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Abstract
We consider the problem of “energy conserving” lattice Boltzmann models. A major

difficulty observed in previous studies is the coupling between the viscous and thermal

waves even at moderate wave numbers. We propose a theoretical framework based on the

knowledge of the partial equivalent equations of the lattice Boltzmann scheme at several

orders of precision. With the help of linearized models (inviscid and dissipative advective

acoustics and classical acoustics), we suggest natural sets of relations for the parameters

of lattice Boltzmann schemes. The application is proposed for three two-dimensional

schemes. Numerical test cases for simple linear and nonlinear waves establish that the

main difficulty in the previous contributions can now be overcome.
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1) Introduction
The derivation of lattice gas automata taking into account the conservation of mass,

momentum and total energy has been initially proposed by McNamara and Alder [13]. In

his contribution that fixed the paradigm of multiple relaxation times of lattice Boltzmann

schemes, d’Humières [10] presented simulation of compressible fluids with the presence

of strong discontinuities. Nevertheless, in order to fit the equilibrium distribution, it is

necessary to consider lattice Boltzmann models with a large number of velocities (see e.g.

Qian [14] and Alexander, Chen and Sterling [3]). In the study of one of us with L.S. Luo

[12], it has been established that the D2Q9 scheme (see the Figure 10 and a detailed

description in Annex 1) does not allow correctly a variation of sound velocity with the

temperature. The contribution [12] enforces the use of higher order stencils as the D2Q13

scheme (see Figure 11 and Annex 2).
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Figure 1. “Zero point” experiment with the D2Q13 lattice Boltzmann scheme. The

wave vector is in abscissa and the eigenvalues of the lattice Boltzmann scheme in y-

axis. The real part is on the left figure and the imaginary part on the right. Results

for two different angles. For a critical wave number, the viscous and thermal modes

merge together and the physics is badly approximated. Choice of coefficients defined in

the relations (63) and (71) : c1 = −1.3 , α2 = −25 , β2 = −1.5 , α3 = 5.5 , β3 = 0,

s5 = 1.88, s7 = 1.95, s9 = 1.60, s11 = 1.75, s12 = 1.05, s13 = 1.35.

• A major difficulty observed in [12] is the coupling between the viscous and thermal

waves at moderate wave numbers. Consider a DdQq lattice Boltzmann scheme with dis-

crete velocities ξj (see (55), (56), (67) and (74)) and unknowns fj satisfying a periodicity

condition parametrized by a wave number k:

(1) fj(x+ ξj ∆x, t) = exp(i k•ξj ∆x) Φj , 0 ≤ j ≤ q − 1 .

With a so-called “zero-point experiment”, we consider one iteration in time of the d’Hu-

mières scheme [10] with an initial condition satisfying (1). Such an iteration is defined

according to

(2) fj(x, t) = f ∗

j (x− ξj ∆x, t)


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with f ∗

j detailed in Annex 1 at the relation (66). Then the vector Φ is necessarily an

eigenvector of the amplification matrix, as detailed in [11]. The corresponding eigenvalues

define the discrete local modes of the linearized scheme. They must be of modulus less

than one in order to have a possible stability. A typical numerical experiment as those

first used in [12] is described in Figure 1. For a Prandtl number typically of the order

one and a wave number greater than a moderate critical wave number, the viscous and

thermal modes become coupled. Then the eigenvalues have a non-physical imaginary

part, as presented in the picture on the right of Figure 1.

The physical effects of such bad approximation are presented e.g. in figure 2. The physical

problem is the relaxation of a wave of wave number k . The initial condition is now of

the type

(3) fj(x, t) = exp(i k•x)ψj , 0 ≤ j ≤ q − 1 ,

with a given vector ψ that corresponds to a shear wave and a vertex x in a Nx × Ny

two-dimensional mesh. Periodic boundary conditions are enforced. Physically, this wave

relaxes towards a null equilibrium. For a supercritical wave number, the physics is not well

approximated by the method: negative values can numerically occur ! A consequence of

this major default is that very few compressible experiments are allowed with the lattice

Boltzmann schemes.
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Figure 2. Relaxation of a thermal wave with the D2Q13 lattice Boltzmann scheme.

The amplitude of the wave is plotted as a function of the normalized time. Left: wave

vector k parallel to Ox axis (2 and 9 wavelengths). Right: wave vector k at an angle

26.560 from Ox. Two values of the wave number are presented, one smaller than the

critical value (see Figure 1) and the other larger (respectively 1 and 2 wavelengths along

Ox and Oy, and 4 and 8 wavelengths along Ox and Oy). The relaxation is physically

correct in the first case but an unphysical undershoot appears in the second case. Domain

Nx×Ny with Nx = Ny = 61. Numerical values of the parameters: s5 = 1.88, s7 = 1.9303,

s9 = 1.60, s11 = 1.05, s12 = 1.35, s13 = 1.65, c1 = −1.3, α2 = −25, β2 = −1.5,

α3 = 4.5, β3 = 0.
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• In this contribution, we propose some solution to try and solve the previous difficulties.

