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ABSTRACT  

Pulsed plasmas have been proposed many years ago by research labs and have shown a great potential for etch process

improvement. Nevertheless, they have been introduced in manufacturing only recently and the exact characteristics of

pulsed plasmas in industrial scale reactors are hardly known. In this paper, we have characterized silicon etching in

pulsed HBr/O2 plasmas using advanced plasma diagnostics (mass spectrometry and ion flux probe) in a 300 mm

industrial reactor. We show that pulsing the plasma at low duty cycle reduces the gas molecules dissociation and plasma 

temperature, as well as the flux of energetic ions to the wafer. The ions during silicon etching are mostly silicon-

containing ions that are heavier at low duty cycle. Silicon patterns etched using pulsed plasmas present improved

profiles, which is attributed to more uniform passivation layers at low duty cycle.   

Keywords: Pulsed plasma, silicon, etching, pattern, HBr/O2 

INTRODUCTION  

Plasma etching processes at 22 nm technology node and below face unprecedented challenges, to pattern nanometer-

scale features in very complicated stacks of ultrathin layers and on large size wafers. Etching processes must enable the

controlled patterning of sub-20 nm features with a perfect uniformity across the die, across the wafer, and from one lot to

the other. In addition, ultrathin (<1 nm) layers of materials are being integrated and 3D structures are required for fin-

FET fabrication, leading no room for plasma induced damage. Equipment suppliers have recently introduced pulsed

plasma reactors in manufacturing with the objective to improve plasma etching processes [1]. It is admitted that

differential charging is reduced in pulsed plasmas, which minimizes pattern profile distortions [2]. Furthermore, the

average ion energy is reduced in pulsed plasmas, which is expected to reduce the plasma induced damage. Finally,

pulsing the plasma enables an independent control of the plasma gas molecules dissociation [3]. Even if pulsed plasmas

have been widely investigated in research laboratories [2],[4], moving towards industrial scale plasmas leads to 

significant changes in processes that make the analysis of pulsed plasma processes in such etch reactors compulsory.  

EXPERIMENTAL SETUP 

1.1 Etching tool 

The experiments are performed in a 300 mm G5 reactor from Applied Materials, modified to enable plasma pulsing and

in-situ plasma diagnostics [3][5]. A schematic of the chamber is provided in Fig.1. The 300mm ICP reactor is equipped 

with the pulsyncTM system enabling synchronized pulsing of the source and bias power supplies with a duty cycle

ranging from 10% to 90% at a pulsing frequency ranging between 100 Hz and 10 kHz. The source and bias power 

supplies can be pulsed independently (only one power supply pulsed) or synchronously with a controlled delay and

controlled duty cycle for both the source and the bias power supplies. In this paper, only the synchronized pulsing mode 

with identical duty cycles and no delay is used. Power matching is performed using the automatic matching network as

well as by using frequency tuning which consists in modulating the RF power supply frequency around the fundamental 

frequency (13.56 MHz) to match the plasma impedance [1]. 
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mask by plasma etching using a tri-layer scheme. Before silicon etching, a 3 s breakthrough step is performed to remove

any stripping-induced silicon oxide from the open areas. The chamber operates in seasoned conditions: the chamber is 

cleaned first, then coated with SiO2 by a SiCl4/O2 plasma followed by a O2 plasma, then a dummy silicon wafer is 

processed with the process of interest before processing the real wafer. For diagnostics without silicon etching, the

process is performed in a clean chamber mode. Silicon pattern profiles are observed by secondary electron microscopy 

using a JEOL 7500F SEM. 

RESULTS 

1.6 Plasma diagnostic without silicon etching 

In a first set of experiments, the plasma composition is analyzed without wafer in the reactor and without rf bias power.

Fig. 2 shows the neutral mass spectra in the HBr/O2 plasma. We can see in that the plasma is composed of Br, HBr, Br2,

HxO and Ox with x between 1 and 2. CO2, HCl and HF come from the background that is not perfectly subtracted in

spectral mode (the chopper is not used). Note that the spectra correspond to the fractioned pattern of the plasma neutrals 

and that the mass spectrometer transmission function is not corrected here. As a consequence, no direct comparison of 

the species intensity can be done but we can compare the change of relative composition between the experiments.
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Figure 2. Mass spectra of neutral species present in the HBr/O2 plasma at 0W bias power in a) continuous wave mode b)

pulsed at 1kHz 20% DC

To compare the plasma composition in CW and in pulsed mode, we quantified the density of Br, HBr, Br2 and O2 using 

the beam chopper and threshold ionization. The other species (Hx, HxO, O) are not quantified due to a too small signal to 

noise ratio. Figure 3 shows the variation of the O2, Br, Br2 and HBr densities as a function of the duty cycle in the

HBr/O2 plasma pulsed at 1kHz. Two important trends can be observed. First, it is clear that the total density of species

increases when the duty cycle decreases. We must keep in mind that Hx, O and HxO are not taken into account here.  

