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Abstract

This paper proposes a thin layer depth-averaged two-phase model provided by
a dissipative energy balance to describe avalanches of solid-fluid mixtures. This
model is derived from a 3D two-phase model based on the equations proposed by
Jackson [R. Jackson, The Dynamics of Fluidized Particles, 2000] which takes into
account the force of buoyancy and the forces of interaction between the solid and
fluid phases. Jackson’s model is based on mass and momentum conservation within
the two phases, i.e. two vector and two scalar equations. This system has five
unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid
volume fraction, i.e. two vectors and three scalars. As a result, an additional
equation is necessary to close the system. Surprisingly, this issue is inadequately
accounted for in the models that have been developed on the basis of Jackson’s
work. In particular, Pitman and Le [E.B. Pitman, L. Le, Phil. Trans. R. Soc.
A, 2005] replaced this closure simply by imposing an extra boundary condition. If
the pressure is assumed to be hydrostatic, this condition can be considered as a
closure condition. However, the corresponding model cannot account for a dissi-
pative energy balance . We propose here a closure equation to complete Jackson’s
model, imposing incompressibility of the solid phase. We prove that the resulting
whole 3D model is compatible with a dissipative energy balance . From this model,
we deduce a 2D depth-averaged model and we also prove that the energy balance
associated with this model is dissipative. Finally, we propose a numerical scheme
to approximate the depth-averaged model. We present several numerical tests for
the 1D case that are compared to the results of the model proposed by Pitman and
Le.
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‡Université Paris Diderot, Sorbone Paris Cité, Institut de Physique du Globe de Paris, Equipe de

Sismologie, 1 rue Jussieu, 75005 Paris, France (mangeney@ipgp.fr)

1



Contents

1 Introduction 2

2 The 3D two-phase model 5
2.1 Mass and momentum equations . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 At the free surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 At the bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Assumptions concerning the drag force . . . . . . . . . . . . . . . . . . . . 8
2.4 Assumptions concerning the stress tensor . . . . . . . . . . . . . . . . . . . 10
2.5 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Derivation of the 2D model 12
3.1 Closure equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Resulting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Properties of the proposed model 16
4.1 Local energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Other properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Numerical approximation 20
5.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Test 1: Flat bottom . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Test 2: Constant slope . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusion 35

1 Introduction

Gravitational instabilities such as debris flows and landslides play a key role in erosion
processes on the surface of the Earth and other telluric planets. On Earth, they represent
one of the major natural hazards. Gravitational instabilities are also closely related to
volcanic, seismic and climatic activity and thus represent potential precursors or proxies
for the change of these activities with time. Research involving the dynamic analysis of
gravitational mass flows is advancing rapidly. One of its ultimate goals is to produce
tools for detection of natural instabilities and for prediction of velocity and runout ex-
tent of rapid landslides. The theoretical description and physical understanding of these
processes in a natural environment are still open and extremely challenging problems
for earth scientists, giving rise to equally challenging mechanical, mathematical and nu-
merical issues. In recent years, significant progress in the mathematical, physical and
numerical modelling of gravitational flows has made it possible to develop and use nu-
merical models to investigate geomorphological processes and assess risks related to such
natural hazards. However, key questions still remain unanswered, for instance concerning
the reason for the high mobility of natural landslides (e.g. [18]; [19]). Severe limitations
prevent a full understanding of physical processes involved in landslide dynamics and the
development of tools for detection of instabilities and prediction of their velocity and
extent. Indeed, numerical models do not take into account complex natural phenomena
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Figure 1: (a) Deposits of several debris flows in Iceland. (b) Close-up of a cross-section
of the deposit of a debris flow covering a road in Canada.

such as the static/flowing transition in granular flows or the co-existence and interaction
of fluid (water, gas) (e.g. [11]; [22]; [23]; [37]; [15]; [24]). Water is almost always involved
in natural landslides (e.g. [12]; [13]; [25]) (Figure 1b). Interaction forces between the
solid and fluid (water) phases may play an important role in flow mobility and deposit
extent. Different approaches can be used to simulate fluid-solid mixtures, extending from
discrete element models based for example on contact dynamics or molecular dynamics
(e.g. [40]), and taking into account individual particles, to continuum models that deal
with a fluid phase and a solid phase. The discrete element approach is hard to use in
geophysical applications due to the high computational costs required to take into account
the broad-size distribution of particles in real flows, which is critical in such simulations.

Existing models used to describe the behaviour of fluid-solid mixtures are mainly
based on Jackson’s model [16]. This model takes into account solid and fluid stresses,
the interaction force between the fluid and solid phases and the buoyancy force, through
mass and momentum conservation within the two phases. This model thus involves four
equations (two scalar and two vector equations). However, the system has five unknowns:
the solid volume fraction, the solid and fluid pressures and the solid and fluid velocities
(three scalars and two vectors). As a result, an additional equation is necessary to close
the system. Surprisingly, this issue is inadequately accounted for in the models that have
been developed on the basis of Jackson’s work.

Solving the 3D two-phase equations leads to high computational costs. For this reason,
mostly depth-averaged models have been proposed to deal with natural geophysical flows
(e.g. [33], [31], [30], [7]). Iverson [12] was the first to address the need to include interstitial
fluid effects in the constitutive behaviour of the mass flow and developed a thin layer model
for a solid-fluid mixture moving on realistic terrain, under the simplifying assumptions of
constant porosity and equality of the fluid and solid velocity. The flow is described by a
single set of equations for the density and momentum of the mixture, which is formally
represented by a single-phase model with a stress term accounting for contributions from
the two constituents. Due to the lack of an implicit equation for the pore fluid pressure in
this model, a pore pressure advection-diffusion equation was added based on experimental
measurements. Various versions and applications of this grain-fluid mixture model have
since been presented (e.g. Pudasaini et al. [34]; Georges and Iverson, [7]).

Taking another step forward, Pitman and Le proposed in [33] a novel depth-averaged
two-fluid model for debris flows, based on Jackson’s model, that contains mass and mo-
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mentum equations for both the fluid and solid phases, thus providing equations for the
velocities of the two phases and for porosity. In the model proposed by Pitman and Le and
the modified version proposed by Pelanti et al. [31], the authors do not provide a closure
equation for the two-phase model. On the other hand, they impose two boundary condi-
tions involving vanishing surface tension conditions at the free surface, i.e. the pressure
of both the solid and the fluid phases vanish at the free surface. Two kinematic boundary
conditions are also imposed at the free surface, because the two phases are assumed to fill
a common domain, this gives an overdetermined problem at the free surface. However, in
the thin layer approximation, because of the hydrostatic pressure assumption, the extra
boundary condition somehow compensates for the lack of a closure relation inside the
domain. As a result, this additional boundary condition makes it possible to express a
depth-averaged model, even though no closure relation for the whole system is provided.
However, boundary conditions obviously do not replace a closure equation inside the do-
main. This artificial compensation of the missing closure equation by overdetermined
boundary conditions leads to a physically irrelevant energy equation in the Pitman-Le
model (see Section 4.1).

A physically meaningful energy equation is essential to obtain realistic models. A
key issue in two-phase flow models is thus to propose a suitable closure relation that is
compatible with the energy balance. Some new and very useful ways to close the system
of equations have been proposed by Roux and Radjai [38], Pailha and Pouliquen [30] and
George and Iverson [7]. The general idea is to take into account the dilation/compression
of the granular phase and its interaction with the pressure of the fluid filling the pores of
the granular material. Indeed, these effects have been shown to be crucial at the initiation
of mass destabilization and to have a strong impact on the generated flow dynamics [e.g.
[14]; [35]]. Roux and Radjai [38] proposed an equation to describe the evolution of the
volume fraction and of the shear stress in a granular material in terms of the shear-
induced dilatancy angle. Pailha and Pouliquen used this equation to close their model,
based on the two-phase approach proposed by Jackson [30]. They also imposed that
both the solid and fluid pressures vanish at the free surface. Moreover, they introduced
a closure equation, related to dilatancy effects (equation (3.18) in [30]). Then, as the
resulting system is overdetermined, a condition had to be relaxed. Indeed, they relaxed
mass conservation for one of the two phases, that they justified by assuming that the
total height of mixing is nearly constant. Alternatively, George and Iverson [7] derived
a model using the mass and momentum equations of the mixture. In their model, the
unknowns are the total height and velocity of the mixture, the solid volume fraction and
the pore fluid pressure. As a closure relation, they used a slightly different equation than
that proposed in [38] to describe dilatancy effects, that includes the time derivative of
the effective normal stress and the pore fluid pressure. This relation is derived from the
mass conservation of the solid phase by assuming that the averaged mixture velocity is
equal to the averaged solid velocity (equations (6) and (7) of their paper) and a Darcy
law. However, the final model does not impose mass conservation of the solid phase.

We propose here to solve the mass and momentum equations of both phases, together
with the relevant number of boundary conditions and a closure equation that provides
a possibly physically relevant energy equation. In a first step toward this objective, we
use the simplest closure equation (i.e. incompressibility of the solid phase). We impose
a vanishing stress condition at the free surface for the mixture (not for each phase) and
kinematic surface boundary conditions (the two phases are supposed to fill the same
domain), forming a well-posed 3D system. The analysis of the hydrostatic approximation
suggests that a new variable related to the pressure field on the boundary appears in the
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thin layer asymptotics. We obtain a thin layer model with this extra variable appearing
as a Lagrange multiplier for a static constraint that is derived from the closure relation.
Consequently, our model has a built-in energy balance equation.

2 The 3D two-phase model

In this section we present the three-dimensional model used to describe the mixture of
solid and fluid materials. Note that we do not consider here the role of the air (i.e. a
third phase) that can be critical in some cases due to capillary forces, especially at the
laboratory scale [13]. As a result, these equations are only valid when the granular media
is saturated with fluid so that there is no air within the pores of the granular material. In
Subsection 2.1, the mass and momentum equations of Jackson’s model are presented and
a closure equation is proposed. In Subsection 2.2, the boundary conditions are described.
In Subsection 2.3 and 2.4, we express the drag force and the assumptions concerning
the stress tensor. Finally, in Subsection 2.5, we express the complete model in local
coordinates.

