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Abstract— Industrial processing (cutting, assembly...) of steelaminations can lead to significant modificationsin their
magnetic properties. Moreover, the repeatability ofthese modifications is not usually verified becagsof the tool wear or,
more intrinsically, to the manufacturing process iself. When investigating the iron losses, it is gerally observed that the
hysteresis losses contribution are more likely toe affected. In the present work, twenty eight (28%amples of slinky stator
(SS) are investigated, at a frequency of 5Hz andS3II. A stochastic model is then developed, using tlides-Atherton model
together with a statistical approach to account fothe variability of the hysteresis loops of the caidered samples.

Index Terms—hysteresis, Jiles and Atherton, slinky stator, vaability
and more specifically on the iron losses. Resuitsvgd
I. INTRODUCTION that, when the iron loss separation technique is
thelnvestigated, it was again observed that the vitiplof
the hysteresis contribution is indeed more sigaificfor
the considered samples. According to these resuisof
interest to have a stochastic model of the hysteret

For optimal design of electrical machines,
knowledge of magnetic steel properties is of imaiace,
especially in the context of more and more consingi
requirements for energy efficiency. In order to e : _
the accuracy of electrical devices modeling, manykey ~ P€havior of the material. _
have been concerned with the modeling of the hgsier Stochastic modeling pecame in thg Iast- deche&t gre
behavior of soft magnetic materials, and itschall_e_nge, and are p_artlcular_ly us_ed in varloulsdsﬁe_such
implementation for the numerical simulation of @s civil and mechanical engineering. Generally kipga
electrotechnical devices [1-4]. These models anadcto it @ims to investigate uncertainties on input pagters of
be acceptable, when the input parameters, relatetlet @ model, and then to study their impact on the rhode
geometry and physical properties of the materiate, output(s) [13-15].The proposed common scheme for
assumed to be known accurately. However, sucHealing with uncertainties using a stochastic maodits
assumption reveals itself insufficient as the maoufring upon three steps, namely the definition of the
of an electrical machine, from the cutting of laations mathematical model of the physical system, the
till the final magnetic core shape, requires severaprobabilistic characterization and modeling of the
industrial processes that might significantly imp#ite  yncertainties on the model parameters and the
magnetic properties of the considered material.e&8#v propagation of these uncertainties through the iriadg
works concerned the influence of cutting [5-7] and  The present work is focused on the second step, and
assembly techniques [8] on the magnetic behaviar 1aaims at developing a quasi static hysteresis stticha
and iron losses. Results showed a deterioratiothef moge| of Jiles-Atherton (J-A) [22] to account fdret

magnetic permeability and an increase of iron Iesse,griapility of the quasi-static magnetic behaviawlof 28
Moreover, when iron losses separation techniques ais samples issued from a production chain.

investigated [5], it was found that hysteresis éssare The first part of this paper concerns the expertalen
more likely to be affected by this deterioratiorhem itis gpg variability aspect of the hysteresis loops,ntjtiad

not significant for the dynamic losses. When coesity  on the aforementioned SS samples. The main obgeistiv
the hysteresis loops, it was observed that the ¢mp& {5 recall the outline of the experimentation ane thain
cutting techniques makes the hysteresis loopsstpsared  regylts, as further details can be consulted i [f14J.

and more S-shaped. Moreover, the widening of tbedo The second part of this paper is related to the

such impact for the improvement of the modelingt®  f the stochastic modeling of fatigue of material.

real behavior of the material. For instance, sdusoaks Finally, the last part of the paper concems the
focus on the modeling of the effect of cutting @s& on  appjication of the approach for the stochastic ringeof
the magnetic properties of the material [7], [30]. the hysteretic behavior of the SS samples, usieg and

Nevertheless, the mechanical stress induced by th&nerton model.
manufacturing process, is not necessarily well kmawd
not the same for all samples issued from the prtiziuc Il. EXPERIMENTAL PROCEDUREV ARIABILITIES
chain. This is due, for example, to the cuttingl twear
which induces therefore a variability of the magnet A. Experimental procedures
properties of these samples. A statistical approach
presented in [12] and deals with the quantificatibrthe
magnetic properties variability of 28 slinky stadSS),

Twenty eight SS samples supplied by the same
manufacturer, and made from standard laminatioadegr
M800-50A, with the same geometry are investigalduk



core manufacturing process of SS is based on adwing

of steel lamination that is progressively punched a 15
rolled up in a spiral way. Stators obtained frons thay
of manufacturing are known as "slinky stators". sThi 1

method is used to reduce the material waste. lires
special manufacturing techniques and production sl
machines. The rolling process might then negatively
influence the magnetic properties of the material, o of
especially the iron losses that increase [11].

