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A TWO-PHASE SHALLOW DEBRIS FLOW MODEL WITH ENERGY
BALANCE
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Abstract. This paper proposes a thin layer depth-averaged two-phase model provided by a
dissipative energy balance to describe avalanches of solid-uid mixtures. This model is derived
from a 3D two-phase model based on the equations proposed by Jackson [R. Jackson, The
Dynamics of Fluidized Particles, 2000] which takes into account the force of buoyancy and the
forces of interaction between the solid and uid phases. Jackson’s model is based on mass and
momentum conservation within the two phases, i.e. two vector and two scalar equations. This
system has �ve unknowns: the solid volume fraction, the solid and uid pressures and the solid
and uid velocities, i.e. three scalars and two vectors. As a result, an additional equation
is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the
models that have been developed on the basis of Jackson’s work. In particular, Pitman and Le
[E.B. Pitman, L. Le, Phil. Trans. R. Soc. A, 2005] replaced this closure simply by imposing
an extra boundary condition. If the pressure is assumed to be hydrostatic, this condition can
be considered as a closure condition. However, the corresponding model cannot account for a
dissipative energy balance. We propose here a closure equation to complete Jackson’s model,
imposing incompressibility of the solid phase. We prove that the resulting whole 3D model is
compatible with a dissipative energy balance. From this model, we deduce a 2D depth-averaged
model and we also prove that the energy balance associated with this model is dissipative.
Finally, we propose a numerical scheme to approximate the depth-averaged model. We present
several numerical tests for the 1D case that are compared to the results of the model proposed
by Pitman and Le.

1991 Mathematics Subject Classi�cation. 65C20,81T80,91B74,97M10.

The dates will be set by the publisher.

Keywords and phrases: Granular ows, two-phase ows, thin layer approximation, energy balance, non-conservative
systems, projection method, �nite volume schemes.
1 Universit�e Paris-Est, Laboratoire d’Analyse et de Math�ematiques Appliqu�ees (UMR 8050), CNRS, UPEMLV, UPEC,
F-77454, Marne-la-Vall�ee, France (francois.bouchut@univ-mlv.fr)
2 Departamento de Matem�atica Aplicada I, Universidad de Sevilla. E.T.S. Arquitectura. Avda, Reina Mercedes, s/n.
41012 Sevilla, Spain (edofer@us.es)
3 Universit�e Paris Diderot, Sorbone Paris Cit�e, Institut de Physique du Globe de Paris, Seismology group, 1 rue
Jussieu,75005 Paris, France (mangeney@ipgp.fr)
4 ANGE group INRIA - Jacques Louis Lions - CETMEF
5 Departamento de Matem�atica Aplicada I, Universidad de Sevilla. E.T.S. Arquitectura. Avda, Reina Mercedes, s/n.
41012 Sevilla, Spain (gnarbona@us.es)

c EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

Contents

1. Introduction 2
2. The 3D two-phase model 4
2.1. Mass and momentum equations 4
2.2. Boundary conditions 7
2.3. Assumptions concerning the drag force 8
2.4. Assumptions concerning the stress tensor 9
2.5. Coordinates 10
3. Derivation of the 2D model 11
3.1. Closure equation 14
3.2. Resulting model 14
4. Properties of the proposed model 15
4.1. Local energy 15
4.2. Other properties 18
5. Numerical approximation 19
5.1. Numerical method 19
5.2. Numerical tests 20
6. Conclusion 30
Acknowledgement 32
References 33

1. Introduction

Landslides, debris avalanches or debris ows play a key role in erosion processes on the surface of the
Earth and other telluric planets. On Earth, they represent one of the major natural hazards. Gravita-
tional instabilities are also closely related to volcanic, seismic and climatic activity and thus represent
potential precursors or proxies for the change of these activities with time. Research involving the dy-
namic analysis of gravitational mass ows is advancing rapidly. One of its ultimate goals is to produce
tools for detection of natural instabilities and for prediction of velocity and runout extent of rapid land-
slides. The theoretical description and physical understanding of these processes in a natural environment
are still open and extremely challenging problems for earth scientists, giving rise to equally challenging
mechanical, mathematical and numerical issues. In recent years, signi�cant progress in the mathematical,
physical and numerical modelling of gravitational ows has made it possible to develop and use numer-
ical models to investigate geomorphological processes and assess risks related to such natural hazards.
However, key questions still remain unanswered, for instance concerning the reason for the high mobility
of natural landslides (e.g. [21]; [22]). Severe limitations prevent a full understanding of physical processes
involved in landslide dynamics and the development of tools for detection of instabilities and prediction of
their velocity and extent. Indeed, numerical models do not take into account complex natural phenomena
such as the static/owing transition in granular ows or the co-existence and interaction of uid (water,
gas) (e.g. [14]; [26]; [7]; [27]; [42]; [18]; [28]; [43]; [8]; [23]). Water is almost always involved in natural
landslides (e.g. [15]; [16]; [29]) (Figure 1b). Interaction forces between the solid and uid (water) phases
may play an important role in ow mobility and deposit extent. Di�erent approaches can be used to
simulate uid-solid mixtures, extending from discrete element models based for example on contact dy-
namics or molecular dynamics (e.g. [47]; [32]), and taking into account individual particles, to continuum
models that deal with a uid phase and a solid phase. The discrete element approach is hard to use in
geophysical applications due to the high computational costs required to take into account the broad-size
distribution of particles in real ows, which is critical in such simulations.

Existing models used to describe the behaviour of uid-solid mixtures are mainly based on Jackson’s
model [19]. This model takes into account solid and uid stresses, the interaction force between the
uid and solid phases and the buoyancy force, through mass and momentum conservation within the two
phases. This model thus involves four equations (two scalar and two vector equations). However, the
system has �ve unknowns: the solid volume fraction, the solid and uid pressures and the solid and uid
velocities (three scalars and two vectors). As a result, an additional equation is necessary to close the
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Figure 1. (a) Deposits of several debris ows in Iceland. (b) Close-up of a cross-section
of the deposit of a debris ow covering a road in Canada.

system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on
the basis of Jackson’s work.

Solving the 3D two-phase equations leads to high computational costs. For this reason, mostly depth-
averaged models have been proposed to deal with natural geophysical ows (e.g. [38], [36], [35], [10]).
Iverson [15] was the �rst to address the need to include interstitial uid e�ects in the constitutive be-
haviour of the mass ow and developed a thin layer model for a solid-uid mixture moving on realistic
terrain, under the simplifying assumptions of constant porosity and equality of the uid and solid velocity.
The ow is described by a single set of equations for the density and momentum of the mixture, which
is formally represented by a single-phase model with a stress term accounting for contributions from the
two constituents. Due to the lack of an explicit equation for the pore uid pressure in this model, a pore
pressure advection-di�usion equation was added based on experimental measurements. Various versions
and applications of this grain-uid mixture model have since been presented (e.g. Pudasaini et al. [39];
Georges and Iverson, [10]).

Taking another step forward, Pitman and Le proposed in [38] a novel depth-averaged two-uid model
for debris ows, based on Jackson’s model, that contains mass and momentum equations for both the
uid and solid phases, thus providing equations for the velocities of the two phases and for solid volume
fraction. In the model proposed by Pitman and Le and the modi�ed version proposed by Pelanti et
al. [36], the authors do not provide a closure equation for the two-phase model. On the other hand,
they impose two boundary conditions involving vanishing surface tension conditions at the free surface,
i.e. the pressure of both the solid and the uid phases vanish at the free surface. Two kinematic
boundary conditions are also imposed at the free surface, because the two phases are assumed to �ll a
common domain, this gives an overdetermined problem at the free surface. However, in the thin layer
approximation, because of the hydrostatic pressure assumption, the extra boundary condition makes it
possible to express a depth-averaged model, even though no closure relation for the whole system is
provided. However, boundary conditions obviously do not replace a closure equation inside the domain.
This arti�cial compensation of the missing closure equation by overdetermined boundary conditions leads
to a physically irrelevant energy equation in the Pitman-Le model (see Section 4.1).

A physically meaningful energy equation is essential to obtain realistic models. A key issue in two-phase
ow models is thus to propose a suitable closure relation that is compatible with the energy balance. Some
new and very useful ways to close the system of equations have been proposed by Roux and Radjai [44],
Pailha and Pouliquen [35] and George and Iverson [10]. The general idea is to take into account the
dilation/compression of the granular phase and its interaction with the pressure of the uid �lling the
pores of the granular material. Indeed, these e�ects have been shown to be crucial at the initiation of
mass destabilization and to have a strong impact on the generated ow dynamics [e.g. [17]; [40]].

Roux and Radjai [44] proposed an equation to describe the evolution of the volume fraction and of the
shear stress in a granular material in terms of the shear-induced dilatancy (a property of the granular
material related to its dilation when the material is submitted to a shear force). Pailha and Pouliquen
used this equation to close their model, based on the two-phase approach proposed by Jackson [35]. They
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also imposed that both the solid and uid pressures vanish at the free surface. Moreover, they introduced
a closure equation, related to dilatancy e�ects (equation (3.18) in [35]). But, as the resulting system is
overdetermined, a condition had to be relaxed. Indeed, they relaxed mass conservation for one of the two
phases, that they justi�ed by assuming that the thickness of the owing mixture is nearly constant.

Alternatively, George and Iverson [10] derived a model using the mass and momentum equations of
the mixture. In their model, the unknowns are the total height and velocity of the mixture, the solid
volume fraction and the pore uid pressure. As a closure relation, they used a slightly di�erent equation
than that proposed in [44] to describe dilatancy e�ects, that includes the time derivative of the e�ective
normal stress and the pore uid pressure. This relation is derived from the mass conservation of the solid
phase by assuming that the averaged mixture velocity is equal to the averaged solid velocity (equations
(6) and (7) of their paper) and a Darcy law. However, the �nal model does not impose explicitly the
mass conservation of the solid phase.

We propose here to solve the mass and momentum equations of both phases, together with the relevant
number of boundary conditions and a closure equation that provides a possibly physically relevant energy
equation. In a �rst step toward this objective, we use the simplest closure equation (i.e. incompressibility
of the solid phase). We impose a vanishing stress condition at the free surface for the mixture (not for
each phase) and kinematic surface boundary conditions (the two phases are supposed to �ll the same
domain), forming a well-posed 3D system. The analysis of the hydrostatic approximation suggests that a
variable related to the pressure �eld remains in the thin-layer asymptotics. On choosing a static constraint
as a closure relation, this extra variable can be determined as the associated Lagrange multiplier. The
resulting model has a built-in energy balance.