We use the Taylor expansion method proposed by one of us [4] and used in previous

contributions for the development of “quartic” schemes [6, 7] because the analysis of

the full dispersion equation is not practically tractable when the number q of velocities

is greater than nine typically. With this method, we analyze the linearized waves of

the numerical schemes for different problems and the lattice Boltzmann schemes D2Q9,

D2Q13 and D2Q17 presented in Annexes 1, 2 and 3. In Section 2, we show that the

inviscid advective acoustics necessarily fixes some moments of degree 2 and 3. Then in

Section 3, we consider the second order analysis of the lattice Boltzmann scheme for

dissipative advective acoustics. We enforce at first order Galilean invariance for shear and

thermal waves. In Section 4, we analyze the waves of the scheme at fourth order accuracy

for a possible acoustics simulation. We enforce isotropy of the waves and this condition

fixes an important number of parameters of the method. We propose possible values

for the three schemes. In the three following sections, we present preliminary numerical

experiments for the lattice Boltzmann schemes D2Q9, D2Q13 and D2Q17. Some words

of conclusion are proposed in Section 8.

2) Inviscid advective acoustics
We are interested by conservation laws of mass, momentum and energy. The conserved

variables

(4) W =
(
ρ , jx ≡ ρ u , jy ≡ ρ v , ε

)t

are related to the particle densities fj through the relations

(5) ρ ≡
∑

j

fj , jx ≡
∑

j

vxj fj , jy ≡
∑

j

vyj fj , ε ≡
1

2

∑

j

|vj |2 fj + orth.

where “orth” are ad hoc terms for enforcing orthogonality, detailed for the various schemes

in Annexes 1 to 3. The other second order moments are defined by

(6) XX ≡
∑

j

[
(vxj )

2 − (vyj )
2
]
fj , XY ≡

∑

j

vxj v
y
j fj .

The first third order moments qx and qy are related to heat fluxes:

(7) qx ≡
∑

j

1

2
|vj |2 vxj fj , qy ≡

∑

j

1

2
|vj |2 vyj fj .

In this section these moments at equilibrium are supposed to be linearized functions of

the conserved moments W defined in (4). We propose a method for determining the 16

corresponding coefficients when we wish to approximate advective acoustics.

• We start from the Euler equations of gas dynamics

(8)
∂W

∂t
+
∂f(W )

∂x
+
∂g(W )

∂y
= 0


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with

(9)

{
f(W ) ≡

(
ρ u , ρ u2 + p , ρ u v , u ε+ p u

)t

g(W ) ≡
(
ρ v , ρ u v , ρ v2 + p , v ε+ p v

)t
.

We linearize this system around a given state

(10) W0 =
(
ρ0 , ρ0 u0 , ρ0 v0 , ρ0E0

)t
.

We introduce the internal specific energy e according to

(11) ε ≡ ρ e+
ρ

2

(
u2 + v2

)

and we suppose that the pressure is a function of the only internal volumic energy ρ e :

(12) p = function
(
ρ e

)
.

We linearize the pressure p given at relation (12) around the given state W0 and after

some lines of elementary calculus, with the notation β ≡ dp/d(ρ e) we have

(13) dp = β0

[ 1
2

(
u2 + v2

)
dρ − u djx − v djy + dε

]
.

The three first linearized equations of system (8)(9) concerning mass and momentum

conservation take the form

(14)





∂tρ+ ∂xjx + ∂yjy = 0[(1
2
β0(u

2
0 + v20)− u20

)
∂x − u0 v0 ∂y

]
ρ +

[
∂t + (2− β0) u0 ∂x + v0 ∂y

]
jx

+
[
− β0 v0 ∂x + u0 ∂y

]
jy + β0 ∂xε = 0

[
− u0 v0 ∂x +

(1
2
β0(u

2
0 + v20)− v20

)
∂y

]
ρ +

[
v0 ∂x − β0 u0 ∂y

]
jx

+
[
∂t + u0 ∂x + (2− β0) v0 ∂y

]
jy + β0 ∂yε = 0 .

We identify these equations with those obtained by a first order Taylor expansion (see e.g.

[4]) of the lattice Boltzmann scheme. Then we obtain for the D2Q9, D2Q13 and D2Q17

schemes the following expressions for second order moments at equilibrium

(15) XXeq = −
(
u20 − v20

)
ρ+ 2 u0 jx − 2 v0 jy , XY

eq = −u0 v0 ρ+ v0 jx + u0 jx .

• The expressions (15) are linear functions of the conserved variables (4) around the

reference state W0 given at relation (10). If we consider the conserved variables (4) as

“small variations” of the reference state (10), id est

(16) ρ = δρ0 , jx = δ(ρ0 u0) , jy = δ(ρ0 v0) , ǫ = δ(ρ0E0) ,

and skipping the index “zero” for convenience, the expressions (15) can be considered as

differential forms:

(17)

{
δXXeq = −

(
u2 − v2

)
δρ+ 2 u δ(ρ u)− 2 v δ(ρ v)

δXY eq = −u v δρ+ v δ(ρ u) + u δ(ρ v) .


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A natural question when considering differential forms is to know whether they are or

not the differential of some functions. In other terms, the question is to find functions

ξ(ρ, u, v) and η(ρ, u, v) such that the expressions given in (17) admit also the form

(18)

{
δXXeq ≡

(
u2 − v2

)
δρ+ 2 ρ u δu− 2 ρ v δv = δξ(ρ, u, v)

δXY eq ≡ u v δρ+ ρ v δu+ ρ u δv = δη(ρ, u, v) .