The main purpose of the experiment is to quantify t -0.5}
variability of the hysteresis loops of the statample’s
yokes. To this end, primary and secondary windimase -1
been realized along their yoke, as for the magnetic )
characterization of a toroidal sample: each statmnple TR0 -1000 0 1000 2000
has an excitation winding that creates a magngticif H
the yoke along its perimeter, and a secondary wine Figure 2: Hysteresis loops of SS samples measired
added to measure the magnetic flux density (figurel 5Hz and 1.5T

The experimental characterization is then carrietd o
under sinusoidal waveform, at 5Hz and 1.5T. TheThese variabilities are linked directly to the meijmn
quantities of interest are the characteristic gooft the  properties of the considered samples. The objeaiive
hysteresis loops of the considered samples, sudheas this paper is then to develop a stochastic versiothe
remanent flux (B, the coercitive field (i), the maximum  Jiles and Atherton model to account for these
excitation field (H,»,) and the iron losses {kh [W/kg]) variabilities.
corresponding to the area of the measured hyssdoes.
Their variabilities are then quantified using dgstive
statistic and by calculating the coefficient ofiation Cv,

which is the ratio of the standard deviatiento the In the literature, several papers in various fields
empirical mear. of engineering have been concerned by the

development of stochastic models for representhg t
behavior of a random phenomenon. A relatively vast
literature dealing with such modeling can be foumthe
field stochastic aspect of the fatigue of materibkssed
on Virkler experimental data [17]. These data coned
the stochastic aspect of crack length of 68 sampiesle
with the same aluminium alloy and with the same
dimensions. 68 individual crack growth curves, each
giving the number of cycles as function of crackgt,
are then obtained. These observations resultetffénesht
statistical analyzes to identify the probabilistic
istribution of the input parameters of the usebavéor
w, as for instance the Paris and Erdogan modal [1
One can find also some works accounting for the
stochastic aspect of Young’s modulus [21].

According to these works, we have defined the
following steps to account for the uncertainties tioé
hysteretic behavior of the samples.

I1l.  STOCHASTIC MODELING APPROACH

Figure 1. Samples of stators wound manually

In order to verify that uncertainties are mainljated
to the magnetic properties, influences of the nois
measurements, manual windings and geometricq
tolerances have been investigated [12]. Resultsvestho
that, for a given stator sample, the potential cesirof
uncertainties are not significant. Therefore, $ignificant
variability is identified among the stators sampldss
one can be linked directly to the degradation & th
magnetic properties due to manufacturing processes.

A. Deterministic model selection

The first step is to compare the accuracy of exgsti
Beterministic models. To this end, the objectivetas
identify the parameters of the deterministic mofilem
experimental data. The coefficient of efficierR§ycan be

B. Hysteresis loops variability

Hysteresis loops of the considered samples, mea&sur
at 5Hz and 1.5T are presented in figure 2. Moreahe
variability of the characteristics points of thestgresis
loops for the considered samples are summarizéabie

1. used to measure the accuracy of the fitting prockss
takes values between 0 and 1, and evaluates ttigofra
TABLE | of variance in the observed data that can be engafaby
COEFFICIENT OF VARIATION OF HYSTERESIS LOOPS POINTS the model. A higher value indicates better agreeémen
Br (T) | He(A/M) | Hmax (A/m) | Ps (Wikg) Assume that we have a sample of sizeuch asg/ = (ys,
U 0.73 177.22 1724.73 0.62 Vo,...}) mMeasured ak = (X3, %,...%), related to the
o 0.029 10.35 79.08 0.03 behavior of a phenomena, and we want to estimate a
Cv% | 3.98 5.84 4.59 5.63 family of parametersa=(a;, &,...a) of the modelf(a)




chosen to represent the data. The least squareiqeeh linear intensity between both random variables.sThi
can then be used to find the values of the paramefbe coefficient is calculated with the following relatiship:

. i . .
expression oRn is given by the following relation: (= E[(Xy - E(Jxl))a(xz - E(X,)) (3)
[y (6)- yix) e |
R2=1—_=1 1) If both random variables are not Gaussian
n. . distributed, it may be useful to quantify the irgigy of
Z(y (Xi)‘ E(y (Xi ))) this dependence with tf&pearmarrank correlation[24].
i=