2. The 3D two-phase model

In this section we present the three-dimensional model used to describe the mixture of solid and uid
materials. Note that we do not consider here the role of the air (i.e. a third phase) that can be critical
in some cases due to capillary forces, especially at the laboratory scale [16]. As a result, these equations
are only valid when the granular media is saturated with uid so that there is no air within the pores
of the granular material. In Subsection 2.1, the mass and momentum equations of Jackson’s model are
presented and a closure equation is proposed. In Subsection 2.2, the boundary conditions are described.
In Subsection 2.3 and 2.4, we express the drag force and the assumptions concerning the stress tensor.
Finally, in Subsection 2.5, we express the complete model in local coordinates.

2.1. Mass and momentum equations

We consider geophysical mass ows made of a mixture of solid and uid materials. The two uid
model presented below is derived in the Jackson’s book [19]. It is based on the dynamics of an assem-
bly of solid particles immersed in a Newtonian uid. The two-uid model is obtained by averaging in
the whole region the fundamental equations for both components, the uid and particles. Namely, the
Navier-Stokes equation for the motion of the uid and the equations of linear and angular momentum for
each particle for the solid part. These equations are coupled by the no-slip boundary condition imposed
on the surface of each particle. The mass and momentum conservation equations for uid and particle
phases are deduced by an averaging procedure. But, some terms linked to the microscopic level of the
individual particles are neglected. Consequentely, after the averaging procedure there are more unknowns
than equations in the derived system. And a closure for the system must be set.

The two-phase model is de�ned by the following mass and momentum equations for the solid and uid
phases:

@t (� s ' ) + r � (� s 'v ) = 0; (2.1a)
@t (� f (1 � ' )) + r � (� f (1 � ' )u) = 0; (2.1b)

� s ' (@t v + (v � r )v) = �r � Ts + f 0 + � s ' g; (2.2a)
� f (1 � ' )(@t u + (u � r )u) = �r � Tf � f 0 + � f (1 � ' )g; (2.2b)
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where the subscript \s" refers to the solid phase and the subscript \f " refers to the uid phase. The
velocities are v for the solid phase and u for the uid phase. T denotes the stress tensor and � the density.
Acceleration due to gravity is denoted by g and f 0 represents the average value of the resultant force
exerted by the uid on a solid particle. The solid volume fraction is ' . For monodisperse beads, the
maximal volume fraction is ' max ' 0:6, while it can be higher than 0.9 for highly polydisperse materials
because the small particles can �ll the pore space between larger particles ( [48], [13], [3]). The solid
fraction is practically never equal to 1. The case of dry granular ows can be obtained by setting all the
variables related to the uid phase (uid stress and f 0) to zero and volume fraction to one in equations
(2.1a) and (2.2a). The minus sign on the stress tensor terms agrees with the sign convention used in soil
mechanics, where stress is de�ned as positive in compression.

Note that both the grain density � s and the uid density � f are constant, so that each material is
incompressible. However, the density of the solid phase '� s (i.e. density of the total amount of grains
per unit volume) and the density of the uid phase (1 � ' ) � f (density of the total amount of uid �lling
the pores of the granular assembly per unit volume) can change because ' varies with space and time.
In this sense, the solid and uid phase could be compressible. Note that the combination of (2.1a) and
(2.1b) de�nes mass conservation for the mixture:

@t (� m ) + r � (� m vm ) = 0; (2.3)

where

� m = � s ' + � f (1 � ' ) and vm =
� s 'v + � f (1 � ' ) u

� s ' + � f (1 � ' )
are respectively the density and velocity of the mixture. Multiplying (2.1a) by � f and (2.1b) by � s gives:

r � ('v + (1 � ' )u) = 0: (2.4)

This relation is di�erent from the one expressing incompressibility of the mixture because it does not
imply that r � vm is equal to zero.

The averaged value of the interaction force between uid and particle is collected in f 0. This force
is decomposed into the sum of the buoyancy force f B and all remaining contributions f . The main
components of this force f are a term depending on the particle concentration and the relative velocity
(u � v) � the drag force� , a term depending on the concentration and the relative acceleration � the
virtual mass force� and the third contribution due to the force normal to the direction (u � v) � the lift
force� .
Several expressions for the buoyancy force are discussed in [19]. In the simplest case this force is written
as f B = � ' r pf with pf the uid pressure that resume the force exerted by the uid at rest on an
immersed body that is also at rest. The generalization to more general motions leads us to the expression
f B = � ' r Tf , however the approximation of � ' r pf gives equivalent equations assuming that the action
on the particles due to the gradient of the deviatoric part of Tf is collected by the other terms of the
total force f . So we write

f 0 = f B + f = � ' r pf + f; (2.5)

In the case when the inertia associated to the relative motion of uid and particles can be neglected,
referred to as the short relaxation time approximation, the virtual mass force may be neglected compared
to the drag force in the equations of motion. Regarding to the lift force, the algebraic expression for this
contribution normal to the relative velocity is uncertain because it takes quite di�erent forms for di�erent
ow regimes. This force will not be considered in this paper. Thus, we assume that f can be expressed
simply by the drag force. The drag force acts in the direction of the relative velocity (u � v) and also
depends on the particle concentration. So in general it can by written as:

� ('; ju � vj)(u � v)

For small values of ju � vj, this force is proportional to the relative velocity so we can write
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f = ~� (u � v) (2.6)
~� being the drag coe�cient (see Subsection 2.3). The notation ~� is used to distinguish this coe�cient
from the drag coe�cients denoted by � in some other publications (see for example [35]).

The e�ective stress tensors Ts and Tf are related to the interactions between uid and particles and
between particles themselves. In [19] is pointed out the di�culty of writing them in terms of averaged
variables in order to close the system. Furthermore an extensive discussion is included to give some
explicit and empirical closures for di�erent regimes in terms of the Stokes number. In this work, we take
a symmetric solid stress tensor Ts and denote ps its �rst invariant, i.e., the pressure of the solid phase
(see Subsection 2.4).

The viscosity of the uid acts at the \macroscopic" scale through viscous terms of order �U=L 2, where
U and L are characteristic values of respectively the uid velocity and ow length. On the other hand,
the uid viscosity acts at the \microscopic" scale during the relative motion between the uid phase and
the granular porous media commonly described by the Darcy law. This microscopic contribution is of
the order of � �U=� , where � is the intrinsic hydraulic permeability of the granular media and �U is
the typical relative velocity of the uid phase with respect to the solid phase. Here we assume that the
\macroscopic" viscous forces related to the uid are negligible, so that the uid stress tensor reduces to
the pressure term,

r � Tf = r pf : (2.7)

By substituting these expressions into (2.2a) and (2.2b), we obtain the system (2.1a), (2.1b), and

� s ' (@t v + (v � r )v) = �r � Ts � ' r pf + f + � s ' g; (2.8a)
� f (1 � ' )(@t u + (u � r )u) = � (1 � ' )r pf � f + � f (1 � ' )g: (2.8b)

This system of equations is the same as the system considered in [16] and [38]. Only the boundary
conditions are di�erent from those used here.
As discussed above, this system of four equations (2.1a), (2.1b), (2.8a), (2.8b) has �ve unknowns ' , Ts,
pf , u and v.

To close the system, we propose to add a supplementary scalar equation, based on the physical processes
involved. Starting from the simplest closure relation, we propose to impose the incompressibility of the
solid phase:

r � v = 0: (2.9)

In real granular materials the dilatancy e�ect may induce changes of the volume of the solid phase, even
if the mass of the granular material remains constant. This means that the divergence of the velocity of
the solid phase v may not be zero (see [11]). The compression/dilation of the granular phase changes the
interstitial uid pressure that in turn couples with the solid momentum equations. This coupling appears
in the non-hydrostatic pressure terms (see [30]), not included in the approximations made in this work.
The consistency of the whole model can be evaluated by the local energy balance equation. To obtain it,
we multiply (2.8a), (2.8b) by v and u respectively, combine with (2.1a) and (2.1b), and add the results.
This yields

@t

�
� s '

jvj2

2
+ � f (1 � ' )

juj2

2

�
+ r �

�
� s '

jvj2

2
v + � f (1 � ' )

juj2

2
u

�

= � v � (r � Ts) �
�
'v + (1 � ' )u

�
� r pf + f � (v � u) +

�
� s 'v + � f (1 � ' )u

�
� g:

(2.10)

Denoting X the space position and once again using (2.1a) and (2.1b) along with (2.4), we obtain

@t

�
� s '

jvj2

2
+ � f (1 � ' )

juj2

2
� (g � X )

�
� s ' + � f (1 � ' )

�
�

+r �
�

� s '
jvj2

2
v + � f (1 � ' )

juj2

2
u � (g � X )

�
� s 'v + � f (1 � ' )u

�

+pf
�
'v + (1 � ' )u

�
+ Ts v

�

= (Ts � ps Id) : r v + psr � v + f � (v � u);

(2.11)
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where ps denotes the solid particles pressure.
From equation (2.6), the drag contribution f � (v � u) is non-positive. With the assumption that the solid
phase is incompressible, the second term on the right-hand side psr � v is equal to zero and it is natural
to assume that the friction dissipation (Ts � ps Id) : r v is non-positive. As a result, the sum of the three
terms in the right-hand side of (2.11) is non-positive.
The model de�ned by (2.1a), (2.1b), (2.8a), (2.8b) with closure (2.9) has a locally dissipative energy
balance (2.11). Note that in the initial system considered by Pitman and Le, the term psr � v does not
vanish and we cannot ensure the non-positiveness of the right-hand side term in (2.11). We will show in
Section 4.1 that the term resulting from the closure equation also makes it possible to obtain a dissipative
energy balance in the Pitman-Le model.