If the relations (18) are true, we have necessarily u2 − v2 = ∂ξ

∂ρ
and there exists some

function ξ1(u, v) such that ξ(ρ, u, v) ≡ ρ (u2 − v2) + ξ1(u, v). Then we have necessarily

2 ρ u = ∂ξ

∂u
= 2 ρ u + ∂ξ1

∂u
and the function ξ1 is only function of one single variable:

ξ1 = ξ1(v). We deduce from (18) the new relation −2 ρ v = ∂ξ

∂v
= −2 ρ v + dξ1

dv
and ξ1 is

reduced to some constant. We can proceed in a similar way for the function η(ρ, u, v).

First taking the differential of the second relation of (18) relatively to density, we have

u v = ∂η

∂ρ
and there exists some function η1(u, v) such that η(ρ, u, v) ≡ ρ u v+ η1(u, v).

Applying now a derivation relative to u: ρ v = ∂η

∂u
= ρ v + ∂η1

∂u
and η1 = η1(v) only.

After a derivation relative to v, we get ρ u = ∂η

∂v
= ρ u + dη1

dv
and η1 is constant. We

have proven the relations

(19) δXXeq = δ
(
ρ (u2 − v2)

)
, δXY eq = δ

(
ρ u v

)
.

The expressions (19) can be integrated up to a constant for nonlinear dynamics (8)(9) and

after a simple change of variables, we obtain nonlinear functions of the initial conserved

variables (4):

(20) XXeq =
j2x − j2y
ρ

, XY eq =
jx jy
ρ

.

• The conservation of energy is more delicate to fit exactly. It can be achieved if we

assume that the equation of state (12) is precisely p = ρ e which means that the fluid

is a perfect gas with a ratio γ of specific heats equal to 2. In other words, the lattice

Boltzmann schemes are well adapted for shallow water equations. For general fluids, we

introduce the sound velocity c0 and the Laplace operator ∆ ≡ ∂2x + ∂2y . We know that

the linearized equations

(21) A0 •W = O(∆t)

around a given state W0 admit in this case of two space dimensions the following four

eigenvalues

(22) ∂t + u0 ∂x + v0 ∂y (double), ∂t + u0 ∂x + v0 ∂y ± c0
√
∆ (acoustics)

with notations used in [7] that are exactly the one used when implementing the approach

with a symbolic manipulation software. It is also possible to introduce a Fourier decompo-

sition on harmonic waves of the type exp
(
i (ω t − k•x)

)
. Then we have the usual change

of notation: ∂t ≡ i ω, ∇ ≡ −ik, ∆ ≡ − |k|2,
√
∆ ≡ i |k|, etc.

• We impose these eigenvalues to the equivalent equations of the lattice Boltzmann

schemes D2Q9, D2Q13 and D2Q17. In this way, we obtain 7 independent relationships


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that constrain the equilibrium heat flux q given at relation (7) for these three schemes.

Independently, we know from (9) that when we linearize the conservation of energy, the

coefficients of ∂yjx and ∂xjy are both equal to zero. In the equivalent equations, we just

impose that these two coefficients are equal. In this way, we obtain an eighth equation.

We solve these equations and we find for the D2Q9 scheme the following expressions for

the linearized heat fluxes qx and qy around a given state W0 :

(23)

{
qeqx = 2 u0 (4λ

2 − 3c20) ρ + (6c20 + 3v20 − 3u20 − 5λ2) jx − 6u0v0 jy + 2u0E

qeqy = 2 v0 (4λ
2 − 3c20) ρ − 6u0v0 jx + (6c20 + 3u20 − 3v20 − 5λ2) jy + 2v0E .

For the D2Q13 lattice Boltzmann scheme, we obtain with the same arguments

(24)





qeqx =
2

13
u0 (28λ

2 − 13c20) ρ + (2c20 + v20 − u20 − 3λ2) jx − 2u0v0 jy +
2

13
u0E

qeqy =
2

13
v0 (28λ

2 − 13c20) ρ − 2u0v0 jx + (2c20 + u20 − v20 − 3λ2) jy +
2

13
v0E

and the D2Q17 scheme leads to

(25)





qeqx =
6u0
17

(60λ2 − 17c20) ρ− (6c20 + 3u20 − 3v20 + 17λ2) jx − 6u0v0 jy +
6 u0E

17

qeqy =
6v0
17

(60λ2 − 17c20) ρ − 6u0v0 jx + (6c20 + 3v20 − 3u20 + 17λ2) jy +
6 v0E

17
.

We take into account the relations between the physical total energy ε and the orthog-

onalized total energy E presented at relations (61), (70) and (77). Using an analysis

identical to the one presented in details at the relations (17) to (20), and after some lines

of elementary calculus, we observe that the relations (23), (24) and (25) are linearizations

of the following general relations between the heat flux and the conserved variables. We

have precisely

(26)






D2Q9 : qeq =
(
3λ2 − 3 |u |2 +2

E

ρ

)
j

D2Q13 : qeq =
(17
13
λ2− |u |2 +

2

13

E

ρ

)
j

D2Q17 : qeq =
(71
17
λ2 − 3 |u |2 +

6

17

E

ρ

)
j .

We observe at this level of analysis that there is no constraint on the higher order vectors

r and τ whenever they exist (see the relations (69) and (76) of Annexes 2 and 3).

3) Dissipative advective acoustics
In the previous section, we have considered the first order eigenvalues given by the ex-

pressions (22). We denote by k0 the kinetic energy of the reference state:

(27) k0 ≡
u20 + v20

2
.