1 This coefficient is a non parametric one, calcdd®m

WhereE(y (x)) is the mean over the measured pointsthe rank of X and X%. In this case, the intensity of both
y (x) and y(x) are respectively the measured and thgandom variables is not necessarily linear. Moreoife
point estimated by the model for the corresponding Xiand X are Gaussian distributed, it is as powerful as the
level. Pearson correlation coefficieni, and allows one to

R2 may be oversensitive to extreme values or outlier®vercome the assumption about a linear form of
An improvement oveRzfor model evaluation purposes is dependence between, And X%, especially for a limited
the adjusted coefficient of efficien®g, given by, number of data.

n-1 ( 2) The expression of this coefficient is given by the
n-q-1 1-R°) (@) following relationship:

R2=1-

n

B. Stochastic modeling of input parameters R -R) (3 - §)

With the selected deterministic model, thextn Os = =1 (4)
step consists in identifying its parameters for all n v | —\2
experimental data. In order to verify the predictaf the \/Z(R B R) \/Z(S B S)

stochastic model latter, one can split randomly the i=1 i=1

experimental data in two subsets: Modeling Sub®ég) Where R=Rank(x) and S=Rank(y) and R and
to develop the probabilistic model, and Test SuhEES) Sare respectively the mean of the rankgindsx
to test the prediction of the model. The parameatéthe z
deterministic model are then identified on MS. The D. Validation of the model

probability distribution functions (pdf) of the @aneters The validation of the model consistpérforming
are thereafter identified, and this can be achiewed \ionte Carlo simulations, which consists simply in

context of parametric approach for which classpaf  herforming  multiple  model  evaluations of  the
(uniform, Gaussian, lognormal) can be tested Withyeterministic model, using random numbers to sample
Kolmogorov Smirnov (KS) test. In practice, the testqq, pdf model inputs (ie sampling is guided by

consists in assuming that the experimental data aig each parameter). This approach is straightfaiwaat
distributed according to the proposedf at a risk 0fa%.  he main challenge of the simulation is to accdanthe

This assumption is known as null hypothesishen, by gependency structure between the parameters. thal
computing the maximum distance between empirical;ameters are then distributed according to a s
Cumulative Distribution  Function (CDF) of the gisgribution, a Multivariate Gaussian distributi@dGD)
experimental data and th€DF of the candidate 5y pe chosen to account for the marginal distiobut
distribution, one can reject or not the null hy@sis B 504 the correlation between them [14]. If it is nioe
at a risk ofa%. The result related to the rejection or NOtcase Iman and Conove[24], can be implemented. This
of Ho is most of the time interpreted in termpialue  method is applicable for all type of distributioasd is

Therefore, one can reject H the p-value returned by the sefy| in inducing desired rank correlations amdine
test is less than the risk%. Moreover, and if all the input parameters.

proposedhdfare not rejected by the test, on can retain the The theoretical basis for the methodrigfly
pdfthat return the highegtvalue described below [24], [25]. Suppose that [C] isesiced
C. Correlation analysis correlation matrix and [X] is a random row vector.

. ) i . Because [C] is positive-definite and symmetric, [Gdy
This step deals Wlth the analysis .of t.hg interype written as [C] = [P][P], defined as Chlosky
dependence between the input parameters idenitifited decomposition. Then the transformed vector [X][fas

previous step. Quantification of this dependennectire  he gesired correlation matrix [C]. The detailedgadure

is of importance as it impacts mainly the variaoteéhe s a5 follows. Let the number of input variables be

output of the model, whereas the mean is not géyera yonoted by, and leth be the sample size.

changeq. The works presented in [19] stipulate that | ot [X] be annxk matrix whose columns represent k

correlation structure must be taken into accountngependent random permutations of an arbitrarpfet

especially when it is around 0.7. scores. The usual scores, as presented in thenarigi
Assume that we have a couple of randompaper of Iman and Conover are the Van Der Waerden

variables X and X%. If they are Gaussian distributed, andscores, which are generated ®y{i / (n + 1)}, where

only in this case, one can quantify the intensityttee @ - is the inverse function of the standard normal

dependency using th€earson coefficientdefining a distribution, and = 1,..., n. For a sample of size = 20,



the matrix [X] has a random mix of the Van Der Wt characteristics. An identification method of the
scoresd™(i/21),i = 1..., 20, in each columRork= 2, the parameters is presented in [31], from some poihthe