2.2. Boundary conditions

2.2.1. At the free surface

We consider the usual geometric setting, which is that the mixture lies in a spatial domain limited by
a �xed topography at the bottom and by a free surface at the top.
We assume that the uid and the solid �ll the same domain that is moving with the velocity of both.
This gives the simultaneous kinematic conditions

(1; u) � N = 0; (1; v) � N = 0 at the free surface; (2.12)

where N = (N t ; NX ) is the time-space normal. It can be rewritten

u � NX = v � NX = � N t at the free surface: (2.13)

Note that this is a strong assumption that plays a key role in the derivation of the equations and in the
resulting model presented below. In [16, 35, 38], both the uid and the solid pressures are set to zero at
the free surface. However, as discussed in the introduction, only one dynamic boundary condition can be
imposed at the free surface of the mixture:

(Ts + pf Id)NX = 0 at the free surface: (2.14)

Remark 2.1 (About the total stress tensor). To obtain the total stress for the mixture we can combine
equations (2.8a) and (2.8b). From here the total stress for the mixture becomes more complicated than
the sum of the two stress tensors for each phase. Namely, it can be written asT = Ts + Tf + T 0 =
Ts + pf Id +T 0, with T 0 a contribution coming from the non-linear convective terms written through the
relative velocities of the solid and the uid with respect to the velocity of the mixturevm :

T 0 = � � s ' (v � vm )(v � vm ) � � f (1 � ' )(u � vm )(u � vm )

Nevertheless, for many geophysical ows one can assume that this term is negligible, by assuming in
particular that the relative velocity of the uid with respect to the solid is small compared to the solid
velocity (see p 540 of [16] for details.). Thus, we can see condition (2.14) as a simpli�cation where the
total stress of the mixture at the free surface for our system is de�ned as the sum of the uid and solid
phase stress tensors.

2.2.2. At the bottom

The conditions at the bottom are classically the non-penetration conditions

u � n = 0; v � n = 0 at the bottom; (2.15)

where n is the upward space unit normal (i.e. the normal to the topography).
This must be completed by further conditions for the solid, in particular we consider a Coulomb friction
law, following [45]

Tsn �
�
(Tsn) � n

�
n = � tan � sign(v)(Tsn) � n at the bottom; (2.16)

where � is the intergranular Coulomb friction angle.
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Remark 2.2. The system (2.1a), (2.1b), (2.8a), (2.8b), (2.9) with the boundary conditions (2.13), (2.14),
(2.15), (2.16), is formally well-posed. Moreover, we can check that the previous boundary conditions
ensure that all the boundary contributions vanish in the energy balance of the model, except the one
coming from the Coulomb condition (2.16), which dissipates at the bottom.
The main di�erence between this system and those considered by Pitman and Le (see [38]) and Pailha
and Pouliquen (see [35]) is the de�nition of the boundary conditions. Instead of considering that the total
pressure vanishes at the free surface (equation (2.14)), they consider that both the pressure of the solid
phase and the pressure of the uid phase vanish at the free surface. Pitman and Le do not consider any
closure equation, consequently we cannot check the well-posedness of this system. Pailha and Pouliquen
consider a closure equation in terms of the divergence of the solid phase velocity. Nevertheless, given that
the system is overdetermined in this case and they relax the mass conservation of one of the two phases.

2.3. Assumptions concerning the drag force

Di�erent empirical relations are proposed in the literature for the drag force. As already mentioned,
the drag force expression is assumed to be

f = ~� (u � v): (2.17)

The drag coe�cient ~� can be de�ned in di�erent ways:
� Pitman and Le [38] used the drag force proposed by Richardson and Zaki (see [41]):

~� =
(� s � � f )' g

vT (1 � ' )m�1 ; (2.18)

where vT is the terminal velocity of an isolated representative solid particle falling in the uid
under gravity. This force has been calculated by Richardson and Zaki, based on laboratory
experiments measuring vT and vS , where vS is the sedimentation velocity of the dispersion of
particles in a uid. Experiments give the empirical law:

vS = (1 � ' )n vT :

The value of the empirical exponent n lies in the range [2:4; 4:65]. Pitman and Le [38] (Appendix
A) show that m = n � 2, so that m 2 [0:4; 2:65]. Depending on the respective roles of viscous
and inertial forces, vS=vT depends or does not depend on the Reynolds number (see [41] for more
details).

For example, with the typical values of the experiments done by Iverson [17], the typical
Reynolds number is Re = vT d � f = � � 50. From Table VI of Richardson and Zacki, this gives
n � 3 and then m � 1.

� Pailha and Pouliquen [35] use the following de�nition of the drag coe�cient:

~� = (1 � ' )2 �
�d 2 ; (2.19)

� being the dynamic viscosity, d the mean grain diameter and

� =
(1 � ' )3

150 ' 2 :

This is derived from the Carman-Kozeny relation for the permeability of the porous media formed
by the particles (see [33] and [12]).

Another way to estimate ~� is to assume that the friction between the two phases is similar to the
Darcy law. In debris ows, part of the vertical displacements and of the uctuations of the horizontal
displacement are induced by the dilation or the compaction of the granular media. These e�ects impact on
the uid pressure �eld that in turn a�ects the momentum conservation of the solid and uid phases. The
coupling between the uid and solid phases comes from the drag force (see [35]). This can be understood
by considering the deviation from the hydrostatic uid pressure. Let us denote pf = ph

f + pe
f , where ph

f
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corresponds to the hydrostatic uid pressure, satisfying @zph
f = � � f gcos � , and pe

f is the excess pore-
uid pressure. If the right hand side of (2.8b) is considered predominant (small inertia), the horizontal
variation of ph

f is negligible and the gradient of the excess pore-uid pressure pe
f satis�es

r pe
f = �

~�
(1 � ' )

(u � v): (2.20)

This formula has the same structure as the linear Darcian drag formula describing uid ow within porous
media. This law, considered in [10], relates u � v to the gradient of the excess pore-uid pressure,

r pe
f = �

�
�

(1 � ' )(u � v); (2.21)

where � is the pore-uid viscosity and � is the intrinsic hydraulic permeability of the granular debris.
George and Iverson [10] point out that even if this linear drag formula may oversimplify the e�ects of
complex phase-interaction forces in debris ows, several research papers, such as [20] and [46], indicate
that it probably provides a suitable �rst approximation. Comparing (2.20) with the Darcian law (2.21)
leads to:

~� = (1 � ' )2 �
�

; (2.22)

� being the permeability of the granular media. The value of the e�ective permeability derived from
(2.18) and (2.19), when compared to 2.22 gives respectively:

� For Pitman and Le (2.18):

� =
�v T (1 � ' )m +1

(� s � � f )g'
: (2.23)

� For Pailha and Pouliquen (2.19):

� =
d2(1 � ' )3

150' 2 : (2.24)

These two di�erent values of permeability derived from (2.23) and (2.24) are compared in Figure 2. For
this comparison we set � = 0:001 Pa s, d = 10�3m, (� s � � f ) = 1500kg m�3, g = 9:81m s�2, m = 1,
vT = 0:143m s�1. We observe that both models give relatively close approximations of the permeability
for values of ' greater than 0:4.
George and Iverson [10] have simulated the experiments performed in [17]. In these experiments, the value
of � was approximately 10�12m2, whereas the numerical simulations where performed with a constant
value of � � 10�8 m2. Note that, with the de�nition of � given by (2.23) or (2.24), � � 10�8 m2 when
' � 0:5. A value of � � 10�12 m2 corresponds to ' � 0:9.

2.4. Assumptions concerning the stress tensor

To obtain the �nal system, a constitutive relation should be stated for the uid and granular phases.
� Fluid stress tensor Tf . As mentioned before, we assume that the uid stress tensor can be

expressed by the uid pressure:

T xy
f = T xz

f = T yz
f = 0; T xx

f = T yy
f = T zz

f = pf : (2.25)

� Solid stress tensor Ts. We assume that all its components are proportional to the normal stress
perpendicular to the topography, i.e. the stress component T zz

s ,

T jk
s = � jk T zz

s ; j; k = x; y; z: (2.26)

The constants � jk are related to the internal and basal Coulomb friction angles, see [16, 38] for
details. For simplicity, we assume � xx = � yy = 1, i.e. isotropy of normal stresses T xx

s = T yy
s =

T zz
s and we neglect the shear stress in the x � y plane, so that � xy is set to zero.

For the de�nition of the coe�cients � kz (k = x; y), we assume that they satisfy the Mohr-Coulomb
plasticity criterion:

j(T xz
s ; T yz

s )j = tan � jT zz
s j: (2.27)
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Figure 3. Local coordinates. Here the slope angle � is negative.

2.5. Coordinates

Let us initially write the model in a reference frame related to an inclined plane representative of the
mean slope of the topography. More realistic reference frames could be used but such a derivation is
beyond the scope of this paper (see for example [5]; [6]). We consider a �xed slope with constant angle
� with respect to the horizontal, � �= 2 < � < �= 2, and the coordinates (x; z) (assuming x = (x; y)) are
respectively tangent to and normal to this slope, the x axis being along the steepest direction and the y
axis being horizontal. In Figure 3, we represent the coordinates on a cross-section along a vertical plane
for clarity. The coordinates of the gravitational force can be written in this reference frame as

g = (� g sin �; 0; � gcos � )t : (2.28)

We consider a bottom topography b(x) and a thin layer of material over it with thickness h(t; x). The
material thus occupies the domain

b(x) < z < b (x) + h(t; x): (2.29)

In this reference frame, the system (2.1a), (2.1b), (2.8a), (2.8b), (2.9) can be written

@t ' + r x � ('v x ) + @z('v z) = 0; (2.30a)
@t (1 � ' ) + r x � ((1 � ' )ux ) + @z((1 � ' )uz) = 0; (2.30b)
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� s ' (@t vx + vx � r x vx + vz@zvx ) = �r x � T xx
s � @zT x z

s � ' r x pf

+f x � g sin �� s ' (1; 0)t ;
(2.31a)

� s ' (@t vz + vx � r x vz + vz@zvz) = �r x � T x z
s � @zT zz

s � '@zpf + f z � gcos �� s '; (2.31b)

� f (1 � ' )(@t ux + ux � r x ux + uz@zux ) = � (1 � ' )r x pf

� f x � g sin �� f (1 � ' )(1; 0)t ;
(2.32a)

� f (1 � ' )(@t uz + ux � r x uz + uz@zuz) = � (1 � ' )@zpf � f z � gcos �� f (1 � ' ); (2.32b)

r x � vx + @zvz = 0: (2.33)

The boundary conditions described in Subsection 2.2 can be written as follows:
� At the free surface z = b+ h.

{ Free total stress condition

(Ts + Tf )NX = 0 at z = b+ h; (2.34)

NX = (�r x (b+ h); 1)t being the vector normal to the free surface pointing outwards.
{ Kinematic condition for each phase

@t h + vx � r x (b+ h) = vz at z = b+ h; (2.35)

@t h + ux � r x (b+ h) = uz at z = b+ h; (2.36)

where u = (ux ; uz), ux = (ux ; uy ) (analogously for v) and r x = (@x ; @y ).
� At the bottom z = b.

