Fig. 8 (f). 

The computational mean time of the road detection 
process was about 10ms. It was tested on a 2.5GHz Intel 
Core 2 Quad processor, Microsoft Windows XP Professional 
SP3. This time includes the resolution reduction of image 
and Gaussian filtering. The resolution reduction did not 
change the results. For additional results see the video [33]. 

 

 
Fig. 6 – (a) Original image after sky removal and its Otsu's 

result in (c); (b) Canny edge detection result; (d) A 
multimodal 2D drivability free-area by considering the drag 

process. 
 

 
Fig. 7 – Urban and real experimental test-bank. 

 

 
Fig. 8 – Real-time autonomous displacement. 

 

V. CONCLUSION 

The challenge to construct robust methods of image 
processing and analysis is far from being achieved. In this 
work, we have proposed a machine vision algorithm capable 
of identifying the free-navigable area from images captured 
by a single camera. It is important to notice that our 
algorithm is not based on previous knowledge of the 
environment neither camera calibration. Future work would 
be also focused to provide ground truth measurements from a 
front mounted radar and/or LIDAR system. 



  

 
Fig. 9 – The experimental vehicles: (a) Carmen vehicle at 

Heudiasyc Laboratory in Compiègne, France; (b) 
Autonomous vehicle (VERO) at Renato Archer IT Center 

(CTI) in Campinas, Brazil. 
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