2.1 Mass and momentum equations

We consider geophysical mass flows made of a mixture of solid and fluid materials. This
situation can be described by Jackson’s model (see [16]). Within the domain occupied by
the mixture, the model satisfies mass conservation for the solid and fluid phases

∂t(ρsϕ) +∇ · (ρsϕv) = 0, (2.1a)

∂t(ρf (1− ϕ)) +∇ · (ρf (1− ϕ)u) = 0, (2.1b)

and conservation of momentum for the solid and fluid phases

ρsϕ(∂tv + (v · ∇)v) = −∇ · Ts + f0 + ρsϕg, (2.2a)

ρf (1− ϕ)(∂tu+ (u · ∇)u) = −∇ · Tf − f0 + ρf (1− ϕ)g, (2.2b)

where the subscript “s” refers to the solid phase and the subscript “f” refers to the fluid
phase. The velocities are v for the solid phase and u for the fluid phase. T denotes
the stress tensor and ρ the density. Acceleration due to gravity is denoted by g and f0
represents the average value of the resultant force exerted by the fluid on a solid particle.
The solid volume fraction is ϕ. For monodisperse beads, the maximal volume fraction is
ϕmax ' 0.6, while it can be higher than 0.9 for highly polydisperse materials because the
small particles can fill the pore space between larger particles ([41], [10], [3]). The solid
fraction is practically never equal to 1. The case of dry granular flows can be obtained by
setting all the variables related to the fluid phase (fluid stress, volume fraction and f0) to
zero in equations (2.1a) and (2.2a).
Note that both the grain density ρs and the fluid density ρf are constant, so that each
material is incompressible. However, the density of the solid phase ϕρs (i.e. density of
the total amount of grains per unit volume) and the density of the fluid phase (1− ϕ) ρf
(density of the total amount of fluid filling the pores of the granular assembly per unit
volume) can change because ϕ varies with space and time. In this sense, the solid and
fluid phase could be compressible. Note that the combination of (2.1a) and (2.1b) defines
mass conservation for the mixture:

∂t(ρm) +∇ · (ρmvm) = 0, (2.3)
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where ρm = ρsϕ + ρf (1− ϕ) and vm =
ρsϕv+ρf (1−ϕ)u
ρsϕ+ρf (1−ϕ)

are respectively the density and

velocity of the mixture. Multiplying (2.1a) by ρf and (2.1b) by ρs gives:

∇ · (ϕv + (1− ϕ)u) = 0. (2.4)

This relation is different from the one expressing incompressibility of the mixture because
it does not imply that ∇ · vm is equal to zero.

According to Jackson [1], the force f0 is decomposed into the sum of the buoyancy
force fB and all remaining contributions f :

f0 = fB + f = −ϕ∇pf + f, (2.5)

where pf denotes the fluid pressure. The term f combines the drag force, the lift force
and the virtual mass force (see [16] for details). Here, we assume that f can be expressed
simply by the drag force. Let us consider that f can be written as

f = β̃(u− v) (2.6)

β̃ being the drag coefficient (see Subsection 2.3). The notation β̃ is used to distinguish
this coefficient from the drag coefficients denoted by β in some other publications (see for
example [30]).

The viscosity of the fluid acts at the “macroscopic” scale through viscous terms of order
µU/L2, where U and L are characteristic values of respectively the fluid velocity and flow
length, . On the other hand, the fluid viscosity acts at the “microscopic” scale during
the relative motion between the fluid phase and the granular porous media commonly
described by the Darcy law. This microscopic contribution is of the order of µ∆U/κ,
where κ is the intrinsic hydraulic permeability of the granular media and ∆U is the typ-
ical relative velocity of the fluid phase with respect to the solid phase. Here we assume
that the “macroscopic” viscous forces related to the fluid are negligible, so that the fluid
stress tensor reduces to the pressure term,

∇ · Tf = ∇pf . (2.7)

By substituting these expressions into (2.2a) and (2.2b), we obtain the system (2.1a),
(2.1b), and

ρsϕ(∂tv + (v · ∇)v) = −∇ · Ts − ϕ∇pf + f + ρsϕg, (2.8a)

ρf (1− ϕ)(∂tu+ (u · ∇)u) = −(1− ϕ)∇pf − f + ρf (1− ϕ)g. (2.8b)

This system of equations is the same as the system considered in [13] and [33]. Only the
boundary conditions are different from those used here.
As discussed above, this system of four equations (2.1a), (2.1b), (2.8a), (2.8b) has five
unknowns ϕ, ps, pf , u and v. To close the system, an additional scalar equation should
be imposed, based on the physical processes involved. Starting from the simplest closure
relation, we propose to impose the incompressibility of the solid phase:

∇ · v = 0. (2.9)

In real granular materials the dilatancy effect may induce changes of the volume of the
solid phase, even if the mass of the granular material remains constant. This means
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that the divergence of the velocity of the solid phase v may not be zero (see [8]). The
compression/dilation of the granular phase changes the interstitial fluid pressure that in
turn couples with the solid momentum equations. This coupling appears in the non-
hydrostatic pressure terms (see [26]), not included in the approximations made in this
work.
The consistency of the whole model can be evaluated by the local energy balance equation.
To obtain it, we multiply (2.8a), (2.8b) by v and u respectively, combine with (2.1a) and
(2.1b), and add the results. This yields

∂t

(
ρsϕ
|v|2

2
+ ρf (1− ϕ)

|u|2

2

)
+∇ ·

(
ρsϕ
|v|2

2
v + ρf (1− ϕ)

|u|2

2
u

)
= −v · (∇ · Ts)−

(
ϕv + (1− ϕ)u

)
· ∇pf + f · (v − u) +

(
ρsϕv + ρf (1− ϕ)u

)
· g.

(2.10)
Denoting X the space position and once again using (2.1a) nad (2.1b) along with (2.4),

we obtain

∂t

(
ρsϕ
|v|2

2
+ ρf (1− ϕ)

|u|2

2
− (g ·X)

(
ρsϕ+ ρf (1− ϕ)

))
+∇ ·

(
ρsϕ
|v|2

2
v + ρf (1− ϕ)

|u|2

2
u− (g ·X)

(
ρsϕv + ρf (1− ϕ)u

)
+pf

(
ϕv + (1− ϕ)u

)
+ Ts v

)
= (Ts − ps Id) : ∇v + ps∇ · v + f · (v − u).

(2.11)

From equation (2.6), the drag contribution f ·(v−u) is non-positive. With the assump-
tion that the solid phase is incompressible, the second term on the right-hand side ps∇· v
is equal to zero and it is natural to assume that the friction dissipation (Ts − ps Id) : ∇v
is non-positive. As a result, the sum of the three terms in the right-hand side of (2.11) is
non-positive.
The model defined by (2.1a), (2.1b), (2.8a), (2.8b) with closure (2.9) has a locally dissi-
pative energy balance (2.11). Note that in the initial system considered by Pitman and
Le, the term ps∇ · v does not vanish and we cannot ensure the non-positiveness of the
right-hand side term in (2.11). We will show in Section 4.1 that the term resulting from
the closure equation also makes it possible to obtain a dissipative energy balance in the
Pitman-Le model.

2.2 Boundary conditions

2.2.1 At the free surface

We consider the usual geometric setting, which is that the mixture lies in a spatial domain
limited by a fixed topography at the bottom and by a free surface at the top.
We assume that the fluid and the solid fill the same domain that is moving with the
velocity of both. This gives the simultaneous kinematic conditions

(1, u) ·N = 0, (1, v) ·N = 0 at the free surface, (2.12)

where N = (Nt, NX) is the time-space normal. It can be rewritten

u ·NX = v ·NX = −Nt at the free surface. (2.13)

Note that this is a strong assumption that plays a key role in the derivation of the equations
and in the resulting model presented below. In [13, 33, 30], both the fluid and the solid
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pressures are set to zero at the free surface. However, as discussed in the introduction,
only one dynamic boundary condition can be imposed at the free surface of the mixture:(

(Ts + pf Id)NX

)
·NX = 0 at the free surface. (2.14)

2.2.2 At the bottom

The conditions at the bottom are classically the non-penetration conditions

u · n = 0, v · n = 0 at the bottom, (2.15)

where n is the upward space unit normal (i.e. the normal to the topography).
This must be completed by further conditions for the solid, in particular we consider a
Coulomb friction law

Tsn−
(
(Tsn) · n

)
n = − tan δ

v

|v|
(Tsn) · n at the bottom, (2.16)

where δ is the intergranular Coulomb friction angle.

Remark 2.1 The system (2.1a), (2.1b), (2.8a), (2.8b), (2.9) with the boundary condi-
tions (2.13), (2.14), (2.15), (2.16), is formally well-posed. Moreover, we can check that
the previous boundary conditions ensure that all the boundary contributions vanish in the
energy balance of the model, except the one coming from the Coulomb condition (2.16),
which dissipates at the bottom.
The main difference between this system and those considered by Pitman and Le (see [33])
and Pailha and Pouliquen (see [30]) is the definition of the boundary conditions. Instead
of considering that the total pressure vanishes at the free surface (equation (2.14)), they
consider that both the pressure of the solid phase and the pressure of the fluid phase vanish
at the free surface. Pitman and Le do not consider any closure equation, consequently we
cannot check the well-posedness of this system. Pailha and Pouliquen consider a closure
equation in terms of the divergence of the solid phase velocity. Nevertheless, given that
the system is overdetermined in this case, they relax the mass conservation of one of the
two phases.