{ Non-penetration condition for each phase

vx � r x b = vz at z = b; (2.37)

ux � r x b = uz at z = b: (2.38)

{ Coulomb friction law

T x z
s = � tan � sign(vx )Tzz

s at z = b: (2.39)

3. Derivation of the 2D model

We consider Jackson’s system written in inclined coordinates (2.30a)-(2.32b) with closure (2.33), and
boundary conditions (2.34)-(2.38). We assume the drag relation (2.17) and consider the stress tensors
under the assumptions in Section 2.4. In particular we denote

T zz
s = ps; Tf = pf Id; (3.1)

where \Id" is the identity matrix.
H and L are respectively the characteristic width and length of the domain, T a characteristic time
and � = H

L , assumed to be small according to the thin layer approximation. We consider the following
asymptotic regime in terms of � ,

h = O(� ); r b = O(� ); ~� = O(1); Ts = O(� ); pf = O(� ); ux = O(1); vx = O(1); (3.2)

where the reference units are respectively L , 1, � f L=T 2, � s(L=T )2, � f (L=T )2, L=T , L=T . We shall assume
that the unknowns vary at the scales of the domain, which means that formally @t = O(1), r x = O(1)
and @z = O(1=�) with units 1=T, 1=L and 1=L respectively. For the sake of conciseness, the orders of
magnitude will hereafter be expressed without their units. As a �rst approximation, we also assume that
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the horizontal velocities, the solid volume fraction ' and the friction coe�cient � x z do not depend on z
(see [5], [6]),

vx = vx (t; x) + O(� 2); (3.3a)
ux = ux (t; x) + O(� 2); (3.3b)
' = ' (t; x) + O(� 2); (3.3c)

� x z = � x z(t; x) + O(� 2): (3.3d)

From the divergence condition (2.33), we then obtain that @zvz = �r x � vx = O(1), thus integrating with
respect to z and using (2.37) we obtain vz = O(� ). Similarly, the sum of (2.30a) and (2.30b) yields

r x � ('v x + (1 � ' )ux ) + @z('v z + (1 � ' )uz) = 0; (3.4)

giving @z('v z + (1 � ' )uz) = O(1), and with (2.37) and (2.38) we obtain uz = O(� ).

Note that equations (2.33) and (3.4), with boundary conditions (2.37), (2.38), make it possible to de-
termine vz , uz in terms of vx , ux , ' , without depending on any approximation. Equations (2.31a) and
(2.32a) drive the evolution of vx , ux , and (2.30a) drives the evolution of ' . Equations (2.31b) and (2.32b)
determine ps and pf with boundary condition (2.34). However, there is only one condition (2.34), thus
one unknown ps = � pf remains on the free boundary. This extra unknown on the free boundary makes
(2.35) and (2.36) solvable. Otherwise, because of the assumption that both phases share the same do-
main, there would be two equations for only one unknown h on the boundary..
In order to derive the asymptotics, we �rst focus on the pressure equations. From (2.31b), we obtain

@zps + �'@zpf = � �'� sgcos � + O(� );

and from (2.32b)
(1 � �' )@zpf = � (1 � �' )� f gcos � + O(� ):

This yields
pf = pf jb+h + � f gcos � (b+ h � z) + O(� 2); (3.5)

ps = ps jb+h + �' (� s � � f )gcos � (b+ h � z) + O(� 2): (3.6)
However, according to (2.34), (ps + pf )jb+h = 0. Thus, expressing the previous relations in terms of
pf bed � pf jb = pf jb+h + � f ghcos � + O(� 2), we obtain

pf = pf bed � � f gcos � (z � b) + O(� 2); (3.7)

ps = � pf bed + � f ghcos � + �' (� s � � f )gcos � (b+ h � z) + O(� 2): (3.8)
Note that the unknown pf bed can be replaced by psbed or by psj b+ h = � pf j b+ h via the relations

pf bed = � psbed + ( �'� s + (1 � �' )� f ) ghcos � + O(� 2); (3.9)
pf bed = � ps jb+h + � f ghcos � + O(� 2): (3.10)

We can then write the tangential components of momentum equations (2.31a) and (2.32a). We assume
that

~� = � (t; x) + O(� 2); (3.11)
which is the case if ~� is de�ned by (2.18), with

� =
(� s � � f ) �'g

vT (1 � �' )m�1 : (3.12)

For the solid phase, this gives

� s �' (@t vx + vx � r x vx ) + r x ps + �' r x pf = � @zT x z
s � �'� sg sin � (1; 0)t + � (ux � vx ) + O(� 2); (3.13)
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and for the uid phase

� f (1 � �' )(@t ux + ux � r x ux ) + (1 � �' )r x pf = � (1 � �' )� f g sin � (1; 0)t � � (ux � vx ) + O(� 2): (3.14)

To obtain an asymptotic solution to the original system, these two equations must be true for all z 2
(b; b+ h) and in particular the result must be independent of z up to O(� 2), or equivalently its derivative
with respect to z must be O(� ). Taking into account (3.7) and (3.8), we observe that there are two terms
that are not independent of z, r x ps and @zT x z

s in (3.13). Since

r x ps = �r x pf bed + � f gcos � r x h + �' (� s � � f )gcos � r x (b+ h)
+(� s � � f )gcos � (b+ h � z)r x �' + O(� 2); (3.15)

the independence with respect to z up to O(� 2) in (3.13) is obtained if we suppose

(� s � � f )r x �' = O(� ) (3.16)

and

@zT x z
s =

1
h

�
T x z

s jb+h � T x z
s jb

�
+ O(� 2): (3.17)

Remark 3.1. Assumptions (3.16) and (3.17) are necessary for the consistency of the asymptotic expan-
sion (3.3), because thez independency in (3.13) justi�es that the velocity vx remains of the form (3.3)
for all times. Note that by using (3.27), the assumption (3.16) automatically holds for all times if it does
initially.

Nevertheless the model can also be derived without using these two assumptions (3.16) and (3.17),
through a classical depth-averaging process (e.g. [38]), or by evaluating the problematic two terms at
z = b+ h=2 (e.g. [6]). For example, if we use the centered second order approximation of the derivative
we obtain

(@zT x z
s )jb+h=2 =

1
h

�
T x z

s jb+h � T x z
s jb

�
+ O(� 2);

and the last term in (3.15) becomes

�
(� s � � f )gcos � (b+ h � z)r x �'

�

jb+h=2
= (� s � � f )gcos �

h
2

r x �': (3.18)

However with this method, the asymptotic expansion ofvx in (3.3) is not well justi�ed. This is why we
prefer to state the assumptions (3.16) and (3.17), even if we think that they are not mandatory.

With assumptions (3.16) and (3.17), the last term in (3.15) becomesO(� 2), thus negligible. We shall
nevertheless keep it under the form of the right-hand side of (3.18), because of the previously discussed
possibility of not making assumptions (3.16) and (3.17), and also for getting an energy balance equation,
that would not hold without this term.

Taking into account the Coulomb friction law (2.26), (2.39) and (3.3d), we can �nally write:

(@zT x z
s )jb+h=2 = � sign(vx ) tan �

1
h

�
ps jb+h � ps jb

�
+ O(� 2): (3.19)

Thus we can write (3.13), (3.14) using (3.7), (3.8), (3.19) and (3.15) evaluated at z = b+ h=2, leading to
the equations for the horizontal velocities

� s �' (@t vx + vx � r x vx ) = (1 � �' )r x pf bed � (1 � �' )� f gcos � r x h � �'� sgcos � r x (b+ h)

� (� s � � f )g
h
2

cos � r x �' � �'� sg sin � (1; 0)t + � (ux � vx )
� sign(vx ) tan � �' (� s � � f)g cos � + O(� 2);

(3.20)

� f (1 � �' )(@t ux + ux � r x ux ) = � (1 � �' )r x pf bed � (1 � �' )� f gcos � r x b
� (1 � �' )� f g sin � (1; 0)t � � (ux � vx ) + O(� 2): (3.21)



14 TITLE WILL BE SET BY THE PUBLISHER

Note that the bottom pressure pf bed is the key additional variable of the model (see Remark 4.2). We
must now deduce equations for �' , pf bed and h from (2.30a), (2.35) and (2.36). We �rst integrate (2.30a)
with respect to z 2 (b; b+ h) and get

@t

Z b+h

b
'dz + r x �

Z b+h

b
'v x dz

� ' jb+h @t h � ('v x )jb+h � r x (b+ h) + ('v x )b � r x b+ ('v z)jb+h � ('v z)b = 0:
(3.22)

But according to (2.35) and (2.37), the second line vanishes identically. We deduce the transport equation
for the solid phase

@t (h �' ) + r x � (h �' vx ) = O(� 3): (3.23)
A similar computation from the integration of (2.30b) using (2.36) and (2.38) yields the transport equation
for the uid phase

@t (h(1 � �' )) + r x � (h(1 � �' )ux ) = O(� 3): (3.24)
Adding (3.23) and (3.24), we get the transport equation for the mixture,

@t h + r x � (h( �' vx + (1 � �' )ux )) = O(� 3): (3.25)

3.1. Closure equation

We use the closure equation on the incompressibility of the solid velocity (2.33) to write the mass
equation for the solid phase (2.30a) as

@t ' + vx � r x ' + vz@z ' = 0: (3.26)

Taking into account the former considerations we get

@t �' + vx � r x �' = O(� 2): (3.27)

Combining this with (3.23) we obtain

@t h + r x � (hvx ) = O(� 3): (3.28)

Subtracting (3.28) to (3.25) we �nally obtain the closure equation

r x �
�

h(1 � �' )(ux � vx )
�

= O(� 3): (3.29)

3.2. Resulting model

After dropping � , the model is reduced to the following set of equations:

@t (h �' ) + r x � (h �' vx ) = 0; (3.30a)
@t (h(1 � �' )) + r x � (h(1 � �' )ux ) = 0; (3.30b)

� s �' (@t vx + vx � r x vx ) = (1 � �' )r x pf bed � (1 � �' )� f gcos � r x h

� �'� sgcos � r x (b+ h) �
1
2

(� s � � f )ghcos � r x �'

� �'� sg sin � (1; 0)t + � (ux � vx )
� sign(vx ) tan � �' (� s � � f)g cos �; (3.30c)

� f (1 � �' )(@t ux + ux � r x ux ) = � (1 � �' )r x pf bed � (1 � �' )� f gcos � r x b

� (1 � �' )� f g sin � (1; 0)t � � (ux � vx ); (3.30d)

r x �
�

h(1 � �' )(ux � vx )
�

= 0: (3.30e)

In this system, the scalar pf bed can be viewed as a Lagrange multiplier for the static constraint (3.30e).
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4. Properties of the proposed model

Consider the model (3.30) in which we omit the \bar" notation for the sake of clarity, and denote the
solid and uid velocities v and u respectively (instead of vx and ux ). Thus the system can be expresses
as

@t (h' ) + div(h'v ) = 0; (4.1a)
@t (h(1 � ' )) + div(h(1 � ' )u) = 0; (4.1b)

� s ' (@t v + v � r v) = (1 � ' )r pf bed � (1 � ' )� f gcos � r h

� '� sgcos � r (b+ h) �
1
2

(� s � � f )ghcos � r '

� '� sg sin � (1; 0)t + ~� (u � v);
� sign(v) tan � ' (� s � � f)g cos � (4.1c)

� f (1 � ' )(@t u + u � r u) = � (1 � ' )r pf bed � (1 � ' )� f gcos � r b

� (1 � ' )� f g sin � (1; 0)t � ~� (u � v); (4.1d)

div(h(1 � ' )(u � v)) = 0: (4.1e)

In this section, we will �rst establish a local energy equation for this model and then describe some of its
properties.