The species density increase is attributed to a decrease of the time average gas temperature when the plasma is pulsed at

lower duty cycle. Gas heating is basically reduced due to a lower average source power in pulsed mode. Assuming that H

and H2 have a similar density to Br and Br2, respectively, and neglecting O-containing species, we can estimate the

plasma temperature around 650 K in CW mode, consistent with the literature [11]. The temperature decreases and is 

expected to tend towards 330 K at very small duty cycle. Secondly, we can see that the relative amount of atomic species 

(reactive radicals) decreases when the duty cycle decreases. This indicates that the plasma gas molecules dissociation is 

reduced when the duty cycle decreases. As a consequence, the density of reactive radicals decreases when the plasma is 

pulsed at low duty cycle. Both phenomena are particularly significant at duty cycles below 35%.  
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We also investigated the average ion flux in pulsed HBr/O2 plasma. Figure 4. shows the composition of the ion flux 

measured by mass spectrometry at the chamber walls for different duty cycles in the HBr/O2 plasma pulsed at 1kHz. The

light ions H+ and H2
+ cannot be detected accurately with our system. As shown in this figure, the total ion flux decreases

when the duty cycle decreases. The ion flux is mostly composed of Br2
+ and to a lower extend of H3O

+. The other ions 

represent less than 10% of the ion flux and consist of Br3
+, HBr2

+, H2Br+, HBr+ and Br+. The relative contribution of Br2
+ 

increases when the duty cycle decreases. This is simply indicating that the balance between dissociation and 

recombination tends toward recombination when the duty cycle decreases.
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Figure 4. Ion flux composition determined by mass spectrometry in HBr/O2 plasma pulsed at 1kHz. A duty cycle of 100%

corresponds to the CW mode.

The whole results in the HBr/O2 plasma indicate that pulsing the plasma leads to a decrease of the plasma temperature

and of the ion flux. The balance between dissociation and recombination tends towards more recombined and less

dissociated species when the duty cycle decreases. This is impacting both the neutral flux and the ion flux composition. 

1.7 Plasma diagnostic during silicon etching

In a second set of experiments, the plasma composition is analyzed during silicon etching. As shown in figure 5, the 

plasma composition is strongly modified compared to the plasma without bias. Many silicon-containing species are now 

observed. When the plasma is pulsed at low duty cycle, we can see that the intensity of the Si-containing species

decreases compared to the CW plasma. This can be explained by the formation of more volatile etch by-products in 

pulsed mode (less direct sputtering of low volatility species and less dissociation of etch by-products in the plasma) and

by the decrease of the flux of etch by-products due to a decrease of the etch rate at lower duty cycle.
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bias power without collisional losses, we can approximate the ion energy by E=P/I with E the ion energy, P the bias

power, and I the ion flux [9]. For a constant bias power, the ion energy is thus strongly increased when the plasma is 

pulsed at low duty cycle.
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Figure 7. Ion flux measured during silicon etchig in HBr/O2 plasma pulsed at 1kHz. A duty cycle of 100% corresponds to

the CW mode. a) time resolved measurement b) average ion flux and average ion flux during the plasma ON time only. 

The analysis of the plasma during silicon etching shows that silicon etch by-products strongly contribute to the plasma 

composition and to the ion flux. When the plasma is pulsed, the presence of Si-containing species (both neutrals and 

ions) is reduced and Si-containing species are heavier confirming the reduced plasma dissociation under pulsed

conditions. The ion flux is strongly reduced when the plasma is pulsed, which leads to an increased ion energy during the 

plasma ON time.

1.8 Application to silicon patterns etching

The HBr/O2 plasma investigated above has been used to pattern trenches in silicon using a SiO2 hard mask. For these 

experiments, we used time compensation, meaning that the etching time is set to have identical plasma ON time for all 

experiments. The time compensated etch rate is defined as the etch rate divided by the duty cycle, i.e. the etch rate 

considering only the plasma ON time.  Figure 8 shows semi-isolated silicon patterns with equal line and space widths of

80 nm. When the duty cycle is reduced, we can observe several phenomena: 1) The etched depth increases. 2) The hard

mask is less damaged. 3) The difference between open areas and dense patterns is reduced. 4) The shape of the micro

trenching evolves. 

The higher etched depth at low duty cycle reflects an increase in the time-compensated etch rate. This phenomenon is 

explained by an increased availability of etching radicals during the process. Indeed, since the density of neutrals species 

(and particularly reactive radicals) is hardly modulated in pulsed plasma at 1 kHz [3], a significant flux of reactive

radicals impinges the surface during the OFF time and may participate to silicon etching. Even if the total reactive 

radicals density in the plasma decreases when the duty cycle decreases, the flux of reactive radicals during the OFF time 

compensates for this decrease, leading to an increased time compensated etch rate.

By contrast, the SiO2 etch rate is driven by the ion flux and the square root of the energy. Even if the maximum ion 

energy increases at low duty cycle, the flux of energetic ions strongly decreases, which leads to a decrease of the SiO2 

etch rate. This explains why the SiO2 hard mask is better preserved when the plasma is pulsed at low duty cycle. 

The difference between dense and open areas is explained by a variation of the passivation layers thicknesses. Indeed,

the passivation layers are formed by the deposition of etch by-products and their subsequent oxidation at the pattern 

sidewalls. When the plasma is pulsed at low duty cycle, the gas fragmentation is lower. This leads to a lower flux of low-

volatility etch by-products and free oxygen towards the sidewalls, which reduces the passivation layers deposition rate.

As a consequence, the passivation layers are thinner, reducing the absolute difference in passivation layers thicknesses

between dense and isolated structures [10]. Note that the passivation layers are strong enough to prevent lateral etching

6
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