Let us set u0•∇ ≡ u0 ∂x + v0 ∂y and introduce the matrix Λ0 as the diagonal matrix

composed by the eigenvalues:

Λ0 = diag
(
∂t + u0•∇ , ∂t + u0•∇ , ∂t + u0•∇+ c0

√
∆ , ∂t + u0•∇− c0

√
∆
)
.


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We observe that the corresponding matrix of eigenvectors, given according to

(28) R0 =




0 1
√
∆

√
∆

∂y u0 c0 ∂x + u0
√
∆ −c0 ∂x + u0

√
∆

−∂x v0 c0 ∂y + v0
√
∆ −c0 ∂y + v0

√
∆

u0 ∂y − v0 ∂x k0 (c20 + k0)
√
∆+ c0 u0•∇ (c20 + k0)

√
∆− c0 u0•∇




does not depend on the numerical scheme. We consider now the equivalent equations of

the lattice Boltzmann scheme at second order accuracy. With the new variables

(29) V = R0 •W

obtained by action of the matrix R0, the equivalent partial differential equations at order 2

take the simple form

(30)
(
Λ0 + ∆t P0

)
•V = O(∆t2) .

The partial differential equations (30) extend naturally the first order expression proposed

in (21). The perturbation matrix P0 has the generic form

(31) P0 =




P00

(
∗ ∗
∗ ∗

)

(
∗ ∗
∗ ∗

) (
∗ ∗
∗ ∗

)


 .

The two by two matrix P00 is not diagonal. Then the method of perturbations (see

e.g. [8, 9]) that we used in [7] is not straightforward to deal with. We have a priori

to diagonalize the perturbation P00 which is a difficult task in all generality ! In this

contribution, following an idea first proposed by Qian [14], we want to express that the

corresponding two first eigenvalues

(32) λ1 = ∂t + u0 ∂x + v0 ∂y + ∆t p1 , λ2 = ∂t + u0 ∂x + v0 ∂y + ∆t p2

do not depend on the underlying velocity u0, in a way first suggested by Qian and

Zhou [15]. In this contribution, we simply enforce the property that the trace and the

determinant of the matrix P00 do not depend on u0, at least up to second order. In

other terms, we have

(33)
∂

∂u0

(
pj
)
=

∂

∂v0

(
pj
)
= 0 , j = 1 , 2 .

We did not study the analogous property for acoustic waves, id est the condition (33)

for j = 3 and 4. Such a study will be considered in future contributions. In the end

of this section, we explicit the various constraints that are obtained for the three lattice

Boltzmann schemes due to the conditions (33).


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• D2Q9

We know first from (23) that there exists some relation between the sound velocity c0
and the coefficient c1 defined e.g. thanks to the relation (62). The previous relation is

enforced and the sound velocity is completely imposed:

(34) c0 =

√
2

3
λ .

Moreover, the fifth nonconserved moment is the square of energy E2. It is a scalar field.

The conditions (33) enforce this property and we have

(35) Eeq
2 = α2 λ

4 ρ+ β2 λ
2E .

Then the perturbations p1 and p2 define the viscosity and the diffusivity at constant

volume. They are given by

(36) p1 = −λ
2

3
σ5 ∆ , p2 = −λ

2

12

(
4 + 4 β2 − α2

)
σ7∆ .

• D2Q13

There is a priori no constraint for the sound velocity. The square of the energy at

equilibrium is again given by a relation of the type (35). The vectorial moment r (with

labels 8 and 9 in the family (68)) is proportional to the momentum j :

(37) req =
λ2

12

(
62 λ2 − 63 c20

)
j ≡ c2 j .

There is no condition for the cube E3 of the energy. The 13th moment named “XXe”

is essential for visco-elastic simulations when the moment XX is quasi-conserved. It

admits an equilibrium of the type

(38) XXeq
e = ξx(u0, v0)

(
λ4 ρ+

λ2

28
E
)
.

Remark that we are not completely satisfied by the relation (38). The left and right hand

sides are not of the same tensorial type. If we exchange x and y, the signs of XXe is

changed but it is not the case for scalar moments ρ and E. Nevertheless, this kind of lack

of tensorial coherence exists at any order if we consider sufficiently high order moments,

as observed with very different methods by Augier et al. [1, 2]. Then the viscosity and

the diffusivity at constant volume p1 and p2 take the form

(39) p1 = −1

2
c20 σ5∆ , p2 = − 1

154

λ4

c20

(
28 β2 + 140 − α2

)
σ7∆ .

• D2Q17

As for the D2Q13 scheme, there is no constraint for the sound velocity. The square of the

energy at equilibrium is still obtained by the condition (35). There is no condition for

the “powers” three E3 and four E4 of the energy. Note that “XXe” and “XYe” (labels

12 and 13 in (75)) satisfy conditions close to (38):

(40) XXeq
e = ξx(u0, v0)

(
λ4 ρ+

λ2

60
E
)
, XY eq

e = ξy(u0, v0)
(
λ4 ρ+

λ2

60
E
)
.


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There is no condition on the equilibrium of vector r. But if we introduce the notations

(41)

{
reqx = λ3

(
cρx λ

2 ρ+ cxx λ jx + cyx λ jy + cεxE
)

reqy = λ3
(
cρy λ

2 ρ+ cxy λ jx + cyy λ jy + cεy E
)
,

where the c′s coefficients of relations (41) are a priori functions of the advection field u0,

we have the following expressions for the vector τ = (τx , τy) ≡ (X E3 + orth. , Y E3 +

orth.) with labels 10 and 11 at relations (75):

(42)





τ eqx = −31

2
λ5

[
cρx λ

2 ρ+
λ

124

(
124 cxx + 249

c20
λ2

− 442
)
jx + cyx λ jy + cεxE

]

τ eqy = −31

2
λ5

[
cρy λ

2 ρ+ cxy λ jx +
λ

124

(
124 cyy + 249

c20
λ2

− 442
)
jy + cεy E

]
.