2.3 Assumptions concerning the drag force

Different empirical relations are proposed in the literature for the drag force. As already
mentioned, the drag force expression is assumed to be

f = β̃(u− v). (2.17)

The drag coefficient β̃ can be defined in different ways:

• Pitman and Le [33] used the drag force proposed by Richardson and Zaki (see [36]):

β̃ =
(ρs − ρf )ϕ g
vT (1− ϕ)m−1

, (2.18)

where vT is the terminal velocity of an isolated representative solid particle falling
in the fluid under gravity. This force has been calculated by Richardson and Zaki,
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based on laboratory experiments measuring vT and vS, where vS is the sedimentation
velocity of the dispersion of particles in a fluid. Experiments give the empirical law:

vS = (1− ϕ)nvT .

The value of the empirical exponent n lies in the range [2.4, 4.65]. Pitman and Le
[33] (Appendix A) show that m = n− 2, so that m ∈ [0.4, 2.65]. Depending on the
respective roles of viscous and inertial forces, vS/vT depends or does not depend on
the Reynolds number (see [36] for more details).

For example, with the typical values of the experiments done by Iverson [14], the
typical Reynolds number is Re = vT d ρf / µ ≈ 50. From Table VI of Richard and
Zacki, this gives n ≈ 3 and then m ≈ 1.

• Pailha and Pouliquen [30] use the following definition of the drag coefficient:

β̃ = (1− ϕ)2
µ

αd2
, (2.19)

µ being the dynamic viscosity, d the mean grain diameter and

α =
(1− ϕ)3

150ϕ2
.

This is derived from the Carman-Kozeny relation for the permeability of the porous
media formed by the particles (see [28] and [9]).

Another way to estimate β̃ is to assume that the friction between the two phases is
similar to the Darcy law. In debris flows, part of the vertical displacements and of the
fluctuations of the horizontal displacement are induced by the dilation or the compaction
of the granular media. These effects impact on the fluid pressure field that in turn affects
the momentum conservation of the solid and fluid phases. The coupling between the
fluid and solid phases comes from the drag force (see [30]). This can be understood by
considering the deviation from the hydrostatic fluid pressure. Let us denote pf = phf + pef ,

where phf corresponds to the hydrostatic fluid pressure, satisfying ∂zp
h
f = −ρfg cos θ,

and pef is the excess pore-fluid pressure. If the right hand side of (2.8b) is considered

predominant (small inertia), the horizontal variation of phf is negligible and the gradient
of the excess pore-fluid pressure pef satisfies

∇pef = − β̃

(1− ϕ)
(u− v). (2.20)

This formula has the same structure as the linear Darcian drag formula describing fluid
flow within porous media. This law, considered in [7], relates u− v to the gradient of the
excess pore-fluid pressure,

∇pef = −µ
κ

(1− ϕ)(u− v), (2.21)

where µ is the pore-fluid viscosity and κ is the intrinsic hydraulic permeability of the
granular debris. George and Iverson [7] point out that even if this linear drag formula
may oversimplify the effects of complex phase-interaction forces in debris flows, several
research papers, such as [17] and [39], indicate that it probably provides a suitable first
approximation. Comparing (2.20) with the Darcian law (2.21) leads to:

β̃ = (1− ϕ)2
µ

κ
, (2.22)
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Figure 2: Permeability as a function of the solid volume fraction. The solid curve corre-
sponds to (2.23) and the dashed curve to (2.24)

κ being the permeability of the granular media. The value of the effective permeability
derived from (2.18) and (2.19), when compared to 2.22 gives respectively:

• For Pitman and Le (2.18):

κ =
µvT (1− ϕ)m+1

(ρs − ρf )gϕ
. (2.23)

• For Pailha and Pouliquen (2.19):

κ =
d2(1− ϕ)3

150ϕ2
. (2.24)

These two different values of permeability derived from (2.23) and (2.24) are compared in
Figure 2. For this comparison we set µ = 0.001 Pa s, d = 10−3m, (ρs−ρf ) = 1500kg m−3,
g = 9.81m s−2, m = 1, vT = 0.143m s−1. We observe that both models give relatively
close approximations of the permeability for values of ϕ greater than 0.4.
George and Iverson [7] have simulated the experiments performed in [14]. In these ex-
periments, the value of κwasapproximately10−12m2, whereas the numerical simulations
where performed with a constant value of κ ≈ 10−8 m2. Note that, with the definition
of κ given by (2.23) or (2.24), κ ≈ 10−8 m2 when ϕ ≈ 0.5. A value of κ ≈ 10−12 m2

corresponds to ϕ ≈ 0.9.

2.4 Assumptions concerning the stress tensor

To obtain the final system, a constitutive relation should be stated for the fluid and
granular phases.

• Fluid stress tensor Tf . As mentioned before, we assume that the fluid stress tensor
can be expressed by the fluid pressure:

T xyf = T xzf = T yzf = 0, T xxf = T yyf = T zzf = pf . (2.25)
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Figure 3: Local coordinates

• Solid stress tensor Ts. We assume that all its components are proportional to the
normal stress perpendicular to the topography, i.e. the stress component T zzs ,

T jks = αjkT
zz
s , j, k = x, y, z. (2.26)

The constants αjk are related to the internal and basal Coulomb friction angles, see
[13, 33] for details. For simplicity, we assume αxx = αyy = 1, i.e. isotropy of normal
stresses T xxs = T yys = T zzs and we neglect the shear stress in the x− y plane, so that
αxy is set to zero.
For the definition of the coefficients αkz (k = x, y), we assume that they satisfy the
Mohr-Coulomb plasticity criterion:

|(T xzs , T yzs )| = tan δ |T zzs |. (2.27)

2.5 Coordinates

Let us initially write the model in a reference frame related to an inclined plane represen-
tative of the mean slope of the topography. More realistic reference frames could be used
but such a derivation is beyond the scope of this paper (see for example [5]; [6]). We con-
sider a fixed slope with constant angle θ with respect to the horizontal, −π/2 < θ < π/2,
and the coordinates (x, z) (assuming x = (x, y)) are respectively tangent to and normal
to this slope, the x axis being along the steepest direction and the y axis being horizontal.
In Figure 3, we represent the coordinates on a cross-section along a vertical plane for
clarity. The coordinates of the gravitational force can be written in this reference frame
as

g = (−g sin θ, 0,−g cos θ)t. (2.28)

We consider a bottom topography b(x) and a thin layer of material over it with thickness
h(t,x). The material thus occupies the domain

b(x) < z < b(x) + h(t,x). (2.29)

In this reference frame, the system (2.1a), (2.1b), (2.8a), (2.8b), (2.9) can be written

∂tϕ+∇x · (ϕvx) + ∂z(ϕv
z) = 0, (2.30a)

∂t(1− ϕ) +∇x · ((1− ϕ)ux) + ∂z((1− ϕ)uz) = 0, (2.30b)

ρsϕ(∂tv
x + vx · ∇xv

x + vz∂zv
x) = −∇x · T xx

s − ∂zT xz
s − ϕ∇xpf

+fx − g sin θρsϕ(1, 0)t,
(2.31a)

ρsϕ(∂tv
z + vx · ∇xv

z + vz∂zv
z) = −∇x · T xz

s − ∂zT zzs − ϕ∂zpf + fz − g cos θρsϕ,(2.31b)

11



ρf (1− ϕ)(∂tu
x + ux · ∇xu

x + uz∂zu
x) = −(1− ϕ)∇xpf

−fx − g sin θρf (1− ϕ)(1, 0)t,
(2.32a)

ρf (1− ϕ)(∂tu
z + ux · ∇xu

z + uz∂zu
z) = −(1− ϕ)∂zpf − fz − g cos θρf (1− ϕ),(2.32b)

∇x · vx + ∂zv
z = 0. (2.33)

The boundary conditions described in Subsection 2.2 can be written as follows:

• At the free surface z = b+ h.

– Free total stress condition

(Ts + Tf )NX = 0 at z = b+ h, (2.34)

NX = (−∇x(b + h), 1)t being the vector normal to the free surface pointing
outwards.

– Kinematic condition for each phase

∂th+ vx · ∇x(b+ h) = vz at z = b+ h, (2.35)

∂th+ ux · ∇x(b+ h) = uz at z = b+ h, (2.36)

where u = (ux, uz), ux = (ux, uy) (analogously for v) and ∇x = (∂x, ∂y).

• At the bottom z = b.

– Non-penetration condition for each phase

vx · ∇xb = vz at z = b, (2.37)

ux · ∇xb = uz at z = b. (2.38)

– Coulomb friction law

T xz
s = − tan δ

vx

|vx|
T zzs at z = b. (2.39)

3 Derivation of the 2D model

We consider Jackson’s system written in inclined coordinates (2.30a)-(2.32b) with closure
(2.33), and boundary conditions (2.34)-(2.38). We assume the drag relation (2.17) and
consider the stress tensors under the assumptions in Section 2.4. In particular we denote

T zzs = ps, Tf = pf Id, (3.1)

where “Id” is the identity matrix.
H and L are respectively the characteristic width and length of the domain, T a charac-
teristic time and ε = H

L
, assumed to be small according to the thin layer approximation.

We consider the following asymptotic regime in terms of ε,

h = O(ε), ∇b = O(ε), β̃ = O(1), Ts = O(ε), pf = O(ε), ux = O(1), vx = O(1), (3.2)

where the reference units are respectively L, 1, ρfL/T
2, ρs(L/T )2, ρf (L/T )2, L/T , L/T .

We shall assume that the unknowns vary at the scales of the domain, which means that
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formally ∂t = O(1), ∇x = O(1) and ∂z = O(1/ε) with units 1/T , 1/L and 1/L respec-
tively. For the sake of conciseness, the orders of magnitude will hereafter be expressed
without their units. As a first approximation, we also assume that the horizontal veloci-
ties, the solid volume fraction ϕ and the friction coefficient αxz do not depend on z (see
[5], [6]),

vx = vx(t,x) +O(ε2), (3.3a)

ux = ux(t,x) +O(ε2), (3.3b)

ϕ = ϕ(t,x) +O(ε2), (3.3c)

αxz = αxz(t,x) +O(ε2). (3.3d)

From the divergence condition (2.33), we then obtain that ∂zv
z = −∇x · vx = O(1), thus

integrating with respect to z and using (2.37) we obtain vz = O(ε). Similarly, the sum of
(2.30a) and (2.30b) yields

∇x · (ϕvx + (1− ϕ)ux) + ∂z(ϕv
z + (1− ϕ)uz) = 0, (3.4)

giving ∂z(ϕv
z + (1− ϕ)uz) = O(1), and with (2.37) and (2.38) we obtain uz = O(ε).