4.1. Local energy

In the following lines we prove that the model (4.1) is compatible with a dissipative energy balance.
First, from the mass equations (4.1a), (4.1b) we have

@t h + div(h'v + h(1 � ' )u) = 0; (4.2)

@t (h(� s ' + � f (1 � ' ))) + div(h(� s 'v + � f (1 � ' )u)) = 0: (4.3)

We can write sin � (1; 0)t = cos � r ~b with ~b = x tan � , so that the sin � terms in (4.1c) and (4.1d) can be
grouped with the r b terms to give r (b+ ~b).
Then we multiply equation (4.1c) by (hv) and (4.1d) by (hu) and sum up the results. Using the mass
equations to simplify the left-hand side, we obtain

@t

�
� s 'h jv j2

2 + � f (1 � ' )h ju j
2

2

�
+ div

�
� s 'h jv j2

2 v + � f (1 � ' )h ju j
2

2 u
�

= � (1 � ' )h(u � v) � r (pf bed � � f ghcos � )
| {z }

(a)

� ghcos �
�

� s 'v + � f (1 � ' )u
�

� r (b+ ~b+ h)
| {z }

(b)

�
h2

2
gcos � (� s � � f )v � r '

| {z }
(c)

� ~�h ju � vj2 � j vj tan �' (� s � � f )ghcos �:

Our objective is to compute each term on the right-hand side of the previous equation and try to write
it as a time derivative or a divergence of something explicit.

� Term (a). Using (4.1e),

(a) = � div
�

(1 � ' )h(u � v) (pf bed � � f ghcos � )
�

: (4.4)
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� Term (b). Taking into account (4.3),

(b) = � ghcos � r (b+ ~b) � (� s 'v + � f (1 � ' )u) � gcos � r ( h2

2 ) � (� s 'v + � f (1 � ' )u)

= � div
�

gh(b+ ~b) cos � (� s 'v + � f (1 � ' )u)
�

+ g(b+ ~b) cos � div
�

h(� s 'v + � f (1 � ' )u)
�

� div
�

1
2 gh2 cos � (� s 'v + � f (1 � ' )u)

�
+ 1

2 gh2 cos � div(� s 'v + � f (1 � ' )u)

= � div
�

ghcos � (b+ ~b+ h
2 )(� s 'v + � f (1 � ' )u)

�

� @t

�
gh(b+ ~b) cos � (� s ' + � f (1 � ' ))

�
+ 1

2 gh2 cos � div(� s 'v + � f (1 � ' )u):

� Term (c).

(c) = � div
� 1

2
gh2 cos � (� s � � f )'v

�
+ ' (� s � � f )gcos � div(

h2

2
v):

Gathering all the terms we get

@t

�
� s 'h jv j2

2 + � f (1 � ' )h ju j
2

2 + gh(b+ ~b) cos � (� s ' + � f (1 � ' ))
�

+ div
�

� s 'h jv j2

2 v + � f (1 � ' )h ju j
2

2 u + (1 � ' )h(u � v) (pf bed � � f ghcos � )

+ghcos � (b+ ~b+ h
2 )(� s 'v + � f (1 � ' )u) + 1

2 gh2 cos � (� s � � f )'v
�

= T1;

(4.5)

where T1 can be expressed as

T1 =
1
2

gh2 cos � div(� s 'v + � f (1 � ' )u) + ' (� s � � f )gcos � div(
h2

2
v)

� ~�h ju � vj2 � j vj tan �' (� s � � f )ghcos �:
(4.6)

The �rst term can be expressed as

1
2

gh2 cos � div(� s 'v + � f (1 � ' )u)

=
1
2

ghcos � div
�

h(� s 'v + � f (1 � ' )u)
�

�
1
2

ghcos � (� s 'v + � f (1 � ' )u) � r h:

(4.7)

However, according to (4.2) and (4.3) we have

@t

�
1
2 gh2 cos � (� s ' + � f (1 � ' ))

�
= � 1

2 ghcos � div
�

h(� s 'v + � f (1 � ' )u)
�

� 1
2 ghcos � (� s ' + � f (1 � ' )) div

�
h('v + (1 � ' )u)

�
;
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Thus using this in (4.7) we obtain

1
2

gh2 cos � div(� s 'v + � f (1 � ' )u)

= � @t

� 1
2

gh2 cos � (� s ' + � f (1 � ' ))
�

�
1
2

ghcos � (� s ' + � f (1 � ' )) div(hv)

�
1
2

ghcos � (� s 'v + � f (1 � ' )u) � r h:

Adding the second term in (4.6) yields

1
2

gh2 cos � div(� s 'v + � f (1 � ' )u) + ' (� s � � f )gcos � div(
h2

2
v)

= � @t

� 1
2

gh2 cos � (� s ' + � f (1 � ' ))
�

�
1
2

ghcos � (� s ' + � f (1 � ' )) div(hv)

�
1
2

ghcos � (� s 'v + � f (1 � ' )u) � r h + ' (� s � � f )gcos � div(
h2

2
v)

= � @t

� 1
2

gh2 cos � (� s ' + � f (1 � ' ))
�

�
1
2

� f ghcos �
�

div(hv) + ('v + (1 � ' )u) � r h
�

:

(4.8)

Then we can compute

� 1
2 � f ghcos �

�
div(hv) + ('v + (1 � ' )u) � r h

�

= � 1
2 � f ghcos � div(hv) � div

�
1
2 � f gh2 cos � ('v + (1 � ' )u)

�

+ 1
2 � f ghcos � div

�
h('v + (1 � ' )u)

�

= � div
�

1
2 � f gh2 cos � ('v + (1 � ' )u)

�
+ 1

2 � f ghcos � div
�

h(1 � ' )(u � v)
�

:

Plugging this into (4.8) and (4.6), we obtain

T1 = � @t

� 1
2

gh2 cos � (� s ' + � f (1 � ' ))
�

� div
� 1

2
� f gh2 cos � ('v + (1 � ' )u)

�

� ~�h ju � vj2 � j vj tan �' (� s � � f )ghcos �:

Using this result in (4.5) �nally yields the energy identity

@t

�
� s 'h jv j2

2 + � f (1 � ' )h ju j
2

2 + ghcos � (b+ ~b+ h
2 )(� s ' + � f (1 � ' ))

�

+ div
�

� s 'h jv j2

2 v + � f (1 � ' )h ju j
2

2 u + (1 � ' )h(u � v)pf bed � � f (1 � ' )gh2 cos � (u � v)

+ghcos � (b+ ~b+ h
2 )(� s 'v + � f (1 � ' )u) + 1

2 'gh 2 cos � (� s � � f )v

+ 1
2 � f gh2 cos � ('v + (1 � ' )u)

�
= Re;

(4.9)

with
Re = � ~�h ju � vj2 � j vj tan �' (� s � � f )ghcos �: (4.10)

Therefore the model (4.1) has a locally dissipative energy balance, since the residual Re is non-positive.
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Remark 4.1. Identity (4.9) can be obtained (up to O(� 3)) by integration of (2.11) with respect to z.
This shows that the left-hand side contains the physically relevant energy and energy ux.

Remark 4.2. Let us recall that the Pitman-Le model [38] does not use any closure equation (4.1e).
Instead, the Pitman-Le model, in the form proposed by Pelanti et al. [36], can be seen as (4.1) where we
set pf bed = � f ghcos � (or equivalently ps jb+h = 0 according to (3.10)). Consequently, the energy equation
satis�ed by the Pitman-Le model is (4.9) with a right-hand sideRe that is not always non-positive. The
residual term for the Pitman-Le model is

Re = � 1
2 ' (� s � � f )ghcos � div

�
h(1 � ' )(u � v)

�

� ~�h ju � vj2 � j vj tan �' (� s � � f )ghcos �

and has no �xed sign (we will study this term in Test 1 presented in Section 5.2.1). The intrinsic reason
why the Pitman-Le model has a physically irrelevant energy equation is that it is derived from a 3D model
that does not have an energy dissipation principle (see equation (2.11)).

4.2. Other properties

Model (4.1) is a balance law type system with non-local terms related to pf bed . Note �rst that it is
possible to eliminate pf bed from the system. Indeed, pf bed appears only in (4.1c) and (4.1d). We can thus
retain the sum of (4.1c) and (4.1d) and if we express r pf bed from (4.1c) for example and write that the
curl of the result vanishes, we obtain the missing relation.