20 Van Der Waerden scores are independentlitysteresis loop. However, this technique is knowibé
permutated twice to create two columns of the ramdo unstable numerically, and the convergence is not
mix. Suppose that [C] is the desired rank corretati systematic. An improvement over the parameters
matrix (2x 2 matrix in this case) and [C] = [P][P"], where identification is now available, and based espbcial

[P] can be computed using the Cholesky factorimatio optimization techniques. Moreover, some works are
scheme. The Cholesky factorization factors a symimet related to the consideration of variable parameters
positive-definite matrix [C] into the product oflawer according to some physical observations. In [32], a
triangular matrix [P] and its transpose [P’]. Asntiened  variable pining parameter modeled by Gaussian iomct
above, [X][P’] results in amxk matrix, denoted as [X*], iS proposed, assuming thktis higher for lower level
which possesses the desired correlation matri¥dClhe ~ magnitude of the applied excitation field, and lovier

k input variables. Further, let [A] be axxk matrix whose higher magnitude level. The expression of k is ity
elements are actual input values (k input variablis n  the following relationship:

observations each). To induce the desired coroslati  k=Koxexpg™®*? (6)

between the input variables, the input values iohea  Where k corresponds to the original value of
column of matrix [X] are rearranged to have the samparameter k, H the applied excitation field, amdhe
ordering as the corresponding column of matrix [X*] standard deviation of the Gaussian function. Théifieal
This method is easy to use, distribution-free (nonJ-A model is then defined by 6 parameters to batified
parametric), and preserves the exact margindrom experimental measurements. Another variant is
distributions of input variables. given in [23], when considering the same assumption
Another parameter is added, and the previous oelati
becomes:

k=k;+koxexp @) (7)

Where the first term is independent of the exartati
field and the second term a Gaussian function.hlg t
case, the J-A model is defined by 7 parameters.

The three models were tested on the hysteresis
E. Cross Validation techniques behavior of a sample f stator, in order to choaserg
the most accurate one, in term Bf. The identified
parameters using classical least square fittingnrigce
and the coefficient of efficienciRg for each model are

Results of the simulation can be then used to ohixier
the uncertainty related to the output of the madsa to
perform statistical analysis. It may be useful teak if
the marginal distributions of each parameter aesgmved
and if the correlation matrix obtained with the huat are
close.

For the selected probabilistic mpde Cross
Validation techniques (CV) is applied to analyzs it

prediction behavior [21]. This technique consists i e -
identifying first a Confidence IntervalCl and then by Presented in figure 2.a, 2.b and 2.c. Graphicéligan be

comparing the identified Cl with MS and TS trajeats.  0PServed that each model presents a good approaimat

The objective is then to verify if all MS lie witnithe ~©°f the data. However, and when comparing the
identified CI. Moreover, comparison of TS and Chiso  coefficient of efficiencyR%, M, and M, present higher

of interest as it allows one to analyze the préaficof the ~ v@lue compared to p Moreover, and as Mis only
model. Therefore, and if all TS lie within the @he can defined by 6 parameters, it was chosen to model the
imagine that the variability of over samples oftsta hYSteresis behavior of all the samples. First of duta
issued form the considered production chain iglmshe ~ Were splitted randomly in two subsets: 20 MS, ants8

identified CI The parameters of the model Mere then identified for
all MS. Therefore, the 6 parametéhd, ky,c,aa,0) of the
IV. HYSTERESIS LOOPSSSAMPLES STOCHASTIC model become random but not constant anymore, @nd 2
MODELING realizations of the vector of parameters are obthin

Their histograms are presented in figure 3.

J-A model describes, from a physical point of vibe KS test at a risk of 5% was then performed fqud3

hysteresis phenomena inside soft magnetic mateflts ., qidates, namely Gaussian, Lognormal and Uniform.

mechanism of the original model can be consultd@2h  the p.yalues returned by the test are summarizéabie
In order to take account for the hysteresis valites 5

among SS samples, inverse J-A model is used [80B i

¢ ] ' ) - It can be observed in this table that the null higpsis
is used as input, and given by the following relaship:

Ho, assuming that the 6 parameters are distributed
according to the 3 candidateslf are not rejected, at a

(1_C)M+CM risk of 5%. However, as the Lognormal distribution
am _ dB dB, (5) Ppresents the highest p-value, it has been chosen to
dB dManh represent the variability of the 6 parameters.

dm;
1+ p1-cfl-a)—"+ yycll-a)—20" . .
tolL-cf1-a) dB, Hod1-a) dB, The rank correlation matrix of the 6 parameters thas

In this relation,Ma.,and M, denote respectively the Calculated and given in table 3. It can be obsethed
anhysteretic magnetization and the irreversibldhere is a strong correlation between them.
magnetization.