Note that equations (2.33) and (3.4), with boundary conditions (2.37), (2.38), make it
possible to determine vz, uz in terms of vx, ux, ϕ, without depending on any approxi-
mation. Equations (2.31a) and (2.32a) drive the evolution of vx, ux, and (2.30a) drives
the evolution of ϕ. Equations (2.31b) and (2.32b) determine ps and pf with boundary
condition (2.34). However, there is only one condition (2.34), thus one unknown ps = −pf
remains on the free boundary. This extra unknown on the free boundary makes (2.35)
and (2.36) solvable. Otherwise, because of the assumption that both phases share the
same domain, there would be two equations for only one unknown h on the boundary..
In order to derive the asymptotics, we first focus on the pressure equations. From (2.31b),
we obtain

∂zps + ϕ̄∂zpf = −ϕ̄ρsg cos θ +O(ε),

and from (2.32b)
(1− ϕ̄)∂zpf = −(1− ϕ̄)ρfg cos θ +O(ε).

This yields
pf = pf |b+h + ρfg cos θ(b+ h− z) +O(ε2), (3.5)

ps = ps|b+h + ϕ̄(ρs − ρf )g cos θ(b+ h− z) +O(ε2). (3.6)

However, according to (2.34), (ps + pf )|b+h = 0. Thus, expressing the previous relations
in terms of pfbed ≡ pf |b = pf |b+h + ρfgh cos θ +O(ε2), we obtain

pf = pfbed − ρfg cos θ(z − b) +O(ε2), (3.7)

ps = −pfbed + ρfgh cos θ + ϕ̄(ρs − ρf )g cos θ(b+ h− z) +O(ε2). (3.8)

Note that the unknown pfbed can be replaced by psbed or by ps|b+h
= −pf|b+h

via the relations

pfbed = −psbed + (ϕ̄ρs + (1− ϕ̄)ρf ) gh cos θ +O(ε2), (3.9)

pfbed = −ps|b+h + ρfgh cos θ +O(ε2). (3.10)

We can then write the tangential components of momentum equations (2.31a) and (2.32a).
We assume that

β̃ = β(t,x) +O(ε2), (3.11)
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which is the case if β̃ is defined by (2.18), with

β =
(ρs − ρf )ϕ̄g
vT (1− ϕ̄)m−1

. (3.12)

For the solid phase, this gives

ρsϕ̄(∂tvx + vx · ∇xvx) +∇xps + ϕ̄∇xpf = −∂zT xz
s − ϕ̄ρsg sin θ(1, 0)t + β(ux− vx) +O(ε2),

(3.13)
and for the fluid phase

ρf (1− ϕ̄)(∂tux +ux ·∇xux) + (1− ϕ̄)∇xpf = −(1− ϕ̄)ρfg sin θ(1, 0)t−β(ux−vx) +O(ε2).
(3.14)

To obtain an asymptotic solution to the original system, these two equations must be true
for all z ∈ (b, b + h) and in particular the result must be independent of z up to O(ε2),
or equivalently its derivative with respect to z must be O(ε). Taking into account (3.7)
and (3.8), we observe that there are two terms that are not independent of z, ∇xps and
∂zT

xz
s in (3.13). Since

∇xps = −∇xpfbed + ρfg cos θ∇xh+ ϕ̄(ρs − ρf )g cos θ∇x(b+ h) (3.15)

+(ρs − ρf )g cos θ(b+ h− z)∇xϕ̄+O(ε2),

we need
(ρs − ρf )∇xϕ̄ = O(ε). (3.16)

to obtain independence with respect to z up to O(ε2), This assumption is necessary for
the consistency of the asymptotic expansion.
Moreover we can write these two terms evaluated at z = b + h/2. In particular we use
the cantered second order approximation of the derivative

(∂zT
xz
s )|b+h/2 =

1

h

(
T xz
s |b+h − T

xz
s |b
)

+O(ε2).

Taking into account the Coulomb friction law (2.26), (2.39) and (3.3d), we can finally
write:

(∂zT
xz
s )|b+h/2 = − vx

|vx|
tan δ

1

h

(
ps|b+h − ps|b

)
+O(ε2). (3.17)

Thus we can write (3.13), (3.14) using (3.7), (3.8), (3.17) and (3.15) evaluated at z =
b+ h/2, leading to the equations for the horizontal velocities

ρsϕ̄(∂tvx + vx · ∇xvx) = (1− ϕ̄)∇xpfbed − (1− ϕ̄)ρfg cos θ∇xh− ϕ̄ρsg cos θ∇x(b+ h)

−(ρs − ρf )g
h

2
cos θ∇xϕ̄− ϕ̄ρsg sin θ(1, 0)t + β(ux − vx)

− vx

|vx|
tan δϕ̄(ρs − ρf )g cos θ +O(ε2),

(3.18)
ρf (1− ϕ̄)(∂tux + ux · ∇xux) = −(1− ϕ̄)∇xpfbed − (1− ϕ̄)ρfg cos θ∇xb

−(1− ϕ̄)ρfg sin θ(1, 0)t − β(ux − vx) +O(ε2).
(3.19)

We must now deduce equations for ϕ̄, pfbed and h from (2.30a), (2.35) and (2.36). We
first integrate (2.30a) with respect to z ∈ (b, b+ h) and get

∂t

∫ b+h

b

ϕdz +∇x ·
∫ b+h

b

ϕvxdz

−ϕ|b+h∂th− (ϕvx)|b+h · ∇x(b+ h) + (ϕvx)b · ∇xb+ (ϕvz)|b+h − (ϕvz)b = 0.
(3.20)
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But according to (2.35) and (2.37), the second line vanishes identically. We deduce the
transport equation for the solid phase

∂t(hϕ̄) +∇x · (hϕ̄vx) = O(ε3). (3.21)

A similar computation from the integration of (2.30b) using (2.36) and (2.38) yields the
transport equation for the fluid phase

∂t(h(1− ϕ̄)) +∇x · (h(1− ϕ̄)ux) = O(ε3). (3.22)

Adding (3.21) and (3.22), we get the transport equation for the mixture,

∂th+∇x · (h(ϕ̄vx + (1− ϕ̄)ux)) = O(ε3). (3.23)

3.1 Closure equation

We use the closure equation on the incompressibility of the solid velocity (2.33) to write
the mass equation for the solid phase (2.30a) as

∂tϕ+ vx · ∇xϕ+ vz∂zϕ = 0. (3.24)

Taking into account the former considerations we get

∂tϕ̄+ vx · ∇xϕ̄ = O(ε2). (3.25)

Combining this with (3.21) we obtain

∂th+∇x · (hvx) = O(ε3). (3.26)

Subtracting (3.26) to (3.23) we finally obtain the closure equation

∇x ·
(
h(1− ϕ̄)(ux − vx)

)
= O(ε3). (3.27)

Note that (3.25) shows that the assumption (3.16) holds if it does initially. This ends the
justification of the asymptotic regime.

3.2 Resulting model

After dropping ε, the model is reduced to the following set of equations:

∂t(hϕ̄) +∇x · (hϕ̄vx) = 0, (3.28a)

∂t(h(1− ϕ̄)) +∇x · (h(1− ϕ̄)ux) = 0, (3.28b)

ρsϕ̄(∂tvx + vx · ∇xvx) = (1− ϕ̄)∇xpfbed − (1− ϕ̄)ρfg cos θ∇xh

−ϕ̄ρsg cos θ∇x(b+ h)− 1

2
(ρs − ρf )gh cos θ∇xϕ̄

−ϕ̄ρsg sin θ(1, 0)t + β(ux − vx)

− vx

|vx|
tan δϕ̄(ρs − ρf )g cos θ, (3.28c)

ρf (1− ϕ̄)(∂tux + ux · ∇xux) = −(1− ϕ̄)∇xpfbed − (1− ϕ̄)ρfg cos θ∇xb

−(1− ϕ̄)ρfg sin θ(1, 0)t − β(ux − vx), (3.28d)

∇x ·
(
h(1− ϕ̄)(ux − vx)

)
= 0. (3.28e)

In this system, the scalar pfbed can be viewed as a Lagrange multiplier for the static con-
straint (3.28e).
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4 Properties of the proposed model

Consider the model (3.28) in which we omit the “bar” notation for the sake of clarity, and
denote the solid and fluid velocities v and u respectively (instead of vx and ux). Thus the
system can be expresses as

∂t(hϕ) + div(hϕv) = 0, (4.1a)

∂t(h(1− ϕ)) + div(h(1− ϕ)u) = 0, (4.1b)

ρsϕ(∂tv + v · ∇v) = (1− ϕ)∇pfbed − (1− ϕ)ρfg cos θ∇h

−ϕρsg cos θ∇(b+ h)− 1

2
(ρs − ρf )gh cos θ∇ϕ

−ϕρsg sin θ(1, 0)t + β̃(u− v),

− v

|v|
tan δ ϕ(ρs − ρf )g cos θ (4.1c)

ρf (1− ϕ)(∂tu+ u · ∇u) = −(1− ϕ)∇pfbed − (1− ϕ)ρfg cos θ∇b
−(1− ϕ)ρfg sin θ(1, 0)t − β̃(u− v), (4.1d)

div(h(1− ϕ)(u− v)) = 0. (4.1e)

In this section, we will first establish a local energy equation for this model and then
describe some of its properties.