Proposition 4.1. System (4.1) has the following properties.
(i) The two mass equations are conservative. The momentum equations take the quasi-conservative form

� s

�
@t (h'v ) + div(h'v 
 v)

�
= h

�
(1 � ' )r pf bed � (1 � ' )� f gcos � r h

� '� sgcos � r (b+ h) �
1
2

(� s � � f )ghcos � r '

� '� sg sin � (1; 0)t + ~� (u � v)

� sign(v) tan � ' (� s � � f)g cos �
�

;

(4.11a)

� f

�
@t (h(1 � ' )u) + div(h(1 � ' )u 
 u)

�
= h

�
� (1 � ' )r pf bed � (1 � ' )� f gcos � r b

� (1 � ' )� f g sin � (1; 0)t � ~� (u � v)
�

: (4.11b)

The total momentum takes the conservative form

� s

�
@t (h'v ) + div(h'v 
 v)

�
+ � f

�
@t (h(1 � ' )u) + div(h(1 � ' )u 
 u)

�

= �r
�

(� s ' + � f (1 � ' ))gh2

2 cos �
�

� gcos �
�

� s ' + � f (1 � ' )
�

hr (b+ ~b)
� sign(v) tan � ' (� s � � f)gh cos �:

(4.12)

(ii) The thickness h remains non-negative, and0 � ' � 1.
(iii) Special solutions are the steady states at rest, characterized by

u = v = 0; b+ ~b+ h = Cst; ' = Cst; (4.13)

where we recall that~b = x tan � . Indeed this is a solution to our system withpf bed = � f ghcos � .
(iv) The classical single uid shallow water system is obtained whenu = v, � f = � s = � and pf bed =
�gh cos � , and either ' = 1 in equation (4.11a) or ' = 0 in equation (4.11b).
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5. Numerical approximation

In this section we describe a numerical method to approximate the proposed two-phase model (4.1) in
one dimension. Then we perform di�erent tests, including a comparison with the solution provided by
the Pitman-Le model.

We focus on the one-dimensional situation. As pointed out previously, the model can be rewritten in
terms of the solid pressure at the free surface ps jb+h , the uid pressure at the free surface pf jb+h = � ps jb+h

or the solid pressure at the bed psbed, instead of the uid pressure at the bed pf bed, via relations (3.9)
and (3.10). In this section we consider the formulation in terms of the solid pressure at the free surface
ps jb+h , which can be written

@t (h' ) + @x (h'v ) = 0; (5.1a)
@t (h(1 � ' )) + @x (h(1 � ' )u) = 0; (5.1b)

@t (h'v ) + @x (h'v 2) = � h(1 � ' )@x  � 'gh cos � @x (b+ h)

�
1
2

(1 � r )gh2 cos � @x '

� 'gh sin � + �̂h (u � v);
� sign(v) tan � g cos � (1 � r)h'; (5.1c)

@t (h(1 � ' )u) + @x (h(1 � ' )u2) =
h
r

(1 � ' ) @x  � (1 � ' )ghcos � @x (b+ h)

� (1 � ' )ghsin � �
1
r

~�h (u � v); (5.1d)

@x (h(1 � ' )(u � v)) = 0; (5.1e)

where

r = � f =� s; �̂ =
~�

� s
;  =

psj b+ h

� s
=

� f ghcos � � pf bed

� s
: (5.2)

If we consider that the drag coe�cient ~� is de�ned by (3.12), then

�̂ =
(1 � r )'g

vT (1 � ' )m�1 : (5.3)

5.1. Numerical method

We apply a splitting algorithm, similar to the Teman-Chorin method for incompressible Euler equa-
tions, in order to impose the constraint (5.1e). We observe that at the �rst step, when we neglect the
extra unknown  (which can be seen as a Lagrange multiplier associated with the constraint) in (5.1a)-
(5.1d), we obtain the Pitman-Le model in the form proposed in [36], which is hyperbolic whenever u � v
is not too large.

We consider the space domain [0; L ] divided in cells I i = (x i�1=2; x i +1=2). For simplicity, we assume
that these cells have a constant size �x. We de�ne x i + 1

2
= i�x and x i = (i � 1=2)�x, the center of the

cell I i . Let �t be the time step and de�ne tn +1 = tn + �t. W is the vector of the following unknowns of
the problem,

W = [h'; h (1 � ' ); h'v; h (1 � ' )u]: (5.4)
Therefore W n

i denotes the approximation provided by the numerical scheme of the cell averages of the
solution,

W n
i

�=
1

�x

Z x i +1 = 2

x i � 1= 2

W (tn ; x) dx; (5.5)

and by  n
i +1=2, an approximation of  (tn ; x i +1=2).

Assuming that the values of W n
i are known, the system can be discretized in two steps.
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� First step. We compute the state W � = [h�' �; h�(1 � ' �); h�' �v�; h�(1 � ' �)u�] by a semi-implicit
discretization for the drag

W �
i = W n

i �
�t
�x

L
�

W n
i�1; W n

i ; W n
i +1; �(b+ ~b)i�1=2; �(b+ ~b)i +1=2

�

+
�

0; 0; �t �̂ �i h�i (u�i � v�i ); � �t �̂ �i
h�i
r

(u�i � v�i )
�

;
(5.6)

where L (W n
i�1; W n

i ; W n
i +1; �(b+ ~b)i�1=2; �(b+ ~b)i +1=2) de�nes the space discretization operator applied

to model (5.1a)-(5.1d) with  = 0 and �̂ = 0. In this work, we have considered the generalized Roe
method proposed in [34]. Another possibility would be to use the relaxation solver proposed by Pelanti
et al. [37].

� Second step. In order to enforce the constraint, we set hn +1
i = h�i and ' n +1

i = ' �i and vn +1
i ,

un +1
i and  n +1

i +1=2 are solutions to the following coupled system,

8
>>>>>>><

>>>>>>>:

(h'v )n +1
i = (h'v )�i �

�t
�x

(1 � ' �i )h�i ( n +1
i +1=2 �  n +1

i�1=2);

(h(1 � ' )u)n +1
i = (h(1 � ' )u)�i +

�t
�x

(1 � ' �i )
h�i
r

( n +1
i +1=2 �  n +1

i�1=2);

(h(1 � ' )(u � v))n +1
i +1 � (h(1 � ' )(u � v))n +1

i = 0:

(5.7)

By extracting vn +1
i and un +1

i from the two �rst equations of (5.7) and by substitution in the third
equation, we obtain the following system with unknowns f  n +1

i +1=2gi ,

� a�i +1 n +1
i +3=2 + (a�i + a�i +1) n +1

i +1=2 � a�i  n +1
i�1=2

=
�
h(1 � ' )(u � v)

� �
i +1 �

�
h(1 � ' )(u � v)

� �
i ;

(5.8)

with
a�i =

�t
�x

h�i (1 � ' �i )
� 1

r
+

1 � ' �i
' �i

�
: (5.9)

Thus, in this second step, we must solve system (5.8) (with Dirichlet boundary conditions,  = 0) to
obtain f  n +1

i +1=2gi and use these values to update vn +1
i and un +1

i by the two �rst equations of (5.7).
The obtained scheme is obviously well-balanced with respect to the steady states at rest (4.13) if the
hyperbolic solver L is well-balanced, and preserves the natural bounds h � 0 and 0 � ' � 1.

5.2. Numerical tests

We will now present some numerical tests in order to compare the solution of the proposed model
(5.1a)-(5.1e) with the solution of the modi�ed Pitman and Le problem proposed in [36] (with the same
drag coe�cient ~� ).
We simulate the collapse of a column made of a mixture of grains and water �rst over a horizontal
plane and then over an inclined plane, a situation widely investigated for dry granular ows [see for
example [25], [27], [8]]. First, we simulate the ow of the mixture over a horizontal bed for the two
di�erent drag forces given by (2.18) and (2.19). In the second test, we simulate the ow of the mixture
over an inclined bed of constant slope for a �xed choice of these parameters.
As general considerations, we �x the CFL number as 0.8, acceleration due to gravity g = 9:81m s�2

and the material densities � f = 1000kg m�3 and � s = 2500kg m�3 respectively. Therefore the ratio of
densities is r = 0:4.

5.2.1. Test 1: Flat bottom

In this experiment, the space domain is 
 = [0; 10]m and we consider 200 points. At time t = 5s,
the solid phase is stopped and some small velocities appear in the uid phase. The initial conditions are
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(a) h(t = 5s). Pitman-Le model.
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(b) h(t = 5s). Pitman-Le model.
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(c) h(t = 5s). Proposed model.
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(d) h(t = 5s). Proposed model.

Figure 4. Test 1: Thickness pro�le of the mass h (m) as a function of the distance x
(m) at time t = 5s, when the granular phase has already stopped, for the collapse of a
rectangular granular mixture over a horizontal layer made of the same mixture, simulated
with di�erent friction laws (\RZ" refers to the Richardson and Zaki and \PP" to the
Pailha and Pouliquen drag forces). The initial volume fractions are: (Left) ' 0 = 0:3;
(Right) ' 0 = 0:6. The thickness pro�le obtained using the dry granular ow model of
Savage and Hutter (obtained by setting all the terms related to the uid phase equal to
zero) is also represented for comparison.

de�ned as follows

h(t = 0s) =
�

0:5m 4m � x � 6m
0:1m otherwise ; u(t = 0s) = v(t = 0s) = 0ms�1; ' (t = 0s) = ' 0:

For the initial solid volume fraction, we consider two values of ' 0 (0.3 and 0.6) to see the e�ect the initial
state of mixture uidization. We consider the intergranular Coulomb angle to be � = 18o. The objective
of this test is to check the inuence of the drag force and initial solid volume fraction on the ow and
deposit. Remember that the drag friction laws used here (see Section 2.3) are given by:

f = ~� (u � v):

where the drag coe�cient ~� can be set according to:
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(b) ’(t = 5s). Pitman-Le model.
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(d) ’(t = 5s). Proposed model.

Figure 5. Test 1: Solid volume fraction of the mass ' as a function of the distance x
(m) at time t = 5s, when the granular phase has already stopped, for the collapse of a
rectangular granular mixture over a horizontal layer made of the same mixture, simulated
with di�erent friction laws (\RZ" refers to the Richardson and Zaki and \PP" to the
Pailha and Pouliquen drag forces). The initial volume fractions are: (Left) ' 0 = 0:3;
(Right) ' 0 = 0:6.

� Richardson and Zaki [41]:

~� =
(� s � � f )' g

vT (1 � ' )m�1 ; with m 2 [0:4; 2:65]:

� Pailha and Pouliquen [35]:

~� =
150�' 2

d2(1 � ' )
:

We also set
vT = 0:143ms�1; � = 10�3Pas; d = 10�3m

and we vary the coe�cient m, using the values

m = 0:4; 1 and 2:65:

In the following, we will refer to \RZ" and \PP" for the Richardson and Zaki and for the Pailha and
Poliquen drag forces respectively.
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Figure 6. Test 1: Comparison between the solutions obtained with the the Pitman-Le
and proposed models for the thickness of the mass h (m) and the volume fraction ' as
functions of the distance x (m) at time t = 5s when the solid phase has already stopped,
for the collapse of a rectangular granular mixture over a horizontal layer made of the
same mixture. The initial volume fractions are: (Left) ' 0 = 0:3; (Right) ' 0 = 0:6. Here
the friction law is the Richardson and Zaki drag force (RZ) with m = 1.