Finally the perturbations p1 and p2 are given by

(43) p1 = −1

2
c20 σ5∆ , p2 = − 1

218

λ4

c20

(
60 β2 + 620 − α2

)
σ7∆ .

A variant of the relations (39) !

4) Fourth order isotropic acoustics
We suppose in this section that the reference advective state W0 has a zero velocity :

u0 = v0 = 0. We evaluate the eigenvalues λj (for j = 1 to 4) at fourth order accuracy

by using the general method presented in details in [7]. Then the eigenvalues admit a

general expansion of the type

(44)






λ1 = ∂t +∆t p1 +∆t2 p̃1 +∆t3 p1 +O(∆t4)

λ2 = ∂t +∆t p2 +∆t2 p̃2 +∆t3 p2 +O(∆t4)

λ3 = ∂t + c0
√
∆+∆t p3 +∆t2 p̃3 +∆t3 p3 +O(∆t4)

λ4 = ∂t − c0
√
∆+∆t p3 −∆t2 p̃3 +∆t3 p3 +O(∆t4)

and we refer to (22) and (32) for advective acoustics at first and second order accuracy.

In the following, we enforce isotropy by saying that the eigenvalues λj proposed in (44)

are isotropic. In other words, the operators pj , p̃j and pj that appear in (44) are only

functions of the Laplacian. This induces a family of equations for the parameters.

• D2Q9 at third order accuracy.

For the D2Q9 lattice Boltzmann scheme, we have a total of 5 equations (respectively one

equation) to achieve isotropy at the fourth (respectively third) order. We have no solution

at the fourth order. Third order isotropy can be enforced, i.e. the dispersion of ultrasonic

waves is isotropic in this case, by adding to the relations (34) and (35) the constraint

(45) σ7 =
1

12 σ5
.





Some results on energy-conserving lattice Boltzmann models

• D2Q13

For this scheme, a total of 6 equations is necessary to obtain fourth order isotropy. They

can be solved by adding to the previous conditions (37) and (38) the constraint (45) and

the following specific relations

(46) c0 =
2√
5
λ ,

and

(47) Eeq
3 = α3 λ

6 ρ+ β3 λ
4E .

The coefficients α3 and β3 of the relation (47) are associated to the coefficients α2 and

β2 introduced at relation (35) according to

(48)





α3 =
1

1716

Nα

384 σ2
5 + 7

, β3 =
1

216216

Nβ

384 σ2
5 + 7

,

Nα = 41922− 2505α2 + 54800 β2 +
(
14098944 + 97440α2 + 1315200 β2

)
σ2
5

Nβ = −2756851 + 34250α2 − 889970 β2
−
(
204329472− 822000α2 + 41211840 β2

)
σ2
5 .

The coefficient ξx in the relation (38) is null and we have also the following relations

between the dissipation coefficients defined in (65) from the s′s :

(49) σ9 = σ7 , σ13 = σ5

• D2Q17

In this case, fourth order isotropy induces a total of 9 equations. They can be solved

analytically (with the help of a formal software for the algebra) first by considering the

relations (35) and (40). Secondly, the sound velocity c0 has not to be imposed. We have

to enforce (49) and we add the condition

(50) σ15 = σ7 .

Relation (47) is supplemented by an analogous one for the fourth power of the energy:

(51) Eeq
4 = α4 λ

8 ρ+ β4 λ
6E .

The coefficients α’s and β’s satisfy now

(52)






α3 = − 5

436
(2696442 + 7519α2) , β3 = − 1

2616
(2949247 + 225570 β2) ,

α4 = − 1

177888
(69687842 + 139145α2) , β4 = − 5

355776
(940101 + 55658 β2) .

Moreover, the vectors q, r and τ considered previously satisfy at equilibrium the rela-

tions

(53)





qeq = c1 j , req = c2 j , τ eq = c3 j

c1 = 6 c20 − 17 λ2 , c2 =
λ2

6
(31 λ2 − 21 c20) , c3 =

λ4

24
(555 c20 − 596 λ2) .

We have also the simple equilibria

(54) XXeq
e = 0 , XY eq

e = 0 .
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5) Numerical experiments with the D2Q9 scheme
We first consider a “zero point” analysis as described in the introduction. We observe in

Figure 3 (left) that the unphysical coupling of waves is present with an arbitrary value

of the parameter σ7 which is proportional to the diffusivity κ at constant volume as

indicated at the relation (36). When fourth order isotropy is enforced according to the

relation (45), this coupling disappears, as observed in Figure 3 (right).
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Figure 3. D2Q9 “zero point”. Value of the eigenmode divided by k2 and normalized

by the diffusivity κ vs the wave number. Left figure : shear and thermal waves with

σ7 chosen arbitrarily. We see clearly a strong coupling between the viscous and diffusive

waves for an angle θ = 26.565 degrees. Right figure : the relation (45) is satisfied. The

coupling has disappeared but there is still an angular dependency that characterizes this

third order isotropy.
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Figure 4. Relaxation of a nonlinear diffusion wave with D2Q9 “energy conserving”

lattice Boltzmann scheme. The parameters of the scheme are the following: s5 = 1.8181,

s9 = 1.1765, α2 = −1, β2 = 0.1 (see the relation (35)), s7 = 0.4615 when the condition

(45) is not satisfied, α2 = −0.15, β2 = −1 (see the relation (35)), s7 = 1.8305 when

the condition (45) is satisfied. Left: vadvec = 0, Middle: vadvec = 0.05, Right: vadvec =

0.10. The light exponential lines correspond to the velocity corrected damping (following

complicated expressions not given here).