4.1 Local energy

In the following lines we prove that the model (4.1) is compatible with a dissipative energy
balance.
First, from the mass equations (4.1a), (4.1b) we have

∂th+ div(hϕv + h(1− ϕ)u) = 0, (4.2)

∂t(h(ρsϕ+ ρf (1− ϕ))) + div(h(ρsϕv + ρf (1− ϕ)u)) = 0. (4.3)

We can write sin θ(1, 0)t = cos θ∇b̃ with b̃ = x tan θ, so that the sin θ terms in (4.1c) and
(4.1d) can be grouped with the ∇b terms to give ∇(b+ b̃).
Then we multiply equation (4.1c) by (hv) and (4.1d) by (hu) and sum up the results.
Using the mass equations to simplify the left-hand side, we obtain

∂t

(
ρsϕh

|v|2
2

+ ρf (1− ϕ)h |u|
2

2

)
+ div

(
ρsϕh

|v|2
2
v + ρf (1− ϕ)h |u|

2

2
u
)

= −(1− ϕ)h(u− v) · ∇ (pfbed − ρfgh cos θ)︸ ︷︷ ︸
(a)

−gh cos θ
(
ρsϕv + ρf (1− ϕ)u

)
· ∇(b+ b̃+ h)︸ ︷︷ ︸

(b)

−h
2

2
g cos θ(ρs − ρf )v · ∇ϕ︸ ︷︷ ︸

(c)

−β̃h|u− v|2 − |v| tan δϕ(ρs − ρf )gh cos θ.

Our objective is to compute each term on the right-hand side of the previous equation
and try to write it as a time derivative or a divergence of something explicit.
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• Term (a). Using (4.1e),

(a) = − div
(

(1− ϕ)h(u− v) (pfbed − ρfgh cos θ)
)
. (4.4)

• Term (b). Taking into account (4.3),

(b) = −gh cos θ∇(b+ b̃) · (ρsϕv + ρf (1− ϕ)u)− g cos θ∇(h
2

2
) · (ρsϕv + ρf (1− ϕ)u)

= − div
(
gh(b+ b̃) cos θ(ρsϕv + ρf (1− ϕ)u)

)
+ g(b+ b̃) cos θ div

(
h(ρsϕv + ρf (1− ϕ)u)

)
− div

(
1
2
gh2 cos θ(ρsϕv + ρf (1− ϕ)u)

)
+ 1

2
gh2 cos θ div(ρsϕv + ρf (1− ϕ)u)

= − div
(
gh cos θ(b+ b̃+ h

2
)(ρsϕv + ρf (1− ϕ)u)

)
− ∂t

(
gh(b+ b̃) cos θ(ρsϕ+ ρf (1− ϕ))

)
+ 1

2
gh2 cos θ div(ρsϕv + ρf (1− ϕ)u).

• Term (c).

(c) = − div
(1

2
gh2 cos θ(ρs − ρf )ϕv

)
+ ϕ(ρs − ρf )g cos θ div(

h2

2
v).

Gathering all the terms we get

∂t

(
ρsϕh

|v|2
2

+ ρf (1− ϕ)h |u|
2

2
+ gh(b+ b̃) cos θ(ρsϕ+ ρf (1− ϕ))

)
+ div

(
ρsϕh

|v|2
2
v + ρf (1− ϕ)h |u|

2

2
u+ (1− ϕ)h(u− v) (pfbed − ρfgh cos θ)

+gh cos θ(b+ b̃+ h
2
)(ρsϕv + ρf (1− ϕ)u) + 1

2
gh2 cos θ(ρs − ρf )ϕv

)
= T1,

(4.5)

where T1 can be expressed as

T1 =
1

2
gh2 cos θ div(ρsϕv + ρf (1− ϕ)u) + ϕ(ρs − ρf )g cos θ div(

h2

2
v)

−β̃h|u− v|2 − |v| tan δϕ(ρs − ρf )gh cos θ.
(4.6)

The first term can be expressed as

1

2
gh2 cos θ div(ρsϕv + ρf (1− ϕ)u)

=
1

2
gh cos θ div

(
h(ρsϕv + ρf (1− ϕ)u)

)
− 1

2
gh cos θ(ρsϕv + ρf (1− ϕ)u) · ∇h.

(4.7)

However, according to (4.2) and (4.3) we have

∂t

(
1
2
gh2 cos θ(ρsϕ+ ρf (1− ϕ))

)
= −1

2
gh cos θ div

(
h(ρsϕv + ρf (1− ϕ)u)

)
−1

2
gh cos θ(ρsϕ+ ρf (1− ϕ)) div

(
h(ϕv + (1− ϕ)u)

)
,
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Thus using this in (4.7) we obtain

1

2
gh2 cos θ div(ρsϕv + ρf (1− ϕ)u)

= −∂t
(1

2
gh2 cos θ(ρsϕ+ ρf (1− ϕ))

)
− 1

2
gh cos θ(ρsϕ+ ρf (1− ϕ)) div(hv)

− 1

2
gh cos θ(ρsϕv + ρf (1− ϕ)u) · ∇h.

Adding the second term in (4.6) yields

1

2
gh2 cos θ div(ρsϕv + ρf (1− ϕ)u) + ϕ(ρs − ρf )g cos θ div(

h2

2
v)

= −∂t
(1

2
gh2 cos θ(ρsϕ+ ρf (1− ϕ))

)
− 1

2
gh cos θ(ρsϕ+ ρf (1− ϕ)) div(hv)

− 1

2
gh cos θ(ρsϕv + ρf (1− ϕ)u) · ∇h+ ϕ(ρs − ρf )g cos θ div(

h2

2
v)

= −∂t
(1

2
gh2 cos θ(ρsϕ+ ρf (1− ϕ))

)
− 1

2
ρfgh cos θ

(
div(hv) + (ϕv + (1− ϕ)u) · ∇h

)
.

(4.8)
Then we can compute

− 1
2
ρfgh cos θ

(
div(hv) + (ϕv + (1− ϕ)u) · ∇h

)
= −1

2
ρfgh cos θ div(hv)− div

(
1
2
ρfgh

2 cos θ(ϕv + (1− ϕ)u)
)

+1
2
ρfgh cos θ div

(
h(ϕv + (1− ϕ)u)

)
= − div

(
1
2
ρfgh

2 cos θ(ϕv + (1− ϕ)u)
)

+ 1
2
ρfgh cos θ div

(
h(1− ϕ)(u− v)

)
.

Plugging this into (4.8) and (4.6), we obtain

T1 = −∂t
(1

2
gh2 cos θ(ρsϕ+ ρf (1− ϕ))

)
− div

(1

2
ρfgh

2 cos θ(ϕv + (1− ϕ)u)
)

− β̃h|u− v|2 − |v| tan δϕ(ρs − ρf )gh cos θ.

Using this result in (4.5) finally yields the energy identity

∂t

(
ρsϕh

|v|2
2

+ ρf (1− ϕ)h |u|
2

2
+ gh cos θ(b+ b̃+ h

2
)(ρsϕ+ ρf (1− ϕ))

)
+ div

(
ρsϕh

|v|2
2
v + ρf (1− ϕ)h |u|

2

2
u+ (1− ϕ)h(u− v)pfbed − ρf (1− ϕ)gh2 cos θ(u− v)

+gh cos θ(b+ b̃+ h
2
)(ρsϕv + ρf (1− ϕ)u) + 1

2
ϕgh2 cos θ(ρs − ρf )v

+1
2
ρfgh

2 cos θ(ϕv + (1− ϕ)u)
)

= Re,

(4.9)
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with
Re = −β̃h|u− v|2 − |v| tan δϕ(ρs − ρf )gh cos θ. (4.10)

Therefore the model (4.1) has a locally dissipative energy balance, since the residual Re

is non-positive.

Remark 4.1 Identity (4.9) can be obtained (up to O(ε3)) by integration of (2.11) with
respect to z. This shows that the left-hand side contains the physically relevant energy and
energy flux.

Remark 4.2 Let us recall that the Pitman-Le model [33] does not use any closure equa-
tion (4.1e). Instead, the Pitman-Le model, in the form proposed by Pelanti et al. [31], can
be seen as (4.1) where we set pfbed = ρfgh cos θ (or equivalently ps|b+h = 0 according to
(3.10)). Consequently, the energy equation satisfied by the Pitman-Le model is (4.9) with
a right-hand side Re that is not always non-positive. The residual term for the Pitman-Le
model is

Re = −1
2
ϕ(ρs − ρf )gh cos θ div

(
h(1− ϕ)(u− v)

)
−β̃h|u− v|2 − |v| tan δϕ(ρs − ρf )gh cos θ

and has no fixed sign (we will study this term in Test 1 presented in Section 5.2.1). The
intrinsic reason why the Pitman-Le model has a physically irrelevant energy equation is
that it is derived from a 3D model that does not have an energy dissipation principle (see
equation (2.11)).

4.2 Other properties

Model (4.1) is a hyperbolic type system with non-local terms.
Note first that it is possible to eliminate pfbed from the system. Indeed, pfbed appears only
in (4.1c) and (4.1d). We can thus retain the sum of (4.1c) and (4.1d) and if we express
∇pfbed from (4.1c) for example and write that the curl of the result vanishes, we obtain
the missing relation.

Proposition 4.1 System (4.1) has the following properties.
(i) The two mass equations are conservative. The momentum equations take the quasi-
conservative form

ρs

(
∂t(hϕv) + div(hϕv ⊗ v)

)
= h

(
(1− ϕ)∇pfbed − (1− ϕ)ρfg cos θ∇h

−ϕρsg cos θ∇(b+ h)− 1

2
(ρs − ρf )gh cos θ∇ϕ

−ϕρsg sin θ(1, 0)t + β̃(u− v)

− v

|v|
tan δ ϕ(ρs − ρf )g cos θ

)
,

(4.11a)

ρf

(
∂t(h(1− ϕ)u) + div(h(1− ϕ)u⊗ u)

)
= h

(
−(1− ϕ)∇pfbed − (1− ϕ)ρfg cos θ∇b

−(1− ϕ)ρfg sin θ(1, 0)t − β̃(u− v)

)
. (4.11b)
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The total momentum takes the conservative form

ρs

(
∂t(hϕv) + div(hϕv ⊗ v)

)
+ ρf

(
∂t(h(1− ϕ)u) + div(h(1− ϕ)u⊗ u)

)
= −∇

(
(ρsϕ+ ρf (1− ϕ))g h

2

2
cos θ

)
− g cos θ

(
ρsϕ+ ρf (1− ϕ)

)
h∇(b+ b̃)

− v

|v|
tan δ ϕ(ρs − ρf )gh cos θ.