Inuence of the drag force.
Figures 4 and 5 show the thickness of the mass (i.e. at time t = 5 s) and the associated volume fraction
simulated with di�erent drag forces both with the Pitman-Le (PL) model and with the new model
proposed here. At that time, the solid phase has completely stopped. In Figure 4 we also compare these
two-phase ow models with the results obtained with the Savage-Hutter model, where the uid phase is
not considered (i.e. dry granular ows). Even for ' 0 = 0:6, Figure 4 show the strong inuence of the
uid phase on the avalanche thickness pro�le.

The �rst observation is that the PL model and our model have the same qualitative behaviour. How-
ever, for ' 0 = 0:3, the PL model is more sensitive to the di�erent drag forces introduced in the model
(Figures 4a and 5a). In particular, the �nal volume fraction is higher for the PP drag force than for
the RZ drag force at a centered mass interval, x 2 (2m; 8m). They coincides just in the center of mass
(x = 5m) for the case m = 0:4, reaching up to ' = 0:65. For the RZ drag forces, the variation of the
volume fraction in space is smoother than for the PP drag force. For our model, the drag force only
slightly a�ects the results for ' 0 = 0:3. For ' 0 = 0:6, the sensitivity of the two models to the di�erent
drag forces is qualitatively similar even though the volume fraction calculated with the PL model is still
more sensitive than that calculated with our model (Figures 5b,d). For ' 0 = 0:6, the volume fraction at
the center of the column reaches very high values with the PL model (about 0.9), while ' < 0:75 with our
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Figure 7. Test 1: Comparison of the uid and solid velocities u (ms�1) and v (ms�1) as
functions of the distance x (m) for the Pitman-Le and proposed models at time t = 1:5s
for the collapse of a rectangular granular mixture over a horizontal layer made of the
same mixture. The initial volume fractions are: (Left) ' 0 = 0:3; (Right) ' 0 = 0:6. Here
the friction law is the Richardson and Zaki drag force (RZ) with m = 1.

model. The overall lower sensitivity of our model to the di�erent drag forces suggests that the di�erence
between the velocities of the two phases is lower with our model than with the PL model, as shown in
Figure 8.

Comparison of the two models.
Let us now compare the two models for a given friction law, i.e., the Richardson and Zaki law with m = 1
(corresponding to the data used in [10]). We also consider two di�erent values for the Coulomb friction
angle: � = 18o and � = 28o.

For both the PL model and our model, the higher the initial uidization, the larger the spreading of
the material and the smaller the aspect ratio of the deposit (Figure 6). Furthermore, the volume fraction
is highest at the center of mass and decreases toward the front, leading to ' < ' 0 at the front.
At time t = 5 s, when the solid phase is already at rest, the thickness of the mass is very similar in both
models, even though the maximum thickness is slightly smaller with our model (Figure 6). However, the
distribution of the phases (i.e. volume fraction) is di�erent. As observed previously, the volume fraction
is more uniformly distributed in the simulations with our model. The peak of high volume fraction at
the center of mass is higher for the PL model and the decrease in volume fraction toward the front of the
mass is larger than in our model (Figure 6(c)).

The velocity of the uid phase at an intermediate time t = 1:5s, when the granular phase is still
owing, is slightly higher with our model for � = 18o for both ' 0 = 0:3 and ' 0 = 0:6 (see Figures 7(a)
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Figure 8. Test 1: Comparison of the di�erence of the uid and solid velocities (u �
v) (ms�1) for the Pitman-Le and proposed models at time t = 0:1s for the collapse of
a rectangular granular mixture over a horizontal layer made of the same mixture. The
initial volume fractions are: (Left) ' 0 = 0:3; (Right) ' 0 = 0:6. Here the friction law is
the Richardson and Zaki drag force (RZ) with m = 1.

and 7(b)). For � = 28o, the uid velocities are almost the same in the two models towards the front and
the uid velocity with our model is lower around the center than that calculated with the PL model. The
di�erence between the two models is greater for the solid velocity for both ' 0 = 0:3 and ' 0 = 0:6, (see
Figures 7(c) and 7(d)). For the proposed model, the solid phase moves faster than for the PL model.
We also observe that for � = 18o, the velocities of both phases are greater than for � = 28o. Moreover,
for larger values of � , the di�erence between the velocities of the two phases is greater (see Figure 8).
This di�erence is much larger in the PL model than in our model, leading to higher drag forces in the
PL model. This explain why our model is less sensitive to the de�nition of the drag force (see Figure 4).

Evolution in time .
Let us now look at the changes of the di�erent quantities with time (Figures 9-13 in which times t =1,2,3
and5s are represented with di�erent colours). For these simulations, we use the Richardson and Zaki
friction law with m = 1 and the Coulomb friction angle � = 18o.

Note that even though the mass pro�les change with time in a similar way for the two models (Figure
9), there is strong di�erence between the two models for the changes of the volume fraction with time
(Figure 10), especially for ' 0 = 0:3. The volume fraction changes are much larger with the PL model.
The uid velocities are quite similar for the two models, whereas the solid velocity is higher with our
model (Figures 11 and 12). Finally Figure 13 shows the evolution of the new variable  =

ps j b+ h

� s
(see

equation 5.2). As already mentioned, this variable is equal to zero in the PL model (where psj b+ h =0
is imposed as a boundary condition). For ' 0 = 0:3, the surface pressure of the solid phase increases
until t = 1:4s where it reaches its maximum value before decreasing. A similar behaviour is observed for
' 0 = 0:6. The �nal peak surface pressure is higher for ' 0 = 0:6. Note that the absolute value of the slope
of  is greater for ' = 0:6 at all times. Moreover, the gradient of  has the same sign as the gradient
of h. This implies that the pressure gradient is larger for the solid phase and smaller for the uid phase
(see equations (5.1c) and (5.1d)). Nevertheless, the gradient of  is much smaller than the gradient of
gh, corresponding to the gradient of the hydrostatic pressure.

Residual energy term.
In Section 4.1, we proved that the proposed model is compatible with a dissipative energy balance since
the residual term Re in equation (4.10) is non-positive. We also argued in Remark 4.2 that this may not
be true for the PL model due to the additional term that has no �xed sign (the �rst term in the following
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(b) h. Pitman-Le model.
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(d) h. Proposed model.

Figure 9. Test 1: The mass thickness h(x; t ) in meters as a function of the distance x
(m) at di�erent times for the Pitman-Le model (a-b) and for the model proposed here
(c-d) for the collapse of a rectangular granular mixture over a horizontal layer made of
the same mixture. The initial volume fractions are: (Left) ' 0 = 0:3; (Right) ' 0 = 0:6.
Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.

equation):
Re = � 1

2 ' (� s � � f )ghcos � div
�

h(1 � ' )(u � v)
�

� ~�h ju � vj2 � j vj tan �' (� s � � f )ghcos �
Let us carry out a test on the numerical values of these terms. We chose the values ' 0 = 0:3 and m = 1
for the Richardson and Zaki drag force. In Figure 14, we show the three terms involved in Re for times
t = 0:5k, k = 1s; : : :10s, which we denote:

Re1 = �
1
2

' (� s � � f )ghcos � div
�

h(1 � ' )(u � v)
�

Re2 = � ~�h ju � vj2

Re3 = �j vj tan �' (� s � � f )ghcos � (5.10)

Note that the absolute value of Re2 is much larger than the values corresponding to Re1 and Re3.
Moreover, the additional term Re1 has the same magnitude as the Coulomb friction term Re3, but with
opposite sign. However, at the mass front, we observe that jRe1j is greater than jRe3j. In Figure 15, we
represent the total residual term Re = Re1 + Re2 + Re3 for the same times. We observe that even if the
friction e�ect between the two phases is large, the PL model provides positive values of the residual term
in the mass front, i.e. it does not dissipate the energy.
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(a) ’. Pitman-Le model.
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(b) ’. Pitman-Le model.
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(c) ’. Proposed model.
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Figure 10. Test 1: The solid volume fraction ' (x; t ) as a function of the distance x
(m) at di�erent times for the Pitman-Le model (a-b) and for the model proposed here
(c-d) for the collapse of a rectangular granular mixture over a horizontal layer made of
the same mixture. The initial volume fractions are: (Left) ' 0 = 0:3; (Right) ' 0 = 0:6.
Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.

5.2.2. Test 2: Constant slope

We consider here the collapse of a column made of a mixture of grains and uid over a 20 metre long
inclined bed of constant slope � = 10o. As in the previous case, we use the Richardson and Zaki drag
force with m = 1 and vT = 0:143m s�1. The Coulomb friction angle is � = 25o and the initial conditions
are de�ned as follows:

h(t = 0s) =
�

0:5m 4m � x � 6m
0:1m otherwise ; u(t = 0s) = v(t = 0s) = 0; ' (t = 0s) = 0:6:

We consider open boundary conditions. That implies a constant supply of uid and granular material
at x = 0. While we obtain a stationary solution with zero velocity for the solid phase, we observe that
the velocity is not zero for the uid phase (see Figure 22). However, since we have a constant discharge
for the uid phase (h(1 � ' )u � 0:01), we have a stationary pro�le with a non-zero velocity for the
uid phase, corresponding to a small movement of the uid between the pores of the grains produced
by the continuous supply of the uid at x = 0 and by the slope of the bottom. In Figure 20 we make a
comparison of the di�erence between the velocities of the two phases, u � v. In our model, this di�erence
is smaller than in the PL model. As a result, the drag forces are smaller explaining the higher mobility
of the spreading mass in our model.
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(a) u. Pitman-Le model.
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(b) u. Pitman-Le model.
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(c) u. Proposed model.
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(d) u. Proposed model.

Figure 11. Test 1: The uid velocity u(x; t ) in ms�1 as a function of the distance x
(m) at di�erent times for the PitmanLe model (a-b) and for the model proposed here
(c-d) for the collapse of a rectangular granular mixture over a horizontal layer made of
the same mixture. The initial volume fractions are: (Left) ' 0 = 0:3; (Right) ' 0 = 0:6.
Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.