• In order to confirm this good performance of the D2Q9 lattice Boltzmann scheme with

conservation of energy, we have simulated the relaxation of a thermic wave on a 81 × 81

lattice. We have incorporated the nonlinear terms given by relations (20) for the moments
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XX and XY at equilibrium. For the “heat flux” q at equilibrium, we have considered

the expressions (26), but the quadratic term relative to velocity has been neglected. The

results are presented in Figure 4. For a small wave vector k and an advection velocity V

parallel to the wave vector, the waves are correctly advected, whatever the direction of

the wave vector. In other terms, we have isotropy of the Galilean factor.

6) Numerical experiments with the D2Q13 scheme
With the methodology presented in sections 2 to 4, it is possible to remove the spurious

coupling of shear and thermal modes depicted in the introduction. Precisely, if the pa-

rameters of the scheme satisfy the relations (37), (45), (46), (47), (49), (73), there exists

a situation where the scheme is linearly stable for fluid and thermal applications and

also for pure acoustics. Moreover we obtain a correct Prandtl number and appropriate

attenuations :

Pr = 0.728 , ν = 0.006 λ∆x , κ = 0.008236 λ∆x , γ = 0.003487 λ∆x

The results are proposed in Figure 5.

 0.75
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 0.95
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 0  0.2  0.4  0.6  0.8  1

angle  00.0
       11.3
       26.6
       33.6
       45.0

Figure 5. “Zero point” experiment with the D2Q13 lattice Boltzmann scheme. Viscous

and diffusive modes for a moderate wave number k and several angles. There is clearly

isotropy and the two waves are decoupled. The diffusive wave at k = 0 is on the order of

1.025. Note that the small oscillations at this point reflect the numerical difficulties due

to the approximation of the eigenvalue 1 at fourth order accuracy. The viscous wave at

k = 0 is on the order of 0.72. At k ≃ 0.78 the two modes cross perfectly without merging.

Note that this perfectly isotropic test case is also very dispersive.
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• The relaxation of a diffusive wave is presented Figure 6.
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Figure 6. Relaxation of a nonlinear diffusive wave as function of time with the D2Q13

“energy conserving” lattice Boltzmann scheme in a 91 × 91 domain (2 wave lengths along

Ox and 1 wave length along Oy). Parameters are set to have a Prandtl number of .80.

Mean velocity parallel to the wavevector of amplitude 0.0, 0.05 and 0.10.

• As an illustration of the potential of this “conserving energy lattice Boltzmann

scheme”, we present in Figure 7 the propagation of a sound wave in a disc.

Figure 7. Sound wave propagation in a circle with an “anti bounce - back” numerical

boundary condition with the D2Q13 lattice Boltzmann scheme conserving the energy.

7) Numerical experiments with the D2Q17 scheme
With the methodology presented in Sections 2 to 4, the D2Q17 scheme depicted in Fig-

ure 10 and in Annex 3 admits parameters satisfying the numerical constraints made

explicit in relations (15), (20), (26), (40), (41), (42), (50), (51), (52), (53), (54) and (78).

• Some results are shown for the “zero-point” analysis. In a first case, we have taken

the parameters in a simple way. The results are presented in Figure 8. The shear and
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eigenmodes are decoupled and show very little angular dependence The decoupling of

viscous and thermal modes is correct.

Pr = 0.74182 , c0 =

√
7

6
,

ν

λ∆x
= 0.029167 ,

κ

λ∆x
= 0.039318 ,

γ

λ∆x
= 0.055959 .
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Figure 8. “Zero point” experiment for the D2Q17 scheme. Left : effective viscosity

and diffusivity κ vs the wave vector k for several directions. Middle : attenuation of the

sound waves. Right : (vson/c0)−1 vs k. Choice of parameters: α2 = −619, β2 = −20.55,

s5 = 1.81812, s11 = 1.9230, s12 = 1.818, s17 = 1.111.

• In a second case, we show that one can reduce significantly the physical dissipations

by a better tuning of the parameters. The associated physical parameters are given by

Pr = 0.69817 , c0 =

√
7

6
,

ν

λ∆x
= 0.001167 ,

κ

λ∆x
= 0.001671 ,

γ

λ∆x
= 0.000651 .

The dissipation is reduced by one order of magnitude if we refer to the previous example.