(4.12)

(ii) The width h remains non-negative, and 0 ≤ ϕ ≤ 1.
(iii) Special solutions are the steady states at rest, characterized by

u = v = 0, b+ b̃+ h = Cst, ϕ = Cst, (4.13)

where we recall that b̃ = x tan θ. Indeed this is a solution to our system with pfbed =
ρfgh cos θ.
(iv) The classical single fluid shallow water system is obtained when u = v and pfbed =
ρfgh cos θ, and either ϕ = 1 or ϕ = 0 or ρf = ρs.

5 Numerical approximation

In this section we describe a numerical method to approximate the proposed two-phase
model (4.1) in one dimension. Then we perform different tests, including a comparison
with the solution provided by the Pitman-Le model.

We focus on the one-dimensional situation. As pointed out previously, the model can
be rewritten in terms of the solid pressure at the free surface ps|b+h, the fluid pressure at
the free surface pf |b+h = −ps|b+h or the solid pressure at the bed psbed, instead of the fluid

pressure at the bed pf bed, via relations (3.9) and (3.10). In this section we consider the
formulation in terms of the solid pressure at the free surface ps|b+h, which can be written

∂t(hϕ) + ∂x(hϕv) = 0, (5.1a)

∂t(h(1− ϕ)) + ∂x(h(1− ϕ)u) = 0, (5.1b)

∂t(hϕv) + ∂x(hϕv
2) = −h(1− ϕ)∂xψ − ϕgh cos θ ∂x(b+ h)

−1

2
(1− r)gh2 cos θ ∂xϕ

−ϕgh sin θ + β̂h(u− v),

− v

|v|
tan δg cos θ(1− r)hϕ, (5.1c)

∂t(h(1− ϕ)u) + ∂x(h(1− ϕ)u2) =
h

r
(1− ϕ) ∂xψ − (1− ϕ)gh cos θ ∂x(b+ h)

−(1− ϕ)gh sin θ − 1

r
β̃h(u− v), (5.1d)

∂x(h(1− ϕ)(u− v)) = 0, (5.1e)

where

r = ρf/ρs, β̂ =
β̃

ρs
, ψ =

ps|b+h

ρs
=
ρfgh cos θ − pfbed

ρs
. (5.2)

If we consider that the drag coefficient β̃ is defined by (3.12), then

β̂ =
(1− r)ϕg

vT (1− ϕ)m−1
. (5.3)
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5.1 Numerical method

We apply a splitting algorithm, similar to the Teman-Chorin method for incompressible
Euler equations, in order to impose the constraint (5.1e). We observe that at the first
step, when we neglect the extra unknown ψ (which can be seen as a Lagrange multiplier
associated with the constraint) in (5.1a)-(5.1d), we obtain the Pitman-Le model in the
form proposed in [31], which is hyperbolic whenever u− v is not too large.

We consider the space domain [0, L] divided in cells Ii = (xi−1/2, xi+1/2). For simplic-
ity, we assume that these cells have a constant size ∆x. We define xi+ 1

2
= i∆x and

xi = (i−1/2)∆x, the center of the cell Ii. Let ∆t be the time step and define tn+1 = tn+∆t.
W is the vector of the following unknowns of the problem,

W = [hϕ, h(1− ϕ), hϕv, h(1− ϕ)u]. (5.4)

Therefore W n
i denotes the approximation provided by the numerical scheme of the cell

averages of the solution,

W n
i
∼=

1

∆x

∫ xi+1/2

xi−1/2

W (tn, x) dx, (5.5)

and by ψni+1/2, an approximation of ψ(tn, xi+1/2).

Assuming that the values of W n
i are known, the system can be discretized in two steps.

• First step. We compute the state W ∗ = [h∗ϕ∗, h∗(1 − ϕ∗), h∗ϕ∗v∗, h∗(1 − ϕ∗)u∗] by a
semi-implicit discretization for the drag

W ∗
i = W n

i −
∆t

∆x
L
(
W n
i−1,W

n
i ,W

n
i+1,∆(b+ b̃)i−1/2,∆(b+ b̃)i+1/2

)
+
(

0, 0,∆tβ̂∗i h
∗
i (u
∗
i − v∗i ),−∆tβ̂∗i

h∗i
r

(u∗i − v∗i )
)
,

(5.6)

where L(W n
i−1,W

n
i ,W

n
i+1,∆(b+ b̃)i−1/2,∆(b+ b̃)i+1/2) defines the space discretization op-

erator applied to model (5.1a)-(5.1d) with ψ = 0 and β̂ = 0. In this work, we have
considered the generalized Roe method proposed in [29]. Another possibility would be to
use the relaxation solver proposed by Pelanti et al. [32].

• Second step. In order to enforce the constraint, we set hn+1
i = h∗i and ϕn+1

i = ϕ∗i
and vn+1

i , un+1
i and ψn+1

i+1/2 are solutions to the following coupled system,

(hϕv)n+1
i = (hϕv)∗i −

∆t

∆x
(1− ϕ∗i )h∗i (ψn+1

i+1/2 − ψ
n+1
i−1/2),

(h(1− ϕ)u)n+1
i = (h(1− ϕ)u)∗i +

∆t

∆x
(1− ϕ∗i )

h∗i
r

(ψn+1
i+1/2 − ψ

n+1
i−1/2),

(h(1− ϕ)(u− v))n+1
i+1 − (h(1− ϕ)(u− v))n+1

i = 0.

(5.7)

where

h∗i+1/2 =
h∗i + h∗i+1

2
, ϕ∗i+1/2 =

ϕ∗i + ϕ∗i+1

2
, u∗i+1/2 =

u∗i + u∗i+1

2
, v∗i+1/2 =

v∗i + v∗i+1

2
.
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By extracting vn+1
i and un+1

i from the two first equations of (5.7) and by substitution in
the third equation, we obtain the following system with unknowns {ψn+1

i+1/2}i,

−a∗i+1ψ
n+1
i+3/2 + (a∗i + a∗i+1)ψ

n+1
i+1/2 − a

∗
iψ

n+1
i−1/2

=
(
h(1− ϕ)(u− v)

)∗
i+1
−
(
h(1− ϕ)(u− v)

)∗
i
,

(5.8)

with

a∗i =
∆t

∆x
h∗i (1− ϕ∗i )

(1

r
+

1− ϕ∗i
ϕ∗i

)
. (5.9)

Thus, in this second step, we must solve system (5.8) (with boundary conditions) to
obtain {ψn+1

i+1/2}i and use these values to update vn+1
i and un+1

i by the two first equations

of (5.7).
The obtained scheme is obviously well-balanced with respect to the steady states at rest
(4.13) if the hyperbolic solver L is well-balanced, and preserves the natural bounds h ≥ 0
and 0 ≤ ϕ ≤ 1.

5.2 Numerical tests

We will now present some numerical tests in order to compare the solution of the proposed
model (5.1a)-(5.1e) with the solution of the modified Pitman and Le problem proposed
in [31] (with the same drag coefficient β̃).
We simulate the collapse of a column made of a mixture of grains and water first over a
horizontal plane and then over an inclined plane, a situation widely investigated for dry
granular flows [see for example [21], [23]]. First, we simulate the flow of the mixture over
a horizontal bed for the two different drag forces given by (2.18) and (2.19). In the second
test, we simulate the flow of the mixture over an inclined bed of constant slope for a fixed
choice of these parameters.
As general considerations, we fix the CFL number as 0.8, acceleration due to gravity g =
9.81m s−2 and the material densities ρf = 103kg m−3 and ρs = 2500kg m−3 respectively.
Therefore the ratio of densities is r = 0.4.

5.2.1 Test 1: Flat bottom

In this experiment, the space domain is Ω = [0, 10]m and we consider 200 points. At time
t = 5s, the solid phase is stopped and some small velocities appear in the fluid phase.
The initial conditions are defined as follows

h(t = 0s) =

{
0.5m 4m ≤ x ≤ 6m
0.1m otherwise

; u(t = 0s) = v(t = 0s) = 0ms−1; ϕ(t = 0s) = ϕ0.

For the initial solid volume fraction, we consider two values of ϕ0 (0.3 and 0.6) to see
the effect the initial state of mixture fluidization. We consider the intergranular Coulomb
angle to be δ = 18o. The objective of this test is to check the influence of the drag force
and initial solid volume fraction on the flow and deposit. Remember that the drag friction
laws used here (see Section 2.3) are given by:

f = β̃(u− v).

where the drag coefficient β̃ can be set according to:
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• Richardson and Zaki [36]:

β̃ =
(ρs − ρf )ϕ g
vT (1− ϕ)m−1

, with m ∈ [0.4, 2.65].

• Pailha and Pouliquen [30]:

β̃ =
150µϕ2

d2(1− ϕ)
.

We also set
vT = 0.143ms−1, µ = 10−3Pas, d = 10−3m

and we vary the coefficient m, using the values

m = 0.4, 1and2.65.

In the following, we will refer to “RZ” and “PP” for the Richardson and Zaki and for the
Pailha and Poliquen drag forces respectively.

Influence of the drag force.
Figures 4 and 5 show the thickness of the mass (i.e. at time t = 5 s) and the associated
volume fraction simulated with different drag forces both with the Pitman-Le (PL) model
and with the new model proposed here. At that time, the solid phase has completely
stopped. In Figure 4 we also compare these two-phase flow models with the results
obtained with the Savage-Hutter model, where the fluid phase is not considered (i.e. dry
granular flows). Even for ϕ0 = 0.6, Figure 4 show the strong influence of the fluid phase
on the avalanche thickness profile.