Figures 16-19 compare the solutions obtained for the PL model and for the proposed model at di�erent
times. At time (t = 10s), the solid phase has already stopped.
At the very beginning of the collapse, the two models give very similar results. This could be related
to the predominance of pressure gradient terms and inertial terms compared to the friction terms at the
onset of the collapse as observed for example in [24]. However, at later times (e.g. t = 3s), the two models
show di�erences. In particular our model predicts a steeper front that the PL model. The spreading
mass and the �nal mass pro�les (t = 10s) are more extended. The runout distance is about 12% larger
with our model and the deposit is more uniform (Figure 16). For the solid volume fraction, we observe
the same behaviour as in Test 1: (i) the two models behave qualitatively in the same way, (ii) even when
the thickness pro�les are very similar, as at time t = 1s, the solid volume fraction ' is quite di�erent for
the two models (see Figure 17(a)), (iii) the volume fraction varies less in our model and the peak values
of the volume fraction are smaller. The global trend is that the tail and the front of the mass are more
uidized (dropping to ' = 0:4) than the central part of the mass that has a volume fraction reaching
up to ' � 0:8. Figures 18 and 19 show that the velocities of both phases are generally higher for the
proposed model (more than 20% is some cases). While the solid phase is completely stopped at time
t = 7s for the PL model, the solid phase continues to move until t = 8s for the proposed model.

Finally, let us look at the change of all the solutions of the problem with time (Figures 21-23). The
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(a) v. Pitman-Le model.

' 0 = 0:6

! " # $ % &!
�ï&'(

�ï&

�ï!'(

!

!'(

&

&'(

)*+,-./012

34
5*

61
70

54
/*

,8
17

1

1

!'"+
!'#+
!'$+
!'%+
&+
&'"+
&'#+
&'$+
&'%+
"+
(+

(b) v. Pitman-Le model.
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(c) v. Proposed model.
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(d) v. Proposed model.

Figure 12. Test 1: The solid velocity v(x; t ) in ms�1 as a function of the distance x
(m) at di�erent times for the Pitman-Le model (a-b) and for the model proposed here
(c-d) for the collapse of a rectangular granular mixture over a horizontal layer made of
the same mixture. The initial volume fractions are: (Left) ' 0 = 0:3; (Right) ' 0 = 0:6.
Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.

main features are the smaller variation of the volume fraction with our model, the higher velocities of the
solid phase and the fact that the solid phase stops later than with the PL model. Note that with the PL
model, the blue line corresponding to time t = 7s is very close to the �nal time t = 10s for the uid phase
and identical for the solid phase solutions, while they remain di�erent for the proposed model (Figure
22). The sign of the surface pressure of the solid phase changes along the mass pro�le, going from positive
values at the tail to negative values behind the front (Figure 23(a)). This would suggest compression
of the solid phase near the tail and dilation behind the front. Finally, note that the magnitude of  is
small compared to the hydrostatic pressure gradient. In Figure 23(b), we compare the value of  with
g(x tan � + h) for t = 10 s.
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Figure 13. Test 1: The variable  (x; t ) in m2s�2 in the proposed model at di�erent
times for the collapse of a rectangular granular mixture over a horizontal layer made of
the same mixture. The initial volume fractions are: (Left) ' 0 = 0:3; (Right) ' 0 = 0:6.
Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.
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(b) Residual terms (zoom).

Figure 14. Test 1: Values of the terms involved in the residual energy (see equation
(5.10)) as a function of the distance x (m), for the collapse of a rectangular granular
mixture over a horizontal layer made of the same mixture at the di�erent times t = 0:5k
with k = 1s; : : :10s. The initial volume fraction is ' 0 = 0:3 and the friction law is the
Richardson and Zaki drag force (RZ) with m = 1.

6. Conclusion

In this paper, we propose a simpli�ed thin layer (i.e. shallow) model to study hydrostatic two-phase
avalanche problems that is compatible with a dissipative energy balance. It is deduced from Jackson’s
model. Analysis of this 3D model reveals that it contains more unknowns than equations. Therefore
a closure equation must be added to Jackson’s model to obtain a well-posed system. This may not be
apparent with a depth-averaged model with hydrostatic pressure, such as the one proposed by Pitman
and Le [38]. Indeed, if we assume hydrostatic pressure for both phases, they are related by their boundary
condition. In this case, imposing zero atmospheric pressure for both phases can be seen as the corre-
sponding closure equation. Nevertheless, the model that is deduced does not have a dissipative energy
balance. The main di�erence between the model that we propose in this paper and the Pitman-Le model
comes from the boundary condition on the free surface. In the proposed model, we only impose that
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(b) Total residual term Re (zoom).

Figure 15. Test 1: Values of the total residual term as a function of the distance x
(m) for the collapse of a rectangular granular mixture over a horizontal layer made of
the same mixture at the di�erent times t = 0:5k with k = 1s; : : :10s. The initial volume
fraction is ' 0 = 0:3 and the friction law is the Richardson and Zaki drag force (RZ) with
m = 1.

the sum of the pressures of the two phases is zero and not each of them. This introduces new unknown
in the simpli�ed model. As a closure equation for the 3D system, we consider incompressibility of the
solid phase. This closure relation is consistent with the hydrostatic pressure assumption. The numerical
tests presented here show that, overall, the changes of the pro�les of the owing mass with time are
similar for the Pitman-Le model and the model proposed here. The qualitative behaviour of the solid
volume fraction and the solid and uid velocities is the same for both models. However, with the model
presented here, the solid volume fraction varies less, the solid phase velocity is generally higher and the
di�erence between the velocities of the two phases is smaller, leading to smaller drag forces between the
two phases. This induces signi�cant di�erences in the pro�le of the spreading mass and of the deposit
with runout distances more than 10% larger and velocities that could be more than 20% heigher in the
simple test of granular collapse over inclined plane performed here. While it is quite di�cult to measure
experimentally or in the �eld the uid and solid velocities, the use of seismic waves generated by debris
ows or avalanches may be a new way to discriminate between these two models ( [9], [31]).

An advantage of our model is that the closure equation (i. e. incompressibility of the solid phase)
is explicitly imposed, making it possible to derive physical interpretation of our results while in the
PL model, the behavior is dictated by the imposed zero-pressure at the surface of each phase, without
any description of the mechanical properties of the solid phase. It is interesting to see the signi�cant
di�erences between the two models even though the surface pressure of each phase is very small in our
model.

This analysis is largely driven by the kinematic boundary conditions that imposes the two phases
to �ll the same domain. However in debris ows, the uid phase surface can be higher or lower than
the solid phase surface, due to the relative motion between these two phases. This is expected to be
signi�cant in particular when compression/dilation of the solid phase occur. Because the models seem
to be very sensitive to what happens at the surface, even small variations of the uid and solid surfaces
could have a strong impact on the results. Further analysis of the equations should be performed with
relaxation of these boundary conditions and including a more realistic closure relation related to the
compression/dilation of the granular phase.
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Figure 16. Test 2: Comparison of the thickness pro�les of the mass h(x; t ) in meters
as a function of the distance x (m) for the Pitman-Le and proposed models, at time
t = 1; 3; 5; 10s (at t = 10s the solid phase has already stopped), for the collapse of a
rectangular granular mixture over an inclined layer (� = 10o) made of the same mixture.
The initial volume fraction is ' 0 = 0:6. Here the friction law is the Richardson and Zaki
drag force (RZ) with m = 1.
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Figure 17. Test 2: Comparison of the solid volume fraction of the mixture ' (x; t )
as a function of the distance x (m) for the Pitman-Le and proposed models, at time
t = 1; 3; 5; 10s (at t = 10s the solid phase has already stopped), for the collapse of a
rectangular granular mixture over an inclined layer (� = 10o) made of the same mixture.
The initial volume fraction is ' 0 = 0:6. Here the friction law is the Richardson and Zaki
drag force (RZ) with m = 1.
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Figure 18. Test 2: Comparison of the velocity of the uid phase u(x; t ) in ms�1 as
a function of the distance x (m) for the Pitman-Le and proposed models, at time
t = 1; 3; 5; 10s (at t = 10s the solid phase has already stopped), for the collapse of a
rectangular granular mixture over an inclined layer (� = 10o) made of the same mixture.
The initial volume fraction is ' 0 = 0:6. Here the friction law is the Richardson and Zaki
drag force (RZ) with m = 1.
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Figure 19. Test 2: Comparison of the velocity of the solid phase v(x; t ) in ms�1 as
a function of the distance x (m) for the Pitman-Le and proposed models, at time t =
1; 3; 5; 7s (at t = 10s the solid phase has already stopped), for the collapse of a rectangular
granular mixture over an inclined layer (� = 10o) made of the same mixture. The initial
volume fraction is ' 0 = 0:6. Here the friction law is the Richardson and Zaki drag force
(RZ) with m = 1.
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Figure 20. Test 2: Comparison of the velocity di�erence of the uid u(x; t ) and solid
phase v(x; t ) in ms�1 as functions of the distance x (m) for the Pitman-Le and proposed
models, at time t = 1 and 5 s, for the collapse of a rectangular granular mixture over
an inclined layer (� = 10o) made of the same mixture. The initial volume fraction is
' 0 = 0:6. Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.
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(a) h. Pitman-Le model.
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(b) h. Proposed model.
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(c) ’. Pitman-Le model.
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(d) ’. Proposed model.

Figure 21. Test 2: The mass thickness h(x; t ) in meters as a function of the distance
x (m) (a-b) and of the solid volume fraction ' (x; t ) as a function of the distance x (m)
(c-d) at di�erent times for the collapse of a rectangular granular mixture over an inclined
layer (� = 10o) made of the same mixture. The initial volume fraction is ' 0 = 0:6. Here
the friction law is the Richardson and Zaki drag force (RZ) with m = 1.
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(b) u. Proposed model.
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(c) v. Pitman-Le model.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance x

S
ol

id
 v

el
oc

ity
 v

 

 

1s
2s
3s
4s
5s
6s
7s
10s

(d) v. Proposed model.

Figure 22. Test 2: The velocity of the uid phase u(x; t ) in ms�1 as a function of the
distance x (m) (a-b) and of the solid phase v(x; t ) in ms�1 as a function of the distance
x (m) (c-d) at di�erent times for the collapse of a rectangular granular mixture over
an inclined layer (� = 10o) made of the same mixture. The initial volume fraction is
' 0 = 0:6. Here the friction law is the Richardson and Zaki drag force (RZ) with m = 1.
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Figure 23. Test 2: Left: The surface pressure of the solid phase  (x; t ) in m2s�2 as a
function of the distance x (m) at di�erent times for the collapse of a rectangular granular
mixture over an inclined layer (� = 10o) made of the same mixture. Right: Comparison
between  and g(b+ h1 + h2) at t = 10 s.