(Mg, k, c, a,a) are the parameters of the model, and
are determined from the measured hysteresis
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TABLE Il
0.5 RANK CORRELATION MATRIX OF THE6 PARAMETERS OFM 1
-1+
M ko C a A o
s : ‘ ‘ M 1 -0.509| -0.837] 0.959 0.94p  0.547
oo -1000 o] 1000 2000 ko | -0.509 1| 0.746] -0.41% -0.36P -0.918
. . - - c | -0.837 0.746 i -0.787 -0.75p  -0.718
Figure 2: Parameters and coefﬁqgnt_ of efficientthe a 0.959 o5 0787 1 09b 0516
three considered deterministic models p 0.942 0362 0754  0.99b i 0.470
o 0.567 -0.918] -0.774 0.516p  0.410 1
TABLE Il N . .
P-VALUES OF KOLMOGOROV SMIRNOV STATISTICAL TEST AT ARISK oF 1 N deterministic hysteresis behavior of the samplas
5% OF THEG PARAMETERS then simulated 500,000 times with the random
Ms ko c a a o parameters. For the 4 characteristic points ofdngsts,

Gaussian | _0.71] 0585 08B o086 o095 olrg KS test was performed at a risk of 5% and the pesl
lognormal| 0.76 [ 0.7] 099 o099 099 o returned by the test are summarized in table 4refbee,
Uniform | 0.31 [ 0.47[ 0.71f 0.04] 0.0 0.53 and at risk of 5%, the null hypothesis related e t

equality of the distributions of the experimentatal and
In order to validate the model, Monte Carlo simolat  the simulated one is not rejected, for the 4 charistic
coupled with Iman and Conover method was performechoints.

!t was achieved. by_ simulating independently_ 500'oogfhe medians of the 4 hysteresis characteristictpaire
independent realizations of the 6 parameters at@td o jdentified and presented in table 5. It can be
Lognormal distribution. These realizations and the

. . . . observed that they are close
correlation matrix defined in table 3 were thenduse y

N

input for Iman and Conover method. In the outputhef TABLE IV
Iman and Conover method, it was noticed that the P-aLUES OFKOLMOGOROVSMIRNOV KS STATISTICAL FOR THE4
marginal distributions for each parameter were not HYSTERESIS CHARACTERISTIC POINTS
changed. Moreover, the disparity between the grask = - - S
correlation matrix, and the one simulated with nttethod . c max i

0 p-values 0.42 0.078 0.53 0.21
was less than 1%.




TABLE V

EXPERIMENTAL AND SIMULATED MEDIANS OF THE CHARACTERISTIC

POINTS OF HYSTERESIS

Br He Hmax Piot
Experlmental 0.740 180.78 1702 0.627
median
Slmul_ated 0.734 176.31 1726.6 0.619
median
Disparity % | 0.87% 2.4% 1.3% 1.24%

Finally 95% CI is identified, as summarized in &ald,
and compared with MS and TS. These comparisons are
presented in figure 4.

TABLE VI

CONFIDENCE INTERVALS IDENTIFIED FROM THE STOCHASTIC MODEL

B (T) [0.6355; 0.8161]
Hec (A/m) [157.58; 205.13]
Himax (A/m) [1595.29; 1842.13]
Ps (W/kg) [0.542; 0.717]

It can be observed that MS and TS lie within th€695
identified Cl. All these criteria allow then one alidate

the hysteresis stochastic developed model,

and its

prediction behavior.

V. CONCLUSION

In this paper, a stochastic modeling of the quedies
hysteresis of 28 SS samples is developed using-the
model. The samples are issued from a productiomgcha
and showed variability in term of hysteresis iresdes.
This variability reflects the non uniformity of the
deterioration of the magnetic properties, introaldyy
the manufacturing process. The stochastic modeling
approach was then defined, by means of existingsvor
Moreover, the dependency structure was considesiegju [
Iman and Conover method. The model was finally
validated using statistical test and Cross Valatati
Techniques, and showed good results. The developgz

model

can be used for finite element simulations.

However, and in order to minimize the numericaletim
consumption, it may be is suitable to develop mddel 3]
account for the dependency structure between paeasne
In this case, polynomial chaos expansion and copula

technique may be used.
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