The first observation is that the PL model and our model have the same qualitative
behaviour. However, for ϕ0 = 0.3, the PL model is more sensitive to the different drag
forces introduced in the model (Figures 4a and 5a). In particular, the final volume fraction
is higher at the center of mass for the PP drag force than for the RZ drag force, reaching
up to ϕ = 0.65. For the RZ drag forces, the variation of the volume fraction in space is
smoother than for the PP drag force. For our model, the drag force only slightly affects
the results for ϕ0 = 0.3. For ϕ0 = 0.6, the sensitivity of the two models to the different
drag forces is qualitatively similar even though the volume fraction calculated with the
PL model is still more sensitive than that calculated with our model (Figures 5b,d). For
ϕ0 = 0.6, the volume fraction at the center of the column reaches very high values with
the PL model (about 0.9), while ϕ < 0.75 with our model. The overall lower sensitivity of
our model to the different drag forces suggests that the difference between the velocities
of the two phases is lower with our model than with the PL model, as shown in Figure 8.

Comparison of the two models.
Let us now compare the two models for a given friction law, i.e., the Richardson and Zaki
law with m = 1 (corresponding to the data used in [7]). We also consider two different
values for the Coulomb friction angle: δ = 18o and δ = 28o.

For both the PL model and our model, the higher the initial fluidization, the larger the
dilation of the material and the smaller the aspect ratio of the deposit. Furthermore, the
volume fraction is highest at the center of mass and decreases toward the front, leading
to ϕ < ϕ0 at the front.
At time t = 5 s, when the solid phase is already at rest, the thickness of the mass is
very similar in both models, even though the maximum thickness is slightly smaller with
our model (Figure 6). However, the distribution of the phases (i.e. volume fraction) is
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different. As observed previously, the volume fraction is more uniformly distributed in
the simulations with our model. The peak of high volume fraction at the center of mass
is higher for the PL model and the decrease in volume fraction toward the front of the
mass is larger than in our model (Figure 6(c)).

The velocity of the fluid phase at an intermediate time t = 1.5s, when the granular
phase is still flowing, is slightly higher with our model for δ = 18o for both ϕ0 = 0.3 and
ϕ0 = 0.6 (see Figures 7(a) and 7(b)). For δ = 28o, the fluid velocities are almost the
same in the two models towards the front and the fluid velocity with our model is lower
around the center than that calculated with the PL model. The difference between the
two models is greater for the solid velocity for both ϕ0 = 0.3 and ϕ0 = 0.6, (see Figures
7(c) and 7(d)). For the proposed model, the solid phase moves faster than for the PL
model. We also observe that for δ = 18o, the velocities of both phases are greater than
for δ = 28o. Moreover, for larger values of δ, the difference between the velocities of the
two phases is greater (see Figure 8).

Evolution in time.
Let us now look at the changes of the different quantities with time (Figures 9-13 in which
times t =1,2,3 and5s are represented with different colours). For these simulations, we use
the Richardson and Zaki friction law with m = 1 and the Coulomb friction angle δ = 18o.

Note that even though the mass profiles change with time in a similar way for the two
models (Figure 9), there is strong difference between the two models for the changes of
the volume fraction with time (Figure 10), especially for ϕ0 = 0.3. The volume fraction
changes are much larger with the PL model. The fluid velocities are quite similar for
the two models, whereas the solid velocity is higher with our model (Figures 11 and 12).

Finally Figure 13 shows the evolution of the new variable ψ =
ps|b+h

ρs
(see equation 5.2).

As already mentioned, this variable is equal to zero in the PL model (where ps|b+h
=0 is

imposed as a boundary condition). For ϕ0 = 0.3, the surface pressure of the solid phase
increases until t = 1.4s where it reaches its maximum value before decreasing. A similar
behaviour is observed for ϕ0 = 0.6. The final peak surface pressure is higher for ϕ0 = 0.6.
Note that the absolute value of the slope of ψ is greater for ϕ = 0.6 at all times. Moreover,
the gradient of ψ has the same sign as the gradient of h. This implies that the pressure
gradient is larger for the solid phase and smaller for the fluid phase (see equations (5.1c)
and (5.1d)). Nevertheless, the gradient of ψ is much smaller than the gradient of gh,
corresponding to the gradient of the hydrostatic pressure.

Residual energy term.
In Section 4.1, we proved that the proposed model is compatible with a dissipative energy
balance since the residual term Re in equation (4.10) is non-positive. We also argued in
Remark 4.2 that this may not be true for the PL model due to the additional term that
has no fixed sign (the first term in the following equation):

Re = −1
2
ϕ(ρs − ρf )gh cos θ div

(
h(1− ϕ)(u− v)

)
−β̃h|u− v|2 − |v| tan δϕ(ρs − ρf )gh cos θ

Let us carry out a test on the numerical values of these terms. We chose the values
ϕ0 = 0.3 and m = 1 for the Richardson and Zaki drag force. In Figure 14, we show the
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(a) h(t = 5s). Pitman-Le model.
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(b) h(t = 5s). Pitman-Le model.
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(c) h(t = 5s). Proposed model.
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(d) h(t = 5s). Proposed model.

Figure 4: Test 1: Thickness profile of the mass at time t = 5s, when the granular phase
has already stopped, for the collapse of a rectangular granular mixture over a horizontal
layer made of the same mixture, simulated with different friction laws (“RZ” refers to
the Richardson and Zaki and “PP” to the Pailha and Pouliquen drag forces). The initial
volume fractions are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. The thickness profile obtained
using the dry granular flow model of Savage and Hutter (obtained by setting all the terms
related to the fluid phase equal to zero) is also represented for comparison.

three terms involved in Re for times t = 0.5k, k = 1s, . . . 10s, which we denote:

Re1 = −1

2
ϕ(ρs − ρf )gh cos θ div

(
h(1− ϕ)(u− v)

)
Re2 = −β̃h|u− v|2

Re3 = −|v| tan δϕ(ρs − ρf )gh cos θ (5.10)

Note that the absolute value of Re2 is much larger than the values corresponding to Re1

and Re3. Moreover, the additional term Re1 has the same magnitude as the Coulomb
friction term Re3, but with opposite sign. However, at the mass front, we observe that
|Re1| is greater than |Re3|. In Figure 15, we represent the total residual term Re =
Re1 + Re2 + Re3 for the same times. We observe that even if the friction effect between
the two phases is large, the PL model provides positive values of the residual term in the
mass front, i.e. it does not dissipate the energy.
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(a) ϕ(t = 5s). Pitman-Le model.
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(b) ϕ(t = 5s). Pitman-Le model.
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(c) ϕ(t = 5s). Proposed model.
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(d) ϕ(t = 5s). Proposed model.

Figure 5: Test 1: Solid volume fraction of the mass at time t = 5s, when the granular phase
has already stopped, for the collapse of a rectangular granular mixture over a horizontal
layer made of the same mixture, simulated with different friction laws (“RZ” refers to
the Richardson and Zaki and “PP” to the Pailha and Pouliquen drag forces). The initial
volume fractions are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6.
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(a) h(t = 5s).
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(b) h(t = 5s).
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(c) ϕ(t = 5s).
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(d) ϕ(t = 5s).

Figure 6: Test 1: Comparison between the solutions obtained with the the Pitman-Le
and proposed models for the thickness of the mass h and the volume fraction ϕat time
t = 5s when the solid phase has already stopped, for the collapse of a rectangular granular
mixture over a horizontal layer made of the same mixture. The initial volume fractions
are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson and Zaki
drag force (RZ) with m = 1.
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(a) u(t = 1.5s).
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(b) u(t = 1.5s).
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(c) v(t = 1.5s).
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Figure 7: Test 1: Comparison of the fluid and solid velocities for the Pitman-Le and
proposed models at time t = 1.5s for the collapse of a rectangular granular mixture over
a horizontal layer made of the same mixture. The initial volume fractions are: (Left)
ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson and Zaki drag force
(RZ) with m = 1.
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(a) (u− v)(t = 0.1s).
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(b) (u− v)(t = 0.1s).

Figure 8: Test 1: Comparison of the difference of the fluid and solid velocities (u − v)
for the Pitman-Le and proposed models at time t = 0.1s for the collapse of a rectangular
granular mixture over a horizontal layer made of the same mixture. The initial volume
fractions are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson
and Zaki drag force (RZ) with m = 1.

5.2.2 Test 2: Constant slope

We consider here the collapse of a column made of a mixture of grains and fluid over a
20 metre long inclined bed of constant slope θ = 10o. As in the previous case, we use the
Richardson and Zaki drag force with m = 1 and vT = 0.143m s−1. The Coulomb friction
angle is δ = 25o and the initial conditions are defined as follows:

h(t = 0s) =

{
0.5m 4m ≤ x ≤ 6m
0.1m otherwise

; u(t = 0s) = v(t = 0s) = 0; ϕ(t = 0s) = 0.6.

We consider open boundary conditions. That implies a constant contribution of fluid and
granular material at x = 0. While we obtain a stationary solution with zero velocity for
the solid phase, we observe that the velocity is not zero for the fluid phase (see Figure
21). However, since we have a constant discharge for the fluid phase (h(1− ϕ)u ≈ 0.01),
we have a stationary profile with a non-zero velocity for the fluid phase, corresponding to
a small movement of the fluid between the pores of the grains produced by the continuous
contribution of the fluid at x = 0 and by the slope of the bottom.