The results are presented in Figure 9. We observe that the isotropy of the waves is not

rigorously satisfied. A systematic search in the space of free parameters of the model would

certainly lead to better behavior, especially in order to increase the numerical stability of

the model which, as presented here, is not very good. We refer for this approach to Xu

and Sagaut [16].
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Figure 9. “Zero point” experiment for the D2Q17 scheme. Left : effective viscosity and

diffusivity κ vs the wave vector k for several directions. Middle : attenuation of the sound

waves. Right : (vson/c0)−1 vs k. Choice of parameters: α2 = −641.17 β2 = −21.01933,

s5 = 1.9920, s11 = 1.9230, s12 = 1.818, s17 = 1.25.
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8) Conclusion
We have considered the problem of “energy conserving” lattice Boltzmann models. Not

completely satisfying results were proposed in the literature with the classic version of

D2Q13 LB scheme [12] even for very elementary situations as a shear wave and diffusive

wave. We have added two new ideas : add nonlinear terms and remove the “spurious

coupling” with a fourth order analysis of the equivalent partial equivalent equation. More

precisely, our theoretical analysis is founded of the knowledge of the partial equivalent

equations of the lattice Boltzmann scheme at several orders of precision. At the first

order the linear nondissipative advective acoustics suggest which nonlinear terms should

be included in the equilibrium values of the second order moments and the third order

heat flux. At the second order the linear dissipative advective acoustics establish general

relations for the viscosity and diffusivity from the necessary isotropic behavior of the

LBE model leads to constraint on the linear dependence of higher order moments. It

is possible to enforce Galilean invariance at first order accuracy for shear, thermal and

acoustic waves. The analysis of classical acoustics allows the computation of parameters

that are compatible with isotropic waves. Satisfactory results are shown for the shear wave

for three versions of the lattice Boltzmann model considered here. This breakthrough has

to be confirmed for other test cases, lattice Boltzmann models and higher dimensions !
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Figure 10. Stencil of 9 velocities for the D2Q9 lattice Boltzmann scheme.

Annex - 1. D2Q9 lattice Boltzmann scheme

The velocity set vj for 0 ≤ j ≤ q − 1 of a DdQq lattice Boltzmann scheme is given by

the general relation

(55) vj = ξj λ ,

where λ is some scale velocity. For the D2Q9 scheme [11] illustrated in Figure 10, the

ξj’s of relation (55) are given by the expressions

(56)

{
ξ0 = (0, 0) , ξ1 = (1, 0) , ξ2 = (0, 1) , ξ3 = (−1, 0) , ξ4 = (0, −1) ,

ξ5 = (1, 1) , ξ6 = (−1, 1) , ξ7 = (−1, −1) , ξ8 = (1, −1) .
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The d’Humières moments [10] are defined with the help of a family pk (0 ≤ k ≤ q− 1) of

two variables polynomials. They are ordered by increasing degree. For the D2Q9 scheme,

pj ∈ PD2Q9 with

(57)





p0 = 1 , p1 = X , p2 = Y , p3 = −4 λ2 + 3 (X2 + Y 2)

p4 = X2 − Y 2 , p5 = X Y

p6 = X
(
− 5 λ2 + 3 (X2 + Y 2)

)
, p7 = Y

(
− 5 λ2 + 3 (X2 + Y 2)

)

p8 = 4 λ4 − 21

2
λ2 (X2 + Y 2) +

9

2
(X2 + Y 2)2 .

.

The coefficients of the matrix M are simply given by nodal values in the velocity space:

(58) Mkj = pk(vj) , 0 ≤ j , k ≤ q − 1 .

The moments mk for 0 ≤ k ≤ q − 1 are defined with the help of this matrix:

(59) mk =
∑

j

Mkj fj , 0 ≤ k ≤ q − 1 .

The moments defined by the relations (57) and (58) are, due to (63), the eigenvectors of

the relaxation operator of the Boltzmann equation with a finite number of velocities, as

noticed in [5]. In particular in this contribution,

(60)





ρ ≡
∑

j

fj , jx ≡
∑

j

vxj fj , jy ≡
∑

j

vyj fj , E ≡
∑

j

p3(vj) fj ,

XX ≡
∑

j

p4(vj) fj , XY ≡
∑

j

p5(vj) fj ,

qx ≡
∑

j

p6(vj) fj , qy ≡
∑

j

p7(vj) fj .

We observe that due to the orthogonalization procedure, the “numerical” total energy

E proposed at relations (60) and effectively used in the simulations is related to the

“physical” total energy ε introduced in (4) as the fourth conserved variable thanks to the

relation

(61) E = 6 ε− 4 λ2 ρ .

In a first approach, we choose the equilibria for the nonconserved moments as follows :

(62) XXeq = 0 , XY eq = 0 , qeq = c1 λ
2 j , Eeq

2 = α2 λ
4 ρ+ β2 λ

2E .

The coefficients sk that determine the relaxation of the d’Humières moments

(63) m∗

k = mk + sk
(
meq

k −mk

)

are defined according to

(64) sXX ≡ s5 , sXY ≡ s5 , sqx ≡ s7 , sqy ≡ s7 , sE2 ≡ s9 .

We set also

(65) σk ≡ 1

sk
− 1

2
.

Recall that the distribution f ∗

j of particles after relaxation is defined from the moments

m and the inversible matrix M according to

(66) f ∗

j =
∑

k

(
M−1

)
jk
m∗

k .
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Figure 11. Stencil of 13 velocities for the D2Q13 lattice Boltzmann scheme.