Figures 16-19 compare the solutions obtained for the PL model and for the proposed
model at different times. At time (t = 10s), the solid phase has already stopped.
At the very beginning of the collapse, the two models give very similar results. This could
be related to the predominance of pressure gradient terms and inertial terms compared to
the friction terms at the onset of the collapse as observed for example in [20]. However,
at later times (e.g. t = 3s), the two models show differences. In particular our model pre-
dicts a steeper front that the PL model. The final mass profile (t = 10s) is more extended
(about 12%) and more uniform with our model (Figure 16). For the solid volume fraction,
we observe the same behaviour as in Test 1: (i) the two models behave qualitatively in the
same way, (ii) even when the thickness profiles are very similar, as at time t = 1s, the solid
volume fraction ϕ is quite different for the two models (see Figure 17(a)), (iii) the volume
fraction varies less in our model and the peak values of the volume fraction are smaller.
The global trend is that the tail and the front of the mass are more fluidized (dropping
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(a) h. Pitman-Le model.
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(b) h. Pitman-Le model.
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(c) h. Proposed model.
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(d) h. Proposed model.

Figure 9: Test 1: The mass thickness h(x, t) at different times for the Pitman-Le model
(a-b) and for the model proposed here (c-d) for the collapse of a rectangular granular
mixture over a horizontal layer made of the same mixture. The initial volume fractions
are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson and Zaki
drag force (RZ) with m = 1.
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(a) ϕ. Pitman-Le model.
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(b) ϕ. Pitman-Le model.
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(c) ϕ. Proposed model.
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(d) ϕ. Proposed model.

Figure 10: Test 1: The solid volume fraction ϕ(x, t) at different times for the Pitman-
Le model (a-b) and for the model proposed here (c-d) for the collapse of a rectangular
granular mixture over a horizontal layer made of the same mixture. The initial volume
fractions are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson
and Zaki drag force (RZ) with m = 1.
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(a) u. Pitman-Le model.
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(b) u. Pitman-Le model.
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(c) u. Proposed model.
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(d) u. Proposed model.

Figure 11: Test 1: The fluid velocity u(x, t) at different times for the PitmanLe model
(a-b) and for the model proposed here (c-d) for the collapse of a rectangular granular
mixture over a horizontal layer made of the same mixture. The initial volume fractions
are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson and Zaki
drag force (RZ) with m = 1.
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(a) v. Pitman-Le model.
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(b) v. Pitman-Le model.
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(c) v. Proposed model.
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(d) v. Proposed model.

Figure 12: Test 1: The solid velocity v(x, t) at different times for the Pitman-Le model
(a-b) and for the model proposed here (c-d) for the collapse of a rectangular granular
mixture over a horizontal layer made of the same mixture. The initial volume fractions
are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson and Zaki
drag force (RZ) with m = 1.
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(a) ψ(x, t).
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(b) ψ(x, t).

Figure 13: Test 1: The variable ψ(x, t) in the proposed model at different times for
the collapse of a rectangular granular mixture over a horizontal layer made of the same
mixture. The initial volume fractions are: (Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the
friction law is the Richardson and Zaki drag force (RZ) with m = 1.
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(a) Residual terms.
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(b) Residual terms (zoom).

Figure 14: Test 1: Values of the terms involved in the residual energy (see equation
(5.10)), for the collapse of a rectangular granular mixture over a horizontal layer made
of the same mixture. The initial volume fraction is ϕ0 = 0.3 and the friction law is the
Richardson and Zaki drag force (RZ) with m = 1.
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(b) Total residual term Re (zoom).

Figure 15: Test 1: Values of the total residual term for the collapse of a rectangular
granular mixture over a horizontal layer made of the same mixture. The initial volume
fraction is ϕ0 = 0.3 and the friction law is the Richardson and Zaki drag force (RZ) with
m = 1.

to ϕ = 0.4) than the central part of the mass that has a volume fraction reaching up to
ϕ ≈ 0.8. Figures 18 and 19 show that the velocities of both phases are generally higher
for the proposed model. While the solid phase is completely stopped at time t = 7s for
the PL model, the solid phase continues to move until t = 8s for the proposed model.

Finally, let us look at the change of all the solutions of the problem with time (Fig-
ures 20-22). The main features are the smaller variation of the volume fraction with our
model, the higher velocities of the solid phase and the fact that the solid phase stops
later than with the PL model. Note that with the PL model, the blue line corresponding
to time t = 7s is very close to the final time t = 10s for the fluid phase and identical
for the solid phase solutions, while they remain different for the proposed model (Figure
21). The sign of the surface pressure of the solid phase changes along the mass profile,
going from positive values at the tail to negative values behind the front (Figure 22(a)).
This would suggest compression of the solid phase near the tail and dilation behind the
front. Finally, note that the magnitude of ψ is small compared to the hydrostatic pressure
gradient. In Figure 22(b), we compare the value of ψ with g(x tan θ + h) for t = 10 s.

6 Conclusion

In this paper, we propose a simplified thin layer (i.e. shallow) model to study hydrostatic
two-phase avalanche problems that is compatible with a dissipative energy balance . It
is deduced from Jackson’s model. Analysis of this 3D model reveals that it contains
more unknowns than equations. Therefore a closure equation must be added to Jackson’s
model to obtain a well-posed system. This may not be apparent with an averaged model
with hydrostatic pressure, such as the one proposed by Pitman and Le [33]. Indeed,
if we assume hydrostatic pressure for both phases, they are related by their boundary
condition. In this case, imposing zero atmospheric pressure for both phases can be seen
as the corresponding closure equation. Nevertheless, the model that is deduced does not
have a dissipative energy balance. The main difference between the model that we propose
in this paper and the Pitman-Le model comes from the boundary condition on the free
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(a) h(t = 1s).
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(b) h(t = 3s).
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(c) h(t = 5s).
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(d) h(t = 10s).

Figure 16: Test 2: Comparison of the thickness profiles of the mass h(x, t) for the Pitman-
Le and proposed models, at time t = 1, 3, 5, 10s (at t = 10s the solid phase has already
stopped), for the collapse of a rectangular granular mixture over an inclined layer (θ = 10o)
made of the same mixture. The initial volume fractions are: (Left) ϕ0 = 0.3; (Right)
ϕ0 = 0.6. Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.
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(a) ϕ(t = 1s).
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(b) ϕ(t = 3s).
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(c) ϕ(t = 5s).
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(d) ϕ(t = 10s).

Figure 17: Test 2: Comparison of the solid volume fraction of the mixture ϕ(x, t) for the
Pitman-Le and proposed models, at time t = 1, 3, 5, 10s (at t = 10s the solid phase has
already stopped), for the collapse of a rectangular granular mixture over an inclined layer
(θ = 10o) made of the same mixture. The initial volume fractions are: (Left) ϕ0 = 0.3;
(Right) ϕ0 = 0.6. Here the friction law is the Richardson and Zaki drag force (RZ) with
m = 1.
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(a) u(t = 1s).
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(b) u(t = 3s).
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(c) u(t = 5s).

0 5 10 15 20
0.2

0

0.2

0.4

0.6

0.8

1

1.2

Distance x

Fl
ui

d 
ve

lo
ci

ty
 u

 

 

Pitman&Le
Proposed model

(d) u(t = 10s).

Figure 18: Test 2: Comparison of the velocity of the fluid phase u(x, t) for the Pitman-
Le and proposed models, at time t = 1, 3, 5, 10s (at t = 10s the solid phase has already
stopped), for the collapse of a rectangular granular mixture over an inclined layer (θ = 10o)
made of the same mixture. The initial volume fractions are: (Left) ϕ0 = 0.3; (Right)
ϕ0 = 0.6. Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.
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(a) v(t = 1s).
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(b) v(t = 3s).
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(c) v(t = 5s).

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

Distance x

So
lid

 v
el

oc
ity

 v

 

 

Pitman&Le
Proposed model

(d) v(t = 7s).

Figure 19: Test 2: Comparison of the velocity of the solid phase v(x, t) for the Pitman-
Le and proposed models, at time t = 1, 3, 5, 7s (at t = 10s the solid phase has already
stopped), for the collapse of a rectangular granular mixture over an inclined layer (θ = 10o)
made of the same mixture. The initial volume fractions are: (Left) ϕ0 = 0.3; (Right)
ϕ0 = 0.6. Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.
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(a) h. Pitman-Le model.
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(b) h. Proposed model.
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(c) ϕ. Pitman-Le model.
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(d) ϕ. Proposed model.

Figure 20: Test 2: The mass thickness h(x, t) (a-b) and of the solid volume fraction
ϕ(x, t) (c-d) at different times for the collapse of a rectangular granular mixture over an
inclined layer (θ = 10o) made of the same mixture. The initial volume fractions are:
(Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson and Zaki drag
force (RZ) with m = 1.
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(a) u. Pitman-Le model.
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(b) u. Proposed model.
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(c) v. Pitman-Le model.
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(d) v. Proposed model.

Figure 21: Test 2: The velocity of the fluid phase u(x, t) (a-b) and of the solid phase
v(x, t) (c-d) at different times for the collapse of a rectangular granular mixture over an
inclined layer (θ = 10o) made of the same mixture. The initial volume fractions are:
(Left) ϕ0 = 0.3; (Right) ϕ0 = 0.6. Here the friction law is the Richardson and Zaki drag
force (RZ) with m = 1.
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Figure 22: Test 2: Left: The surface pressure of the solid phase at different times for the
collapse of a rectangular granular mixture over an inclined layer (θ = 10o) made of the
same mixture. Right: Comparison between ψ and g(b+ h1 + h2) at t = 10 s.
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surface. In the proposed model, we only impose that the sum of the pressures of the
two phases is zero and not each of them. This introduces new unknown in the simplified
model. As a closure equation for the 3D system, we consider incompressibility of the
solid phase. This closure relation is consistent with the hydrostatic pressure assumption.
The numerical tests presented here show that, overall, the changes of the profiles of the
flowing mass with time are similar for the Pitman-Le model and the model proposed here.
The qualitative behaviour of the solid volume fraction and the solid and fluid velocities
is the same for both models. However, with the model presented here, the solid volume
fraction varies less, the solid phase velocity is generally higher and the difference between
the velocities of the two phases is smaller, leading to smaller drag forces between the two
phases.

This analysis is largely driven by the kinematic boundary conditions that impose the
two phases to fill the same domain. Further analysis of the equations should be performed
with relaxation of these boundary conditions and including a more realistic closure relation
related to the compression/dilation of the granular phase.
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