Annex - 2. D2Q13 lattice Boltzmann scheme

For the D2Q13 scheme [14, 17] illustrated in Figure 11, the first nine ξj’s of relation (55)

are the one given at the relation (56). The last four are

(67) ξ9 = (2, 0) , ξ10 = (0, 2) , ξ11 = (−2, 0) , ξ12 = (0, −2) ,

The family PD2Q13 of two-variable polynomials that define the moments according to

relation (58) are detailed as follows:

(68)





p0 = 1 , p1 = X , p2 = Y , p3 = −28 + 13 (X2 + Y 2)

p4 = X2 − Y 2 , p5 = X Y

p6 = X (−3 λ2 +X2 + Y 2) , p7 = Y (−3 λ2 +X2 + Y 2)

p8 = X
(101

6
λ4 − 63

4
λ2 (X2 + Y 2) +

35

12
(X2 + Y 2)2

)

p9 = Y
(101

6
λ4 − 63

4
λ2 (X2 + Y 2) +

35

12
(X2 + Y 2)2

)

p10 = 140 λ4 − 361

2
λ2 (X2 + Y 2) +

77

2
(X2 + Y 2)2

p11 = −12 λ6 +
581

12
λ4 (X2 + Y 2)− 273

8
λ2 (X2 + Y 2)2 +

137

24
(X2 + Y 2)3

p12 = (X2 − Y 2)
(
− 65

12
λ2 +

17

12
(X2 + Y 2)

)
.

.

The moments mk ≡
∑
pk(vj) fj have usual names given in (60) and for the D2Q13

scheme by the complementary relations

(69) m8 ≡ rx , m9 ≡ ry , m10 ≡ E2 , m11 ≡ E3 , m12 ≡ XXe .

We observe also for this scheme that the “numerical” total energy E is a simple function

of the “physical” total energy ε . We have

(70) E = 26 ε− 28 λ2 ρ
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In the first approach presented in the introduction, we choose the equilibria for the non-

conserved moments as follows :

(71)

{
XXeq = 0 , XY eq = 0 , qeq = c1 λ

2 j , req = c2 λ
4 j ,

Eeq
2 = α2 λ

4 ρ+ β2 λ
2E , Eeq

3 = α3 λ
6 ρ+ β3 λ

4E , XXeq
e = 0 .

The relaxation rates sk that determine the relaxation (63) of the moments are associated

according to

(72)

{
sXX ≡ s5 , sXY ≡ s5 , sqx ≡ s7 , sqy ≡ s7 , srx ≡ s9 , sry ≡ s9 ,

sE2 ≡ s11 , sE3 ≡ s12 , sXXe ≡ s13 .

The coefficient c1 is related to the sound velocity c0 according to

(73) c1 = 2 c20 − 3 .

Annex - 3. D2Q17 lattice Boltzmann scheme

For the D2Q17 scheme illustrated in Figure 12, the thirteen ξj’s of relation (55) are those

given at the relation (67). The last four are

(74) ξ13 = (2, 2) , ξ14 = (−2, 2) , ξ15 = (−2, −2) , ξ16 = (2, −2) , .

In a way analogous to (68), the two-variable polynomials family PD2Q17 are given accord-

ing to:

(75)





p0 = 1 , p1 = X , p2 = Y , p3 = −60 + 17 (X2 + Y 2)

p4 = X2 − Y 2 , p5 = X Y

p6 = X (−17 λ2 + 3 (X2 + Y 2)) , p7 = Y (−17 λ2 + 3 (X2 + Y 2))

pr =
47

6
λ4 − 17

4
λ2 (X2 + Y 2) +

5

12
(X2 + Y 2)2

p8 = X pr , p9 = Y pr

pτ = −7429

42
λ6 +

1565

8
λ4(X2 + Y 2)− 2635

48
λ2(X2 + Y 2)2 +

465

112
(X2 + Y 2)3

p10 = X pτ , p11 = Y pτ

p12 = (X2 − Y 2)
(
− 65

12
λ2 +

17

12
(X2 + Y 2)

)

p13 = X Y
(
− 65

12
λ2 +

17

24
(X2 + Y 2)

)

p14 = 620 λ4 − 969

2
λ2 (X2 + Y 2) +

109

2
(X2 + Y 2)2

p15 = −16740 λ6 +
330361

12
λ4 (X2 + Y 2)− 74485

8
λ2 (X2 + Y 2)2 + · · ·

+
18445

24
(X2 + Y 2)3

p16 = 84 λ8 − 24055

56
λ6(X2 + Y 2) +

35425

96
λ4 (X2 + Y 2)2 + · · ·

−6035

64
λ2 (X2 + Y 2)3 +

9193

1344
(X2 + Y 2)4 .

The first moments are precise at the relations (60). The new moments introduced with

the D2Q17 scheme with the help of relations (58) and (75) are

(76)

{
m8 ≡ rx , m9 ≡ ry , m10 ≡ τx , m11 ≡ τy , m12 ≡ XXe ,

m13 ≡ XYe , m14 ≡ E2 , m15 ≡ E3 , m16 ≡ E4 .
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We observe between the “numerical” and “physical” total energies a relation very analogous

to (61) and (70). We have for the D2Q17 lattice Boltzmann scheme:

(77) E = 34 ε− 60 λ2 ρ

Due to natural isotropy conditions, the σ’s coefficients defined by (65), satisfy the relations

(78) σ4 = σ5 , σ6 = σ7 , σ8 = σ9 , σ10 = σ11 , σ12 = σ13 .

10

2

3

14 13

16

911

15

10

56

12

4
7 8

Figure 12. Stencil of 17 velocities for the D2Q17 lattice Boltzmann scheme.
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